
HAL Id: hal-01936302
https://hal.inria.fr/hal-01936302

Submitted on 27 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lightweight Interactive Proving inside an Automatic
Program Verifier

Sylvain Dailler, Claude Marché, Yannick Moy

To cite this version:
Sylvain Dailler, Claude Marché, Yannick Moy. Lightweight Interactive Proving inside an Automatic
Program Verifier. 4th Workshop on Formal Integrated Development Environment, 2018, Oxford,
United Kingdom. �hal-01936302�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162962736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01936302
https://hal.archives-ouvertes.fr

Preliminary Report. Final version to appear in:
F-IDE 2018

c© S. Dailler, C. Marché, Y. Moy
This work is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike License.

Lightweight Interactive Proving inside an Automatic
Program Verifier∗

Sylvain Dailler Claude Marché
Inria, Université Paris-Saclay, F-91120 Palaiseau
LRI, CNRS & Univ. Paris-Sud, F-91405 Orsay

Yannick Moy
AdaCore, F-75009 Paris

Among formal methods, the deductive verification approach allows establishing the strongest pos-
sible formal guarantees on critical software. The downside is the cost in terms of human effort
required to design adequate formal specifications and to successfully discharge the required proof
obligations. To popularize deductive verification in an industrial software development environment,
it is essential to provide means to progressively transition from simple and automated approaches to
deductive verification. The SPARK environment, for development of critical software written in Ada,
goes towards this goal by providing automated tools for formally proving that some code fulfills the
requirements expressed in Ada contracts.

In a program verifier that makes use of automatic provers to discharge the proof obligations, a
need for some additional user interaction with proof tasks shows up: either to help analyzing the
reason of a proof failure or, ultimately, to discharge the verification conditions that are out-of-reach
of state-of-the-art automatic provers. Adding interactive proof features in SPARK appears to be com-
plicated by the fact that the proof toolchain makes use of the independent, intermediate verification
tool Why3, which is generic enough to accept multiple front-ends for different input languages. This
paper reports on our approach to extend Why3 with interactive proof features and also with a generic
client-server infrastructure allowing integration of proof interaction into an external, front-end graph-
ical user interface such as the one of SPARK.

1 Introduction

For the development of software with high safety and security requirements, deductive program verifica-
tion is an approach that provides access to the highest levels of guarantees. The functional requirements
are expressed using formal specification languages. The conformance of the code with such specifica-
tions can be established in a fairly automated setting using automatic program verifiers available nowa-
days (such as Dafny, F?, KeY, KIV, OpenJML, Verifast, Viper, Why3, etc.). Such verification tools
typically proceed by generating verification conditions (VC for short): mathematical formulas that need
to be proven valid. Such VCs are typically discharged using automated solvers, such as the SMT solvers
reasoning on Satisfiability Modulo Theories.

A major issue preventing the diffusion of deductive verification in industrial applications is the cost in
terms of human effort required to design adequate formal specifications and to successfully discharge the
VCs. To leverage this issue, it is important, when no SMT solver is able to solve a given VC, to provide
the user with means to investigate the proof failure: is it because the code needs to be fixed, is it because
the program is not sufficiently annotated (e.g. a missing loop invariant), or is it because the VC is too
complex to be discharged by automatic provers (e.g. an induction is needed). Among the possible means
is the generation of counterexamples [9]. Such a feature appears to be useful in particular to fix trivial

∗Work partly supported by the Joint Laboratory ProofInUse (ANR-13-LAB3-0007, https://www.adacore.com/

proofinuse) of the French national research organization

http://creativecommons.org
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://www.adacore.com/proofinuse
https://www.adacore.com/proofinuse

2 Lightweight Interactive Proving inside an Automatic Program Verifier

mistakes, but for complex cases, its limitations quickly show up: because of the intrinsic incompleteness
of back-end solvers, or more pragmatically because solvers proof search is typically interrupted after a
given time limit is reached, the counterexamples may be spurious or absent [9]. Moreover, there is no
easy mean to distinguish a true bug from insufficiently detailed specifications (although there is on-going
research in that direction [15]).

This paper presents an approach that we designed in the context of the SPARK verifier for industrial
development of safety-critical Ada code [7, 12]. The goal is to provide simplified interactions between
the user and the failing VC, so as to investigate a proof task without the need to rely on an external
interactive prover. A specificity of SPARK is that the underlying toolchain from the given input Ada
program to the VCs makes use of the external intermediate language Why3 [6] that itself provides ac-
cess to many different automated provers (mainly Alt-Ergo, CVC4 and Z3) but also general purpose
interactive theorem provers (Coq, Isabelle/HOL, PVS). Indeed, an extreme mean to investigate a proof
failure is to launch an interactive theorem prover on the failing VC and to start writing a manual proof.
Such a process shows up useful, mainly because writing the detailed steps, in which the user believes the
proof should work, typically helps to discover missing elements in the specifications, and in such cases
fixing the annotations could finally help the SMT solvers to automatically discharge the VC. Also, an
ultimate situation is to finish the proof completely using the underlying interactive prover [3]. The main
drawback in this process is that users should be able to use the general-purpose back-end interactive
prover, forcing them to learn a completely different environment, using its own syntax for formulas, and
its specific proof tactics to discharge proof tasks. Another drawback is that once the user has switched to
an external proof assistant to proceed with a proof, then there is no easy mean to get back to the common
environment offered by Why3 to call other automatic provers on the sub-goals generated by interactive
proof tactics.

1.1 Related Work

The need for user interaction in the context of industrial use of deductive verification is not new, this
issue was identified and taken into account early in the design of industrial tools. The KIV environ-
ment, used in large realistic case studies in academia and industry for more than 20 years, considered
very early the importance of combining automated and interactive proving [2]. Other early tools that
provide some form of interactive proving are the industrial tools, largely used in railway industry, Ate-
lier B [1] and Rodin [13]. The KeY environment, somehow a successor of KIV, is designed to build
proofs interactively, with the possibility to call efficient automated provers for solving some leaves of
the proof [10, 11]. In the context of general purpose proof assistants, the need for adding automation
to their general interactive theorem proving process is evident, for example in the environments ACL2,
HOL Light, and more recently in Isabelle/HOL where the so-called Sledgehammer subtool is able to
finish proofs using external SMT solvers [4].

1.2 Common Issues in Automated Program Verification

Interestingly, our analysis of the common situations where fully automatic provers fail, and switching to
proof interaction is needed, is very similar to the analysis made in previous work mentioned above. Here
are the main identified cases:

• quantifier instantiation: a proof should be done by an adequate instantiation of a universally quan-
tified hypothesis, that the automatic provers cannot discover. Providing the instantiation by hand

S. Dailler, C. Marché, Y. Moy 3

WhyML program

VC generator

Proof tasks Transformations

Printers

SMT solversTPTP provers Interactive provers

Figure 1: Why3 general architecture

helps. Similarly, for proving an existential goal, automated provers typically cannot guess the
witness. This witness should be given by hand.

• reasoning by cases: an explicit case reasoning can help the automatic provers.

• controlling the context and the strategy of proof search: a prover would sometimes use most of
its available time to try to solve the problem using a direction of thinking while a simple solution
exists. Reducing the context manually can help.

• inductive reasoning: some properties require reasoning by induction over an integer, an algebraic
datatype, or on an inductively defined predicate; such reasoning steps are out-of-reach of common
automated solvers, whereas applying an induction rule by hand usually results in sub-goals that
can be automatically discharged.

• non-linear integer arithmetic: it is typically hard for automatic provers, but a few manual proof
steps can make such a proof feasible. Similarly, floating-point arithmetic is also very hard for
automatic provers.

1.3 Contributions and Overview of the Paper

Our goals are shared with the above-mentioned related work. However, in the context of SPARK, there
is an additional issue that does not show up in previous work. Indeed, in the previous work mentioned
above, the language of formulas and proof tasks (e.g. proof sequents) is directly the language in which
the user writes her input problem: for example in the context of the B method, the logic language is
B set theory in which the code of the B machines is written; in KeY, the underlying Dynamic Logic
incorporates pieces of Java code to verify. In the context of SPARK, we have the additional issue that a
proof task generated by the Why3 VC generator is written in a language that is very different from the
Ada input language.

Our approach proceeds in the following steps. In Section 2, we present what we added to the Why3
intermediate tool to provide interactive proving features. Section 3 presents the use of interactive proof
from SPARK, inside GNAT Programming Studio, the Ada interface development environment. Section 4
concludes and discusses remaining future work.

4 Lightweight Interactive Proving inside an Automatic Program Verifier

2 Adding Interactive Proving in Why3

Figure 1 presents a general overview of Why3’s core architecture. The input files contain code with
formal specifications, written in the dedicated language WhyML [8], which essentially consists of a set
of functions or procedures annotated with contracts (pre- and post-conditions, loop invariants, etc.). The
VC generator produces, from such a file, a set of proof tasks. A proof task, that we can denote as Γ ` G,
consists in a set Γ of logical declarations of types, function symbols, predicates, and hypotheses, and
finally the logical formula G representing the goal to prove. The soundness property of the VC generator
expresses that if all generated proof tasks are valid logical statements, then the input program is safe: no
runtime error can arise and formal contracts are satisfied.

Consider the following toy example of a function written in WhyML.

let f (a:array int) (x:int) : int

requires { a.length ≥ 1000 }

requires { 0 ≤ x ≤ 10 }

requires { forall i. 0 ≤ 4*i+1 < a.length → a[4*i+1] ≥ 0 }

ensures { result ≥ 0 }

= let y = 2*x+1 in a[y*y]

The function f takes as parameters an array a and an integer x. The first two pre-conditions express
two simple requirements on the size of array a and an interval of possible values for x. The third pre-
condition is a bit more complex, it expresses that for indexes that are a multiple of 4 plus 1, the values
stored in a are non-negative. The function f returns an integer, denoted as the keyword result in the
post-condition, with a post-condition expressing that the value at the index returned is also non-negative.
The code simply returns the square of 2x+1. For such a code, Why3 generates as the VC the formula

forall a:array int, x:int.

length a ≥ 1000 ∧ (0 ≤ x ∧ x ≤ 10) ∧
(forall i:int.

0 ≤ ((4 * i) + 1) ∧ ((4 * i) + 1) < length a → a[(4 * i) + 1] ≥ 0) →
(let y = (2 * x) + 1 in

let o = y * y in (0 ≤ o ∧ o < length a) ∧ a[o] ≥ 0)

As one may guess such a formula can quickly become unreadable when code size grows, and is hardly
suitable for human inspection.

2.1 Proof Tasks and Transformations

The core of Why3 comes as a software library, written in the OCaml language and with a documented
API, that proposes in particular data-types for terms, formulas and proof tasks, and a large collection of
functions to operate on them. A central notion is the notion of transformation: an OCaml function that
takes a proof task as input and returns a set of proof tasks. All implemented transformations are expected
to be sound, in the sense that if all the resulting proof tasks are valid, then the original task is valid too.
A simple example of such a transformation is splitting, which basically transforms a task of the form
Γ ` G1∧G2∧ ·· · ∧Gk into the set of tasks Γ ` Gi for 1 ≤ i ≤ k. The VC generator is designed so as to
produce a single proof task for each procedure or function of the input code, as in the example above. To
ease the visibility and understanding of the resulting formula, a generalized splitting transformation is
typically applied, so as to decompose such a VC into a set of simpler VCs for specific properties to check,
e.g. checking if an array index is in bounds, checking the preservation of a loop invariant, checking the
pre-condition of a sub-procedure called, etc.

S. Dailler, C. Marché, Y. Moy 5

Figure 2: Failed proof attempts shown in Why3IDE

Figure 2 presents a screenshot of Why3’s graphical interface (Why3IDE) when given our toy pro-
gram as input. The left part of that window is the proof task tree. The current selected line is for the
proof task after applying the transformation named split_vc which implements the generalized split-
ting transformation mentioned above.

Indeed the role of transformations is two-fold. The first role is to simplify the given task (such as
the splitting above). In such a case a transformation is applied on user’s request inside the graphical
interface. The second role is to preprocess a task before sending it to an external prover: typically an
external prover does not support all features of Why3’s logic, such as polymorphic types, algebraic data
types and the corresponding pattern-matching, recursive or inductive definition of predicates, etc. Hence,
when the user wants to invoke an external prover on a given task, Why3 transparently applies some
transformations to make the proof task fit into the logic of the target prover, before using an appropriate
printer suitable for the back-end prover input syntax (e.g. SMT-LIB). On Figure 2 it can be seen that the
provers Alt-Ergo, CVC4 and Z3 were invoked but none of them were able to discharge the expected post-
condition. It is likely that the combination of non-linear arithmetic and the need for finding an appropriate
instantiation for the hypothesis H is the reason why they fail. Mixing quantifiers and arithmetic makes
very difficult goals to prove for all categories of automatic provers: SMT solvers quantifier handling is
based on triggers, that do not interact well with arithmetic, while TPTP provers have a more powerful
handling of quantifiers but do not support arithmetic. This corresponds to the limitation of automatic
provers that we called quantifier instantiation in Section 1.2.

On top of the core architecture of Figure 1, Why3 features two major components: the proof session
manager and the graphical interface. Adding support for interactive proving in this global architecture

6 Lightweight Interactive Proving inside an Automatic Program Verifier

Figure 3: Completed proof using two possible transformations with arguments

requires extensions that we detail in the subsections below: extensions of the GUI, extension of the
transformation setting of the core architecture, and extensions in the proof session manager. A feature,
that has important consequences on our approach presented below for adding interactive proving in
Why3, is the genericity of transformations handling. The Why3 library is designed so that an additional
user-written transformation can be dynamically loaded at run-time, using a mechanism of registration
with a name.

2.2 Extending User Interface

As shown in Figure 2, the graphical interface is naturally where proof tasks are displayed and where the
user can decide which transformations to apply and which prover to call. Below the top-right part of
the window, where the current proof task is displayed, and above the bottom-right part where different
kinds of messages are displayed, we added a kind of command-line input field where the user can input
arbitrary character text to form a command. If we consider our toy example, one possibility to progress
towards proving the goal is to replace y*y by the term 4*(x*x+x)+1. To achieve that, the user can
directly input the text

replace y*y 4*(x*x+x)+1

in the input field and hit the return key. An alternative possible transformation would be to instantiate
the hypothesis H with x*x+x, which can be done with the input

instantiate H x*x+x

S. Dailler, C. Marché, Y. Moy 7

Figure 3 displays the GUI after trying both transformations. As seen on left, the transformation replace

y*y 4*(x*x+x)+1 generated two subgoals: first proving the formula after the replacement, second
proving that y*y=4*(x*x+x)+1. Both subgoals are proved by Alt-Ergo. Similarly, the transformation
“instantiate H x*x+x” generates one subgoal where an additional hypothesis is present (the instance
of H for the given particular value for i) and is also proved by Alt-Ergo. As can be seen, applying any of
these two transformations is enough to finish the proof automatically.

Even if this mechanism using a textual interface may seem old-fashioned, it permits a lot of generic-
ity. We’ll see below how it simplifies the communication with a front-end such as SPARK. It also permits
a lot of extra features that show themselves important in practice, such as searching in the proof context.

2.3 Adding Parameters to Proof Transformations

A central design choice towards the introduction of interactive proofs is to reuse the existing infras-
tructure of transformations. Basically, since that infrastructure already allows the user to select among a
given set of transformations to apply on a given proof task, we just have to extend this set, after extending
the concept of transformations so that they can take parameters, like the two transformations used above:
replace is a transformation that takes two terms as input. instantiate takes a hypothesis name and a
term. We faced two main issues for this extension. First, the transformations can take various objects as
parameters: a term, a formula, a name, a string, etc. It means that at the level of the API, we need a typing
mechanism in order to declare what are the right types of objects to pass as parameters. Second, at the
level of the interface, the data submitted by the user are just textual, so we need a generic infrastructure
to parse them and turn them into objects of the right kind.

At the level of the API, in order to handle the large variability of the kinds of transformation parame-
ters, we were able to use the advanced concept of GADT (Generalized Abstract Data Types). An excerpt
of the new declaration of transformation type in the API is as follows (the real one has 20 constructors):

type _ trans_typ =

| Ttrans_l : (task -> task list) trans_typ

(** transformation with no argument, and many resulting tasks *)

| Tstring : ’a trans_typ -> (string -> ’a) trans_typ

(** transformation with a string as argument *)

| Tprsymbol : ’a trans_typ -> (Decl.prsymbol -> ’a) trans_typ

(** transformation with a Why3 proposition symbol as argument *)

| Tterm : ’a trans_typ -> (Term.term -> ’a) trans_typ

(** transformation with a Why3 term as argument *)

| Topt : string * (’a -> ’c) trans_typ -> (’a option -> ’c) trans_typ

(** transformation with an optional argument. The first string is

the keyword introducing that optional argument*)

To implement a transformation like instantiate above, we first have to program it with an OCaml
function, say inst, of type prsymbol → term → task list, and then register it under the proper
name as follows

wrap_and_register "instantiate" (Tprsymbol (Tterm Ttrans_l)) inst

Not only will it make the transformation available for use in the interface, but it will automatically
proceed with the parsing, name resolution and typing of the textual arguments, as given by the type
(Tprsymbol (Tterm Ttrans_l)). This mechanism based on GADTs is powerful enough to handle
optional parameters. For example, the replace transformation is declared with type

(Tterm (Tterm (Topt ("in", Tprsymbol Ttrans_l))))

8 Lightweight Interactive Proving inside an Automatic Program Verifier

which means that a third optional argument is allowed, of type prsymbol and introduced by the key-
word in to say that the replacement should be done in the hypothesis of the given name instead of the
goal, e.g. “replace (length a) 1000 in H”. Notice the large genericity of this mechanism, in par-
ticular the keyword used for introducing the optional argument. The genericity also comes from the
wrap_and_register function which is defined once and for all and does all the hard job of parsing and
typing arguments. In particular, the resolution of variable names given as arguments had to be carefully
made consistent with the printing of the task, which can rename variables.

Here is a quick summary of the major transformations with parameters that we added in Why3. They
are supposed to cover the major needs for interaction as already listed in Section 1.2.

• case analysis on a formula (case P), on algebraic data (destruct_alg t), decomposition on
propositional structure of a hypothesis (destruct H). For example, the transformation “case P”
where P is an arbitrary formula would be transforming a task Γ ` G into the two tasks Γ,P ` G
and Γ,¬P ` G.

• introduction of an auxiliary hypothesis (cut P, assert P) or term (pose x t)

• induction on integers, on inductive predicates

• instantiation as seen above (instantiate H t1, . . . , tk), including existential case (exists t), or
via direct application of a hypothesis to a goal (apply H)

• various rewriting and computation transformations: rewrite H (in H ′), replace t1 t2 (in H),
subst x, subst_all, etc.

• context handling: remove H1, . . . ,Hk, clear_but ...

• unfolding a definition: unfold f

• import an extra theory: use_th T

2.4 Extending The Proof Session Mechanism

A proof session is essentially a record of all the proof tasks generated from a given input file, and also
a record of all transformations applied to these tasks. It is indeed an internal representation of the proof
task tree displayed on the left part of Figure 2. Such a session can be stored on disk, and can be reloaded
to a former state by the user. A crucial feature of the session manager is to manage the changes if the
input file is modified (e.g. more annotations are added): the manager implements a clever and sound
merging operation to discover which parts of the proof session can be reused, which tasks are modified,
and which external proofs should be replayed [5].

The Why3 session files do not store any internal representation to avoid any problem when the Why3
tools themselves evolve. Accordingly, we decided that the arguments of transformations should be stored
under their textual form too. This definitely avoids potential problems with changes in internal represen-
tations, but still some problems with renaming could occur. For example, an automatically introduced
name for any hypothesis, say H1, could perfectly be renamed into H2, e.g. if an extra annotation is added
in the source code. It is thus perfectly normal that from time to time, while reloading a proof session, a
transformation with argument does not apply anymore. In order to avoid the loss of any sub-proof tree,
we implemented the new notion of detached nodes in the proof task tree. These nodes are a record of the
state of the previous session, but without any corresponding proof task. We then implemented a mecha-
nism to copy and paste fragments of proof trees from one node to another. This copy-paste mechanism
showed itself very useful in practice for maintaining interactive proofs.

S. Dailler, C. Marché, Y. Moy 9

2.5 Examples

We evaluated the new interactive proof features of Why3 on prior examples where some VCs could not
be discharged except using the Coq proof assistant. Bobot et al. paper [6] illustrated the use of Why3 on
the three challenges of the VerifyThis competition in 2012. On each of these case studies, at least one
Coq proof was required. We have reconsidered the first challenge (Longest Repeated Substring) and were
able to replace all three Coq proofs with interactive proofs. Interestingly, only very few transformations
were needed, because we quickly arrived at simpler subgoals that are discharged by automatic solvers.

Another illustrative example is the proof of Dijkstra’s shortest path algorithm on graphs: again, we
were able to replace Coq proofs with interactive transformations and automatic solvers. We noticed
that not only does it simplify the proofs, they are now easier to maintain in case of a change in Why3
implementation or standard library.

We still have to evaluate to what extent the interaction using transformations with argument is easy
to use for regular users. Moreover, we need more practice in order to see if this mechanism is of effective
help for debugging proofs, as explained in the introduction.

3 Adding Interactive Proving in SPARK

Although the SPARK verifier, called GNATprove, is based on Why3 for generating VCs and proving
them, there is a large gap between the SPARK and WhyML programming languages. Therefore, the
interactive proof features of Why3 cannot be used directly by SPARK users. The same issue arose in the
past with the counterexample generation features of Why3, which required translation back to SPARK
for use inside GNATprove [9]. That issue also involved interactions with users inside different IDEs,
Why3IDE for Why3 users and GNAT Programming Studio for SPARK users, but that interaction was
one-way only: the counterexamples output by provers were translated back to either Why3 or SPARK
syntax and displayed in their respective IDE. Here, we need a two-way interaction where users can input
commands (possibly with elements of the code as parameters) and Why3 returns a modified set of proof
tasks.

We start by presenting a simple SPARK program that cannot be proved with automatic provers in
Section 3.1. Then we describe in Section 3.2 the client-server architecture that we have adopted for two-
way communication between the IDE for SPARK programs and Why3. We detail in Section 3.3 how we
translate back and forth between user-level names in SPARK and internal names in Why3. Finally, we
explain in Section 3.4 how to complete the proof of our example.

3.1 Unprovable Code Example

The code in Figure 4 is a simplified version of an excerpt from a bounded string library. This code
contains a post-condition that cannot be proved today by any prover available with SPARK (Alt-Ergo,
CVC4, Z3). The reason for this unproved property is characteristic of the kind of problems faced by
users of a technology like SPARK. It is in the class of problems called quantifier instantiation already
presented in Section 2.

The code in Figure 4 computes the location of a sub-list of integers within a list of integers, when
the sub-list is contained in the list. Lists are implemented here as SPARK arrays starting at index 1 and
ranging over positive indexes. The post-condition of function Location introduced by Post states the
following properties: the result of the function ranges from 0 to the length of the list; a positive result is
used when the sub-list is contained in the list, and value 0 is used as result otherwise. For the sake of

10 Lightweight Interactive Proving inside an Automatic Program Verifier

type List is array (Positive range <>) of Integer

with Predicate => List’First = 1;

subtype Natural_Index is Integer range 0 .. Positive’Last;

function Contains (Within : List; Fragment : List) return Boolean is

(Fragment’Length in 1 .. Within’Length and then

(for some K in 1 .. (Within’Length - Fragment’Length + 1) =>

Within (K .. (K - 1 + Fragment’Length)) = Fragment))

with Ghost;

function Location (Fragment : List; Within : List) return Natural_Index

with

Post => Location’Result in 0 .. Within’Length and then

(if Contains (Within, Fragment) then

Location’Result > 0

else

Location’Result = 0)

is begin

if Fragment’Length in 1 .. Within’Length then

for K in 1 .. (Within’Length - Fragment’Length + 1) loop

if Within (K .. (K - 1 + Fragment’Length)) = Fragment then

return K;

end if;

pragma Loop_Invariant

(for all J in 1 .. K =>

Within (J .. (J - 1 + Fragment’Length)) /= Fragment);

end loop;

end if;

return 0;

end Location;

Figure 4: Example of SPARK code with an unprovable post-condition

simplicity, we do not state the complete post-condition of Location (that would make precise that the
resulting index is the location of the match), but this could be done easily.

This post-condition relies on the definition in function Contains of what it means for a sub-list
Fragment to be contained in a list Within. This function is only used in specifications, which is en-
forced by marking it as Ghost. It is defined as an expression function, quantifying with for some (Ada
existential quantification) over a range of scalar values the property that the sub-list Fragment is equal
to a moving slice of the list Within (K .. (K - 1 + Fragment’Length)). This last expression is
the slice of array Within from index K to index (K - 1 + Fragment’Length).

For the sake of simplicity, function Location naively iterates over each possible location for a match
and tests for equality of the corresponding slice with the argument sub-list. The loop invariant repeats
the post-condition and specializes it for the Kth iteration of the loop, so that the loop invariant is itself
provable and can be used to prove the post-condition.

When running GNATprove on this code, it proves automatically the absence of runtime errors (no
integer overflows, no array access out of bounds, no other runtime check failures), as well as the loop
invariant in function Location, but it does not prove the post-condition of that function.

The user interaction is simple here. The user requests that this program is verified by GNATprove
inside GPS (GNAT Programming Studio), and a few seconds later receives the output of the tool as mes-

S. Dailler, C. Marché, Y. Moy 11

sages attached to program lines. Between these two instants, GPS called GNATprove; GNATprove trans-
lated the SPARK program into an equivalent WhyML program w.r.t. axiomatic semantics for generation
of VCs; an internal program using Why3 API successively generated VCs by calling Why3 VC genera-
tor and dispatched VCs to provers; this internal program collected the output of provers and returned the
overall results to GNATprove; GNATprove generated and adapted results for GPS, that displayed these
results to the user.

All this work occurred transparently for the user, who never had to see the generated WhyML code
in Why3IDE, or to launch Why3 commands in a terminal. A less-than-ideal process for completing
the proof of the post-condition would consist in asking the user to open the session file generated by
Why3 in Why3IDE to complete the proof using the interactive proof feature described in Section 2.
While this would work, this is not a suitable solution in an industrial context. Indeed, asking users to
interact directly with a generated artifact in a different language (the Why3 file) is akin to asking them
to debug their programs at assembly level. While this is possible and sometimes useful, it is best left to
rare occasions when this is really needed, and instead interaction should be done as much as possible at
source code level.

3.2 Client-Server Architecture

GPS IDE Why3 interactive server

time time

Launch the server

Notify starting proof tree

Ask for proof task i

Send the task

...

Exit request

Save session and stops

Figure 5: Schematic of the interactions
between IDE and server

Most modern IDEs like GPS provide client-server interfaces
with various tools such as debuggers or, in the context of for-
mal verification, with proof assistants such as Emacs Proof-
General support for Coq, Isabelle, Lego, HOL, etc. We have
adopted a client-server architecture to allow two-way com-
munications between the interactive proof module (acting as
a server) and the client IDE, which can be Why3IDE or GPS
here. The server handles requests from the user (through the
IDE), such as proof transformations (see Section 2.3) and di-
rect calls to provers. After the requested action terminates,
the server informs the IDE of changes to the proof task tree.

For the integration in GPS, we developed both a wrap-
per in OCaml for the underlying service to act as the server,
and a plugin in Python to communicate with the server from
GPS. The server takes the session file as initial argument,
gets its input in JSON format on standard input, calls Why3
core services, updates the session file accordingly, and re-
turns its output in JSON format on the standard output. The
plugin modifies GPS interface to add a console window for
command-line interaction, a window to display VCs and a
window to display the proof task tree. The plugin translates
requests made by the user on the command-line interface
into JSON requests that are sent to the server, and translates
back the server notifications into updates of the graphical
user interface (adding nodes in the proof task tree, changing
the VC, etc.). For example, as seen in Figure 5, GPS first starts the server, then the server returns the
initial proof task tree which is printed by GPS. When the user clicks a node, GPS asks for the corre-
sponding proof task which the server returns and GPS then prints it for the user. This goes on until the

12 Lightweight Interactive Proving inside an Automatic Program Verifier

Figure 6: Example of interactive proof in GPS

user exits manual proof which GPS interprets by sending the exit request: Why3 interactive server ends
its execution. The death of the process is detected by GPS which goes back to its normal interface. A
schematic of the interactions between the IDE and the server is depicted in Figure 5. With very little
effort, we transformed a generic IDE such as GPS into an elementary proof assistant.

As seen on Figure 6, the user interface in GPS is similar to the one in Why3IDE presented in Figure 2.
The same windows are present but they are not located at the same place. From left to right, we can see
the SPARK code window, the proof task window and the proof task tree window. The command-line
console is displayed as a bottom panel sharing its window with other panels for Messages (tool output)
and Locations (tool messages). The user can type commands for applying transformations and calling
provers inside the command-line console, similar to what we saw for Why3IDE.

One can observe that the VC from Figure 6 is much more complex than the simple VC we generated
with Why3 in Figure 2. This is mainly a consequence of the complexity of the WhyML code generated
from SPARK. Simple data structures and control flow in SPARK are modeled with much more complex
data structures and control flow in WhyML to encode the semantic features of SPARK. This complexity
gets exposed in the VC generated by Why3 VC generator, as it combines the complexity of data structures
and control flow. This inherent complexity cannot be eliminated and must be dealt with to present
SPARK users with understandable VCs.

3.3 Printing of Proof Tasks and Parsing of Transformation Arguments

In order for users to be able to relate the proof task to their code, it is necessary to use the names of source
SPARK entities in the proof task instead of the generated Why3 names. This is achieved by creating a
mapping from Why3 names to their source SPARK name during the generation of Why3 code from
SPARK. This mapping is embedded in the WhyML code using labels, a generic mechanism in Why3 to

S. Dailler, C. Marché, Y. Moy 13

attach strings to terms. For example, in the following code snippet the label "name:Not_y" is attached
to the identifier y:

let f (a:array int) (x:int) : int

ensures {result = 20}

= let y "name:Not_y" = 2*x+1 in y*y

Labels on terms are preserved by VC generation and transformations. For example, the label "name
:Not_y" remains attached to the constants derived from y in the final VC obtained after VC generation
and transformations. Thus, when printing a proof task, the name of an identifier can be replaced by the
name found in the attached label when there is one. Thus we get the following proof task where the
source SPARK name Not_y is used instead of the generated Why3 name y:

constant x : int

constant Not_y : int = (2 * x) + 1

goal VC f : (Not_y * Not_y) = 20

Different Why3 names with the same name label are currently distinguished by appending a unique
number to the source SPARK name. The consecutive problem of interpreting the names of SPARK
entities as Why3 names occurs when the user types a command with arguments referring to the names
of SPARK entities. Why3 uses here the inverse map from distinguished SPARK names to Why3 names
associated to a given proof task to translate automatically the arguments of transformations.

3.4 Application to the Unprovable Code Example

With the interactive proof interface in GPS, we complete the proof of the post-condition of Location
from Section 3.1. For the sake of simplicity, we only describe the proof part of the then branch in this
subsection, shown in the screenshot in Figure 6. The root of the proof task tree is green, showing that the
initial VC was fully proved.

The interactive proof proceeds by deriving a contradiction from the loop invariant property in the
last iteration of the loop and the condition of the then branch Contains (Within, Fragment). This
requires unfolding the definition of Contains and finding suitable instances of quantified properties. In
this case, the proof task tree is linear and a complete proof script is the following:

instantiate contains__def_axiom Within,Fragment

rewrite Hinst in H16

destruct H16

destruct H

destruct H

instantiate H18 k

The intuition of the proof is that we need to explain to the tool how to combine the hypotheses coming
from the loop invariant and the definition of Contains. The first two transformations (instantiate,
rewrite) are used to make the axiomatic definition of Contains, applied to the right arguments, appear
as a hypothesis in the context. The three calls to the destruct transformation are used to destruct the
head connective of the hypothesis that appeared. They transform Γ,H : (A∧∃k.P(k)) ` G into Γ,H :
A,k : int,H1 : P(k) ` G. The objective is to use k as an instance for the loop invariant property (to
make the contradiction appear). This is exactly what transformation “instantiate H18 k” does. The
quantification disappears and SMT solvers can now solve the goal. This completes the proof of the then
branch of the post-condition of Location. The else branch is handled similarly, which completes the
proof of the program.

14 Lightweight Interactive Proving inside an Automatic Program Verifier

4 Conclusions and Future Work

We brought interactive proving features to the SPARK verification environment for Ada. This was done
by conservatively extending the intermediate Why3 tool by allowing to pass arguments to proof task
transformations. The design is generic enough to allow simple addition of new transformations via
Why3’s API. The proof session mechanism and the graphical interface have been extended to allow
simple user interaction and facilities for proof maintenance. A few program examples were re-proved,
showing that former external interactive proofs using Coq can be substituted with light interactive proofs
in our new setting. The user interface of Why3 was redesigned under the form of a generic client-server
architecture, allowing to bring interactive proving features to the SPARK front-end inside the regular
GPS graphical interface.

Future Work will go into several directions. First, we certainly want to enlarge the set of transfor-
mations with arguments, to cover more needs for interactive proofs. The needed transformations will be
identified from practice. Notice that others are already reusing our API to implement new transforma-
tions, for example for doing proofs by reflection for complex non-linear goals [14]. Second, we plan to
reuse the client-server architecture to provide an alternative interface for Why3, this time within a web
browser. We also plan to bring the interactive proof feature to the Frama-C front-end for C code, by
augmenting the existing Jessie plug-in of Frama-C that uses Why3 internally. A third longer-term work
is to allow for more customization of the printing of tasks and the parsing of transformation arguments:
from SPARK, we would like the terms in proof tasks expressed in a more Ada-like syntax, in particular
for arrays. For this we will need to design in Why3’s generic API a possibility to register printers and
parsers. A fourth even longer-term issue is the question of trust in the implemented transformations.
Since we implement more and more complex OCaml code for that purpose, a general need for verifying
the soundness of the transformations shows up. It is likely that we will need to design a language of
proof terms or proof certificates to achieve this long-term goal.

References

[1] Jean-Raymond Abrial & Dominique Cansell (2003): Click’n Prove: Interactive Proofs within Set Theory.
In: Theorem Proving in Higher Order Logics, 16th International Conference, TPHOLs’03, Lecture Notes in
Computer Science 2758, Springer, pp. 1–24, doi:10.1007/10930755 1.

[2] Wolfgang Ahrendt, Bernhard Beckert, Wolfram Menzel, Wolfgang Reif & Gerhard Schellhorn (1998): Auto-
mated Deduction - A Basis for Applications, chapter Integrating Automated and Interactive Theorem Proving.
Applied Logic Series 9, Springer, Dordrecht, doi:10.1007/978-94-017-0437-3.

[3] Stefan Berghofer (2012): Verification of Dependable Software using SPARK and Isabelle. In Jörg
Brauer, Marco Roveri & Hendrik Tews, editors: 6th International Workshop on Systems Soft-
ware Verification, OpenAccess Series in Informatics (OASIcs) 24, Dagstuhl, Germany, pp. 15–31,
doi:10.4230/OASIcs.SSV.2011.15.

[4] Jasmin Christian Blanchette, Sascha Böhme & Lawrence C. Paulson (2013): Extending Sledgehammer with
SMT Solvers. J. Autom. Reasoning 51(1), pp. 109–128, doi:10.1007/978-3-642-22438-6 11.

[5] François Bobot, Jean-Christophe Filliâtre, Claude Marché, Guillaume Melquiond & Andrei Paskevich
(2013): Preserving User Proofs Across Specification Changes. In Ernie Cohen & Andrey Rybalchenko, edi-
tors: Verified Software: Theories, Tools, Experiments (5th International Conference VSTTE), Lecture Notes
in Computer Science 8164, Springer, Atherton, USA, pp. 191–201, doi:10.1007/978-3-642-54108-7 10.

http://dx.doi.org/10.1007/10930755_1
http://dx.doi.org/10.1007/978-94-017-0437-3
http://dx.doi.org/10.4230/OASIcs.SSV.2011.15
http://dx.doi.org/10.1007/978-3-642-22438-6_11
http://dx.doi.org/10.1007/978-3-642-54108-7_10

S. Dailler, C. Marché, Y. Moy 15

[6] François Bobot, Jean-Christophe Filliâtre, Claude Marché & Andrei Paskevich (2015): Let’s Verify This
with Why3. International Journal on Software Tools for Technology Transfer (STTT) 17(6), pp. 709–727,
doi:10.1007/s10009-014-0314-5. See also http://toccata.lri.fr/gallery/fm2012comp.en.html.

[7] Roderick Chapman & Florian Schanda (2014): Are We There Yet? 20 Years of Industrial Theorem Proving
with SPARK. In Gerwin Klein & Ruben Gamboa, editors: Interactive Theorem Proving - 5th International
Conference, ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17,
2014. Proceedings, Lecture Notes in Computer Science 8558, Springer, pp. 17–26, doi:10.1007/978-3-319-
08970-6 2.

[8] Jean-Christophe Filliâtre & Andrei Paskevich (2013): Why3 — Where Programs Meet Provers. In Matthias
Felleisen & Philippa Gardner, editors: Proceedings of the 22nd European Symposium on Programming,
Lecture Notes in Computer Science 7792, Springer, pp. 125–128, doi:10.1007/978-3-642-37036-6 8.

[9] David Hauzar, Claude Marché & Yannick Moy (2016): Counterexamples from Proof Failures in SPARK.
In Rocco De Nicola & Eva Kühn, editors: Software Engineering and Formal Methods, Lecture Notes in
Computer Science, Vienna, Austria, pp. 215–233, doi:10.1007/978-3-319-41591-8 15.

[10] Martin Hentschel, Reiner Hähnle & Richard Bubel (2016): An Empirical Evaluation of Two User Interfaces
of an Interactive Program Verifier. In: Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, pp. 403–413, doi:10.1007/s10726-011-9236-8.

[11] Martin Hentschel, Reiner Hähnle & Richard Bubel (2016): The Interactive Verification Debugger: Effective
Understanding of Interactive Proof Attempts. In: Proceedings of the 31st IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE 2016, ACM, pp. 846–851, doi:10.1145/2970276.2970292.

[12] John W. McCormick & Peter C. Chapin (2015): Building High Integrity Applications with SPARK. Cam-
bridge University Press, doi:10.1017/CBO9781139629294.

[13] Farhad Mehta (2007): Supporting Proof in a Reactive Development Environment. In: Proceedings of the Fifth
IEEE International Conference on Software Engineering and Formal Methods, SEFM’07, IEEE Computer
Society, pp. 103–112, doi:10.1109/SEFM.2007.40.

[14] Guillaume Melquiond & Raphaël Rieu-Helft (2018): A Why3 Framework for Reflection Proofs and its Appli-
cation to GMP’s Algorithms. In: 9th International Joint Conference on Automated Reasoning, Oxford, United
Kingdom, doi:10.1007/978-3-319-94205-6 13. Available at https://hal.inria.fr/hal-01699754.

[15] Guillaume Petiot, Nikolai Kosmatov, Bernard Botella, Alain Giorgetti & Jacques Julliand (2016): Your Proof
Fails? Testing Helps to Find the Reason. In: Tests and Proofs - 10th International Conference, Lecture Notes
in Computer Science 9762, Springer, pp. 130–150, doi:10.1007/978-3-319-41135-4 8.

http://dx.doi.org/10.1007/s10009-014-0314-5
http://toccata.lri.fr/gallery/fm2012comp.en.html
http://dx.doi.org/10.1007/978-3-319-08970-6_2
http://dx.doi.org/10.1007/978-3-319-08970-6_2
http://dx.doi.org/10.1007/978-3-642-37036-6_8
http://dx.doi.org/10.1007/978-3-319-41591-8_15
http://dx.doi.org/10.1007/s10726-011-9236-8
http://dx.doi.org/10.1145/2970276.2970292
http://dx.doi.org/10.1017/CBO9781139629294
http://dx.doi.org/10.1109/SEFM.2007.40
http://dx.doi.org/10.1007/978-3-319-94205-6_13
https://hal.inria.fr/hal-01699754
http://dx.doi.org/10.1007/978-3-319-41135-4_8

	Introduction
	Related Work
	Common Issues in Automated Program Verification
	Contributions and Overview of the Paper

	Adding Interactive Proving in Why3
	Proof Tasks and Transformations
	Extending User Interface
	Adding Parameters to Proof Transformations
	Extending The Proof Session Mechanism
	Examples

	Adding Interactive Proving in SPARK
	Unprovable Code Example
	Client-Server Architecture
	Printing of Proof Tasks and Parsing of Transformation Arguments
	Application to the Unprovable Code Example

	Conclusions and Future Work

