
HAL Id: hal-01936105
https://hal.inria.fr/hal-01936105

Preprint submitted on 27 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verification of Programs with Pointers in SPARK
Georges-Axel Jaloyan, Claire Dross, Maroua Maalej, Yannick Moy, Andrei

Paskevich

To cite this version:
Georges-Axel Jaloyan, Claire Dross, Maroua Maalej, Yannick Moy, Andrei Paskevich. Verification of
Programs with Pointers in SPARK. 2018. �hal-01936105�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162962901?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01936105
https://hal.archives-ouvertes.fr

Verification of Programs with Pointers in SPARK

Georges-Axel Jaloyan1,2, Claire Dross3, Maroua Maalej3,
Yannick Moy3, and Andrei Paskevich4,5?

1 École normale supérieure, PSL University, Paris, France
2 CEA, DAM, DIF, F-91297 Arpajon, France

3 AdaCore, Paris, France
4 LRI, Université Paris-Sud, CNRS, F-91405 Orsay, France

5 Inria Saclay, Université Paris Saclay, F-91120 Palaiseau, France

Abstract. In the field of deductive software verification, programs with
pointers present a major challenge due to pointer aliasing. In this paper,
we introduce pointers to SPARK, a well-defined subset of the Ada lan-
guage, intended for formal verification of mission-critical software. Our
solution uses a permission-based static alias analysis method inspired
by Rust’s borrow-checker and affine types. To validate our approach, we
have implemented it in the GNAT Ada compiler and the SPARK toolset.
In the paper, we give a formal presentation of the analysis rules for a
core version of SPARK and discuss their implementation and scope.

1 Introduction

SPARK [1] is a subset of the Ada programming language targeted at safety-
and security-critical applications. SPARK restrictions ensure that the behavior
of a SPARK program is unambiguously defined, and simple enough that formal
verification tools can perform an automatic diagnosis of conformance between a
program specification and its implementation.

As a consequence of SPARK’s focus on automation and usability, it forbids
the use of programming language features that either prevent automatic proof,
or make it possible only at the expense of extensive user effort in annotating the
program. The lack of support for pointers in SPARK is the main example of this
choice. Among the various problems related to the use of pointers in the context
of formal program verification, the most difficult problem is the possibility that
two names refer to overlapping memory locations, a.k.a. aliasing. Formal veri-
fication platforms that support pointer aliasing like Frama-C [2] require users
to annotate programs to specify when pointers are not aliased. This can take
the form of inequalities between pointers when a typed memory model is used,
or the form of separation predicates between memory zones when an untyped
memory model is used. In both cases, the annotation burden is acceptable for

? This work is partly supported by the Joint Laboratory ProofInUse (ANR-13-LAB3-
0007) and project VECOLIB (ANR-14-CE28-0018) of the French National Research
Agency (ANR).

2 G.-A. Jaloyan et al.

leaf functions which manipulate single-level pointers, and quickly becomes over-
whelming for functions that manipulate pointer-rich data structures. In parallel
to the increased cost of annotations, the benefits of automation decrease, as au-
tomatic provers have difficulties reasoning explicitly with these inequalities and
separation predicates.

Programs often rely on non-aliasing in general for correctness, when such
aliasing would introduce interferences between two unrelated names. We call
aliasing potentially harmful when a memory location modified through one name
could be read through another name, within the scope of a verification condi-
tion. Otherwise, the aliasing is benign, when the memory location is only read
through both names. A reasonable approach to formal program verification is
thus to detect and forbid potentially harmful aliasing of names. Although this
restricted language fragment cannot include all pointer-manipulating programs,
it still allows us to introduce pointers to SPARK with minimal overhead for its
program verification engine.

In this work, we present the first step for the inclusion of pointers in the
Ada language subset supported in SPARK. As our main contribution, we show
that it is possible to borrow and adapt the ideas underlying the safe support
for pointers in permission-based languages like Rust, to safely restrict the use
of pointers in usual imperative languages like Ada. This adaptation is based on
a possible division of work between a permission-based anti-aliasing analysis,
lifetime management by typing, and the use of a formal verification platform for
checking non-nullity of accessed pointers.

The rest of the paper is organized as follows. In Section 2, we give an infor-
mal description of our approach. Section 3 introduces a small formal language
for which we define the formal alias analysis rules in Section 4. In Section 5,
we describe the implementation of the analysis inside the open-source GNAT
compiler for Ada. We survey related works in Section 6.

2 Informal Overview of Alias Analysis in SPARK

In Ada, the access to memory areas is given through paths that start with an
identifier (a variable name) and follow through record fields, array indices, or
through a special field all, which corresponds to pointer dereferencing. In this
paper, we only consider record and pointer types, and discuss the treatment of
arrays in Section 5.

As an example, we use the following Ada type, describing singly linked lists
where each node carries a Boolean flag and a pointer to a shared integer value.

type List is record
Flag : Boolean;
Key : access Integer;
Next : access List;

end record;

Given a variable A : List, the paths A.Flag, A.Key.all, A.Next.all.Key
are valid and their respective types are Boolean, Integer, and access Integer

Verification of Programs with Pointers in SPARK 3

(a pointer to an Integer). The important difference between pointers and records
in Ada is that—similarly to C—assignment of a record copies the values of fields,
whereas assignment of a pointer only copies the address and creates an alias.

The alias analysis procedure runs after the type checking. The idea is to
associate one of the four permissions—RW, R, W or NO—to each possible path
(starting from the available variables) at each sequence point in the program.

The read-only permission R allows us to read any value accessible from the
path: use it in a computation, or pass it as an in parameter in a procedure call.
As a consequence, if a given path has the R permission, then each valid extension
of this path also has it.

The write-only permission W allows us to modify memory occupied by the
value: use it on the left-hand side in an assignment or pass it as an out param-
eter in a procedure call. For example, having a write permission for a path of
type List allows us to modify the Flag field or to change the addresses stored
in the pointer fields Key and Next. However, this does not necessarily give us the
permission to modify memory accessible from those pointers. Indeed, to deref-
erence a pointer, we must read the address stored in it, which requires the read
permission. Thus, the W permission only propagates to path extensions that do
not dereference pointers, i.e., do not contain additional all fields.

The read-write permission RW combines the properties of the R and W per-
missions and grants the full ownership of the path and every value accessible
from it. In particular, the RW permission propagates to all valid path extensions
including those that dereference pointers. The RW permission is required to pass
a value as an in-out parameter in a procedure call.

Execution of program statements changes permissions. A simple example of
this is procedure call: all out parameters must be assigned by the callee and get
the RW permission after the call. The assignment statement is more complicated
and several cases must be considered. If we assign a value that does not contain
pointers (say, an integer or a pointer-free record), the whole value is copied
into the left-hand side, and we only need to check that we have the appropriate
permissions: W or RW for the left-hand side and R or RW for the right-hand side.
However, whenever we copy a pointer, an alias is created. We want to make the
left-hand side the new full owner of the value (i.e., give it the RW permission),
and therefore, after the permission checks, we must revoke the permissions from
the right-hand side, to avoid potentially harmful aliasing. The permission checks
are also slightly different in this case, as we require the right-hand side to have
the RW permission in order to move it to the left-hand side.

Let us now consider several simple programs and see how the permission
checks allow us to detect potentially harmful aliasing.

Procedure P1 in Fig. 1 receives two in-out parameters A and B of type List.
At the start of the procedure, all in-out parameters assume permission RW.
In particular, this implies that each in-out parameter is separated from all
other parameters, in the sense that no memory area can be reached from two
different parameters. The first assignment copies the structure B into A. Thus,
the paths A.Flag, A.Key, and A.Next are separated, respectively, from B.Flag,

4 G.-A. Jaloyan et al.

procedure P1
(A,B: in out List) is

begin
A := B;
B.Flag := True;
B.Key.all := 42;

end P1;

procedure P2
(A,B: in out access Integer) is

begin
while B.all > 0 loop

A.all := A.all + 1;
B.all := B.all - 1;
A := B;

end loop;
end P2;

Fig. 1: Examples of potentially harmful aliasing.

B.Key, and B.Next. However, the paths A.Key.all and B.Key.all are aliased,
and A.Next.all and B.Next.all are aliased as well.

The first assignment does not change the permissions of A and its extensions:
they retain the RW permission and keep the full ownership of their respective
memory areas, even if the areas themselves have changed. The paths under
B, however, must relinquish (some of) their permissions. The paths B.Key.all
and B.Next.all as well as all their extensions get the NO permission, that
is, lose both read and write permissions. This is necessary, as the ownership
over their memory areas is transferred to the corresponding paths under A. The
paths B, B.Key, and B.Next lose the read permission but keep the write-only W
permission. Indeed, we forbid reading from memory that can be altered through
a concurrent path. However, it is allowed to “redirect” the pointers B.Key and
B.Next, either by assigning those fields directly or by copying some different
record into B. The field B.Flag is not aliased, nor has it aliased extensions, and
thus retains the initial RW permission. This RW permission allows us to perform
the assignment B.Flag := True on the next line.

The third assignment, however, is now illegal, since B.Key.all does not have
the write permission anymore. What is more, at the end of the procedure the
in-out parameters A and B are not separated. This is forbidden, as the caller
assumes that all out and in-out parameters are separated after the call just as
they were before.

Procedure P2 in Fig. 1 receives two pointers A and B, and manipulates them
inside a while loop. Since the permissions are assigned statically, we must ensure
that at the end of a single iteration, we did not lose the permissions necessary
for the next iteration. This requirement is violated in the example: after the
last assignment A := B, the path B receives permission W and the path B.all,
permission NO, as B.all is now an alias of A.all. The new permissions for
B and B.all are thus weaker than the original ones (RW for both), and the
procedure is rejected. Should it be accepted, we would have conflicting memory
modifications from two aliased paths at the beginning of the next iteration.

Verification of Programs with Pointers in SPARK 5

3 µSPARK Language

For the purposes of formal presentation, we introduce µSPARK, a small subset
of SPARK featuring pointers, records, loops, and procedure calls. We present
the syntax and semantics of µSPARK, and define the rules of alias safety.

The data types of µSPARK are as follows:

type ::= Integer | Real | Boolean scalar type
| access type access type (pointer)
| ident record type

Every µSPARK program starts with a list of record type declarations:

record ::= type ident is record field? end

field ::= ident : type

We require all field names to be distinct. The field types must not refer to the
record types declared later in the list. Recursive record types are allowed: field
of a record type R can contain pointers to R (written access R). We discuss
the handling of array types in Section 5.

The syntax of µSPARK statements is defined by the following rules:

path ::= ident variable
| path . ident record field
| path . all pointer dereference

expr ::= path l-value
| 42 | 3.14 | True | False | . . . scalar value
| expr (+ | - | < | = | . . .) expr binary operator
| null null pointer

stmt ::= path := expr assignment
| path := new type allocation
| if expr then stmt? else stmt? end conditional
| while expr loop stmt? end “while” loop
| ident (expr?) procedure call

Following the record type declarations, a µSPARK program contains a set of
mutually recursive procedure declarations:

procedure ::= procedure ident (param?) is local? begin stmt? end

param ::= ident : (in | in-out | out) type

local ::= ident : type

We require all formal parameters and local variables in a procedure to have
distinct names. A procedure call can only pass left-values (i.e., paths) for in-out
and out parameters. The execution starts from a procedure named Main with
the empty parameter list.

6 G.-A. Jaloyan et al.

The type system for µSPARK is rather standard and we do not show it here
in full. We assume that binary operators only operate on scalar types. The null
pointer can have any pointer type access τ . The dereference operator .all
converts access τ to τ . Allocation p := new τ requires path p to have type
access τ . In what follows, we only consider well-typed µSPARK programs.

On the semantic level, we need to distinguish the units of allocation, such as
whole records, from the units of access, such as individual record fields. We use
the term location to refer to the memory area occupied by an allocated value.
We treat locations as elements of an abstract infinite set, and denote them with
letter `. We use the term address to designate either a location, denoted `, or a
specific component inside the location of a record, denoted `.f.g, where f and
g are field names (assuming that at ` we have a record whose field f is itself a
record with a field g). A value is either a scalar, an address, a null pointer or a
record, that is, a finite mapping from field names to values.

A µSPARK program is executed in the context defined by a binding Υ that
maps variable names to addresses and a store Σ that maps locations to values.
By a slight abuse of notation, we apply Σ to arbitrary addresses, so that Σ(`.f)
is Σ(`)(f), the value of the field f of the record value stored in Σ at `. Similarly,
we write Σ[`.f 7→ v] to denote an update of a single field in a record, that is,
Σ[` 7→ Σ(`)[f 7→ v]].

We use big-step operational semantics and write Υ ·Σ · s ⇓ Σ′ to denote that
µSPARK statement s, when evaluated under binding Υ and store Σ, terminates
with the state of the store Σ′. We extend this notation to sequences of statements
in an obvious way, as the reflexive-transitive closure of the evaluation relation
on Σ. In this paper, we do not consider diverging statements.

The evaluation of expressions is effect-free and is denoted JeKΥΣ . We also need
to evaluate l-values to the corresponding addresses in the store, written 〈p〉ΥΣ ,
where p is the evaluated path. Illicit operations, such as dereferencing a null
pointer, cannot be evaluated and stall the execution (blocking semantics). In the
formal rules below, c stands for a scalar constant and �, for a binary operator:

〈x〉ΥΣ = Υ (x) 〈p.f〉ΥΣ = 〈p〉ΥΣ .f 〈p.all〉ΥΣ = JpKΥΣ

JcKΥΣ = c JpKΥΣ = Σ(〈p〉ΥΣ) JnullKΥΣ = null

Je1 � e2KΥΣ = Je1KΥΣ � Je2KΥΣ

Allocation adds a fresh address to the store, mapping it to a default value
for the corresponding type: 0 for Integer, False for Boolean, null for the
access types, and for the record types, a record value where each field has the
default value. Notice that since pointers are initialised to null, there is no deep
allocation. We write �τ to denote the default value of type τ .

The evaluation rules are given in Figure 2. In the (E-call) rule, we evaluate
the procedure body in the dedicated context ΥP ·ΣP . This context binds the in
parameters to fresh locations containing the values of the respective expression
arguments, binds the in-out and out parameters to the addresses of the re-
spective l-value arguments, and allocates memory for the local variables. At the

Verification of Programs with Pointers in SPARK 7

JeKΥΣ = v

Υ ·Σ · p := e ⇓ Σ[〈p〉ΥΣ 7→ v]
(E-assign)

` 6∈ dom Σ

Υ ·Σ · p := new τ ⇓ Σ[〈p〉ΥΣ 7→ `, ` 7→ �τ]
(E-alloc)

JeKΥΣ = True Υ ·Σ · s̄1 ⇓ Σ′

Υ ·Σ · if e then s̄1 else s̄2 ⇓ Σ′ (E-ifTrue)

JeKΥΣ = False Υ ·Σ · s̄2 ⇓ Σ′

Υ ·Σ · if e then s̄1 else s̄2 ⇓ Σ′ (E-ifFalse)

JeKΥΣ = True Υ ·Σ · (s̄ ; while e loop s̄ end) ⇓ Σ′

Υ ·Σ · while e loop s̄ end ⇓ Σ′ (E-whileTrue)

JeKΥΣ = False

Υ ·Σ · while e loop s̄ end ⇓ Σ
(E-whileFalse)

procedure P (a1 : in τa1; . . . ; b1 : in-out τb1; . . . ; c1 : out τc1; . . .)
is d1 : τd1; . . . begin s̄ end is declared in the program

`a1 , . . . , `d1 , . . . 6∈ dom Σ Jea1KΥΣ = va1 , . . .

ΥP = [a1 7→ `a1 , . . . , b1 7→ 〈pb1〉ΥΣ , . . . , c1 7→ 〈qc1〉ΥΣ , . . . , d1 7→ `d1 , . . .]

ΣP = Σ[`a1 7→ va1 , . . . , `d1 7→ �τd1 , . . .] ΥP ·ΣP · s̄ ⇓ Σ′

Υ ·Σ · P (ea1 , . . . , pb1 , . . . , qc1 , . . .) ⇓ {`a1 , . . . , `d1 , . . .} /− Σ′ (E-call)

Fig. 2: Semantics of µSPARK (terminating statements).

end of the call, the memory allocated for the in parameters and local variables
is reclaimed: the operation /− stands for domain anti-restriction, meaning that
locations `a1 , . . . , `d1 , . . . are removed from Σ′. As there is no possibility to take
the address of a local variable, there is no risk of dangling pointers.

4 Access Policies, Transformers, and Alias Safety Rules

We denote paths with letters p and q. We write p @ q to denote that p is a strict
prefix of q or, equivalently, q is a strict extension of p. In what follows, we always
mean strict prefixes and extensions, unless explicitly said otherwise.

In the typing context of a given procedure, a well-typed path is said to be
deep if it has an extension of an access type, otherwise it is called shallow. We
extend these notions to types: a type τ is deep (resp. shallow) if and only if a
τ -typed path is deep (resp. shallow). In other words, a path or a type is deep if
a pointer can be reached from it, and shallow otherwise. For example, the List
type in Section 2 is a deep type, and so is access Integer, whereas any scalar
type or any record with scalar fields only is shallow.

An extension q of a path p is called a near extension if it has as many pointer
dereferences as p, otherwise it is a far extension. For instance, given a variable

8 G.-A. Jaloyan et al.

Π
move−−−→e # check W # fresh RW # lift−−−−−−−−−−−−−−→p Π

′

Π · p := e→ Π ′ (P-assign)

Π
check W # fresh RW # lift−−−−−−−−−−−−−−→p Π

′

Π · p := new τ → Π ′ (P-alloc)

Π
check R−−−−→e Π Π · s̄1 → Π1 Π · s̄2 → Π2 ∀p.Π ′(p) = Π1(p) ∧Π2(p)

Π · if e then s̄1 else s̄2 end→ Π ′ (P-if)

Π
check R−−−−→e Π Π · s̄→ Π ′ ∀π.Π ′(π) > Π(π)

Π · while e loop s̄ end→ Π
(P-while)

procedure P (a1 : in τa1; . . . ; b1 : in-out τb1; . . . ; c1 : out τc1; . . .)
is · · · begin s̄ end is declared in the program

Π
check R # observe−−−−−−−−−−→ea1 ,...

check RW # borrow−−−−−−−−−−−→pb1 ,...
check W # borrow−−−−−−−−−−→qc1 ,...

Π ′′

Π
fresh RW # lift−−−−−−−−→pb1 ,...

fresh RW # lift−−−−−−−−→qc1 ,...
Π ′

Π · P (ea1 , . . . , pb1 , . . . , qc1 , . . .)→ Π ′ (P-call)

Fig. 3: Alias safety rules for statements.

A of type List, the paths A.Flag, A.Key, and A.Next are the near extensions
of A, whereas A.Key.all, A.Next.all, and their extensions are far extensions,
since they all create an additional pointer dereference by passing through all.

We say that sequence points are the program points before or after a given
statement. For each sequence point in a given µSPARK program, we statically
compute an access policy : a partial function that maps each well-typed path to
one of the four permissions: RW, R, W, and NO, which form a diamond lattice:
RW > R|W > NO. We denote permissions with π and access policies with Π.

Permission transformers modify policies at a given path, as well as its prefixes
and extensions. Symbolically, we writeΠ T−→p Π

′ to denote that policyΠ ′ results

from application of transformer T to Π at path p. We write Π T1#T2−−−−→p Π
′ as an

abbreviation for Π T1−→p # T2−→p Π
′ (that is, for some Π ′′, Π T1−→p Π

′′ T2−→p Π
′).

We write Π T−→p,q Π
′ as an abbreviation for Π T−→p # T−→q Π

′.
Permission transformers can also apply to expressions, which consists in up-

dating the policy for every path in the expression. This only includes paths that
occur as sub-expressions: in an expression X.f.g + Y.h, only the paths X.f.g
and Y.h are concerned, whereas X, X.f and Y are not. The order in which the
individual paths are treated must not affect the final result.

We define the rules of alias safety for µSPARK statements in the context of
a current access policy. An alias-safe statement yields an updated policy which
is used to check the subsequent statement. We write Π · s→ Π ′ to denote that
statement s is safe with respect to policy Π and yields the updated policy Π ′.
We extend this notation to sequences of statements in an obvious way, as the

Verification of Programs with Pointers in SPARK 9

reflexive-transitive closure of the update relation on Π. The rules for checking
the alias safety of statements are given in Fig. 3. These rules use a number of
permission transformers such as ‘fresh’, ‘check’, ‘move’, ‘observe’, and ‘borrow’,
which we define and explain below.

Let us start with the (P-assign) rule. Assignments grant the full ownership
over the copied value to the left-hand side. If we copy a value of a shallow
type, we merely have to ensure that the right-hand side has the read permission.
Whenever we copy a deep-typed value, aliases may be created, and we must
check that the right-hand side is initially the sole owner of the copied value
(that is, possesses the RW permission) and revoke the ownership from it.

To define the ‘move’ transformer that handles permissions for the right-hand
side of an assignment, we need to introduce several simpler transformers.

Definition 1. Permission transformer check π does not modify the access policy
and only verifies that a given path p has permission π or greater. In other words,
Π

check π−−−−→p Π
′ if and only if Π(p) > π and Π = Π ′. This transformer also

applies to expressions: Π check π−−−−→e Π
′ states that Π check π−−−−→p Π

′(= Π) for every
path p occurring in e.

Definition 2. Permission transformer fresh π assigns permission π to a given
path p and all its extensions.

Definition 3. Permission transformer cut assigns restricted permissions to a
deep path p and its extensions: the path p and its near deep extensions receive
permission W, the near shallow extensions keep their current permissions, and
the far extensions receive permission NO.

Going back to the procedure P1 in Fig. 1, the change of permissions on the
right-hand side after the assignment A := B corresponds to the definition of ‘cut’.
In the case where the right-hand side of an assignment is a deep path, we also
need to change permissions of the prefixes, to reflect the ownership transfer.

Definition 4. Permission transformer block propagates the loss of the read per-
mission from a given path to all its prefixes. Formally, it is defined by the fol-
lowing rules, where x stands for a variable and f for a field name:

Π
block−−−→x Π

Π[p 7→W]
block−−−→pΠ

′

Π
block−−−→p.all Π ′

Π(p) = NO

Π
block−−−→p.f Π

Π(p) >W Π[p 7→W]
block−−−→pΠ

′

Π
block−−−→p.f Π ′

Definition 5. Permission transformer move applies to expressions:
– if e has a shallow type, then Π move−−−→e Π

′ ⇔ Π
check R−−−−→e Π

′,
– if e is a deep path p, then Π move−−−→e Π

′ ⇔ Π
check RW # cut # block−−−−−−−−−−−−−→p Π

′,
– if e is null, then Π move−−−→e Π

′ ⇔ Π ′ = Π.

10 G.-A. Jaloyan et al.

To further illustrate the ‘move’ transformer, let us consider two variables P
and Q of type access List and an assignment P := Q.all.Next. We assume
that Q and all its extensions have full ownership (RW) before the assignment. We
apply the second case in the definition of ‘move’ to the deep path Q.all.Next.
The ‘check RW’ condition is verified, and the ‘cut’ transformer sets the per-
mission for Q.all.Next to W and the permission for Q.all.Next.all and all
its extensions to NO. Indeed, P.all becomes an alias of Q.all.Next.all and
steals the full ownership for this memory area. However, we still can reassign
Q.all.Next to a different address. Moreover, we still can write some new values
into Q.all or Q, without compromising safety. This is enforced by the application
of the ‘block’ transformer at the end. We cannot keep the read permission for Q
or Q.all, since it implies the read access to the data under Q.all.Next.all.

Finally, we need to describe the change of permissions on the left-hand side
of an assignment, in order to reflect the gain of the full ownership. The idea is
that as soon as we have the full ownership for each field of a record, we can
assume the full ownership of the whole record, and similarly for pointers.

Definition 6. Permission transformer lift propagates the RW permission from
a given path to its prefixes, wherever possible:

Π
lift−−→x Π

Π[p 7→ RW]
lift−−→pΠ

′

Π
lift−−→p.all Π ′

∀q A p.Π(q) = RW Π[p 7→ RW]
lift−−→pΠ

′

Π
lift−−→p.f Π ′

∃q A p.Π(q) 6= RW

Π
lift−−→p.f Π

In the (P-assign) rule, we revoke the permissions from the right-hand side of
an assignment before granting the ownership to the left-hand side. This is done
in order to prevent creation of circular data structures. Consider an assignment
A.Next.all := A, where A has type List. According to the definition of ‘move’,
all far extensions of the right-hand side, notably A.Next.all, receive permission
NO. This makes the left-hand side fail the write permission check.

Allocations p := new τ are handled by the (P-alloc) rule. We grant the
full permission on the newly allocated memory, as it cannot possibly be aliased.

In a conditional statement, the policies at the end of the two branches are
merged selecting the most restrictive permission for each path. Loops require
that no permissions are lost at the end of a loop iteration, compared to the
entry, as explained above for procedure P2 in Fig. 1.

Procedure calls guarantee to the callee that every argument with mode in,
in-out, or out has at least permission R, RW or W, respectively. To ensure
the absence of potentially harmful aliasing, we revoke the necessary permissions
using the ‘observe’ and ‘borrow’ transformers.

Definition 7. Permission transformer borrow assigns permission NO to a given
path p and all its prefixes and extensions.

Verification of Programs with Pointers in SPARK 11

Definition 8. Permission transformer freeze removes the write permission from
a given path p and all its prefixes and extensions. In other words, freeze assigns
to each path q comparable to p the minimum permission Π(q) ∧ R.

Definition 9. Permission transformer observe applies to expressions:
– if e has a shallow type, then Π observe−−−−→e Π

′ ⇔ Π ′ = Π,
– if e is a deep path p, then Π observe−−−−→e Π

′ ⇔ Π
freeze−−−→p Π

′,
– if e is null, then Π observe−−−−→e Π

′ ⇔ Π ′ = Π.

We remove the write permission from the deep-typed in parameters using
the ‘observe’ transformer, in order to allow aliasing between the read-only paths.
As for the in-out and out parameters, we transfer the full ownership over them
to the callee, which is reflected by dropping every permission on the caller’s side
using ‘borrow’.

In the (P-call) rule, we revoke permissions right after checking them for
each parameter. In this way, we cannot pass, for example, the same path as an
in and in-out parameter in the same call. Indeed, the ‘observe’ transformer
will remove the write permission, which is required by ‘check RW’ later in the
transformer chain. At the end of the call, the callee transfers to the caller the
full ownership over each in-out and out parameter.

We apply our alias safety analysis to each procedure declaration. We start
with an empty access policy, denoted ∅. Then we fill the policy with the permis-
sions for the formal parameters and the local variables and check the procedure
body. At the end, we verify that every in-out and out parameter has the RW
permission. Formally, this is expressed with the following rule:

∅ fresh R−−−−→a1,... # fresh RW−−−−−→b1,... # fresh W # cut−−−−−−−−→c1,... # fresh RW−−−−−→d1,... Π
′

Π ′ · s̄→ Π ′′ Π ′′(b1) = · · · = Π ′′(c1) = · · · = RW

procedure P (a1 : in τa1; . . . ; b1 : in-out τb1; . . . ; c1 : out τc1; . . .)
is d1 : τd1; . . . begin s̄ end is alias-safe

We say that a µSPARK program is alias-safe if all its procedures are.
By the end of the analysis, an alias-safe program has an access policy asso-

ciated to each sequence point in it. We say that an access policy Π is consistent
whenever it satisfies the following conditions for all valid paths π, π.f , π.all:

Π(π) = RW =⇒ Π(π.f) = RW Π(π) = RW =⇒ Π(π.all) = RW (1)
Π(π) = R =⇒ Π(π.f) = R Π(π) = R =⇒ Π(π.all) = R (2)
Π(π) = W =⇒ Π(π.f) ≥W (3)

These invariants correspond to the informal explanations given in Section 2.
Invariant (1) states that the full ownership over a value propagates to all values
reachable from it. Invariant (2) states that the read-only permission must also
propagate to all extensions. Indeed, a modification of a reachable component
can be observed from any prefix. Invariant (3) states that write permission over

12 G.-A. Jaloyan et al.

a record value implies a write permission over each of its fields. However, the
write permission does not necessarily propagate across pointer dereference.

Lemma 1 (Policy Consistency). The alias safety rules in Fig. 3 preserve
policy consistency.

When, during an execution, we arrive at a given sequence point with the set
of variable bindings Υ , store Σ, and statically computed and consistent access
policy Π, we say that the state of the execution respects the Concurrent Read,
Exclusive Write condition (CREW), if and only if for any two distinct valid
paths p and q, 〈p〉ΥΣ = 〈q〉ΥΣ ∧Π(p) ≥W =⇒ Π(q) = NO.

The main result about the soundness of our approach is as follows.

Theorem 1 (Soundness). A terminating evaluation of a well-typed alias-safe
µSPARK program respects the CREW condition at every sequence point.

The full proof, for a slightly different definition of µSPARK, is given in [3].
The argument proceeds by induction on the evaluation derivation, following the
rules in Figure 2. The only difficult cases are assignment, where the required
permission withdrawal is ensured by the ‘move’ transformer, and procedure call,
where the chain of ‘observe’ and ‘borrow’ transformers, together with the cor-
responding checks, on the caller’s side, ensures that the CREW condition is
respected at the beginning of the callee.

For the purposes of verification, an alias-safe program can be treated with
no regard for sharing. More precisely, we can safely transform access types into
records with a single field that contains either null or the referenced value. Since
records are copied on assignment, we obtain a program that can be verified using
the standard rules of Floyd-Hoare logic or weakest-precondition calculus (as the
rules have also ensured the absence of aliasing between procedure parameters).

Indeed, consider an assignment A := B where A and B are pointers. In an
alias-safe program, B loses its ownership over the referenced value and cannot be
used anymore without being reassigned. Then, whenever we modify that value
through A.all, we do not need to update B.all in the verification condition. In
other words, we can safely treat A := B as a deep copy of B.all into A.all. The
only adjustment that needs to be made to the verification condition generator
consists in adding checks against the null pointer dereferencement, which is not
handled by our rules.

5 Implementation and Evaluation

The alias safety rules presented above have been implemented in the front-end
shared by the Ada GNAT compiler and the SPARK proof tool. Currently, they
are only enforced in the SPARK subset of Ada.

The real SPARK subset differs from µSPARK in several respects, in par-
ticular, arrays, functions, additional loop constructs, and global variables. For
arrays, permission rules apply to all elements, without taking into account the
exact index of an element, which may not be known statically in the general

Verification of Programs with Pointers in SPARK 13

case. Functions return values and cannot perform side effects. They only take
in parameters and may be called inside expressions. To avoid creating aliases
between the function parameters and the returned value, the full RW permission
is required on the latter at the end of the callee. The rules for loops have been
extended to handle for-loops and plain loops (which have no exit condition),
and also the exit (break) statements inside loops. Finally, global variables are
considered as implicit parameters of subprograms that access them, with mode
depending on whether the subprogram reads and/or modifies the variable.

Though our alias safety rules are constraining, we feel that they significantly
improve the expressive power of the SPARK subset. To demonstrate it, let us go
over some examples. One of the main uses of pointers is to serve as references
to avoid copying potentially big data structures. We believe this use case is
supported as long as the CREW condition is respected. We demonstrate this on
a small procedure that swaps two pointers.

type Int_Ptr is access Integer;

procedure Swap (X, Y: in out Int_Ptr) is
T : Int_Ptr := X; -- ownership of X is moved to T, X gets ‘W’

begin
X := Y; -- ownership of Y is moved to X, Y gets ‘W’, X gets ‘RW’
Y := T; -- ownership of T is moved to Y, T gets ‘W’, Y gets ‘RW’
return; -- when exiting Swap, X and Y should be ‘RW’

end Swap; -- local variable T is not required to have any permission

This code is accepted by our alias safety rules. We can provide it with a contract,
which can then be verified by the SPARK proof tool.

procedure Swap (X, Y: in out Int_Ptr) with
Pre => X /= null and Y /= null,
Post => X.all = Y.all’Old and Y.all = X.all’Old;

Another common use case for pointers in Ada is to store indefinite types
(that is, the types whose size is not known statically, such as String) inside
aggregate data structures like arrays or records. The usual workaround consists
in storing pointers to indefinite elements instead. This usage is also supported
by our alias analysis, as illustrated by an implementation of word sets6, which
is accepted and fully verified by SPARK.

The last use case that we want to consider is the implementation of recursive
data structures such as lists and trees. While alias safety rules exclude cyclic
structures like doubly linked lists or arbitrary graphs, they are permissive enough
for many non-trivial data structures, for example, red-black trees. To insert a
value in a red-black tree, the tree is first traversed top-down to find the correct
leaf for the insertion, and then it is traversed again bottom-up to reestablish
balancing. Doing this traversal iteratively requires storing a link to the parent
node in children, which is not allowed as it would introduce an alias. Therefore,
we went for a recursive implementation7, partially shown below. The rotating
6 https://github.com/GAJaloyan/SPARKExamples/tree/master/word_set
7 https://github.com/GAJaloyan/SPARKExamples/blob/master/rb_tree

https://github.com/GAJaloyan/SPARKExamples/tree/master/word_set
https://github.com/GAJaloyan/SPARKExamples/blob/master/rb_tree

14 G.-A. Jaloyan et al.

functions, which are used by the Balance procedure (not shown here) can be
implemented straightforwardly, since rotation moves pointers around without
creating any cycles.

type Red_Black is (Red, Black);
type Tree;
type Tree_Ptr is access Tree;
type Tree is record

Value : Integer;
Color : Red_Black;
Left : Tree_Ptr;
Right : Tree_Ptr;

end record;

procedure Rotate_Left
(T: in out Tree_Ptr)

is
X: Tree := T.Right;

begin
T.Right := X.Left;
X.Left := T;
T := X;

end Rotate_Left;

procedure Insert_Rec
(T: in out Tree_Ptr;
V: Integer) is

begin
if T = null then

T := new Tree’(
Value => V,
Color => Red,
Left => null,
Right => null);

elsif T.Value = V then
return;

elsif T.Value > V then
Insert_Rec (T.Left, V);

else
Insert_Rec (T.Right, V);

end if;
Balance (T);

end Insert_Rec;

The SPARK proof tool does not currently accept recursive data types, which
is why we have not attempted full functional verification of this code. However, it
passes alias safety analysis successfully, which will make full verification possible
once the restriction on recursive types is lifted in SPARK.

6 Related Works

The recent adoption of permission-based typing systems by programming lan-
guages is the culmination of several decades of research in this field. Going back
as early as 1987 for Girard’s linear logic [4] and 1983 for Ada’s limited types [5],
Baker was the first to suggest using linear types in programming languages [6],
formalised in 1998 by Clarke et al. [7]. More recent works focus on Java, such as
Javari and Uno [8,9].

Separation logic [10] is an extension of Hoare-Floyd logic that allows reason-
ing about pointers. In general, it is difficult to integrate into automated deductive
verification: in particular, it is not directly supported by SMT provers, although
some recent attempts try to have it mended [11,12].

Permission-based programming languages generalize the issue of avoiding
harmful aliasing to the more general problem of preventing harmful sharing of
resources (memory, but also network connections, files, etc.).

Cyclone and Rust achieve absence of harmful aliasing by enforcing an own-
ership type system on the memory pointed to by objects [13,14]. Furthermore,
Rust has many sophisticated lifetime checks, that prevent dangling pointers,

Verification of Programs with Pointers in SPARK 15

double free, and null pointer dereference. In SPARK, those checks are handled
by separate analysis passes of the toolset. Even though there is still no formal
description of Rust’s borrow-checker, we must note a significant recent effort to
provide a rigorous formal description of the foundations of Rust [15].

Dafny associates each object with its dynamic frame, the set of pointers
that it owns [16]. This dynamic version of ownership is enforced by modeling
the ownership of pointers in logic, generating verification conditions to detect
violations of the single-owner model, and proving them using SMT provers. In
Spec#, ownership is similarly enforced by proof, to detect violations of the so-
called Boogie methodology [17].

In our work, we use a permission-based mechanism for detecting potentially
harmful aliasing, in order to make the presence of pointers transparent for au-
tomated provers. In addition, our approach does not require additional user
annotations, that are required in some of the previously mentioned techniques.
We thus expect to achieve high automation and usability, which was our goal
for supporting pointers in SPARK.

7 Conclusion

In this paper, we have presented the rules for alias safety analysis that allow
to implement and verify in SPARK a wide range of programs using pointers
and dynamic allocation. To the best of our knowledge, this is a novel approach
to control aliasing introduced by arbitrary pointers in a programming language
supported by proof. Our approach does not require additional user annotations
or proof of additional verification conditions, which makes it much simpler to
adopt. We provided a formalization of our rules for a subset of SPARK in order
to mathematically prove the safety of our analysis.

In the future, we plan to extend our formalism and proof to non-terminating
executions. For that purpose, we can provide a co-inductive definition of the big-
step semantics and perform a similar co-inductive soundness proof, as described
by Leroy and Grall [18].

Another long-term goal would be extending our analysis so that it could han-
dle automatic reclamation, parallelism, initialization and lifetime checks, instead
of relying on external checks.

16 G.-A. Jaloyan et al.

References

1. McCormick, J., Chapin, P.: Building High-Integrity Applications with SPARK.
Cambridge University Press, Cambridge (2015)

2. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-
C: A software analysis perspective. Formal Aspects of Computing 27(3) (2015)
573–609

3. Jaloyan, G.A.: Internship report: Safe Pointers in SPARK 2014 (2017) https:
//arxiv.org/pdf/1710.07047.

4. Girard, J.Y.: Linear logic. Theoretical Computer Science 50(1) (1987) 1–101
5. AdaLRM: Reference Manual for the Ada(R) Programming Language, ANSI/MIL-

STD-1815A-1983. (1983)
6. Baker, H.: ’Use-once’ Variables and Linear Objects: Storage Management, Reflec-

tion and Multi-threading. SIGPLAN Not. 30(1) (1995) 45–52
7. Clarke, D., Potter, J., Noble, J.: Ownership Types for Flexible Alias Protection. In:

Proceedings of the 13th ACM SIGPLAN Conference on Object-oriented Program-
ming, Systems, Languages, and Applications, New York, NY, USA, ACM (1998)
48–64

8. Tschantz, M., Ernst, M.: Javari: Adding Reference Immutability to Java. In:
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, New York, NY, USA, ACM
(2005) 211–230

9. Ma, K.K., Foster, J.: Inferring Aliasing and Encapsulation Properties for Java. In:
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications, New York, NY, USA, ACM (2007) 423–
440

10. Reynolds, J.: Separation Logic: A Logic for Shared Mutable Data Structures. In:
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science,
Washington, DC, USA, IEEE Computer Society (2002) 55–74

11. Distefano, D., Parkinson, M.: jStar: Towards Practical Verification for Java. In:
Proceedings of the 23rd ACM SIGPLAN Conference on Object-oriented Program-
ming Systems Languages and Applications, New York, NY, USA, ACM (2008)
213–226

12. Bakst, A., Jhala, R.: Predicate Abstraction for Linked Data Structures. In: Pro-
ceedings of the 17th International Conference on Verification, Model Checking and
Abstract Interpretation, Berlin, Heidelberg, Springer-Verlag (2016) 65–84

13. Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y., Cheney, J.: Region-
based Memory Management in Cyclone. SIGPLAN Not. 37(5) (2002) 282–293

14. Balasubramanian, A., Baranowski, M., Burtsev, A., Panda, A., Rakamarić, Z.,
Ruzhyk, L.: System Programming in Rust: Beyond Safety. SIGOPS Oper. Syst.
Rev. 51(1) (2017) 94–99

15. Jung, R., Jourdan, J.H., Krebbers, R., Dreyer, D.: RustBelt: Securing the Founda-
tions of the Rust Programming Language. Proc. ACM Program. Lang. 2(POPL)
(2018) 66:1–66:34

16. Leino, R.: Dafny: An Automatic Program Verifier for Functional Correctness.
In: Proceedings of the 16th International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, Berlin, Heidelberg, Springer-Verlag (2010)
348–370

17. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, R.: Boogie: A Mod-
ular Reusable Verifier for Object-Oriented Programs. In: Proceedings of the 4th

https://arxiv.org/pdf/1710.07047
https://arxiv.org/pdf/1710.07047

Verification of Programs with Pointers in SPARK 17

International Symposium of Formal Methods for Components and Objects, Berlin-
Heidelberg, Springer-Verlag (2006) 364–387

18. Leroy, X., Grall, H.: Coinductive Big-Step Operational Semantics. Information
and Computation 207(2) (2009) 284–304

	Verification of Programs with Pointers in SPARK

