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Université de Lorraine, LORIA UMR CNRS 7503, INRIA projet Magrit

Abstract

This paper addresses the problem of cartoon and texture decomposition. Microtex-
tures being characterized by their power spectrum, we propose to extract cartoon and tex-
ture components from the information provided by the power spectrum of image patches.
The contribution of texture to the spectrum of a patch is detected as statistically signifi-
cant spectral components with respect to a null hypothesis modeling the power spectrum
of a non-textured patch. The null-hypothesis model is built upon a coarse cartoon rep-
resentation obtained by a basic yet fast filtering algorithm of the literature. Hence the
term “dual domain”: the coarse decomposition is obtained in the spatial domain and is
an input of the proposed spectral approach. The statistical model is also built upon the
power spectrum of patches with similar textures across the image. The proposed approach
therefore falls within the family of non-local methods. Experimental results are shown
in various application areas, including canvas pattern removal in fine arts painting, or
periodic noise removal in remote sensing imaging.
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1 Introduction

Decomposing an image as the sum of geometric and textural components is a problem of image
analysis that has lead to a great deal of work. In this problem, known as cartoon and texture
decomposition, the cartoon component is piecewise smooth, made of the geometric shapes of
the images, and the texture component is made of stationary or quasi-stationary oscillatory
patterns filling the shapes. Of course, the problem, based on perceptual clues, is intrinsically ill-
posed and any definition of cartoon and texture is subject to discussion. After an overview of the
literature, we introduce a new algorithm for cartoon and texture decomposition based on a dual-
domain approach [1]: a spatial domain filtering gives a coarse decomposition, which permits
estimating statistics of the power spectrum of cartoon patches. Estimating these statistics is
based on the similarity of textured patches across the image, in the same spirit as the non-local
approaches [2]. Therefore, the resulting algorithm performs a non-local dual-domain cartoon
and texture decomposition.

1.1 Related works

Most authors define the cartoon component as a bounded-variation function whose total varia-
tion is controlled, which discards oscillatory patterns and enforces its piecewise constant nature,
giving cartoon components with sharp edges. In contrast to the cartoon component, the texture
component is the subject of discussions and a huge literature has emerged in the last decades.
Variational approaches aim at decomposing the input image as the sum of the cartoon and
texture component by minimizing some energy, often defined as the sum of the total variation
(or some variant of it) of the cartoon part and of some norm of the texture part. This latter
norm may be defined as the L2-norm [3], L1-norm [4], Meyer’s G-norm [5, 6], Gabor-norm [7],
or norms enforcing a sparse representation in an adapted basis [8], just to cite a few. The
authors of [9] address the problem of structured noise, which can be seen as a texture covering
the whole image domain. Structured noise is indeed modeled as a stationary process and a
variational approach to denoising is proposed in [9]. Recently, it has been proposed [10] to
model the texture part as the sum of a small number of base textures in a low patch-rank
approach. According to the authors of [11], low patch-rank outperforms previous approaches
which smooth the cartoon component by transferring high-frequency information from edges
to the texture instead of the cartoon component. It is, however, a global approach which is
not suited to natural images where textures show different patterns of different nature. A local
approach based on the block nuclear norm is proposed in [11]. The interested reader is asked
to refer to the complete discussion in [7, 10, 11, 12].

All these methods are slow, because it is difficult to find a numerical solution of the above-
mentioned variational problems. A fast non-linear filter for cartoon and texture decomposition
is proposed by the authors of [12] (software available in [13]). It is based on the relative reduction
rate of the local total-variation across scale, which is a good feature to measure whether an
image point belongs to a textured region or not. This spatial filter giving quite a blurry cartoon
part, a follow-up paper [14] (software in [15]) makes use of banks of filters adapted to image
edges. A scale factor governs the trade-off between textures and shapes, large-size texture
details being considered as shapes rather than texture. Recent papers investigate the use of a
guidance signal for image filtering [16, 17, 18] (after [19]), which makes it possible to remove
small-scale details without affecting other structures. Applications of this approach include
texture removal, the difference with the aforementioned methods is probably that the retrieved
cartoon component is quite sketchy.

Many of these works are based on the fact that textures are well represented in the Fourier
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domain. It is indeed well known that microtextures are characterized by their power spectrum,
as discussed in, e.g., [20] concerning texture feature extraction, and in [21], after [22], for
texture rendering. The power spectrum of a texture even generally reduces to a few spikes
of various amplitudes, which justifies the sparse representation of [8, 10]. Some authors make
use of such a property to design notch filter to remove structured noise covering the whole
image domain [23, 24, 25, 26, 27]. In these papers, the difficulty is to automatize the detection
of texture spikes. It is proposed in [26] to detect texture spikes as deviation of the expected
power spectrum of natural images, which decreases proportionally to some power of the inverse
of the frequency [28]. The expected power spectrum is simply obtained by averaging patches
covering the whole image as in [24], which is not possible when considering localized textures.
The method was adapted to a-contrario detection in [27]. Removing canvas patterns in fine art
paintings can also be considered as a form of textured noise removal. For instance, the authors
of [29] remove canvas patterns in paintings by fitting a parametric model of the canvas to the
texture part given by the algorithm of [12].

1.2 Contribution

The proposed contribution consists in locally detecting the texture components as statistically
significant Fourier coefficients under a null hypothesis modeling non-textured patches. Our
statistical model is based on two ingredients: first, the Gaussian nature of image patches,
which is the ground of several recent papers on denoising [30, 31, 32, 33]; second, the use of a
coarse cartoon and texture decomposition which permits estimating statistics of non-textured
patches in a non-local way.

Section 2 gives the expectation and variance of the power spectrum components of a random
Gaussian non-textured patch. Since the probability distribution of patches is not constant
across the whole image domain, these statistics are empirically estimated in a non-local way.
We select a sample of patches with similar power spectra and extract the cartoon parts with the
coarse yet fast algorithm of [12, 13] in order to estimate the above-mentioned statistics. This
approach is in line with the famous non-local means methodology [2] in which similar patches
are assumed to be independent realizations of the same random patch.

Section 3 explains how to build a statistical test to detect texture spectrum spikes in each
image patch, based on the null model of Section 2. A non-linear filter separating cartoon and
texture components is thus designed, and implemented using the discrete windowed Fourier
transform.

Since texture is extracted in the Fourier domain from a coarse information coming from a
spatial filter, this is a dual-domain approach, a term coined by the authors of [1] when proposing
to refine denoising in the frequency domain after a first estimation in the spatial domain. Note
that the present contribution is not, strictly speaking, a dual-domain filter in the sense of [1].

Experiments are discussed in Section 4. In order to reproduce the experiments presented
here, we make a Matlab code available on the following webpage, together with a companion
document showing additional experiments:
https://members.loria.fr/FSur/software/NoLoDuDoCT/

1.3 Notation and reminder

The Fourier transform of any image patch p defined over the pixel domain Dp = {1, . . . , L} ×
{1, . . . , L} is denoted by p̂ and is such that for any ξ = (ξ, η) ∈ {1, . . . , L} × {1, . . . , L},

p̂(ξ) =
∑
x∈Dp

p(x)e−2iπ<x,ξ> (1)
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where x = (x, y) ∈ Dp and < x, ξ >= (xξ + yη)/L.
The modulus and conjugate of any complex number z are denoted by |z| and z. The power

spectrum of a patch p is |p̂|2.
The expectation and variance of a random variable V are denoted by E(V ) and var(V ),

respectively. The covariance of two random variables V and V ′ is denoted by cov(V, V ′). The

empirical estimation of a statistic S is denoted by S̃.
We recall that if n is a 0-mean noise patch of variance σ2(x) at pixel x, then the Fourier

transform of n̂ satisfies, for any (ξ, η), E(n̂(ξ, η)) = 0, and E(|n̂(ξ, η)|2) = σ2 where σ2 =∑
x∈Dp

σ2(x) is the total variance calculated over the patch domain.

2 The power spectrum of Gaussian patches

The Fourier transform of a Gaussian patch follows a complex normal distribution, and the
power spectrum coefficients follow a non-central generalized chi-square distribution. While
accurate approximations of this distribution are available [34, 35], their computational cost is
not suitable for our use. It is a standard trick to use the Gaussian approximation which is more
tractable and justified by the central limit theorem.

2.1 Expectation and variance of the power spectrum

We assume that any random patch p0 = c+n is the sum of a random non-textured component c
and a Gaussian noise n of variance σ2(x) at pixel x, statistically independent from c(x).
Since we aim at building a statistical model for the absence of texture (null hypothesis), we
assume that p0 does not show any texture, although this does not impact the calculation of the
expectation and variance in this section.

The Fourier transform being linear, p̂0 = ĉ+ n̂, and the power spectrum of the patch p thus
writes, for any frequency ξ = (ξ, η):

|p̂0(ξ)|2 = |ĉ(ξ)|2 + |n̂(ξ)|2 + ĉ(ξ)n̂(ξ) + ĉ(ξ)n̂(ξ) (2)

We now calculate the expectation and variance of |p̂0(ξ)|2, for any ξ. For better readability, we
drop ξ in the following equations.

2.1.1 Expectation

Since ĉ and n̂ are independent, E(n̂) = 0, and E(|n̂|2) = σ2, the following equation holds:

E(|p̂0|2) =E(|ĉ|2) + E(|n̂|2) + E(ĉ)E(n̂) + E(ĉ)E(n̂)

=E(|ĉ|2) + σ2
(3)

2.1.2 Variance

Variance algebra gives:

var(|p̂0|2) = var(|ĉ|2) + var(|n̂|2) + var(ĉn̂+ ĉn̂)

+ 2 cov(|ĉ|2, |n̂|2) + 2 cov(|ĉ|2, ĉn̂+ ĉn̂) + 2 cov(|n̂|2, ĉn̂+ ĉn̂) (4)

We successively calculate:
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• cov(|ĉ|2, |n̂|2) = 0 since ĉ and n̂ are independent.

• cov(|ĉ|2, ĉn̂ + ĉn̂) = E((|ĉ|2 − E(|ĉ|2))(ĉn̂ + ĉn̂)) = E((|ĉ|2 − E(|ĉ|2))ĉ)E(n̂) + E((|ĉ|2 −
E(|ĉ|2))ĉ)E(n̂) = 0 since ĉ and n̂ are independent and E(n̂) = 0.

• cov(|n̂|2, ĉn̂ + ĉn̂) = E((|n̂|2 − E(|n̂|2))(ĉn̂ + ĉn̂)) = E(|n̂|2n̂)E(ĉ) + E(|n̂|2n̂)E(ĉ) −
E(|n̂|2)E(ĉ)E(n̂)− E(|n̂|2)E(ĉ)E(n̂) = 0 since E(|n̂|2n̂) = E(n̂) = 0.

• var(ĉn̂+ĉn̂) = E((ĉn̂+ĉn̂)2) = 2Re(E(ĉ2)E(n̂2))+2E(|ĉ|2)E(|n̂|2) ≤ 4E(|ĉ|2)E(|n̂|2) since
for any complex number z, Re(z) ≤ |z|, and for any random variable V , |E(V )| ≤ E(|V |).

• concerning var(|n̂|2) = E(|n̂|4)− E(|n̂|2)2. By definition of n̂,

E(|n̂|4(ξ)) =
∑

E(nx,ynx′,y′nx′′,y′′nx′′′,y′′′)e
−2iπ

(
x−x′+x′′−x′′′

L
ξ+ y−y′+y′′−y′′′

L
η
)

(5)

where the summation is over (x, y), (x′, y′), (x′′, y′′), and (x′′′, y′′′) spanning the im-
age domain. Now, E(nx,ynx′,y′nx′′,y′′nx′′′,y′′′) = σ4 if (x, y, x′′, y′′) = (x′, y′, x′′′, y′′′), or
if (x, y, x′, y′) = (x′′, y′′, x′′′, y′′′), or if (x, y, x′, y′) = (x′′′, y′′′, x′′, y′′), and it simplifies into
E(nx,ynx′,y′nx′′,y′′nx′′′,y′′′) = 0 otherwise. Thus,

E(|n̂(ξ)|4) =
∑
x,x′

(
2 + e−4iπ<x−x

′,ξ>
)
σ2(x)σ2(x′) (6)

= 2σ4 +

∣∣∣∣∣∑
x

σ2(x)e−4iπ<x,ξ>

∣∣∣∣∣
2

(7)

Since var(|n̂|2) = E(|n̂|4)− σ4,

var(|n̂|2(ξ)) = σ4 +
∣∣∣σ̂2(ξ)

∣∣∣2 ≤ 2σ4 (8)

the latter inequation holding thanks to Bessel inequality.

To sum up the discussion, we can conclude that:

var(|p̂0|2) = var(|ĉ|2) + σ4 + V (9)

where V ≤ 4σ2E(|ĉ|2) + σ4.

2.2 Estimating the statistics of a non-textured random patch

In Section 3, texture components are detected in the power spectrum of a patch as deviations
to a Gaussian model of the power spectrum of non-textured random patches. We first need
to empirically estimate the expectation and variance of the power spectrum of a non-textured
patch p0. We can see from Equation 3 and 9 that this requires to estimate the expectation and
variance of the power spectrum of the cartoon component c, and the noise total variance σ2 =∑
x σ

2(x).
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2.2.1 Estimating cartoon statistics

Although the approach of [12] gives a coarse cartoon output which is often quite smooth, it
is fast to compute. We therefore take it as an initial guess of the cartoon component of any
patch in the image. Smoothness is even an advantage here. Indeed, it makes it possible to
assume that noise has been removed from the cartoon component. In order to estimate both
the expectation E(|ĉ|2) and the variance var(|ĉ|2) for any random patch p = c + n, we make
use of a non-local estimation approach. More precisely, for a patch px centered at any pixel x,
we extract from the input image the set S of patches such that their power spectrum are
the N nearest neighbors of |p̂x|2 in the sense of the Euclidean norm. These patches are thus
likely to share the same texture and to be realizations of the same random process. Weighted
sample estimates of the expectation E(|ĉ|2) and variance var(|ĉ|2) are calculated based on the
cartoon components of the patches in S. The weights take into account dissimilarities and
are proportional to e−|||ĉ|

2−|ŝ|2||/λ(x) for any patch s ∈ S, λ(x) being a normalizing parameter
defined later.

In practice, the proposed procedure is made of two steps. First, the power spectra of image
patches and of the corresponding cartoon components are extracted from the whole image.
In order to deal with shape edges and avoid mixing texture information from two adjacent
regions, the contribution of each pixel is weighted as a non-decreasing function of the similarity
to the central pixel in the cartoon domain. Indeed, it has been shown in several papers [36, 37]
that adapting patches to the shape is a good way to keep non-local methods from mixing
information from overlapping shapes. Moreover, in order to deal with border discontinuities
and avoid spectral leakage, we also multiply patches by a Gaussian window. Therefore, denoting
by I the input image, by D = {1 . . . X} × {1 . . . Y } its domain, and by Cc its coarse cartoon
representation obtained by [12], we actually compute modified windowed Fourier transforms
defined at each pixel x as:

Ix(ξ) =
∑
y∈D

gα(x− y) gβ(Cc(x)− Cc(y)) I(y) e−2iπ<y,ξ> (10)

Cx(ξ) =
∑
y∈D

gα(x− y) gβ(Cc(x)− Cc(y))Cc(y) e−2iπ<y,ξ> (11)

where gα and gβ are Gaussian functions of standard deviation α and β, gα being truncated to
define a L×L patch. The corresponding power spectra are denoted by PIx and PCx . By definition,
PIx(ξ) = |Ix(ξ)|2 and PCx (ξ) = |Cx(ξ)|2 for any frequency ξ = (ξ, η) ∈ {1, . . . , L} × {1, . . . , L}.

We extract these power spectra in such a way that their overlap is limited in order to avoid
bias when estimating sample mean and sample variance. In practice, we impose that the patch
center x lies on a subsampled grid Ds made of regularly distributed pixel locations at a distance
of s pixels.

The second step consists in estimating at any pixel x ∈ D the expectation and variance
of the power spectrum of cartoon components based on the PIxi

and PCxi
calculated above

for xi ∈ Ds. At any x ∈ D, these statistics are estimated over the set of the N cartoon power
spectra {

PCxi
,xi ∈ Ds, 1 ≤ i ≤ N

}
, (12)

with the xi defined such that {
PIxi

,xi ∈ Ds, 1 ≤ i ≤ N
}

(13)

is the set of the N -nearest neighbors of the query power spectrum PIx. We use weighted
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estimates to take the dissimilarity of the nearest power spectra into account. For any ξ,

Ẽ(PCx (ξ)) =
1∑N
i=1wi

N∑
i=1

wiPCxi
(ξ) (14)

ṽar(PCx (ξ)) =
1∑N
i=1wi

N∑
i=1

wi

(
PCxi

(ξ)− Ẽ(PCx (ξ))
)2

(15)

where the weights wi satisfy
wi = e−||P

I
x−PI

xi
||2/λ(x)2 (16)

|| · || being the Euclidean norm of the components of frequency larger than 2/L cycles per
pixel (to remove the effect of very low frequency changes), and λ(x) being a normalization
parameter equal to the median of the distances of the N nearest neighbors of PIx. The goal of
this normalization, similarly to the so-called contextual dissimilarity measure [38], is to adapt
the weights to the non-homogeneous distribution of the power spectra.

The nearest neighbors of the current power spectrum are found over the whole image by
using the efficient FLANN library [39].

It should be noted that, patch being here the result of the pixelwise multiplication of the
underlying image and an analysis window, it is necessary to assume the noise amplitude to vary
from pixel to pixel even if a Gaussian white noise affects the image to be decomposed.

2.2.2 Estimating noise variance

We see from Equation 3 that the noise total variance σ2 can be estimated as the empirical
mean of |p̂0(ξ)|2 − |ĉ(ξ)|2 for any ξ. The non-textured patch p0 is unknown, and only a coarse

estimation of c is available. As a consequence, for any ξ, we assume that σ2 ' Ẽ(PIx(ξ)) −
Ẽ(PCx (ξ)). This equation mainly differs from the preceding one in that the power spectrum PIx
is affected by texture components. Since textures have a sparse Fourier representation, these
components only affect a few Fourier components, thus averaging the power spectrum difference
over a range of frequencies smoothes them out. Moreover, we average over high frequencies
since low and medium frequencies are expected to have residual image content not purely made
of noise, cf. [40, 41]. Consequently, we estimate σ2 as:

σ̃2 =
1

M

∑
||ξ||>H

Ẽ(PIx(ξ))− Ẽ(PCx (ξ)) (17)

where H is a frequency threshold and M is the number of discrete frequencies above H. In
practice, we take H = 0.5 cycle per pixel.

2.2.3 Estimating statistics of the power spectrum of a noisy non-textured patch

Based on Equation 3, we eventually estimate the expectation of the power spectrum Px of a non-
textured noisy patch. Concerning the variance, we use the upper bound given by Equation 9.
Consequently,

Ẽ(Px(ξ)) = Ẽ(PCx (ξ)) + σ̃2 (18)

ṽar(Px(ξ)) = ṽar(PCx (ξ)) + 2σ̃4 + 4σ̃2Ẽ(Px(ξ)) (19)
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3 A non-local dual-domain cartoon and texture decom-

position

The preceding section gives the expectation and variance of the power spectrum components of
non-textured noisy patches, empirically estimated with a tentative coarse cartoon and texture
decomposition (Equations 18 and 19). We are therefore able to detect texture components as
deviations to this model, since these components have a larger amplitude than expected under
a null hypothesis assuming a non-textured patch.

3.1 Statistical hypothesis testing

Given an image patch p, a significant spectrum component is detected at frequency ξ pro-
vided that the p-value PrH0(|p̂(ξ)|2 ≥ |p̂0(ξ)|2) is below some level of confidence α. The null-
hypothesis H0 is that of a non-textured random patch p0. Under a Gaussian distribution
assumption, a texture component is therefore detected at ξ as soon as:

G

(
PIx(ξ)− Ẽ(Px(ξ))√

ṽar(Px(ξ))

)
≤ α (20)

where PIx is the power spectrum of the image patch centered at x, Ẽ(Px(ξ)) and ṽar(Px(ξ)) are
given by Equations 18 and 19, respectively, and G is the tail distribution function (complemen-
tary cumulative distribution function) of the standard normal distribution. Here, the estimation
of the variance being an upper bound of the actual variance, some significant detections may
be missed.

Since a statistical test is performed for any frequency, we use the Bonferroni correction [42]
to control the false alarm over each patch of size L× L under ε, thus:

α =
ε

L2
(21)

where ε is the familywise error-rate, set here equal to 5%.
We do not take into account the correlation matrix of the power spectrum components,

since estimating the correlations would require a large number of samples, which is out of reach
here. It should be noted that a recent paper addresses the estimation of the correlation matrix
of patches [30].

3.2 Cartoon and texture components

Section 3.1 gives a framework to detect texture components in the spectrum of any patch. For
any patch centered at pixel x, we thus define a very simple bandpass filter Mx: Mx(ξ) = 1
if a significant texture component is detected at frequency ξ, and Mx(ξ) = 0 otherwise. This
gives a non-linear bandpass filter through a windowed Fourier transform of the input image I.
If Î(x, ξ) denotes the windowed Fourier transform of I, such that:

Î(x, ξ) =
∑
y∈D

I(x)gα(x− y)e−2iπ<x,ξ> (22)

then the texture component T is retrieved as the inverse windowed Fourier transform of the
product Mx(ξ)Î(x, ξ). The cartoon component C is simply such that I = C + T .
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Data: An input image I, domain D = {1 . . . X} × {1 . . . Y }.
Parameters: σCT, α, β, N .

1 Compute a tentative coarse cartoon representation (denoted by Cc) from I with [12],
scale-factor parameter σCT;

2 for any pixel x = (x, y) ∈ Ds do
3 Calculate the modified windowed Fourier transforms for any frequency ξ:
4 Ix(ξ) =

∑
y∈D gα(x− y)gβ(Cc(x)− Cc(y))I(y)e−2iπ<y,ξ>

5 Cx(ξ) =
∑
y∈D gα(x− y)gβ(Cc(x)− Cc(y))Cc(y)e−2iπ<y,ξ>

6 and the corresponding power spectra PIx(ξ) = |Ix(ξ)|2 and PCx (ξ) = |Cx(ξ)|2.
7 end
8 for any pixel x ∈ D do
9 Find the N nearest image-patch power spectra PIx1

, . . . , PIxN
to PIx with the FLANN

library [39];

10 Calculate sample mean Ẽ(PCx (ξ)) (Eq. 14) and sample variance ṽar(PCx (ξ)) (Eq. 15)
based on the xi;

11 Calculate estimation of total variance σ̃2 (Eq. 17);

12 Calculate estimations of expectation Ẽ(Px(ξ)) (Eq. 18) and variance ṽar(Px(ξ))
(Eq. 19) of a non-textured patch;

13 Detect texture components at ξ through statistical hypothesis testing:

14 Mx(ξ) =

 1 if G

(
PI
x(ξ)−Ẽ(Px(ξ))√

ṽar(Px(ξ))

)
≤ 0.05/L2

0 otherwise

15 end
16 Apply the bandpass filter Mx(ξ) to the windowed Fourier transform of I to retrieve

texture T and cartoon C = I − T , i.e., T (x) = 1
L2

∑
y∈D

∑
ξ∈D T̂ (y, ξ)e2iπ<x,ξ> where

T̂ (x, ξ) = Mx(ξ)
∑
y∈{1...X}×{1...Y } gα(x− y)I(y)e−2iπ<y,ξ>.

Result: A cartoon component C and a texture component T .

Algorithm 1: Proposed algorithm for non-local dual-domain cartoon and texture decom-
position.

3.3 Algorithm and parameters

Algorithm 1 summarizes the proposed non-local dual-domain cartoon and texture composition.
Parameter σCT in [12] to obtain the tentative coarse cartoon is set so that textures are discarded
from the cartoon but is small enough to prevent discarding high frequency details. In Section 4,
σCT = 2 unless otherwise specified. Patch width L and parameter α satisfy α = L/5; their
value define the trade-off between shape and texture. Any pattern showing a low frequency
with respect to 1/α will not be detected as a texture, basically because it does not give a spike
in patch power spectra. A trade-off has to be made between the ability to detect low-period
patterns (which requires large L) and the need to have a large enough sample of non-overlapping
patch for statistical estimation (which bounds L). We extract patches on a subsampling grid Ds
of step s = L/4. Concerning the experiments of Section 4, a typical value for L will be L = 32
pixels, which permits detecting texture patterns of frequency larger than 1/16 pixel−1. Note
that such a patch size is much larger than typical values in patch methods dedicated to noise
removal. Parameter β prevents mixing texture information with shapes with a gray value
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larger or smaller than the current shape. Because a Gaussian function is used, a difference of
the cartoon components larger than 2β indeed multiply the corresponding gray value by e−2.
The value of β obviously depends on the contrast of the image, low-contrasted images indeed
require smaller values. We set β = 20 in Section 4 unless otherwise stated. The number of
nearest neighbors N is set to 20.

4 Experimental results

This section presents some experiments. We deal with color images by designing the bandpass
filter of Section 3.2 in the luminance channel, the same filter being eventually used in the RGB
channels. The texture components shown in this section actually correspond to the 8-bit image
128 + 3T so that they appear much salient in the figures. The reader is asked to zoom in on
the images in the electronic version of the paper.

Since the cartoon and texture decomposition problem is based on perceptual clues, no
ground truth is available. Overall, we would like the cartoon edges to be preserved and the
stationary patterns to be in the texture part. As mentioned in [12], the distinction between
texture and cartoon is not very clear because at a certain scale a texture element becomes
a geometric shape. We visually compare the proposed algorithm with two state-of-the-art
algorithms, namely the output of the block nuclear norm based algorithm [11], which is claimed
to outperform variational methods such as [10], and the directional non-linear filter proposed
in [14], which certainly achieves the best trade-off between the quality of the cartoon / texture
separation and computation time. We use the software implementation kindly provided by the
authors of [11] and [15]. Note that the implementation of [11] only gives gray-level outputs.
The default parameters of [11] are used, and the scale-factor parameter σCT in [15] is adjusted
to obtain the best visual results. Our algorithm is implemented as a publicly available Matlab
code.

To begin with, we illustrate the proposed algorithm with a famous image containing several
different textures. Figure 1 shows the original image, the cartoon component given by the fast
non-linear filter of [12] (this is the coarse decomposition used in our algorithm) and the output
of the proposed approach. As we can see, while the texture component has mostly been taken
out, the cartoon component of [12] is quite blurry. Comparing with the output of [11] and [15],
we can see that the output of the proposed algorithm tends to better separate texture and
cartoon, with less blurry shape edges and a larger part of the texture component well separated
from the cartoon as, for instance, in the tablecloth, in the chair on the background, and even
in narrow shapes as in the folds of the scarf. Most edges cannot be seen in the texture part,
except for periodic patterns on the face for instance. It is a positive feature of the proposed
algorithm, which means that high frequency components corresponding to edges are correctly
detected as non-significant spectrum components. Here, the scale-factor parameter σCT of [15]
is difficult to set: σCT = 2 keeps textures in the cartoon part, and σCT = 3 (not shown here, see
the companion document) gives a quite smooth cartoon with edge information in the texture.

Figure 2 illustrates the behavior of the algorithm for several patches. We can see that
similar patches (in the sense of power spectrum similarity) are weighted according to the texture
similarity. The numerical values indicated here are the wi/

∑
wi of Equation 16; they would

be equal to 1/N = 0.05 if the patches were evenly distributed. Moreover, we can see that
the expected cartoon power spectrum actually varies from patch to patch, which illustrates
that they come from different Gaussian processes. The hypothesis testing framework allows
obtaining the localization of the texture spikes in the Fourier domain, and detects no significant
texture components if no textures are present, as in the third patch.
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Figure 1: Barbara. First row: original image and output of [12]. Second row: output of the
proposed algorithm. Third row: output of [11]. Fourth row: output of [15] (σCT = 2). From
the left to the right: cartoon, texture (except for first row), and close-up.
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Figure 2: Barbara. Illustration of statistic estimation for three patches. On the left: position
of the query patch (in red) and the N = 20 nearest neighbor patches in the sense of the
Euclidean distance of the power spectra (in green), with weight wi indicated below. On the

right, clockwise: estimation of the expected power spectrum of the cartoon part Ẽ(|p̂0|2),
estimation of the standard deviation of the power spectrum of the cartoon part (ṽar(|p̂0|2))1/2,
power spectrum of the query patch |p̂|2, map Mx of the significant coefficients detected in the
power spectrum of the query patch (in yellow). To ease comparison, the same logarithmic scale
is used for the spectra of each patch.
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Figure 3 is another experiment with textured building facades1. Compared to the other
methods, our cartoon component appears more realistic, probably because the noise component
is kept in it, while the other methods minimize the total variation of the cartoon part, either
explicitly or implicitly, thus smoothing out the noise.

Figure 3: Manhattan. From top to bottom: original image, output of the proposed algorithm,
output of [11], output of [15].

1Image credit: By Hakilon - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?
curid=18111836
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Figure 42 also illustrates that our method retrieves texture details that other methods miss,
such as tiles on roofs.

Figure 4: Kodim08. Top left: original image. Top right: output of the proposed algorithm.
Bottom left: output of [11]. Bottom right: output of [15].

Figure 5 shows a detail of Norman Rockwell’s painting, Our Heritage3. It is an application
of cartoon and texture decomposition to canvas pattern removal. The canvas of the paintings
are sometimes visible and need to be removed for further processing, as explained in [29].
Although this problem has been the subject of works from the eighties [43], it is still an open
question [29, 44]. It can be seen as a cartoon and texture problem as the canvas is locally not
visible if the painting layer is too thick. Here, σCT has been set to 3 for obtaining the tentative
coarse cartoon with [12], and β = 30 since the image is quite contrasted. As we can see, the
proposed algorithm is interesting in this application domain since it removes the quasi-periodic
component of the canvas pattern (contrary to [11] and in a better way than [12]), and it still
keeps sharp edges.

2Image source: Kodak Image Suite. http://r0k.us/graphics/kodak/
3Image source: http://muddycolors.blogspot.fr/2013/10/norman-rockwell-american-originals.

html
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Figure 5: Rockwell. Top left: original image. Top right: output of the proposed algorithm.
Bottom left: output of [11]. Bottom right: output of [15].

Figure 6 shows an application to remote sensing image processing4. Remote sensing image
processing dates back to the dawn of robotic probe imaging [46]. Such images are often impaired
by electrical interferences during image acquisition, miscalibrated sensors, or missing data,
causing line dropout, striping, banding, or more complex background noise. In this image, the
size of the patches L has been set to 64, since we want to capture texture information such
as the checkerboard noise pattern which has a periodicity of approximately 20 pixels. The
contrast being low, β is set to 10. As we can see, the proposed algorithm removes most of the
background noise (contrary to [15]) while keeping a quite sharp output (in contrast to [11]).

As explained in Section 1, assessing the separation between cartoon and texture is difficult
since it depends on perceptual clues. Although such an experiment may look somewhat con-
trived, it is possible to test the algorithms discussed here on synthetic data. Figure 7 shows
cartoon and texture decompositions of a synthetic image, built by adding to a piecewise con-
stant 8-bit image5 a texture image whose quadrants are made of three sine-wave textures, the
fourth quadrant being kept untextured. As we can see, the outputs of [11] and [15] show some-
what mixed cartoon and texture, cartoon edges being noticeable in the retrieved texture. This

4Image source: http://www.imageprocessingplace.com/ [45], see also [46]
5Image source: http://sipi.usc.edu/database/
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Figure 6: Mariner6. The contrast is augmented for a better visibility. First row: original image,
output of [12], details of the original image with the “checkerboard” noise clearly visible. Second
row: output of the proposed algorithm. Third row: output of [11]. Fourth row: output of [15].
Second, third, and fourth row, from left to right: cartoon, texture, and close-up view of the
cartoon component.
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Figure 7: Synthetic. First row: ground truth cartoon component, input image, cartoon retrieved
by the proposed algorithm, texture retrieved by the proposed algorithm. Second row: cartoon
retrieved by [11], texture retrieved by [11], cartoon retrieved by [14], texture retrieved by [14].

phenomenon is less visible with the proposed algorithm. Here, the proposed algorithm and the
one of [11] are used with their default parameters, and σCT = 2 in [15]. Table 1 gives a quan-
titative assessment with the root-mean-square error (RMSE) between the retrieved cartoon
(resp. texture) component and ground-truth cartoon (resp. texture) component. The RMSE
criterion confirms the visual impression (the lower the values, the better the decomposition).
Although the cartoon component of [11] looks sharper, some parts have a grayer aspect than in
the original image, which explains the larger RMSE. With the proposed algorithm, RMSE are
equal for cartoon and texture components because the sum of both components exactly matches
the input image. Texture normalization used in the software program [15] may explain why
RMSE of cartoon and texture differ for this method in this particular experiment.

Table 1: RMSE with synthetic data

proposed [11] [15]

method

cartoon 2.72 4.51 6.15

texture 2.72 6.04 11.42
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To conclude this discussion, Table 2 gives computation times on a desktop equipped with
a 12-core Intel Xeon E5-2650 v4 @ 2.20GHz CPU and 64 Gb memory. We can see that the
proposed method, implemented in a non-optimized Matlab software, is much faster than the
one of [11]. In all cases, the computation time of the preprocessing step [12] in the proposed
algorithm is less than 0.3 seconds.

Table 2: Computation times in seconds

Image Size proposed [11] [15]

(in pixels) method

Barbara (Fig. 1) 567× 787 35.5 332.1 6.5

Manhattan (Fig. 3) 575× 1024 43.7 518.9 9.2

Kodim08 (Fig. 4) 512× 768 29.7 375.5 6.3

Rockwell (Fig. 5) 1600× 1060 124.3 967.9 47.8

Mariner6 (Fig. 6) 461× 471 15.1 168.2 1.2

Synthetic (Fig. 7) 512× 512 20.8 172.3 3.4

5 Conclusion

This paper presents a novel patch-based approach to cartoon and texture decomposition.
Fourier components of textures are detected in patches through statistical hypothesis testing,
the null model being estimated in a non-local way over a tentative coarse cartoon represen-
tation. The proposed algorithm achieves a good compromise between computation time and
accuracy.
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