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ABSTRACT

Context . The interpretation of helioseismic measurements, such as wave travel-time, is based on the computation of kernels that
give the sensitivity of the measurements to localized changes in the solar interior. These kernels are computed using the ray or
the Born approximation. The Born approximation is preferable as it takes finite-wavelength effects into account, although it can be
computationally expensive.
Aims. We propose a fast algorithm to compute travel-time sensitivity kernels under the assumption that the background solar medium
is spherically symmetric.
Methods. Kernels are typically expressed as products of Green’s functions that depend upon depth, latitude, and longitude. Here, we
compute the spherical harmonic decomposition of the kernels and show that the integrals in latitude and longitude can be performed
analytically. In particular, the integrals of the product of three associated Legendre polynomials can be computed.
Results. The computations are fast and accurate and only require the knowledge of the Green’s function where the source is at the
pole. The computation time is reduced by two orders of magnitude compared to other recent computational frameworks.
Conclusions. This new method allows flexible and computationally efficient calculations of a large number of kernels, required in
addressing key helioseismic problems. For example, the computation of all the kernels required for meridional flow inversion takes
less than two hours on 100 cores.

Key words. Sun: helioseismology – Sun: oscillations – Sun: interior – methods: numerical

1. Introduction

The aim of time-distance helioseismology (Duvall et al. 1993) is
to infer the subsurface structure of the Sun by measuring seismic
wave travel times between any two points at the solar surface.
The interpretation of these measurements requires understand-
ing how waves propagate in the solar interior, i.e., solving the
forward problem. Due to its simplicity, the ray approximation
was initially used to invert flow velocities and sound-speed per-
turbations to a reference background model (Kosovichev 1996).
It is still used today, for example to recover the meridional cir-
culation (Rajaguru & Antia 2015). However, this approach is a
high-frequency approximation that cannot be used to recover
perturbations with sizes on the order of the local wavelength
(Birch & Kosovichev 2000). Gizon & Birch (2002) derived a
general framework for sensitivity kernels under the Born approx-
imation and for random sources of excitation. Birch et al. (2004),
Burston et al. (2015), and Böning et al. (2016) computed Born
kernels using a normal-mode summation of the eigenfunctions
in a solar-like stratified background. To treat axisymmetric back-
ground media (e.g., a background that includes large-scale dif-
ferential rotation) and to include frequencies above the acoustic
cutoff, Gizon et al. (2017) proposed solving the wave equation in
frequency space by using a 2.5D finite-element solver. All these
approaches are useful, but are computationally expensive. This
limits their use in the interpretation of solar data as many kernels
must be computed (and averaged). In some cases it is sufficient

to consider perturbations to a steady spherically symmetric ref-
erence medium. The study of meridional circulation is one such
application (see, e.g., Liang et al. 2017).

In this paper, we present a way to reduce the computational
time of Born sensitivity kernels in a spherically symmetric back-
ground by treating the horizontal variables (the co-latitude θ and
the longitude φ) analytically using the properties of the spher-
ical harmonics. Here this approach is demonstrated using the
scalar wave equation from Gizon et al. (2017), but it could be
applied to the normal-mode summation method of Böning et al.
(2016) or to solving the wave equation using a high-order finite-
difference scheme (Mandal et al. 2017).

2. Born sensitivity kernels

2.1. Green’s function in a spherically symmetric background

We follow the framework of Gizon et al. (2017), where the ob-
servable ψ(r, ω) at spatial location r = (r, θ, φ) and frequency
ω is linked to the divergence of the displacement: ψ(r, ω) =
c(r)∇ · ξ(r, ω). This scalar quantity solves

Lψ(r, ω) = s(r, ω), (1)

where L is the spatial wave operator at frequency ω,

Lψ := −(ω2 + 2iωγ)ψ − 2iωu · ∇ψ − c∇ ·
(

1
ρ
∇(ρcψ)

)
, (2)
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ρ and c are the solar density and sound speed from standard
solar model S (Christensen-Dalsgaard et al. 1996), γ is the at-
tenuation, u is a background flow, and s is a stochastic source
term. We assume that the sources are spatially uncorrelated and
depend only on depth and frequency such that the source covari-
ance matrix is given by

M(r, r′, ω) := E[s∗(r, ω)s(r′, ω)] = A(r, ω)δ(r − r′), (3)

where A(r, ω) is the radial profile of the source power. The wave
field ψ can be obtained using

ψ(r, ω) =

∫
�

G(r, r′, ω)s(r′, ω)ρ(r′)dr′, (4)

where G is the Green’s function:

LG(r, r′, ω) =
1
ρ(r)

δ(r − r′). (5)

When the background is spherically symmetric (i.e., no flow and
no heterogeneity), G can be written as

G(r, r′, ω) =

`max∑
`=0

α`G`(r, r′, ω)
∑̀

m=−`

Ym∗
` (θ′, φ′)Ym

` (θ, φ), (6)

where r = (r, θ, φ), r′ = (r′, θ′, φ′), Ym
` are the normalized spheri-

cal harmonics, α` =
√

4π/(2` + 1), and G` is the Legendre com-
ponent of the Green’s function

G`(r, r′, ω) =

∫ 2π

0

∫ π

0
G(r, r′, ω)P`(cos θ) sin θdθdφ. (7)

Equation (6) can be simplified by using the addition theorem
(DLMF 2017, Eq. (14.18.1)) and introducing the great-circle an-
gle between r and r′. However, Eq. (6) is the form required in
the following sections.

2.2. Cross-covariance in a spherically symmetric background

In a spherically symmetric background the expectation value
of the cross-covariance between an observation point r1 =
(r0, θ1, φ1) and a point r = (r, θ, φ) is

C(r1, r, ω) = E[ψ∗(r1, ω)ψ(r, ω)]

=
∑
`

α2
`

∑̀
m=−`

Ym∗
` (θ1, φ1)Ym

` (θ, φ)C`(r0, r, ω), (8)

where

C`(r0, r, ω) =

∫ R�

0
G`(r′, r0, ω)∗G`(r′, r̂, ω)A(r′, ω) ρ(r′)2r′2dr′,

(9)

and r0 = (r0, 0, 0) and r̂ = (r, 0, 0) are on the polar axis. The
radius r0 is the observation radius, for example ∼150 km above
the photosphere for SDO/HMI. In obtaining Eq. (8), we used the
property that the cross-covariance depends only on the great-
circle distance between the two points. To simplify the compu-
tations we place one point on the polar axis so that the Green’s
function is axisymmetric and only the mode m = 0 needs to be
computed.

Using the convenient source of excitation introduced in
Gizon et al. (2017), C`(r0, r, ω) is directly linked to the imagi-
nary part of the Green’s function G`(r, r0, ω), but this assump-
tion is not mandatory in this paper. The important assumption

concerns the covariance of the sources of excitation that needs
to be of the form given by Eq. (3), such that the cross-covariance
depends only on depths and the great-circle distance between
the two points r1 and r. This assumption is common in he-
lioseismology and is generally used in forward modeling (e,g.,
Kosovichev et al. 2000; Böning et al. 2016; Mandal et al. 2017).

2.3. Born flow kernels

Recovering flows in the solar interior is a major goal for local he-
lioseismology, and so we focus here on flow kernels. The method
presented here can be applied to all other types of perturbations
with respect to a spherically symmetric background. The Born
sensitivity kernel K = (Kr,Kθ,Kφ) connects the travel-time per-
turbation δτ to the vector flow u = (ur, uθ, uφ), such that

δτ(r1, r2) =

∫
�

K(r, r1, r2) · u(r) dr. (10)

According to Gizon et al. (2017) we have

K(r,r1, r2) = 2iρ(r)
∫ ∞

−∞

dω ωW∗(r1, r2, ω)

×
[
G(r2, r, ω)∇C(r1, r, ω) −G∗(r1, r, ω)∇C∗(r2, r, ω)

]
, (11)

where W is a weighting function that relates a change in
the cross-covariance to a change in travel-time (Gizon & Birch
2002) and ∇ = (∂r, 1/r ∂θ, 1/(r sin θ) ∂φ) is the gradient oper-
ator with respect to the scattering location r. We note that in a
spherically symmetric background, seismic reciprocity implies
G(r, r′, ω) = G(r′, r, ω) for any r and r′. The reference cross-
covariance also satisfies C(r′, r, ω) = C(r, r′, ω).

The expression for the kernel may differ when a differ-
ent observable is chosen; however, the above integral will
always involve the product of a Green’s function with the
cross-covariance. One approach to obtaining the flow kernels
(Böning et al. 2016; Mandal et al. 2017) is to compute the 3D
Green’s function and the cross-covariance using its spherical
harmonic decomposition using Eq. (6). A reference kernel is
usually obtained for a fixed pair of observation points and later
rotated to obtain kernels for other pairs of points. However, a fine
resolution in θ and φ is required in order to perform this rotation
accurately, which makes the computation expensive in both time
and memory.

2.4. Spherical harmonic decomposition of Born flow kernels

In order to circumvent the disadvantages mentioned above
(e.g., rotation) and improve accuracy, we propose a new ap-
proach based on the spherical harmonic decomposition of the
kernel,

K(r, r1, r2) =
∑
`

∑̀
m=−`

K`m(r, r1, r2)Ym
`

(θ, φ), (12)

where

K`m(r, r1, r2) =

∫ 2π

0

∫ π

0
K(r, r1, r2)Ym∗

`
(θ, φ) sin θdθdφ. (13)

Decomposing G(r1, r, ω) and C(r2, r, ω) into spherical harmon-
ics, we can obtain the spherical harmonic coefficients of each
kernel.
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For the ur kernel, we have

K`m
r (r, r1, r2) =

∑
`,`′

α`α`′
∑̀

m=−`

`′∑
m′=−`′

Ir

×
(

f r
``′ (r)Ym∗

` (θ2, φ2)Ym′∗
`′ (θ1, φ1) + gr

``′ (r)Ym
` (θ1, φ1)Ym′

`′ (θ2, φ2)
)
,

(14)

where

f r
``′ (r) = 2iρ(r)

∫ ∞

−∞

ωW∗(ω)G`(r, r0, ω)∂rC`′ (r0, r, ω)dω, (15)

gr
``′ (r) = −2iρ(r)

∫ ∞

−∞

ωW∗(ω)G∗`(r, r0, ω)∂rC∗`′ (r0, r, ω)dω,

(16)

and Ir =

∫ 2π

0

∫ π

0
Ym
` (θ, φ)Ym′

`′ (θ, φ)Ym∗
`

(θ, φ) sin θdθdφ. (17)

The integral of three spherical harmonics over the unit sphere
can be done analytically using the Gaunt formula (see, e.g.,
Edmonds 1960, Eq. (4.6.3))

Ir =
4π

α`α`′α`
(−1)m

(
` `′ `
0 0 0

) (
` `′ `
m m′ −m

)
, (18)

where we have used the Wigner-3j symbols (see, e.g., Edmonds
1960, p. 45). The Wigner-3j symbol vanishes when m , m +
m′, which enables us to remove the sum over m′ in the equation
for Kur .

It can be shown that the expression for Kr, Kθ, and Kφ can be
recast in the form

K`m
j (r) =

∑
`,`′

α`α`′
L∑

m=−L

(
I j f j

``′
(r)Ym∗

` (θ2, φ2)Ym−m∗
`′ (θ1, φ1)

+ I∗j g
j
``′

(r)Ym∗
` (θ1, φ1)Ym−m∗

`′ (θ2, φ2)
)
, (19)

where j ∈ {r, θ, φ} and L = min(`, `′).
Proceeding in a similar way, for Kr the kernel K`m

θ depends
on the functions f θ and gθ given by

f θ``′ (r) = 2iρ(r)
∫ ∞

−∞

ωW∗(ω)G`(r, r0, ω)C`′ (r, r0, ω)dω, (20)

gθ``′ (r) = −2iρ(r)
∫ ∞

−∞

ωW∗(ω)G∗`(r, r0, ω)C∗`′ (r, r0, ω)dω. (21)

The horizontal integral is

Iθ =
1
r

∫ 2π

0

∫ π

0
Ym
` (θ, φ)∂θYm′

`′ (θ, φ)Ym∗
`

(θ, φ) sin θdθdφ. (22)

This integral Iθ is much more difficult to evaluate than Ir because
of the θ derivative. In order to keep only associated Legendre
polynomials in Iθ, we use

dPm
` (cos θ)

dθ
=

1
2

( √
(` + m)(` − m + 1)Pm−1

` (cos θ)

−
√

(` + m + 1)(` − m)Pm+1
` (cos θ)

)
, (23)

where the Pm
l are the normalized associated Legendre polynomi-

als. We use the convention that Pm±1
` = 0 if |m ± 1| > `, so that

Eq. (23) remains valid for m = ±`. Integrating Eq. (22) over φ
and using Eq. (23), Iθ becomes

Iθ =
1

2
√

2π r

(
−

√
(`′ + m′)(`′ − m′ + 1)Jm,m′−1,m

``′`

+
√

(`′ + m′ + 1)(`′ − m′)Jm,m′+1,m
``′`

)
, (24)

where m′ = m − m and

Jmm′m
``′`

=

∫ π

0
Pm
` (cos θ)Pm′

`′ (cos θ)Pm
`

(cos θ) sin θdθ. (25)

Fortunately, this integral can also be evaluated analytically. It in-
volves a sum of products of Wigner-3j symbols (see Appendix A
and Dong & Lemus 2002).

The derivation of uφ is similar to uθ and requires the evalua-
tion of the horizontal integral

Iφ =
im′

r

∫ 2π

0

∫ π

0

1
sin θ

Ym
` (θ, φ)Ym′

`′ (θ, φ)Ym∗
`

(θ, φ) sin θdθdφ.

(26)

Using

Pm
` (cos θ)
sin θ

= −
1
m

√ (2` + 1)(` + m − 1)(` + m)
2` − 1

Pm−1
`−1 (cos θ)

+

√
(2` + 1)(` − m − 1)(` − m)

2` − 1
Pm+1
`−1 (cos θ)

 ,
(27)

for m , 0, we obtain

Iφ =
i

2
√

2π r

√ (2`′ + 1)(`′ + m′ − 1)(`′ + m′)
2`′ − 1

Jm,m−m−1,m
`,`′−1,`

+

√
(2`′ + 1)(`′ − m′ − 1)(`′ − m′)

2`′ − 1
Jm,m−m+1,m
`,`′−1,`

 .
(28)

Now that we have the equations for the kernels, let us sum-
marize the algorithm used for the resolution:
1. Computation and storage of the Green’s function Gl(r, r0, ω)

with the source on the polar axis, as a function of depth and
harmonic degree ` for all frequencies;

2. For each great-circle distance between r1 and r2:
– computation of the cross-covariance using Eq. (8). If the

convenient source of excitation of Gizon et al. (2017) is
used, the cross-covariance is directly obtained from the
imaginary part of the Green’s function;

– computation of the weighting function W;
– computation of the functions f j and g j;

3. Evaluation of the integrals I j and computation of the kernel
using Eq. (19).
A summary of the different terms required to compute the

different components of the flow kernels using Eq. (19) is given
in Table 1.

We note that the algorithm presented above could of course
be used to compute sensitivity kernels for the cross-covariance
amplitude using the linear definition of Nagashima et al. (2017)
and the appropriate choice of W. It is also possible to obtain
kernels for the cross-covariance function at a given frequency by
removing the weighting function. In this case, the functions g j

are just the complex conjugates of f j.
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Table 1. Terms required to compute the spherical harmonic coefficients of the flow sensitivity kernels K`m
j using Eq. (19)

j f j
``′

(r) I j

r 2iρ(r)
∫ ∞
−∞

ωW∗(ω)G`(r, r0, ω)∂rC`′ (r0, r, ω)dω 4π
α`α`′α`

(
` `′ `
0 0 0

) (
` `′ `
m m − m −m

)
θ 2iρ(r)

∫ ∞
−∞

ωW∗(ω)G`(r, r0, ω)C`′ (r0, r, ω)dω 1
2
√

2πr

(
−

√
(`′ + m − m)(`′ − m + m + 1) Jm,m−m−1,m

``′`

+
√

(`′ + m − m + 1)(`′ − m + m) Jm,m−m+1,m
``′`

)
φ f φ

``′
(r) = f θ

``′
(r) i

2
√

2πr

(√
(2`′+1)(`′−m+m−1)(`′−m+m)

2`′−1 Jm,m−m+1,m
`,`′−1,`

+

√
(2`′+1)(`′+m−m−1)(`′+m−m)

2`′−1 Jm,m−m−1,m
`,`′−1,`

)
Notes. The integrals Jmm′m

``′`
depend only on Wigner-3j symbols and can be computed using Eq. (A.2) corresponding to the algorithm of

Dong & Lemus (2002).

Fig. 1. Slices along a constant meridian of the point-to-point 3D travel-
time difference kernel for ur (left) and uθ (right). The 3D kernel for uφ is
zero along this slice. The kernel is computed with r1 and r2 separated by
42◦, with mean latitude 40◦. The green line is the ray path between the
two points and the dashed black line shows the image plane of Fig. 2.

Fig. 2. Slices of the point-to-point 3D travel-time difference kernel for
uθ (left) and uφ (right) along the plane indicated in Fig. 1. The 3D kernel
for ur is mostly zero within this plane. The kernel is computed with r1
and r2 separated by 42◦, with mean latitude 40◦. The green cross indi-
cates the intersection of the ray path and the image plane. The dashed
black line shows the image plane of Fig. 1.

2.5. Numerical validation

To evaluate the flow kernels in this framework, the only ingredi-
ent to prescribe is the Green’s function as a function of the spher-
ical harmonic degree ` and depth for a source located at the pole.
We compute it using 1D finite elements with the solver Montjoie
(Chabassier & Duruflé 2016; Fournier et al. 2017). The Green’s
functions are computed with a high enough frequency resolution

to resolve the modes using the mode linewidths (5671 frequen-
cies corresponding to 4 days of observations at 60 s cadence) and
`max = 400.

Representations of the different components of the flow
kernels between two points r1 and r2 centered at 40◦ and sep-
arated by 42◦ is shown in Figs. 1 and 2. They exhibit the clas-
sical banana-doughnut shape with zero sensitivity along the ray
path. Small-scale structures are visible close to the surface as
we kept values of ` up to 400. Visually, there is no difference
between the kernels computed with this new approach, the ones
from Gizon et al. (2017), or the ones obtained by rotation so only
one is shown here.

To allow a more quantitative approach, Fig. 3 compares ker-
nels computed using our new approach to the approach presented
by Gizon et al. (2017) where the background is axisymmetric
and the Green’s function is computed for each azimuthal degree
m on a 2D grid. These kernels Kr and Kθ are averaged over lon-
gitudes (m̄ = 0) where r1 is located at the pole and r2 is at a
co-latitude of 42◦ (similar to Fig. (17) in Gizon et al. 2017). The
results show good agreement, validating the method presented
here. We note slight differences in the structure of Kθ at a depth
of 500 km, and attribute this to the numerics of the 2D FEM
solver differing. Specifically, the 2D FEM has an inherent diffi-
culty in computing the real part of the Green’s function close to
the Dirac source location (see for details Chabassier & Duruflé
2016). In order to ensure that these small differences do not af-
fect the interpretation of the data, we compute the travel times
induced by the meridional flow model from Gizon et al. (2017).
We decompose the flow in Legendre polynomial u` akin to
Eq. (7) and compute a travel time for each ` according to

δτ` =

∫ R�

0
K`,m=0(r) · u`(r) r2dr. (29)

The bottom panel of Fig. 3 shows that this travel time as a func-
tion of ` is nearly indistinguishable from the travel times in
Gizon et al. (2017); the differences are less than 0.5 ms.

As the computational burden of this new method depends
on the maximum harmonic degree of the Green’s function `max

and the number of ` required for the kernel, we illustrate the
efficiency of the method on two problems of interest: kernels
for meridional flow inversions and kernels for supergranulation
inversions.
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Fig. 3. Top and middle panels: comparison of the kernels for ¯̀ = 5 and
10 (blue and black, respectively) computed using the method here (solid
lines) and the method of Gizon et al. (2017; dots). Bottom panel: travel
times δτ` due to the radial (red) and the latitudinal (green) components
of the flow for each ¯̀ of the kernels presented here (solid line) and those
of Gizon et al. (2017; dots).

2.6. Computation of kernels for meridional flow

As a first test, we compute the kernels that are required to in-
terpret meridional flow measurements. As the flow varies slowly
with latitude, we can limit the number of spherical harmonic co-
efficients of the kernels to ` ≤ 10 (see Fig. 3). As for the observa-
tions, a low-pass filter with `max = 300 is applied to the Green’s
function. The method can be parallelized in ` so we use 11 cores
to compute kernels up to ` = 10.

For meridional flow measurements, the separation distance
between the source and the receiver is generally prescribed for
different values of the mean latitude (see, e.g., Liang et al. 2017).
For a given separation distance, we compute 15 kernels corre-
sponding to 15 different latitudes. We then vary the separation
distance in order to probe different depths.

Table 2 shows the computational times and memory require-
ments of the different steps of the algorithm. The computation
of the Green’s function for a source located at the pole can be
done once and for all and stored as it is necessary to do it for
every kernel. Therefore, the computation is very fast (3 seconds
per frequency for `max = 300) and embarrassingly parallel in
frequency so it could also be recomputed every time. The com-
putation of the frequency integrals ( f j and g j) consists in loading
the Green’s function and the weighting function W and summing
over frequencies. The reading of the Green’s function files for
all frequencies takes most of the time. The spatial integrals Ir,
Iθ, and Iφ can be computed once and stored for future use. How-
ever, the computational time is small compared to the full com-
putation of the kernel, so we decide to recompute I j every time
as the reading time can depend upon file system I/O load. The
computations are parallelized in ` and hence need 11 cores for
each step since 0 ≤ ` ≤ 10. The computation of the kernel for
ur is faster since the computation of Ir requires the evaluation
of only two Wigner-3j symbols, unlike Iθ. However, the major

Table 2. Computational time of the different steps to obtain 15 flow
kernels (15 latitudes) for a given separation distance with ` ≤ 10 and
`max = 300 using 11 cores.

Computation steps Time [11 cores] Memory

Green’s function 13 min 100 MB
f r (or f θ) 9 min 1 GB
Ir 0.5 s 1 GB
Iθ 6 min 1 GB
Sum of terms in K`m

r 3 min 1 GB
Sum of terms in K`m

θ 32 min 1 GB

Table 3. Comparison of the computational time and memory require-
ments to evaluate 225 kernels for the meridional flow.

Method Time [cpu hours] Memory [GB]

This paper 170 1
Rotation of 3D kernels 2.7 × 105 40
Gizon et al. (2017) 106 8

Notes. For the rotation of the 3D kernels as in Böning et al. (2016), and
Mandal et al. (2017), we used a horizontal grid sampled with Nθ = 1001
and Nφ = 2001 points.

difference in computational time between Kr and Kθ comes from
the sum in `′ in Eq. (19). For Kr, the sum covers the range from
`−` to `+`, since Ir = 0 for other values due to the properties of
the Wigner-3j. On the contrary, the sum in `′ for the computation
of Kθ must be computed for the full range from 0 to `.

Even though the computational burden of Kθ is greater than
Kr, the total burden remains significantly lower than for other
methods (see Table 3). All the kernels required to perform a
meridional flow inversion can be computed within 2 h with 100
cores, and the memory requirements do not exceed 1 GB. The
approach mentioned in Sect. 2.3, where the full 3D kernel is
computed and rotated to obtain different latitudes, would take
11 days using 1000 cores with very significant memory require-
ments. In the axisymmetric approach of Gizon et al. (2017) the
computational time would be about 40 days on 1000 cores for
all the same set of kernels.

The computational times presented here are for point-to-
point measurements; however, this framework can easily be
extended to geometric averaging such as arc-to-arc measure-
ments often performed for meridional flow measurements (e.g.,
Liang et al. 2017). It is only necessary to replace the product of
the two spherical harmonics in Eq. (19) by a sum over all the
points of the arc.

2.7. Computation of kernels for supergranulation

Resolving smaller scale flows such as supergranules requires a
high spatial resolution, and thus the Green’s function needs to
include much higher harmonic degrees than for meridional flow
Green’s function. For example, Duvall & Hanasoge (2013) con-
sidered measurements up to `max = 700, but even higher `max val-
ues may be required. Furthermore, supergranulation flows have
maximum power around ` = 120, thus the kernels should at
least be computed up to ` = 300, or higher depending on the
power distribution of the flow at large `. The computational bur-
den for these kernels is summarized in Table 4. The computation
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Table 4. Computational time of the different steps to obtain 15 flow
kernels for a given separation distance with ` ≤ 300 and `max = 700
using 100 cores.

Computation steps Time [100 cores] Memory

Green’s function 11 min 100 MB
f r (or f θ) 6 min 1 GB
Ir 2 min 1 GB
Iθ 270 min 1 GB
Sum of terms in K`,m

r 15 h 1 GB
Sum of terms in K`,m

θ 39 h 1 GB

of the m = 0 component of the Green’s function now takes about
23 second per frequency, and the loading of the files to com-
pute f j around 6 min. The computation of the Wigner symbols is
computationally more challenging as ` increases, since the num-
ber of loops scales as `3

max due to loops in `, `′, and m. While
the computation of Ir is still fast, the evaluation of Iθ now takes
270 min on 100 cores. Computing a set of 200 kernels would
take 3 days with 1000 cores, which is significantly longer than
for the meridional flow kernels, but still one order of magnitude
faster than the approach of Gizon et al. (2017) and with a smaller
memory requirement.

3. Conclusions

We presented a technique that is faster than previous approaches
used to compute travel-time kernels under the assumption that
the background medium is spherically symmetric. This tech-
nique does not rely on the numerical computation of kernel ro-
tations and thus the memory requirements are small. Instead, the
spatial integrals are performed analytically, which also leads to
higher accuracy. For example, for meridional circulation appli-
cations, the kernels can be computed one thousand times faster
than with previous methods, using a tenth of the memory re-
quirement.
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Appendix A: Algorithm for the integral of three
associated Legendre polynomials

For the sake of completeness, we summarize the algorithm of
Dong & Lemus (2002) adapted to this study. The integral of
three associated Legendre polynomials,

Jmm′m
``′`

=

∫ π

0
Pm
` (cos θ)Pm′

`′ (cos θ)Pm
`

(cos θ) sin θdθ, (A.1)

can be computed analytically in terms of sums of products of
Wigner-3j symbols

Jmm′m
``′`

=
(−1)m(2π)3/2

α`α`′α`

`+`′∑
`12=min(|`−`′ |,m12)

Q12

×

`12+`∑
`123=min(|`12−`|,m123)

Q123

√
(`123 − m123)!
(`123 + m123)!

J(`123,m123), (A.2)

where the indices m12 = m + m′ and m123 = m + m′ + m rep-
resent sums over the azimuthal degrees. The quantities Q12 and
Q123 must be evaluated for various values of `12 and `123 as de-
fined under the sums in Eq. (A.2). They depend on the Wigner-3j
symbols:

Q12 = (2`12 + 1)
(
` `′ `12
0 0 0

) (
` `′ `12
m m′ −m12

)
,

Q123 = (2`123 + 1)
(
`12 ` `123
0 0 0

) (
`12 ` `123
m12 m −m123

)
.

The value of Q12 (resp. Q123) is non-zero only if `12 + ` + `′

(resp. `12 + ` + `123) is even. The last term J(`123,m123) is the
integral

J(`123,m123) =

∫ 1

−1
Pm123
`123

(x)dx, (A.3)

which can be evaluated analytically. In this paper, we only need
this value for m123 = ±1. As this integral is zero for odd values
of `123, due to the parity of the associated Legendre polynomi-
als, we set `123 = 2p + 1. Then, for a given m123, the value of
J(`123,m123) can be evaluated recursively using

J(2n + 1, 1) =
(2n + 1)(2n − 1)

4n(n + 1)
J(2n − 1, 1) (A.4)

and J(2n + 1,−1) =
(2n − 1)2

4(n + 1)2 J(2n − 1,−1), (A.5)

where n = 1, 2, . . . p, together with the initial conditions

J(1, 1) = −
π

2
and J(1,−1) =

π

4
. (A.6)
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