-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

A pedagogical example: a family of stochastic cellular
automata that plays Alesia

Nazim Fates

» To cite this version:

Nazim Fates. A pedagogical example: a family of stochastic cellular automata that plays Alesia.
ACRI 2018 - 13th International Conference on Cellular Automata for Research and Industry, Sep
2018, Como, Italy. 10.1007/978-3-319-99813-8_35 . hal-01936310

HAL Id: hal-01936310
https://hal.inria.fr /hal-01936310
Submitted on 27 Nov 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/162962729?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01936310
https://hal.archives-ouvertes.fr

A pedagogical example: a family of stochastic
cellular automata that plays Alesia

Nazim Fates
Université de Lorraine, CNRS, Inria, LORIA,

F-54000 Nancy, France
nazim.fates@inria.fr

August 2018

Abstract

Alesia is a two-player zero-sum game which is quite similar to the
rock-paper-scissors game: the two players simultaneously move and do
not know what the opponent plays at given round. The simultaneity of
the moves implies that there is no deterministic good strategy in this game,
otherwise one would anticipate the moves of the opponent and easily win
the game. We explore how to build a family of one-dimensional stochastic
cellular automata to play this game. The rules are built in an iterative
way by progressively increasing the complexity of the transitions. We
show the possibility to construct a family of rules with interesting results,
including a good performance when confronted to the Nash-equilibrium
strategy.

1 Introduction

The purpose of this note is to present a sketch on how stochastic cellular au-
tomata can be used to play a simple strategy game in which randomness has
a central role. This game, named Alesia after the battle that opposed Gallic
tribes and the army of J. Caesar 52 BC, has simple rules [?]: (1) The two play-
ers initially have the same number of soldiers, say 50. (2) Each round, the two
players fight a battle by simultaneously engaging a given number of soldiers. The
soldiers are then lost, whatever the outcome. Players must engage at least one
soldier at each round (if they have not lost all their soldiers). (3) The winner of
battle is simply the player who has engaged more troops; the front moves by one
step in the direction of his opponent. (4) The winner of the game is the player
who succeeds to reach his opponent’s camp, that is, to make the front advance
more than W steps, where W is fixed in advanced (here we take W = 2). (5)
The game ends in a draw if none of the players reaches the opponent’s camp.
To illustrate these rules, an example of game is given on Fig. 1-left.

sA | pA
50| 11 | o . @
39| 12| o Q
27 91| o @ .
18 5] o @
13 41| o Q
9 3| o . @
6 2| o0 . @
4 2l o0 . @
2 1o @
1 -l @

Figure 1: (left) Example of an Alesia game: sA, sB, pA, and pB are the soldiers
and the plays of player A and B, respectively. (right) Example of space-time
diagram produced by the gq2h2 player (see below). The cells in blue, brown,
and green code the initial condition (states A, F, B) ; the result is given by the
number of black cells (state V) ; other colours encode auxiliary states (see below
for details). Time goes upward.

After playing a few games, one discovers that any good strategy should find
a balance between playing too much or too little soldiers at each battle. Indeed,
a large number of soldiers ensures victory but depletes the reserves for the next
rounds. On the contrary, a small number of soldiers saves the reserves but
increases the risks to loose the battle.

The other important point is that a good strategy is necessarily stochastic.
Indeed, if for instance a player always plays 4 at the first round, the opponent
can foresee this decision and decide to play 5 and thus win the first round.
If the player always plays 20, the opponent’s interest is to play only 1, and to
deliberately loose the first round to gain an advantage in the number of soldiers.
Of course, this argument can be recursively applied to the next rounds...

Our aim is to analyse whether simple cellular automata could calculate a
good strategy for this game. Our motivation is to explore how “noisy” com-
ponents with an elementary behaviour can cooperate to perform an interesting
computation, as in a biological organisms. We are aware that cellular automata
constitute a Turing-universal model of computation, and can thus compute any
function that is computable by a classical machine, but our goal here is to make
a decision emerge from simple non-deterministic mechanisms.

The links between cellular automata and game theory have been mainly
explored with iterated two-player games on grids or graphs: these models dis-
tribute n players on a grid (or on a graph) and make the players interact by pairs
with their neighbours. The players generally update their strategy according to
the payoff received and the goal is to observe how the strategies dynamically
evolve on the graph [?]. Interestingly enough, it can be observed that even
small variations in the updating method (e.g., from synchronous to partially
synchronous) may radically change the ultimate evolution of the system [?].

However, the use of cellular automata for the design of strategies is almost
absent from the literature. Fraenkel has presented a pioneering work of how cel-
lular automata may compute a particular strategy [?]. Cook, Larsson and Neary
also made interesting connections between (deterministic) one-dimensional cel-
lular automata and a generalisation of the game of Nim called the Blocking
Wythoff Nim [?].

The purpose of this paper is to present some other simple examples by taking
the Alesia game as a starting point. It can thus be considered as a pedagogical
example in order to solve a problem in a distributed way. Our goal is not to
reach optimality, but we will nevertheless compare our solutions to an optimal
strategy in order to have a quantitative estimation of the quality of our cellular
automata strategy.

2 Definitions

2.1 Formalisation of the game

We now introduce the formal definitions of the game. We assume that the game
starts with IV soldiers and that the “arena” is such that a player needs to make
W (cumulative) steps in the direction of his opponent to win.

For the sake of simplicity we model a game by an infinite sequence of moves.
Let a¢, by be the number of soldiers of player A and B, respectively, at time ¢
and ay, 5; the number of soldiers that they respectively engage at time t. We
have:

Vit € N, A1 = A — Qi and Vt € N, bt+1 = by — ﬁt-
The position of the front evolves according to wy = 0 and:

1 if ap > By
Wiy1 = Wi + -1 if ap < Bt
0 otherwise.

The game stops when one of the players hits the camp of his adversary or
when there are no more soldiers. As the outcome of the game depends on the
sequence of moves s = (a¢, by)ten, we call this sequence the game for the sake of
simplicity.

Since each player is forced to play at least one soldier at each time step, the
number of rounds is finite; we denote it by T'(s).

The gain G(s) that results from a game s is 1, -1 or 0, if player A wins, or
if player B wins, or if there is a draw, respectively. Formally, we have:

T(s) = E%%l{wt =W+1lorw, =—-W —1or (a,b) =(0,0)},
1 if wp =W +1,

and : G(s) =< -1 ifwp=-W -1,
0 otherwise.

The rules of the game impose ag = by = N and: Vi < T, a; >0 = 1<
ar <ag,and by >0 — 1< 6 <b; and, for t > T, we set ay = 3; = 0.

2.2 Stochastic cellular automata

For the sake of simplicity, we will use one-dimensional cellular automata with
nearest-neighbours interaction. To describe our model, we simply take an infi-
nite line of cells : Z. Note however that for the simulations, it is more convenient
to use periodic boundary conditions (Z/nZ with a large value for n).

We denote by @ the set of states the cells can hold. A configuration repre-
sents the global state of the system; it is an element of Q%.

A stochastic cellular automaton is defined with a local transition function
©:Q3xQ — [0,1] and we write <p((z,y, z),q) = p to express that a cell with
a neighbourhood state (x,y, z) has a probability p to update to the state g. We
require: V(z,y,z) € Q3, qung((:E,y,z),q) =1.

The global transition function thus maps a configuration z* to the configu-
ration 2'*! such that:

Vi S Za Pr[xz—i_l = Cﬂ = @((xg—la xfawg—o—l)a q)v

and where all the probabilities are drawn independently for each cell.

In order to build a strategy that uses a cellular automaton, we will translate
the state of the game into a configuration, make this configuration evolve, and
then interpret the resulting configuration as an action of the player. Given two
players A and B, we will measure their relative strength with the expected gain
that player A has against player B. This statistical estimation is obtained by
repeating N games opposing A and B. If Ny and Ng are the number of games
that A or B won, respectively, then the expected gain of A against B is given
by (Na — Ng)/N.

We now present how we build a cellular automaton player by progressively
improving the strategy players. This improvements are made by defining fami-
lies of rules and making each new family compete against the previously found
players. This method can be seen as a “bootstrapping” technique because each
level of complexity emerges from a previously defined level of complexity.

3 Cellular automata players

All our players are Markovian: they base their decision on the current state of
the game only. For the sake of readability, we will assume that the player we are
describing is player A, while its opponent is player B. We recall our notations: a,
b denote the number of soldiers of player A and B, respectively, and w denotes
the position of the front at time ¢, the number of soldiers played by a given
player II is denoted by II(a,w,b). We also assume that the game is played in
“standard” conditions, that is, with W =2 and N =50 [?].

Table 1: Expected gains of uni-M players opposed to other uni-M player. The
deviation from an antisymmetrical form are due to the statistical variations (10°
samples).

uni-10 uni-12 wuni-14 uni-16 uni-18 uni-20 uni-22 uni-24
uni-10 -0.133 -0.178 -0.182 -0.170 -0.146 -0.109 -0.057
uni-12 0.130 -0.068 -0.076 -0.060 -0.027 0.016 0.075
uni-14 0.177 0.069 -0.030 -0.017 0.016 0.061 0.122
uni-16 0.180 0.071 0.027 -0.006 0.018 0.068 0.133
uni-18 0.171 0.058 0.013 0.003 0.016 0.049 0.105
uni-20 0.148 0.026 -0.017 -0.023 -0.015 0.030 0.075
uni-22 0.108 -0.019 -0.065 -0.068 -0.053 -0.033 0.042
uni-24 0.060 -0.072 -0.124 -0.126 -0.103 -0.076 -0.038

3.1 Uniform distribution players

The first player we can consider, denoted by uniform, plays a uniform num-
ber between 1 and a. It will serve as the basis of our bootstrapping process.
Formally: uni-M(a,w,b) = U{a}, where U{0} = 0 and U{k} draws a random
number uniformly in {1,...,%k} for £ > 0.

This strategy is easy to defeat with the following opponent: beatUnif al-
ways plays 1 unless the front is in position —W (danger of loosing the game),
in which case it plays b (as many soldiers as the opponent has). Formally:
beatUnif(a,w,b) = b if w = —W and beatUnif(a,w,b) =1 otherwise.

Our simulations show that beatUnif has an expected gain of 0.93 against
unif: it wins the game with a probability greater than 95%.

3.2 Uniform distribution players with saturation

The weakness of uniform comes from the fact that it is too “generous”: it is
easy to “exhaust” simply by using a defensive strategy. A straightforward im-
provement of this player is to limit the maximum number of soldiers engaged at
each time step. We define uni-M as the player which draws a number uniformly
between 1 and a and then plays this value if it is lower than a threshold value
M, or plays M otherwise. Formally: uni-M(a, w,b) = max{U{a}, M}.

The question then comes to know what is the best setting for M. Again, as
there is no “absolute” good player; we thus simply oppose players with various
settings of M and observe how they perform one against the other.

The results are presented in Tab. 1. The data represents the expected gain
of uni-M players with different settings of M. These experiments indicate that
a good setting of M is in the interval 16-18. Indeed uni-16 and uni-18 have
a positive expected gain defeat when opposed to the other players and when
opposed to each other, the difference in expected gain is not significant.

We are now in position to continue our bootstrapping process: our next
objective is to build a CA player that performs better than uni-18. Before

Table 2: Expected gains of binomial players against uniform players (10°
samples).

uni-8 wuni-10 uni-12 uni-14 uni-16 uni-18 uni-20
bin-22 | 0.554 0.409 0.370 0.375 0.368 0.377 0.391
bin-24 | 0.589 0.428 0.400 0.411 0.430 0.441 0.463
bin-26 | 0.608 0.433 0.399 0.417 0.451 0.475 0.501
bin-28 | 0.622 0.428 0.380 0.405 0.448 0.485 0.513
bin-30 | 0.628 0.420 0.345 0.368 0.420 0.468 0.504
bin-32 | 0.627 0.398 0.314 0.319 0.374 0.431 0.480

Table 3: Expected gains of binomial players against other binomial players
(10° samples).
bin-15 bin-20 bin-25 bin-30

bin-15 -0.182 -0.327 -0.417
bin-20 0.180 -0.002 -0.021
bin-25 0.328 0.003 0.098

bin-30 0.419 0.017 -0.099
bin-20 bin-22 bin-24 bin-26

bin-20 -0.004 -0.005 0.000
bin-22 0.006 0.015 0.039
bin-24 0.005 -0.018 0.035

bin-26 0.005 -0.030 -0.029

going on, let us observe that “coding” the uniform or uni-M players with a one-
dimensional cellular automaton is not that easy. Indeed, if the input is coded in
the form of a configuration that has n cells in a given state, it is not clear how
cells could interact locally in order to produce every possible output between 0
and n — 1 (or n) with an equal probability.

3.3 Another simple player: the binomial player

If we have a set of cells which can hold a state with a given probability, the
most intuitive “computation” is to draw a number according to a binomial
distribution. We define the binomial players as the strategy where each soldier
of the player has a probability p “to be played”. For a given p, we set R = 100xp
and denote by bin-R the binomial with parameter p = R/100.

To encde our player, we simply use the binary alphabet @ = {0, 1} and map
a game state (a,w,b), to the initial condition # € Q% formed by a consecutive
1’s on a background of 0’s. Then each cell independently applies the rule where
a 0 remains a 0 and a 1 remains a 1 with probability p and becomes a 0 with
probability 1 — p. We have: binomial(a, f,b) = card{i € Z,y; = 1}, where y
denotes the configuration obtained by a one-step transformation of x.

Table 2 shows the expected gain of various binomial players against various

uniform-M players. We observe that for each value of M, there is a different
value of p which maximizes the expected gain. The player which has the highest
minimal expected gain is bin-24. It is interesting to note that if we take p =
0.28, the “best” opponent of this binomial players is uni-12 and not uni-18,
as expected from what was seen by making uniform-M players together. This
illustrates the fact that it is not possible to compare the expected gain of rules
with a total order. Given three players A,B,C, we can observe that B performs
better than C versus A, and nevertheless B is beaten by C.

When opposing the binomial players one against another, the best player
is bin-22 (Tab. 3). Our objective is now to find a player that beats this new
challenger.

4 Taking into account the situation: the g2h2
player

The previous model was not really a cellular automaton since there was no
interaction between cells. The next improvement we can do is to take into
account the position of the front and number of soldiers of the opponent.

We request that the initial state of the game to be translated in an initial
condition of the cellular automaton with a simple method. Typically, the num-
ber of soldiers and the position of the front should be coded with a “unary”
code, that is, each number of soldiers should correspond to the same number of
cells in a given state, plus or minus some constants. Let us now present a player
which respects these constraints, we name it q2h2.

The model employs 8 states: Q = {E, A,V,V* R, F,F* B}; its elements respec-
tively represent the following states: empty, A-soldier, voluntary, voluntary-star,
reluctant, front, front-star, B-soldier. The ‘star’ represents an information that
travels from right to left in order to transmit an influence from the B-soldier
cells to the different cells which represent the strength of player A. The following
rules describe how this influence is transmitted.

We associate to a game position (a,w,b) an initial configuration zj,; built
as follows : the a first cells are in state A. Next, we put d cells in state F, where
0 = W 4w+ 1 represents the state of the front. The next following b cells are in
state B. We thus have: xi,i(a,w,b) =..EE AAAAAFFF BBBBBBBEEFEE...

S—_—
atimes § times btimes

The evolution of the cellular automaton can be described with the following
scenario: soldiers of player A (state A) turn to the voluntary state (V) or to the
reluctant state (R) in one step. After that, some reluctant soldiers of A may
turn to voluntary according to the “danger” they feel. This danger is evaluated
as a combination of b and w: a) the more soldiers the opponent has, the greater
the danger; b) the smaller the front is, the greater the danger. In practice, each
cell in state B has a given probability (pr) to initiate a signal that will travel to
the left until it eventually reaches a cell in state R it then turns this cell to a V.
This signal can also be absorbed with probability pa.

As the information travels from the right to the left, we can define the local
function ¢((z,y,z),q) with the use of the probabilistic function £(q,¢’), which
takes as an input the state of the cell itself ¢ and the state of right neighbour ¢’
and outputs a state in () with a given probability. This function, which depends
on three probabilities py, pr and pa, is defined as follows.

e An empty cell remains empty: ¢(E,-) =E.

e Each A immediately decides if it turns to a voluntary state or to a reluctant

v ith probabilit
state: (A1) =4 PRIV
R with probability 1 — py.

e The behaviour of front cells and front-star cells depend on what they see
on their right: a) a B cell: this corresponds to the case where the “stars”
are initiated by the soldiers of the opponent. b) another F or Fx cell :
this case corresponds to the transmission of the star to the left. We set
a probability pa to be absorbed, i.e., the star is not transmitted. This
reads:

§(F,B) = {(F*,B) ={

F* with probability pr, d
and:
F with probability 1 — pr,

£(F, F¥) — £(F*, Fx) — F* W?th probab?l?ty 1 —pa,

F with probability pa.
In all other cases, the front cells remains stable, the front-star cells become
front cells: &(F, q) = F(F*,q) =F for g ¢ {B,F,F*}. (Note that in a normal
behaviour, the only useful case is ¢ = E.)

e A voluntary cell or voluntary-star cell simply transmits the star from right
to left. This reads: £(V,q’) = £(V*,q') = V* if ¢’ € {Vx,Fx} and {(V,¢') =
&(V*,q") = V otherwise.

e A refractory cell remains refractory unless it sees a star on its right. This
is translated by: (R, V*) = (R, F*) =V and (R, ¢') =R if ¢/ ¢ {V*, Fx}.

e Cells in state B simply disappear at the rate of one cell per time step. This
reads: £(B,E) =E and £{(B,¢') =B if ¢/ #B.

An illustration of this behaviour can be seen on Fig. 1-right. (As it can be
easily guessed, the front-star are drawn in red and the voluntary-star cells are
in green.)

To analyse this rule, first, let us simply set pa = 0, in other words, we do
not take into account the state of the front. We ask how we can tune py and
pr in order to beat the binomial players. Recall that so far our best binomial
player is bin-22 (p = 0.22). Table 4-left shows the result of this player against
bin-22 for different values of py and pr. It can be seen that this player is easy
to defeat: for example, for py = 0.40 and pt = 0, one obtains an expected gain
greater than 0. A zero value indicates that in fact, in this case it is sufficient to
take into account only the strength of the opponent to obtain good results.

Table 4: Expected gains of q2h2 players with pao = 0 against bin-22 (left) and
bin-35 (right). The two parameters pr (columns) and py (lines) are varied
(2.10* samples).

pT
& 0.10 0.20 0.30 0.40 0.50
0.0 | -0.986 -0.189 0.470 0.637 -0.240
0.5 | -0.565 0.133 0.530 0.346 -0.656
0.10 | -0.070 0.264 0.507 -0.076 -0.864
0.15 | 0.021 0.342 0.343 -0.500 -0.953
0.20 | 0.062 0.328 0.023 -0.774 -0.989
0.10 0.20 0.30 0.40 0.50 0.60
0.0 | -0.997 -0.870 -0.212 -0.026 -0.246 -0.844
0.10 | -0.415 0.007 -0.111 -0.311 -0.776 -0.984
0.20 | 0.107 -0.171 -0.382 -0.753 -0.971 -0.999
0.30 | -0.205 -0.436 -0.735 -0.960 -0.998 -1.000
0.40 | -0.501 -0.743 -0.948 -0.996 -1.000 -1.000
0.50 | -0.778 -0.949 -0.997 -1.000 -1.000 -1.000

Table 5: Expected gains of binomial players (lines) against q2h2 players
(columns) with py = 0.22, pa = 0 and a varying value of pr (10* samples).

pT 0.0 0.5 0.10 0.15 0.20 0.25 0.30
bin-15 | -0.330 -0.541 -0.650 -0.709 -0.607 -0.276 0.277
bin-20 | 0.007 -0.114 -0.269 -0.389 -0.376 -0.102 0.323
bin-25 | -0.008 0.086 0.058 -0.020 -0.048 0.083 0.387
bin-30 | -0.082 0.015 0.157 0.206 0.203 0.286 0.478
bin-35 | -0.192 -0.143 0.009 0.188 0.326 0.408 0.554

Note that the value of (py,pr) which maximises the expected gain against
binomial players varies greatly with p. For example, for bin-35, the best
expected gain is obtained for py = 0.20 and pr = 0.10, and this gain (~0.15)
is much lower than for bin-22. This may seem paradoxical but remember
that bin-22 is the player which has the best result against the other binomial
players, and that we know nothing for the other rules. All we can say is that
we are sure that even with pp = 0 the family of q2h2 players dominates the
family of binomial players: for every binomial player, there exists a q2h2
player which can defeat it. This is a direct consequence of the fact that the
g2h2 players include all the binomial players simply by setting pp = 0.

Table 5 show how various binomial players can be defeated by fixing py =
0.22 and setting an appropriate value of pp. Similar results can be obtained
for other values of py, which confirms the great advantage of the q2h2 players
against the binomial players.

Despite these encouraging results, we could not find any setting of (pv,pr)

Table 6: Expected gains of q2h2 players with pr = 0.25 against bin-30 (left)
and against Nash (right). The two parameters p (lines) and py (columns) are
varied (10° samples).

0.10 0.15 0.20 0.25 0.0 0.2 0.4 0.6 0.8 0.10
0.20 | 0.111 -0.065 -0.256 -0.370 0.20 | -0.050 -0.058 -0.075 -0.095 -0.115 -0.148
0.40 | 0.254 0.208 -0.010 -0.213 0.40 | -0.039 -0.033 -0.043 -0.056 -0.063 -0.088
0.60 | 0.280 0.348 0.178 -0.027 0.60 | -0.035 -0.029 -0.027 -0.029 -0.039 -0.048
0.80 | 0.276 0.395 0.272 0.081 0.80 | -0.093 -0.051 -0.038 -0.029 -0.027 -0.038
0.100 | 0.267 0.403 0.280 0.108 0.100 | -0.183 -0.139 -0.081 -0.046 -0.043 -0.033

which would dominate all the other binomial players. Once again, the diffi-
culty stems from the impossibility to establish a total order between rules. For
example the rule with the setting (pv,pr) = (0.5,0.8) defeats bin-22 (with
an expected gain of 0.60) and is defeated by bin-35 (with an expected gain of
0.67)... but, as seen above, bin-22 defeats bin-35!

In a second step, to demonstrate how setting a positive value of ps can be
useful, simply examine a precise situation and leave a more systematic study
for future work. In the paragraph above we showed how setting pa = 0 and
varying py and pr allows us to defeat every binomial player. However, against
bin-30, only a small region of (py,pr) has a positive expected gain, and the
maximum positive gain one can obtain is around 0.1.

Table 6-left shows the expected gain of q2h2 against bin-30 when we set
pr = 0.25 and vary ps and py. It can be seen that allowing ps > 0 gives much
better results: in particular for py = 0.15 and py = 0.8, the expected again is
above 0.4, which is quite impressive.

We have seen that it is not possible to totally order the players according to
their respective scores. There exists however a strategy which is never defeated
(on average). We denote this player by Nash, as it corresponds to what is called
the Nash equilibrium: Nash gives a guarantee to have a positive expected gain
against any player P, but against a third player P’, it may be that P performs
better than Nash.

We have tested the performance of q2h2 against Nash, with a setting of
pr = 0.25 and different values of py and pa. The results are displayed on
Tab. 6-right: we see that in some cases, the average expected loss is close to
zero and of the same amplitude as the noise on the measures. In practice, this
implies that one can hardly distinguish between the Nash player and the q2h2
player with the proper settings.

These first results are rather encouraging and there are many directions in
which they can be deepened. For example, it is interesting to examine the scal-
ing properties of our cellular automata: obtaining the optimal Nash-equilibrium
player demands more time as the size of the game increases, our models can
easily be applied to larger sizes, maybe with an adjustment of the three proba-
bilities. Of course, the behaviour of this cellular automaton can also be obtained

10

with classical mathematical functions but here we wanted to examine how sim-
ple interacting elements would play this game. Our goal was to show that a
non-trivial behaviour can be obtained by progressively increasing the complex-
ity of the rules. Another research direction would be to make the system evolve
autonomously and see if it can discover new levels of complexity without an
external aid.

acknowledgements
We express our sincere gratitude to Bruno Scherrer for introducing us to the game

of Alesia and for providing us with an optimal Nash player program. We thank Irne
Marcovici for her valuable comments on the manuscript.

11

