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Abstract

This chapter concerns the situation of a queue with one regular singlerssupported by an additional
intermittent server who, in order to decrease the mean response timay@&dehe back office to join the
first server when the number of customers reaches the threshdiylleaves the front office when he has
no more customers to serve. This study produces a closed form solutitie fteady state probability
distribution and for different metrics such as expected response timesigtwroers or expectation of
busy periods. Then, for a given valuefdf the influence of the intermittent server on the response time
is exhibited. The consequences on the primary task of the intermitteletr seevinvestigated through
metrics such as mean working and pseudo-idle periods. Finally, a aostidn is proposed from which

an optimal value of the threshol is obtained.

Keywords: Performance Evaluation - Response Time - Markovian model - IntermittenéiSeSingle
Server - Optimal Threshold - Case Study.

1 Introduction

Let us consider a single server queue where the server can bertaappp a second one whipleaves
his current work to join the first server when the number of customechesaa threshol&, ii) leaves
the queuing system when he has no more customers to serve. A typicallexanspich a situation
comes from the banking sector where the unique server from the ffiice & supported by a second
server regularly assigned to the back office who joins the front ofieman as the number of customers
reaches a given threshold (denoted here by the intEgeBut such a situation could come from a more
industrial area. The introduction of an intermittent server allows to deerbasexpected waiting times
of customers at a lower cost than affecting an extra permanent sémdrthe aim of this study is to
determine the efficiency of such a policy.

Note that a closed situation is the one of the supermarket check-out cowitere a counter can be
activated/deactivated based on the states of the different queuesargiismodel is a good example to
be used in a course on discrete event simulation as a practical exeagséehe queuing model is easy
to elaborate and has no (known) analytical solution in its general confiigurarhis help students to
realize all the advantages of a simulation approach. In addition, such a imedsily adaptable to other
fields such as those of telecommunication or of data centers. Neverthveesspossible, an analytical
solution must be looked for since its cost is generally lower than the one eirtheation approach.

Although most of the research work in the domain of the M/M/r queue with interngewers has been
done through the use of simulation, we noted some developments connectedtijict. In 1971, J.
Blackburn published a report [1] relative to a M/G/1 queue in which theesds an intermittent one
who starts working when the number of customers crosses some threShadhreshold is the value
realizing the optimum of an objective function. A more recent analytical siabstigated the case of
an airline check-in counters set in an airport [5]. In this study, Patlal elaborated a Markovian model



and its transient solution. A major difference with the supermarket chetkystem is that the number
of customers to be served is known in advance (number of customersavbaeserved seat for a given
flight). The problem is to control the number of open check-in countaris that all the customers that
will show up before a deadlin€ will be served on time (such that the plane can take off on time). But
most of the literature involving intermittent servers concerns studies wherctivations of the servers
depend on reliability/availability of the set of servers rather than on the sthtes systems.

Another related class of models is the "coupled processor model” wherepgacessor can help the
other when it is idle. The two queues have their own arrival processgsexrvice time distributions.
Such a class has been the object of intensive analytical works in thejtase. to that is the case where
the behaviors of the servers are no more symmetrical and only one pooces, when it becomes idle,
give time to the other processor until its own queue reaches a givenaladgshe the intensive study of
Osogami et al. [4]). Note also the different model known as "the slowesgaroblem” (see [6]) where,
depending on the values of the parameters, the use of the slow serverareasithe response time.

The present study is different in the sense that the server who gives part of his time is not idle

but works on tasks which are not directly impacting customers (the notiomspbnse time is in some
sense meaningless). This study is less general than the one cited ajpbet(produces a closed form
solution for the steady state probability distribution and for different metrich @1s expected waiting
times for customers or expectation of busy periods for the intermittent s€uepbjective is to promote

a better understanding of the benefits of such a strategy. In particeldrave to consider the trade-off
between the help to the customer and the perturbation of the work in the Hamk dfhis is achieved

thanks to a cost function providing an optimal value of the thresiolas a tool to help a manager in
charge of the economical decision.

The paper is organized as follows: in Sect. 2 we present a Markovianl mobtte investigated system
while in the following section we exhibit the steady state probability distributione$tbchastic process
and the expression of the mean number of customers (or mean responsia tiema)s of the different
parameters. In Sect. 4, we conduct the determination of the expectatiom tirhthspent by the second
server in one passage in the back office and those of the expectatior gbfurn time at the front
office. In the following section we introduce a cost function allowing us twijge an optimal threshold
K*. Finally, we conclude by summarizing the advantages of using an intermitteet ¢8ect. 6).

2 Hypotheses and Model

We consider that the two servers are equivalent and that the serviceatieneslependent and identically
distributed random variables following an exponential distribution with gat€he first server assigned
to the front office stays available for serving the arriving customers.

When there aré X — 1) customers, if the server affected to the back office is not already gervihe
front office, then this server leaves the back office at the instantiwhhof a new customer and starts
serving him in the front office. Once he is in the front office, the se@®rgler stays there until he has
no more customers to serve and re-integrates the back office.

We assume the customer arrival process is Poisson with\rate

Under these hypotheses, the stochastic process modeling the numbetarhers in the office is a
continuous time Markov chaircfmc) {X (¢),t > 0} ([2], [3], [7]). Its transition graph is given in
Figure 1.

A couple(i, 0) (respectively(i, 1)) denotes a state wheteustomers are present and where the second
server is in the back office (respectively present). Stateefers to the empty system and, for K,

statei denotes the system wherustomers and the second server are present. Note that the first serve
is idle in state(1, 1). In addition, Ey (respectivelyF,) will denote the subset of states where the second
server is in the back office (respectively present):



Figure 1: Transition graph of theTmc.

Eo = {(0),(1,0),... (K —1,0)}, E1={(1,1),..(K —1,1),(K), (K +1),..} .

The steady state probability distribution of tlismc is determined in the following section.

Note that the cas& = 2 corresponds to &//M /2 queue with a little specificity: once the queue is
empty, the first server deals with the new arrival, the second serisangronly when a new arrival finds
the first server busy, and going back as soon as there is no more cusiagaere in the front office. But
from the customer point of view, this specificity does not affect the perdoce of the queue.

3 Steady State Probability Distribution, Mean Number of Customers
3.1 Steady State Probability Distribution

For any state;, 7. will denote the steady state probability of stateDefiningp = A\/2u, we note that
the steady state probability will exist onlygf< 1. Using the Chapmann-Kolmogorog-k) equations
of stateq7,0),7 = 2, ..., K — 1, itis not difficult to prove by induction the relation:

i-1
TK—i0 = (Z <Z>j> Tr-10, =2,.,K—-1, 1)

Jj=0

where¢ = 1/ A. Use of the cut theorem on the partitidfy, £;} and of the steady stateK equation
of state(1, 1) gives us

1
(1+2¢)

Then, using equations (2) and (1) and th& equation for staté0), we can express probabilityx 1 o
in term of gy as :

é K-2 -1
TK-1,0 = 70 {(1+2¢)+¢(]Z; W)] ; (3)

or, for the case # 1, as:

T = TK-1,0 - (2)

(1+2¢)(1 - 9¢)
Dy ’

TK—1,0 = T0 (4)
whereDy = ¢[(1 — ¢) + (1 + 2¢)(1 — $~1)] . Considering now the-k equations of stated, 1),
i1 =2,...,K — 1, we can prove by induction that :

(14 p) —2¢°

i i=2,.., K, (5)

Tl = T11

)



Sincep = 1 is a root of the numerator, let us note that this probability can also exgrasse

i—1
i1 = 71,1 (1+2ZIO]> Z.:27"'7}'(7 (6)

Jj=1

Wheni = K, we get in particular the probabilityx ; that we can renamex without any ambiguity :

—9pK =
WKZﬁ,lw:m,l <1+22P]> . (7)

(I-p) =

Then, using equations (2) and (4), we express the probabilitas a function of probabilityr, (again
for the casey # 1) :

(14p) — 20" (1-9)
(1-p) Dy

Considering the probabilities;, i > K, their expressions are easily obtained thanks to the use of the cut
theorem :

(8)

TK — 7o

o= p Erg, i>K. (9)

Let us now consider the normalizing equation that we can write as :

So+S51=1, (10)

K-1 K-1 0o
whereSy = g + Z ;.0 andsS; = Z T+ Z -

=1 =1 i=K
Note thatSj is the steady state probability that the intermittent server is working in the bfick ahd
that S is the steady state probability that the intermittent server is working in the ffiicg.oThis last
sum.S; will be also used latter when looking for the optimal threshold.

Using equations (1), (2), (4), (5), (8) and (9), we show in Sect. ¥ttieprobabilityry can be written
as:

(1-p)(A —¢)Do

T = ) , (11)
where
Di = (1-p){o(1-0)*+ (1 +20)[(K - 1)(1 - ¢) — ¢*(1 =" ]} +
+(1 = ¢)°[K + p(K - 1)]. (12)
For the special case whege= 1, equations (1), (2), (4) and (5) reduce to:
3 . .
TK—1,0 = 3K_27r0 , and TK—i0 =1TK—1,0 ; ZI2,...,K—1 , (13)
T, = %ﬂ'K,LO s and i1 = (3 — 2_(Z’_2))7T171 R 1=2,..,. K, (14)
while it is shown in Sect. 7 that probability, satisfies :
o — 2(3K — 2) (15)

3(K(K+3)—2)"



For the case wherE = 2, the transition graph of theTmc is given on Figure 2. Some of the equations
given for the general case become simpler (in particular because thessxmbD, equals2¢(1 — ¢?)
whenK = 2) and it is not difficult to find again the well known result of thé/M /2 queue :

_(1=p)
Ty = Atp) (16)

Let us remark that fop = 1/2, we obtainty = 1/3. In that case) = 1, and this result agrees with the
one obtained thanks to relation (15) wh&n= 2.

Figure 2: Transition graph of theTMCc when K = 2.

3.2 Mean Number of Customers, Mean Waiting Time

The determination of the mean number of custoniiéfd’] is purely technique. Fap # 1, it is shown
in Sect. 8 that this expectation satisfies the following relation :

a-e . KE+1) K ¢(1—¢%)
EN] = 5 {(1 p)(1+2¢)( 5 =g " (1—¢)2>
K(K—-1) K+p(K-1)
EDICEES: LSS

When K = 2, itis not difficult to find again the well known result of thef /M /2 queue :

E[N] =2p/(1-p?). (17)
For the special case whege= 1, it is also shown in Sect. 8 that
K(K(K+3)+8)—4

3(K(K+3)—2)

Note that forK’ = 2, IE[N] = 4/3. This result agrees with the one obtained thanks to relation (17) when
p=1/2,ie.,(¢=1).
Because the aim of using an intermittent server is to decrease the waiting time @fdtomer in the

front office, it is also interesting to consider the expected waiting Hifi¢’]. For that we first obtain the
expected response time by use of the Little’s formula and then subtract timeseréce time :

E[W] = “E[N] -+ | (19)

E[N] = (18)

We may prefer to consider what we will call a “normalized” expected waiting fitfid’ ] by taking the
mean service time.g., 1/4) as the time unit. This gives us :

E[Wy] = uE[W] = glE[N] —1=¢E[N] 1.



Note that the “normalized” expected waiting time has no dimension and is theiaftgpendent of the
initial time unit.

For a given value op we expect that the expected number of customers is greater than theivaluby
the M /M /2 queue. While, as long asis lower than 1/2, the expected number of customers is lower than
2 . . . e

p2 , which corresponds to the value given by thig' M/ /1 queue with2p as the utilization
—2p

the ratio 1
factor.

Expectation

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

P

Figure 3: Mean number of customers as a functiop.oFor (bottom-up)X’ = 2,3,4,5 and6. Curve
with stars corresponds to infinif€, the second server being never called.

In Figure 3, we have plotted the expectation of the number of customersiastah of p, for different
values of the integek . As we would expect, this expectation is increasing witind with . Note that
without the second server, the mean number of customers would tend to infirétyp tends tol /2.

4 Pseudo-idle and Busy Periods of the Intermittent Server

The pseudo-idle period of the second server is defined as the periibdeofiuring which this server is
working in the back-office. We are interested by the expectation of spehi@d because we understand
that a too short period would have a negative effect on the productif/ttye server. Such a period cor-
responds to a sojourn time of tkegmc in the subsef, and therefore we need to obtain the expectation
of this sojourn time.

4.1 Mean Time of a Passage in the Back Office

First let us determine the probability that a pseudo-idle period starts in(8tateespectively in state
(1,0)). Given that thecTmC is in state(2, 1), if a service completes before a new arrival, ivic joins
either state 1, 0) if the second server finishes his service first or stafe) in the other case. These two
events have equal probabilities (0.5 each). If¢heic joins statg(1, 1) from state(2, 1), this means that

the permanent server becomes idle. Then either the second serverdsdadte (with probability)%)
I

or the regular server becomes busy againchec revisiting statg2, 1) (with probabllltym).



So, given a service completes when ttiemc is in state(2,1), the cTMC goes to staté1,0) with
probability 0.5, goes to staté0) without coming back to statg, 1) with probability 0.5 x 3 . or

comes back to state, 1) with probability 0.5 x

A . "
. Considering these three eventualities, we see
ol

A+
: . . o 0.5(p/ (N + )
that when thecTmc enters subséty, it enters it through stat@) with probabilit
" o 1) with probabilty G O+ 1)
or enters it through statd, 0) with probablllty TE Ot ) These two expressions reducing

¢ 1+¢
respectively to1 20 and 1520

Let assume thakX (0) = 0. LetT4 be the sojourn time in the subskEt : T4 = inf{t|X(t) = K} .
In order to express the expectationiof, we first consider the random varialilledefined as the time it
takes to thecTmc to reach stat¢i + 1,0) given X (0) = (7,0). We also denote the expectationgfby
«;. Introducing the discrete random variaflesuch that, for > 0 :

1 ifthe first transition of thecTmc from state(i, 0)
is a jump to stat¢: + 1, 0);

0 if the first transition of thecTmc from state(s, 0)
is a jump to stat¢: — 1, 0);

we get when conditioning w.r.t; : IE[T;|I; = 1] = A— ,andIE[T;|I; = 0] = +ai1+a;.

= /\+u
. . 1 _.
Fori = 0, we have immediatel§E[Tj] = X Since the departure rate from st@te0) equals(\ + p)
while the transition rate from staté 0) to state(i + 1, 0) equals)\, the probability that the first transition
of thecTmc from state(7, 0) is ajump to stat€i+1,0) isP(l; = 1) = )\i Therefore, deconditioning
"

the expectation; = IE[T}] gives us, fori > 0,

L A +< =4 - ) a
oi—1 + 0oy | v
A+ pA+p A+ ! A+

Q; =

that reduces to; = 5 (1 + 1 1) -
. 1 . -
Sinceay = E[T] = N we can compute successfully, ay ,as, .... It is not difficult to prove that
1
o = 2\ Z ¢
7=0

K-1

In addition,IE[T4] depends on the way tlemTC enters the subséf, sincelE[T'4| X (0 aj,
7=0

while IE[T4| X (0) Z o .

Therefore, after decondltlonlng we obtain :

K—1
1 1 1 4
E[T4] = - — [ (K -1 K—d)¢' | . 20
[T4] )\2(1+p)+)\<( >+;< z>¢> (20)
We can scale this result by expressing this time expectation in term of a nufitherna service times :

WIE[T4] = 2<1d-1 5T ((K —1)+ > (K- z'w) . (21)
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Scaled pseudo-idle period

Figure 4. Scaled expectation of the pseudo-idle period of the secower sex a function ofp. For
(bottom-up)K = 2, 3,4, 5 andé6.

In Figure 4, we have plotted the scaled expectation of the pseudo-idlelpd#ribe second server as a
function of p, for different values of the integek’. We can say that the expectation of the pseudo-idle
period of the second server is important whers betweend and around).4, Remember that when

p = 0.4, the utilization factor of the single server of thé/) /1 queue equalB.8. As we would expect,
this expectation is decreasing wjtrand increasing withi.

Note also that if the manager decides to change the rule by switchingifreor( K + 1), then the scaled
expectation will be increased of the quantity:

K
Ax(HIE[T4]) = WE[T(K +1)] — pE[TA(K)] = ¢ (Z qsi) .
=0

Even in the case where= 1 (i.e., p = 0.5), this increase can be shown to correspon@o+ 1) mean
service times!

4.2 Mean Time of a Passage in the Front Office

Now let IE[Tp| be the expectation of a period spent in the front office by the intermitteméiserhis
server starts such a period with the frequeiey;_; o. Using the fact that this frequency must be equal
to (IE[T4] + IE[Tp]) !, we obtain a first expression falE[Tp] :

ANE[Tp] = [rx—_10]"" — ANE[T4] .
Then, starting from equations (4) and (11) we express the inverselo&pility 71 ¢ as :

I D,
e RS s
6, (K-1)(1-¢) = ¢*1—¢") [+ (K- 1)1+ )
1+ 20) e 0 +29)




Using equation (20) we develop the expressionBfi74] as :

1 K-—1 . '
/\IE[TA] = 2(1+p)+<(K—1)—|—i:1(K—Z)¢>
¢ K-1 ‘ K-1
= HE-)+EY ¢ = g
(1+2d)) < =1 =1 )
9 s (K — D)o+ — KoK + ¢
- <1+2¢>+<(K‘”+K <1—¢>‘1>_ T >
g Ko(1— 6K 1) (K — )¢5+ — KoK + 6
- <1+2¢>+<(K_1)+ i-¢) 1= )2 )
L6 (KNP K- 65N -6) (K- DR - KoK 46
1+ 20) 1 0) 1— 92
L6 (KD (K-1)s- ¢t okn
= (1+29) 1 0)
6 (K—1(1-¢)— (1 - ¢
= r29) " 10 | (22)

Subtracting this last expression to the one obtainec[jm‘;.aLLo]*1 we get the expression ofE[7Tp] :

CLrE-DA+A] s ) |
METPL = 29 TG ((K 1)+<1+p>)’ (@3)

and then the expression of the expectation scaled in term of a number obereare time :

WIE[Tp] = 2(11_[)) <(K —1)+ ui@) . (24)

Note thatulE[Tp| represents also the expected number of custumers served by the intersattent
during a passage in the front office.

In Figure 5, we have plotted the scaled expectation of the pseudo-btisg péthe second server as a
function of p, for different values of the integek’. As we would expect, this expectation is increasing
with p and with K. Moreover, we can say that the expectation of the pseudo-busy pEribd second
server is relatively small whepnis betweerD and around).4, when we compare it with the one of the
pseudo-idle periodef. Figure 4). This shows the benefit of the intermittent server since the wskoaf
percentage of his time significantly decreases the mean waiting time.

5 Cost Function

We have to consider two somewhat different situations. The first oneés Wite second server is not
necessary for the system to be stabke (whenp < 0.5). The second situation is when the second server
is necessary to the system¥ 0.5).

In the first situation, the second server just helps to decrease the méay Wene IE[1V] seen by the
customers. We have to compare this help to the customers with respect tottivbqt@n of the work
done in the back office.

We assume here that there is a fixed pen@tio pay each time the second server has to leave the back
office and that the cost per unit of time of this second servet.idNe also assume that is the cost
per unit of waiting time. During a unit time, the expectation of the cumulative valitbeowaiting
times equals\IE[IV]; this expectation being nothing else than the expectation of the number of waiting
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Figure 5: Scaled expectation of the pseudo-busy period of the seeover s a function op. For
(bottom-up)K = 2, 3,4, 5 ande6.

customers in the queue. LB NV,,] denotes this expectation. The expressiolEgV,,] is deduced from
eqgn (19):

E[N,] = E[N] - 2p. (25)

Then, depending on the valu€, the function to minimize corresponds to the expected total variable cost
per time unit, and is given by :

CO(K) = ¢o[IE[Ta] + E[Tp]] ™ + 151 + 2IE[N,] , (26)

K-—1 0
where here alsa§; denotes the suri mi1+ Z ;. Note that this sum of probabilitie$; is nothing

=1
but the mean time per time unit spent by the second server in the front office.

When the variabld( is increased, the first two terms are decreasing while the ¢glibNV,, | is increas-
ing. More precisely, considering a cycle of the intermittent server, wefstan the relation :
E[Tp] 1

(B[] + BT 14 E

Considering equations (22) and (23) we deduce that, whéends to infinity, the two expectations tend

Sy = (27)

to infinity. Considering now the ratleE— when K tends to infinity, since satisfiesp > 1, the limit

of this ratio is the same as the limit of the following ratio :

i BT L (26-1)0"
K—+o00 IE[TP] K—+0c0 (1 — (25)2 K

=40 . (28)

Therefore, the first two terms of the cost function tends asymptotically toveben K tends to infinity
while the terme;IE[N,,] is increasing (fromez2p/(1 — p?) when K = 2 to the asymptotic value



c24p?/(1 — 2p) when K tends to infinity). In this situation The optim& may not be finite if the
penalty coefficients is not large enough.

The second situation is different in the sense tKalas to be finite in order to have a stable solution.
In this case, the intermittent server has to work in the front office a pergerof timeS; greater than
(A — 1) in order that the system admits a steady state solution. The maximal feasibldiglu®f

K is given by K. = max{K|Si(K) > A/u — 1}. Practically, if K,,.x is large enoughif., when
(A1 — 1) is not close to unity), the costIE[V,,] should be large wheR = K. and we may expect
the cost function to be convex. However, the convexity’¢f) has not been investigated theoretically.
Also, from a practical point of view, the parametgrhas again to be not too small with respectgo
andc; in order to avoid the limit behavior where the second server would comesoyear to empty the
waiting room.

0.35

+ ¥

03r 4

0.25 * ******%******%’

5 ¥
+ w * X
0.2 * % ¥ i
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0.15 F + .
Ol ™ + .

+
0.05 - R S SRR —

0 1 1 1 1 1
0 5 10 15 20 25 30

K

Figure 6: Variable cost function, with = 0.35, ¢cp = 0.5, ¢c; = 1. Case 1 (stars), = 0.15. Case 2
(sign +):co = 0.03.

In Figure 6, we have plotted two sets of valuesttfK') whenp = 0.35 (alone the permanent server
gueue would have a utilization factor 0f7), for ¢ = 0.5, c; = 1. Casecy = 0.15 (noted with stars)
gives an optimalK* = 5. From Figures (4) and (5), we can check that for this optimal solution the
mean pseudo-idle period of the second server is ar@Qriones the mean service time while the mean
pseudo-busy period is close fdimes the mean service time. But case= 0.03 (noted with sign +)
gives a decreasing cost féf € [2, 30].

6 Conclusions

We have shown in this paper the importance of intermittent servers in ordetioe the response times
without increasing significantly the idle times of servers. For such situatibesena single server would
satisfy the stability conditionX < ), a non trivial result is that the pseudo-idle period of the second
server is significantly longer than what would be generally expected hypdimagement and also that the
pseudo-busy period stays small; and so the second server can keegirectivity in the back office.

We can think of applications in architectures for quite large telecommunicatiibch®s where we have
"guard” processors to help the congested input queues on demamdaylglso help in the context
of network function virtualizationNFVv) in which a service might be deployed on demand to face a



transient congestion. Not only these results are interesting by themsesugshifa situation occurs in
a real situation but also, this study can be used to check simulation modelsousedbre complex
situation.

7 Appendix 1: Determination of eqn. (12)

Starting from the normalizing equation :

So+ S =1, (29)
K-1 K-1 oo
whereSy = g + Zﬂi,o , andS; = my + Zﬂi,l—l—Zﬂ’i ,
=1 =1 =K

we first consider the partial susy :

K—1 K—1
So = mo+ E Ti,0 = To + E TK—i,0
i=1 ;
1 i—

= mot+mr-10 Y, (> ¢)=m0+7K_ 102 —i)¢
3=0 i=1

i=1 j=

1 K1
= To+TK-1,0 (K Z o' Z i¢11> )
i=1

=1

S

or(ifp #£1):
_ (1= ") (1= K¢F~l 4 (K — 1)¢K)
I = (=P ).
_ oy TEmw0 K(1-¢) = (1-6)
-9 (1-9) ’
_ (142¢) K(1—¢)—(1—0%) _ (1+20)(K(1— ¢) — (1 - ¢%))
- D, 1=9) o (14 (1= 4)Dy ).
= T gp; (G107 + (L 20)(K —1)(1 - ) (1 - 6" 7)) .

Considering now the partial sui$y, i.e., the steady state probability that the back-office serveelpihg the
front-office server, we have :

K-1 0o
S = Zﬂ'i,lJrZWm
o0
_ 77112 +P —2,0 _HTKz:pi—K7

i=K
_ (K =1)(1+p) 1« 1
R (e il ) DO e
_ (KE-1(1+p) 2 (1-p%) (1+p) =205 1
I e R T e B R e
_ (K -1)(1+p) 1 1+ (K —1)(1+p)
I e B (e R (N
o (= OIK (K 1)
(1=p)Do .
Using the normalizing equationg., So + S1 = 1, we get the expression of probability wheng # 1 :
oo (=)= 0)Ds 30

D, ’



where

Di = (1-p{o(1-¢)°+(1+20)[(K —1)(1 - ¢) = ¢*(1 - ¢" )]} +
+(1 = ¢)°[K + p(K —1)].

For the special case whege= 1, it is not difficult, starting from the specific relations teten probabilities given

at the end of Section 3.1, to find the following expressions :

3K(K +1)—4 g _ (BK - 1) 2(3K — 2)

—_— T o oy o = :
2BK —2) °7 T BK -2 07 3(K(K +3)—2)

So = (31)
8 Appendix 2: Determination of mean number of customers

In order to obtain the expression, let us start by computing partial sums B, and B;), under the condition

$#1:

K-1 K- -1
By = Z —)TK—i,0 = TK— 102 —i)(ZW),
=1 =1 ]
K-1 1= ¢)  mroro (K2 K-1
— WK—l,OZ(Kfi)(l_d)):(l_('b) <Zz KZ¢’+K+¢21¢Z 1)
=1 =1 1=0 =1
_ Tmr-10 [ K(K+1) ~ i1
- (1_¢)< 5 K10¢> +¢Zz¢ )

mr-10 [ K(K+1) K (1—¢K)
- ( 2 ‘(1—¢>>+<1—¢>>2)’
. (1+2¢) (K(K—i—l)_ K +¢ —qu))
Dy 2 1-¢)  (1-92 )"
_ (1—p)(1—¢><1+2¢><K<K+1>_ K ¢<1—¢K>>
Dy 2 1-¢) (1-92 )"

—~

and secondly :

o] K-1

K-1
Bl = Ziﬂ-i,l"f'ziﬂ-z—zlﬂ-zl'i_ﬂ-ffzzp )
i=1 1=K

—~ (1-p) = {A-p) (1-p) £
4, 2ma (14p) & ;
T I & T T g & Ty L

B (1-9) K(K—1) | K+p(K-1)
- 1Dy <(1+p> 2 (1-p) )
(1—¢)°

B K(K-1) K+pK-1)
B Dy (Oﬂ)) 2 * (1—-p) >



From that we get the expression of the expectation of the eumicustomers :

K-1 -

IE[N] = ZZWZ()+ZZ7T11+ZZ7TZ7

1 i=1

- ><1+2¢>< LD IR E

D 2 (-0 (-0
(1—¢)2 K(K—-1) K+ p(K—1)

Dy ((Hp) 2 * (1-p) )
a-ef, KE+1) K o1—¢5)
- D {(1 ”)(”%)( > N (1—<z>>2>+

+(1 - ¢) ((Hp)K(KQ_l) +K+(1[’(_Kp)_l)>} .

+

This last result corresponds to the expression presentgddtion 3.2.

In the special situation wherg= 1, let us first consider the suif,. Starting from the equality obtained above

K-1 i-1
By =mk-1,0 Z (K — Z)(Z ),
i=1 =0

we get :

~

1

BO = ’/TK,LO (K 71)2 5

1

K-1 K-1

%

= TK-1,0 (K i— i2 ) =7 10 (KK(K2+ ) (K- 1)[;(2[( — 1)) ,
= TK-1,0 ( 6 ) _7TO3K72 c 7
(K — DE(K + 1)

TTTHOBK — 2)

Let us now consider the sui;. We may start from the following equality obtained above

o KE-1)  »  (+p)
Bl‘<1p>((”p) 2 <1p>+K<1p>>’

and since herp = 1/2, we get:

™0

B = %(3K(K+3)—4) 6K =3

(BK(K +3) —4) .

After summation ofBy and B; and use of the expression of given by relation 31, we are able to exhibit the
following expression :

K(K(K +3)+8)—

E[N] = (K(K +3)—2)
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