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Abstract

As datasets of DNA reads grow rapidly, it becomes more and more important to represent de Bruijn
graphs compactly while still supporting fast assembly. Previous implementations have not supported
edge deletion, however, which is important for pruning spurious edges from the graph. Belazzougui et
al. Belazzougui et al. (2016b) recently proposed a compact and fully dynamic representation, which
supports exact membership queries and insertions and deletions of both nodes and edges. In this
paper we give a practical implementation of their data structure, supporting exact membership queries
and insertions and deletions of edges only, and demonstrate experimentally that its performance is
comparable to that of state-of-the-art implementations based on Bloom filters. Our source-code is publicly
available at https://github.com/csirac/kbf under an open-source license.

1 Introduction
Since ?? ?? introduced them to bioinformatics in the 1990s, de Bruijn
graphs have come to dominate de novo genome assembly. In the kth-
order de Bruijn for a set of reads, the nodes are the set of all (k−1)-mers
in the reads and there is an edge from node u to node v if and only
if there is a k-mer in the reads with prefix u and suffix v. Short-read
assemblers typically use the Eulerian approach, meaning they look for
paths of nodes with in- and out-degree 1, corresponding to contiguous
sequences (contigs) in the genome. Some assemblers use a single value
of k, such as ABySS ? and Velvet ?, while other use several values of k in
turn, such as IDBA ? and SPAdes ?. Aside from assembly, de Bruijn
graphs are also used for read correction ? and variant discovery , for
example.

Due to their widespread use and the large size of modern datasets, it
is important that we use compact representations of de Bruijn graphs that
can still be built quickly and support fast assembly. Several authors have
proposed representations built on Bloom filters Bloom (1970), which is a
space-efficient probabilistic data structure built on multiple hash functions
that is used to test whether an element is in a set, with the possibility of
false positives. For example, by storing each k-mer in a Bloom filter,
??? Pell et al. (2012) were able to represent the graph using as little as 4
bits per k-mer, albeit not with complete accuracy due to the probabilistic
nature of the Bloom filter. ??? Chikhi and Rizk (2013) proposed using
a Bloom filter with an additional structure to detect false positives, and
was able to perform a complete de novo assembly of a human genome
using 5.7GB of memory. ??? Salikhov et al. (2014) used cascading Bloom
filters with false-positive detection and further reduced the memory usage
by 30-40%.

By their nature, inserting an element into a Bloom filter is usually
fairly easy, but deleting one is usually difficult or impossible. Other
compact representations of de Bruijn graphs ? usually do not allow even
easy insertions. Two exceptions that we know of are data structures by
Belazzougui and two sets of coauthors Belazzougui et al. (2016a); ?, both
of which support insertions and deletions both of nodes and of edges:
the first is based on an extension by Bowe et al. Bowe et al. (2012) of
FM-indexes ?, which was further extended by Boucher et al. Boucher
et al. (2015), and stores a pointer-based representation of recently updated
nodes and edges that is incorporated into the main representation through
periodic rebuilding; the second is based on a combination of Karp-
Rabin hashing ? and minimal perfect hashing ? but still supports exact
membership queries. It is not clear that a complete implementation of
either of these data structures would be practical but, fortunately, the
second data structure becomes much simpler if we concern ourselves
with only exact membership queries and insertions and deletions of
edges, not nodes. Edge deletions in particular are interesting because
sequencing errors give rise to spurious nodes and edges, which it is often
useful to prune from the graph before assembly. Node deletions can be
simulated by edge deletions, since removing all the edges incident to a
node effectively deletes it.

Our contribution. In this paper we implement the simple version of
Belazzougui et al.’s hash-based data structure mentioned above, and
demonstrate experimentally that its performance is comparable to that of
state-of-the-art implementations based on Bloom filters. In Section 2 we
review Belazzougui et al.’s design. We describe our implementation in
Section ??, and the results of our experiments in Section ??. Finally, we
give our conclusions in Section ??.

c© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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2 Kuhnle et al.

2 Design
Belazzougui et al.’s data structure for a kth-order de Bruijn graph G

is most easily described in layers. At the base is a Karp-Rabin hash
function ?, which can take either a (k − 1)-mer and return an integer
hash value in O(k) time, or take a (k − 1)-mer v, its hash value and a
character c, and return in O(1) time the hash value of the (k − 1)-mer
obtained from v by deleting its first character and appending c. Storing
this function takes asymptotically negligible space.

For the purposes of this paper, the next level is a minimal perfect hash
function that in O(1) time maps integers to values in {0, . . . , n − 1},
where n is the number of nodes in G. When restricted to the Karp-
Rabin hash values of the nodes in G, the minimal perfect hash function is
bijective. Storing this function takesO(n+log k+log |Σ|) bits, where Σ

is the alphabet (i.e., {A, C, G, T} in this paper). The construction algorithm
is Las-Vegas randomized: any function it returns has these properties
and with high probability it returns a function in O(kn) time, with the
probability taken over the random bits.

If we wanted to support insertions and deletions of nodes as well
as of edges, we would instead use a dynamic minimal perfect hash
function. This would require more space than a static minimal perfect
hash function, however, and the construction algorithm can return a faulty
function with low probability.

Let f : Σk−1 → {0, . . . , n− 1} be the composition of the minimal
perfect hash function and the Karp-Rabin hash function. Notice that, once
we have computed f(v) for a node v inG, we can compute f(w) inO(1)

time, for any neighbour w of v. Since f maps any (k − 1)-mer to a a
number between 0 and n− 1, however, by itself it is not enough for us to
navigate in G.

The third layer is a pair of n-by-|Σ| binary arrays IN and out OUT that
indicate which neighbours each node has. Specifically, for each node v
and each character c, if f(v) = i and j is 1 less than c’s lexicographic
rank in the alphabet, then IN[i][j] = 1 if and only if there is a directed
edge to v from a (k−1)-mer that starts with c; symmetrically, OUT[i][j] =

1 if and only if there is a directed from v to a (k − 1)-mer that ends with
c. These arrays take |Σ| bits per node, i.e., 4n bits in this paper.

Suppose v and w are (k − 1)-mers such that f(v) = i, v starts with
the lexicographically (j + 1)st character in the alphabet, f(w) = i′,
w ends with the lexicographically (j′ + 1)st character in the alphabet,
and the last k − 2 characters in v are the first k − 2 characters of w.
Belazzougui et al. showed that, if OUT[i][j] = 1 and IN[i′][j′] = 1 then
either both v and w are in G or neither are. That is, assuming either v or
w is in G, if OUT[i][j] = 1 and IN[i′][j′] = 1 then the edge (v, w) is
also in G. Of course, if either if OUT[i][j] = 0 or IN[i′][j′] = 0, then the
edge (v, w) is not inG. Similar ideas have been used previously, e.g., the
implementation of SPAdes ?.

Using IN and OUT, if we start at a node v we think is in G, we can
explore its entire connected component in the underlying undirected graph
(i.e., all the nodes from which v is reachable inG and all the nodes which
can be reached from v). If we ever encounter a discrepancy between IN

and OUT— i.e., an edge (u,w) that IN says is incident to w but OUT says
is not incident to u, or vice versa — then we can deduce that v was in
fact not in G. Unfortunately, the absence of such a discrepancy does not
confirm that v is in G.

To be able to verify whether nodes are in G, Belazzougui et al. use
a fourth layer, consisting of a forest of shallow rooted trees. The edges
in this forest are a subset of the edges in the undirected graph underlying
G. We choose the trees to have height between k lg σ and 3k lg σ, except
that we allow a tree to be shorter than k lg σ when it covers an entire
connected component in the underlying undirected graph. We store the
(k− 1)-mers that are the roots of the trees (in order by their hash values),

mark the numbers between 0 and n− 1 to which f maps those (k − 1)-
mers and, for each non-root node v, we mark the edge incident to v that
leads to v’s parent in the forest. This takes 2n|Σ|+ ndlg |Σ|e+ 2n bits,
so 10n bits in this paper, plus possibly kdlg |Σ|e bits for each connected
component in the underlying undirected graph.

Given a node v, if f(v) is marked as being the hash value of a root,
then we can check in O(k) time whether v is in G by comparing it to
the (k − 1)-mer we have stored for that root. Otherwise, we assume v
is in G, follow the edge to its parent u (checking there is no discrepancy
between IN and OUT), and check that u is in G. If v really is in G, then in
O(k) time we reach the root and verify it, thus also verify v (and all its
ancestors). If v is not in G, then either we will take too many steps trying
to reach a root, or we will find a discrepancy between IN and OUT along
the way, or when we reach a root we will find the (k − 1)-mer we are
trying to check there is not the one we have stored.

If we insert an edge between two nodes in the same connected
component of the underlying undirected graph, or insert an edge between
two connected components each larger than k lg |Σ|, or delete an edge
that is not in the forest, then we can simply update IN and OUT without
updating the forest. Next, we describe the last layer of Belazzougui et al.’s
data structure: how to update the forest when an edge is inserted between
two connected components, at least one of which is smaller than k lg |Σ|,
or an edge in the forest is deleted.

First, suppose we add an edge between two connected components.
If neither component is larger than k lg |Σ|, we may merge the two
corresponding trees into a single tree by discarding the old roots, sampling
a new root, and reversing the direction of forest edges as necessary to
ensure we have a single tree. If exactly one component is larger than
k lg |Σ|, we consider the depth in its tree of the node u in the larger
component incident with the inserted edge. If u is of depth less than
2k lg |Σ|, we can simply reverse the necessary forest edges in the smaller
component and discard its root to add it into the larger component.
Otherwise, if the depth of u is at least 2k lg |Σ|, we traverse upwards
in its tree k lg |Σ| steps to node v and break off the subtree rooted at v,
storing v as the new root. Again, the root of the smaller component is
discarded and forest edges are reversed as necessary to ensure that we
have a tree.

Next, suppose we delete an edge (u, v) that is in the forest, so v had
been the parent of u. We check the subtree below u and the size of the
tree containing v. If both are larger than k lg |Σ|, we store u as a root.
Otherwise, if one of these trees is smaller than k lg |Σ|, we search for
any edge in the De Bruijn graph incident with a node w in this tree and a
node x in an adjacent tree. If such an edge (w, x) or (x,w) is found, we
make x the parent of w and reverse forest edges as necessary to append
the tree ofw below the adjacent tree; the resulting tree may exceed height
3k lg |Σ|; if it does, this implies that x is of depth at least 2k lg |Σ|. In
this case, we traverse up k lg |Σ| steps from x and break off the subtree at
that node by storing it as a root.

By these procedures, we maintain that each tree in the forest is of
size at least k lg |Σ| and height at most 3k lg |Σ|, unless a tree is in
a connected component of size less than k lg |Σ|. Furthermore, both
procedures for edge addition and deletion as described above take at most
O(k lg |Σ|) time, since each change to the data structure takes constant
time, computing hash values of u, v requires O(k) time, and there are at
most a bounded number of partial tree traversals in each case, where each
tree traversal explores at most 2k lg |Σ| elements.

We note as an aside that, since in this paper we are concerned only
with insertions and deletions of edges and not nodes, we could further
simplify Belazzougui et al.’s design. To do this, we would conceptually
overlay on G another graph H with the same set of nodes, but with all
possible edges present. We would then build a forest on H instead of on
G, discard from H all the edges not in the forest, and build binary arrays
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INH and OUTH . We could then verify that nodes are inG using the forest
on H , which is static. We do not follow this approach because it uses
more space, diverges significantly from Belazzougui et al.’s description,
and would make it much more difficult to extend our implementation in
the future to include insertions and deletions of nodes as well.

The above discussion is summarized in the following Lemma and
Theorem.

LEMMA 1 (Belazzougui et al. (2016b)). Given a set E of n k-mers
over an alphabet Σ of size σ, with high probability in O(kn) expected
time we can build a function f : Σk → {0, . . . ,m − 1} with the
following properties:

• when its domain is restricted to E, f is bijective;
• we can store f in O(n+ log k + log σ) bits;
• given a k-mer v, we can compute f(v) inO(k) time;
• given u and v such that the suffix of u of length k − 1 is the prefix of

v of length k − 1, or vice versa, if we have already computed f(u)

then we can compute f(v) inO(1)-time.

THEOREM 1 (Belazzougui et al. (2016b)). Given a de Bruijn graph
G with n nodes, with high probability in O(kn+ nσ) expected time
we can store G in O(σn) bits plus O(k log σ) bits for each connected
component in the underlying undirected graph, such that checking
whether a node is in G takes O(k log σ) time, listing the edges incident
to a node we are visiting takes O(σ) time, and crossing an edge takes
O(1) time.

3 Implementation
Our implementation takes as input a value k ≤ 321 and a fasta file
containing reads from which to contruct the De Bruijn graph. The
implementation next constructs the dynamic data structure for efficient
representation of the De Bruijn graph described in the previous section. In
particular, the data structure is composed of the following: a hash function
f that takes k− 1-mers to {0, ..., n− 1} where n is the number of nodes
in the de Bruijn graph, the matrices IN and OUT that encode the edges
of the de Bruijn graph, and a forest covering the nodes of the de Bruijn
graph. We describe the construction of each of these in Sections 3.1 to
3.3. In addtion, our implementation allows for membership queries and
dynamic edge removal and addition, which are described in Sections 3.4
and 3.5 respectively.

3.1 Hash function

The data structure relies upon a hash function f to map k − 1-mers to
{0, . . . , n − 1} where n is the number of nodes in the de Bruijn graph.
LetN be the set of k− 1-mers from the input reads. The hash function in
our implementation is a composition h ◦ g that is bijective onN , where g
is a Karp-Rabin hash function (Karp and Rabin, 1987) that is injective on
N , and h is a minimal perfect hash function (Hagerup and Tholey, 2001)
on g(N). We next provide definitions of Karp-Rabin and minimal perfect
hash functions.

DEFINITION 1. (Karp-Rabin) Suppose we have a subset S of the
universe U of all possible strings of length k over an alphabet Σ =

{0, . . . , σ−1}. Given a prime P and base r ∈ [0, P −1], a Karp-Rabin
hash function g is a function defined over U such that g(x1...xk) =

(
∑n
i=1 xir

i) mod P .

1 k must be at most 32 because the k-mers are stored in 64 bits

DEFINITION 2. Minimal perfect hash A minimal perfect hash
function h for a set of size n, S, is a function defined on the universe
such that h is one-to-one on S and the range is {0, ..., n− 1}.

First, we discuss the procedure to generate the Karp-Rabin hash
function g; the minimal perfect hash function h is then constructed
using the computed Karp-Rabin values. The prime P is chosen to be the
smallest prime greater than (k − 1)n2 in order to give a high probability
of injectivity. Next, r is chosen from a uniform distribution on 0 to P −1;
after choosing r, we have a valid candidate for function g. The powers of r
mod P and r−1 mod P are precomputed; to compute r−1 mod P ,
it is necessary to employ the generalized Euclidean algorithm. Next, g
is tested for injectivity. The above process repeats until g is injective.
After g has been generated, the minimal perfect hash h on the image of
g is constructed using the library BBHash (Limasset et al. (2017)). After
this construction, the image of g is discarded, and only the precomputed
powers of r mod P , the value of r−1 mod P , prime P itself, and g
are stored.

The hash value of k − 1-mer a = a1 . . . ak−1 may be found by
first computing the sum

∑k−1
i=1 air

i mod P using the stored powers of
r, which can be done in O(k) time. Once the Karp-Rabin value g(a)

is computed, we use the perfect hash function h to find h(g(a)). In the
case that we have the Karp-Rabin value g(a′) of a k − 1-mer a′ that is
a neighbor of a in the De Bruijn graph, then we can update the value
of g(a′) and get g(a) in O(1) time. For example, suppose a′ is an out
neighbor of a, i.e. a′ = a2 . . . ak . Then g(a) = (g(a′)−ak ·rk−1)·r+

a1 · r mod P . Similarly, if a′ is an in neighbor of a, a′ = a0 . . . ak−2,
then g(a) = (g(a′)− a0 · r) · r−1 + ak−1 · rk−1 mod P .

3.2 IN and OUT

The edges of the de Bruijn graph G are stored in two binary matrices,
IN and OUT, each having n rows and 4 columns. The rows correspond
to k − 1-mers, while the columns correspond to letters A, G, T , and C,
respectively.

To construct IN and OUT, first all k-mers are extracted from the input
reads; IN and OUT are initialized to 0. For each k-mer, which represents
an edge in the de Bruijn graph, we compute the hash value of the prefix
k − 1-mer and then use the hash value update described in Section 3.1 in
order to find the hash value of the suffix k − 1-mer. The corresponding
entries of IN and OUT are then updated to 1. This process takes O(km)

time where m is the number of edges in the de Bruijn graph. Notice that
an improvement on the construction time could be made if the k−1-mers
were read in order of their appearance in each input read, since the hash
value update could be used for all but the first k − 1-mer in each read.

3.3 Forest

In this section we summarize the procedure to construct the forest, which
is a division of the directed de Bruijn graph into undirected trees of
bounded height, where only the k−1-mer of the root of each tree is stored.
In our implementation σ is 4, and hence the tree heights are bounded by
3α and the minimum size of a tree is α, where α = (k − 1) lg |Σ| =

2(k − 1).
The forest is constructed within a single Breadth-First-Search (BFS)

through the undirected graph underlying the de Bruijn graph. The
following process is performed for each connected component. We first
choose a starting node for the BFS, s, in the component. s is set as a
root in the forest, and its (k − 1)-mer is stored. As we visit each node
n, we set n’s parent in the forest to be its parent in the BFS by storing
the following 3 bits: 1 bit to indicate whether the parent is accessed via
IN or OUT, and 2 bits to indicate which of the 4 letters. In addition, we
store 1 bit to indicate whether n is a root in the forest or not. In order to
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ensure that every tree has a height in the appropriate range, we also store
new roots as we go along using the following process. For each node n in
the component, we define a node r(n) that is an ancestor of n in the BFS
representing the root of the forest tree that n is in. Initially, r(n) = s

for all n. Once we have reached a node n that is of height greater than
2α from r(n), we set r′ = n, and reset the height of n to 0; that is, we
remember n as a potential root and start measuring the height below this
potential root. Once we have reached a node n that is of height greater
than α, we store r′ as a root and set r(n) = r′. This way, both the new
tree with root r′ and the tree we have broken off from are both of height
at least α and at most 3α; since a tree of height α contains at least α
nodes, this procedure ensures the minimum size of each tree as well. The
only exception is if a connected component is of smaller size than α; in
this case, a single tree is created by the above procedure that spans the
connected component.

3.4 Membership Query

Given a k− 1-mer x, one can query the data structure for membership of
x in the nodes of the de Bruijn graph. We describe the implementation of
this membership query in this section.

Whether a (k − 1)-mer x is a member of the data structure can be
found by travelling up towards a root in the forest. First, we hash x, and
we find the node in the forest corresponding to this hash value. Using the
data stored for that forest node and x’s k−1-mer, the parent’s (supposed)
k − 1-mer is computed. The parent’s hash value is then found by using
the hash update procedure described in Section 3.1. We then verify that
such an edge exists between the two k − 1-mers in the de Bruijn graph
by checking IN and OUT. If x, the (k − 1)-mer that we are querying
for membership, is not a k − 1-mer in the graph, it may be the case that
IN and OUT contradict the existence of an edge between the nodes. We
can therefore eliminate the possibility of membership for some k − 1-
mers and return false through this check. While the above test has not
failed, we repeat the process with the parent’s k − 1-mer until we have
reached a forest root or we have moved up 6(k− 1) times, that being the
maximum tree height. In the latter case, the membership of x is returned
false. Otherwise, if a root is reached, the k − 1-mer of the root computed
from travelling up the tree can be compared to the stored k−1-mer of the
root. In this case, whether x is a member depends on whether the two are
equal.

3.5 Updating for dynamic graphs

The data structure is dynamic with respect to edge addition and removal.
In this section, we describe the procedure for updating the data structure.
Both edge addition and edge removal use a tree merging procedure, which
we describe first.

Merge trees procedure The merge trees procedure takes as input an
ordered pair of nodes (u, v) such that edge (u, v) or (v, u) is in the De
Bruijn graph and merges their respective trees Tu, Tv into a single tree.
The procedure to merge the trees works as follows. First, we reverse all
of the forest edges from u to its root ru, ensuring that all of Tu is below
u. Next, we unstore ru as a root. Finally, we update the forest edge of u
to ensure that its parent is v.

Edge addition procedure When an edge (u, v) is added between two k-
mers, IN and OUT may be updated in constant time. Suppose u belongs
to tree Tu and v belongs to tree Tv . If neither Tu nor Tv is below the
minimum size, or if Tu = Tv , the procedure exits since no update to
the forest is necessary. Otherwise, suppose both Tu and Tv are below
the minimum size α. In this case, the merge trees procedure is called
with input (u, v). If exactly one of the trees is below the minimum size,
let s, l ∈ {u, v} be the nodes corresponding to the smaller, larger trees,

Table 1. Datasets used in the experimental evaluation.

Nreads N31-mer Size (MB) τ̄

632 42390 0.084 56
1264 87883 0.17 58
2528 174083 0.34 58
5055 347052 0.69 58

10111 692367 1.37 57
20222 1379165 2.72 58
40444 2690286 5.30 56
80888 5155725 10.1 61
161775 9751629 19.0 63
323551 17878199 34.7 75
647101 35277985 68.5 71

1294202 64285446 124 69
2588494 134080658 260 66
5176809 211650847 408 63
10353618 444356484 858 58

respectively. Then, if the depth of l is at most 2α, we simply call the
merge trees procedure with pair (s, l), and the smaller tree is merged into
the larger. If the depth of l exceeds 2α, we simply travel up α steps from
l and store that node as a root and then call merge trees (s, l), and the
smaller tree is merged into the new tree created in which l has depth α.

Edge removal procedure The edge removal procedure takes as input edge
(u, v) to be deleted from the De Bruijn graph. First, IN and OUT are
updated. Next, we check the forest edges of u, v to see if one contains the
other as its parent in its tree. If so, the forest is modified as follows. First,
the child node c is stored as a root, breaking off its subtree as a new tree in
the forest. We then look at the trees Tp containing the former parent; we
check if Tp is below the minimum size α. If it is, we examine each node
x in Tp and look for an edge in the De Bruijn graph that is incident with
both x and Tx, a tree such that Tp 6= Tx. If a tree Tx is found, let y ∈ Tx
such that edge (x, y) or (y, x) is in the De Bruijn graph. Then the merge
trees procedure is called with pair (x, y) to merge Tp into Tx. However,
the resulting tree T ′ may violate the height constraint, so we get check
the depth dx of x in T ′. Then, we find the deepest node below x in T ′

(there are at most α nodes to check). If the deepest node below x is of
depth greater than 3α, we create a new tree by traveling up 2α steps from
the deepest node and breaking off the subtree below the resulting node by
storing it as a root. After this is done, the tree containing p has been fixed
so that, if possible, the minimum size and maximum height conditions are
satisfied. Finally, the tree Tc containing c is checked to see if it is below
the minimum size, and if it is, exactly the same procedure as above is run
with Tc.

4 Results
We evaluate our data structure using read data from E. coli K-12
substr. MG1655, consisting of 27 million paired-end 100 sequence reads
(NCBI SRA accession ERA000206) generated from an Illumina Genome
Analyzer II. To create datasets of varying sizes, we partitioned the read
data into disjoint sets of reads. For each dataset, the columns of Table
1 show the number of reads Nreads, the number of nodes in the De
Bruijn graphN31-mer, the size in megabytes (MB) of our constructed data
structure, and the average tree height τ̄ in the covering forest.

To construct the De Bruijn graph, we set k = 32. We performed all
evaluations on a server with Intel(R) Xeon(R) CPU E5-2667 @ 2.90GHz
(12 cores) with 256 GB RAM.
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Fig. 1. (a): Time vs number of k − 1-mers for various graph operations.

(b): Tree size violations as described in the text.

Construction Time and Space In Figure 1(a) (Construction), we show
the time required to construct the de Bruijn graph data structure vs. the
number of k − 1-mers in the graph. The construction time is the total
time required to construct the hash function, IN and OUT, and partition
the graph into the forest. In our evaluation, the construction time scaled
linearly with the number of k−1-mers, as shown in Fig. 1(a), as predicted
by the discussion before Theorem 1.

As shown in Table 1, the memory required by the data structure also
scaled linearly with the number of k − 1-mers, also in agreement with
Theorem 1.

Membership Query Time Next, we tested the average time required for
the data structure to answer membership queries: whether k − 1-mer
u is present in the De Bruijn graph. First, we generated 106 random
k − 1-mers and show the mean query time in Fig. 1(a) (Random Query)
– the mean query time remains on the order of a few microseconds as
the number of k − 1-mers in the graph increases. However, since these
k − 1-mers were generated uniformly randomly, most of these k − 1-
mers were not in the De Bruijn graph. Often, the data structure is able
to detect that a k − 1-mer is not a member of the graph without a full
tree traversal up to the root. Therefore, we performed a second test of
the mean query time, where each k − 1-mer is selected randomly from
the set of k − 1-mers known to be in the graph. Thus, each one of these
queries requires a full tree traversal to the root node. Result are shown in
Fig. 1(a) (Member Query). As expected, the member queries take slightly
longer than random queries – however, even on the largest graph tested,
the average time for querying a k − 1-mer in the graph is at most a few
tens of microseconds.

Dynamic Edge Deletion and Addition In order to evaluate the dynamic
aspect of our data structure, we report the average time required for an
edge removal and an edge addition to the De Bruijn graph. For edge
removal, min{106, 0.1m} edges originally present in the De Bruijn
graph were uniformly randomly selected for removal. After an edge is
removed, the forest is updated as described above. After all edges were
removed, we reinserted all removed edges back into the De Bruijn graph.
The respective average times for this edge removal and addition process
is shown in Fig 1(a). The time required to update the data structure is
drastically lower than the time required to construct the structure from
scratch, always by more than three orders of magnitude.

Tree violations Since k − 1 = 31, the minimum size of a tree should
be 62. However, due to small connected components, many trees are
below the minimum size. Fig. 1(b) shows the number of size violations
on each dataset initially, after the sequence of edge removals, and after all
removed edges are reinserted; also shown is the number of edges removed
on each dataset.

We verified that every tree below the minimum size is isolated; i.e.,
each such tree spans its connected component and so the forest structure

is optimal with respect to number of tree violations, and it remains
optimal throughout the dynamic procedures. One interesting observation
is that almost every edge removal created at least one small component,
as shown in Fig. 1(b), where the number of tree violations (and hence
small, connected components) is always greater than the number of edges
removed. This fact suggests that many of the connected components of
the underlying undirected graph corresponding to the De Bruijn graph are
small, although above the minimum height. Also, this fact suggests that
components are easily disconnected.

The mean tree height τ̄ in the covering forest for each dataset is shown
in Table 1. Despite the inability to guarantee the theoretical minimum
tree size from the presence of small connected components, the mean tree
height is close to 62 for each dataset, as shown in Table 1. Therefore,
the expected time and space required for the data structure still follow the
results of Theorem 1 in our experimental evaluation.

5 Discussion and Conclusions
LEMMA 2. (Belazzougui et al. (2016b)) If N is dynamic then we can

maintain a function f as described in Lemma 1 except that:

• the range of f becomes {0, . . . , 3n− 1};
• when its domain is restricted to N , f is injective;
• our space bound for f isO(n(log logn+ log log σ)) bits with high

probability;
• insertions and deletions takeO(k) amortized expected time.
• the data structure may work incorrectly with very low probability

(inversely polynomial in n).

For node addition and removal, it is sufficient to consider addition and
removal of isolated nodes. Thus, the representation of the nodes must be
updated. This update requires a dynamic perfect hash function rather than
a minimal perfect hash function to be implemented. Details of how to
implement such a hash table can be found in Mortensen et al. (2005).
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(a) (b) (c) (d) (e) (f)

Fig. 2. Illustration of Alg. 1, with α = 1. The pink nodes are roots that are stored in the forest. In stage (d), the orange nodes are at a height of 2α+1,

and so are potential roots. In stage (e), the node at the bottom is at a height of 3α+ 1, and so the potential root is stored in the forest, forming a new

tree as shown in stage (f).

The construction of the Forest class takes place in function
construct forest, which is a member function of the FDBG class.

Algorithm 1: construct forest(G, r)

Input: graph G, root r
AlgoLine1.1S = ∅, Q = ∅;1

AlgoLine1.2p(r) = NULL, p1(r) = r, p2(r) = r, h(r) = 0.;2

AlgoLine1.3store(r);3

AlgoLine1.4Q.enqueue(r);4

AlgoLine1.5while Q 6= ∅ do5

AlgoLine1.6c = Q.dequeue();6

AlgoLine1.7for n ∈ N(c) do7

AlgoLine1.8if n 6∈ S then8

AlgoLine1.9Q.enqueue(n);9

AlgoLine1.10S = S ∪ {n};10

AlgoLine1.11p(n) = c;11

AlgoLine1.12h(n) = h(c) + 1;12

AlgoLine1.13if h(n) ≤ α then13

AlgoLine1.14p1(n) = p1(c);14

AlgoLine1.15p2(n) = p2(c);15

AlgoLine1.16end16

AlgoLine1.17if α < h(n) ≤ 2α then17

AlgoLine1.18store(p1(c));18

AlgoLine1.19p1(n) = p1(c);19

AlgoLine1.20p2(n) = p1(c);20

AlgoLine1.21end21

AlgoLine1.22if h(n) = 2α+ 1 then22

AlgoLine1.23h(n) = 0;23

AlgoLine1.24p1(n) = n;24

AlgoLine1.25p2(n) = p1(c);25

AlgoLine1.26end26

AlgoLine1.27end27

AlgoLine1.28end28

AlgoLine1.29end29

LEMMA 3. At termination of FOREST, associate each node uwith root
p1(u), if p1(u) is stored. Otherwise, associate node u with root p2(u).
Then G is partitioned into forest in O(n + m) time, where each node u
is in a tree of height α ≤ T (u) ≤ 3α

Proof sketch. Let u ∈ G, which is within a subtree rooted as described
in statement of the lemma. Suppose the root is p1(u). Then u is a
descendant of p1(u) of height at most 2α. Suppose the root is p2(u).
Then u is descendant of p2(u) of height at most 3α.

Furthermore, suppose u ∈ G is stored. Then there is descendant v of
u with p1(v) = u of height α+ 1.
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Algorithm 2: CheckMembership(x)

Input: kmer t x

Result: True if x is a node in the De Bruijn graph, false otherwise
AlgoLine2.1xkr = get karp rabin(x)1

AlgoLine2.2xhash = get hash(xkr)2

AlgoLine2.3if xhash /∈ {0, ..., n− 1} then3

AlgoLine2.4return false;4

AlgoLine2.5end5

AlgoLine2.6i = 16

AlgoLine2.7while (is forest root(xhash) == false) do7

AlgoLine2.8p, phash, pkr = get parent(x, xhash, xkr)8

AlgoLine2.9if9

verify edge(p, x, phash, xhash) == false then
AlgoLine2.10return false10

AlgoLine2.11end11

AlgoLine2.12x, xhash, xkr = p, phash, pkr12

AlgoLine2.13i++13

AlgoLine2.14if (xhash /∈ {0, ..., n− 1}) ∨ (i > 3α) then14

AlgoLine2.15return false;15

AlgoLine2.16end16

AlgoLine2.17end17

AlgoLine2.18if p == stored kmer(phash) then18

AlgoLine2.19return true19

AlgoLine2.20end20

AlgoLine2.21return false21


