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Abstract In a setting where we have intervals for the values of floating-point
variables x, a, and b, we are interested in improving these intervals when the
floating-point equality x ⊕ a = b holds. This problem is common in constraint
propagation, and called the inverse projection of the addition. It also appears in
abstract interpretation for the analysis of programs containing IEEE 754 oper-
ations. We propose floating-point theorems that provide optimal bounds for all
the intervals. Fast loop-free algorithms compute these optimal bounds using only
floating-point computations at the target precision.

Keywords Floating-Point · Inverse Projection · Abstract Interpretation

1 Introduction

Since the 1970s, floating-point (FP) arithmetic is both standardized and available
on all general-purpose processors [5]. Many FP operations are available, including
correctly-rounded ones, meaning that the result is the same as if the computation
was done on an infinite number of bits and rounded afterwards. This is in particular
the case for the addition, subtraction, multiplication, division, square root, and
FMA. This gives us both accuracy and reproducibility.

The topic of this article is the inverse projection of the FP addition. For the
mathematical addition +, the equation b = x + a exactly defines the solution x:
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it is the real number b − a. In other words, the mathematical subtraction is the
inverse projection of the mathematical addition.

Now let us consider the FP addition ⊕ in binary64 and the equation b = x⊕a.
Then the value of x is not always uniquely defined. Certainly, in some cases x
may be a singleton, such as in the equation 1 = x ⊕ 2−100. Another example
is 1 = x ⊕ 1, where any FP value in the interval [−2−54, 2−53] is a solution for
x. When we only have intervals for a and b, the set of solutions may not be an
interval. For instance, let a ∈ [2, 2+] and b = 1. Then x may be −1 and (−1)−−

as (−1)⊕2 = 1 and (−1)−−⊕2+ = 1. But the middle value (−1)− is not suitable
as both (−1)− ⊕ 2 = 1− 252 and (−1)− ⊕ 2+ = 1 + 252. This shows that solving
FP equations can be more complicated than mathematical ones.

This problem arises from an industrial application: a static analyzer that aims
at automatically analyzing a C program in order to detect possible undefined
behavior. Even when the focus of the analyzer is not on the numerical aspects
of the program, these numerical aspects influence the control flow and the val-
ues of array indexes. Consequently, an unsound treatment of floating-point can
lead to unsound detection of undefined behavior, whereas an over-approximated
modelization of floating-point can lead to false positives, that is, warnings about
“potential” undefined behavior that does not happen in any real execution.

More context is provided in Section 2, and has lead to several variations around
the previously-described problem. Let us consider that we know that b == x⊕ a
(we are for instance after a test) and that we may have initial intervals for the
variables a, b, and x. Then we might want the tightest possible interval for x,
given the precise values of b and a (as seen above). We may also want to provide
or improve over a given interval for b, given intervals for a and x. This gives us
several possible improvements on the various input intervals. In this article, we
are interested in identifying the tightest intervals that contains all the solution for
x (and b, but this is simpler, see Section 4.4) to the equation b = x ⊕ a, when a,
b, and x are already constrained to known intervals.

The floating-point equation b = x⊕a has been studied before, especially in the
field of constraint propagation. The oldest work that we know of is by Michel, Rue-
her, and Lebbah [9]. It aims at ensuring that an inverse interval is empty, meaning
that a subcase may never happen and may be filtered out. It relies on interval anal-
ysis and provides a decision procedure to filter intervals. Then, Michel [8] focuses
on one-argument monotone functions. He provides an optimal inverse projection if
extra precision is available for computations, and he applies this technique in the
context of test-case generation. Note that his FB-2B-consistent property is simi-
lar to our optimality. Botella, Gotlieb, and Michel provide inverse projections for
many FP operations (addition, subtraction, multiplication, division, but also com-
parisons) [1]. Unfortunately, these projections are not optimal. The most similar
work has been done by Marre and Michel [7]: they have focused on FP addition
and subtraction. In particular, they prove results similar to our Lemma 4 and
Lemma 5. We re-prove them for the sake of completeness and because the no-
tations are quite different. These previous results sometimes provide the optimal
bounds, but not in all cases as this article does.

In the discussions of this problem that we have found in the context of con-
straint propagation (as explained above), a loop is necessary to improve these
intervals, while our optimal projections allow us to compute optimal results di-
rectly. An example of multiple successive improvements is the following one: let
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x ∈ [−2100,−252], a ∈ [1, 2100], and b ∈ [12 ,
3
2 ]. Näıve propagation of the in-

formation takes three steps to reach the optimal result: x ∈ [−253 + 1,−252],
a ∈ [252 + 1, 253], and b = 1.

This article is organized as follows. Section 2 explains how the implementation
of an general-purpose static analyzer based on Abstract Interpretation has lead
to this question. Section 3 provides the FP definitions and lemmas needed in
Section 4, where we provide the main theorems for the optimal inverse projection
of the FP addition. Section 5 provides the corresponding algorithms while Section 6
concludes and gives some perspectives.

2 Context

Abstract Interpretation is a technique to analyze programs by the use of sound
approximation [4]. In Abstract Interpretation, an abstract domain with a lattice
structure defines the way information about the program is represented and we
discuss in this section a new abstract domain for floating-point programs.

The context for this article is the value analysis of C programs by nonrelational
Abstract Interpretation. That is, our goal is to map all the program’s variables to
sets of values at each point of execution.

Representing sets of values for variables in extension would be inefficient. In-
stead, the sets of values associated to variables are picked as elements of a prede-
termined abstract domain. The design of an abstract domain involves trade-offs
between efficiency and precision. For instance, the well-known “intervals” abstract
domain [3] is extremely efficient for floating-point variables, requiring only, for
each operation of the target program, a few operations and comparisons in order
to compute from the intervals associated to the operands a superset of the values
the result can take. The “intervals” abstract domain often matches the reality of
the target program, designed in terms of ranges of valid values for inputs and in-
termediate computations. Still, this domain can be imprecise; for instance, when
analyzing a program that converts an integer variable determined to lie between 0
and 2 to a double, the resulting floating-point interval, [+0.0;2.0], contains roughly
262 values that cannot actually happen during a real execution, in addition to the
values +0.0, 1.0 and 2.0 that can actually happen.

In this article, we assume that the target C programs run in round-to-nearest
mode all the time (that is, the rounding mode is never changed from its default)
and to have been compiled with strict IEEE 754 compliance, FLT_EVAL_METHOD
set to 0 [6] and #pragma STDC FP_CONTRACT OFF, so that most known caveats [11]
can be ignored.

The abstract domain we are interested in is described in Section 2.1. Some
examples of its usefulness are given in Section 2.2 and a comparison with other
methods is given in Section 2.3. Finally, one of the questions this abstract domain
raises is precisely stated in Section 2.4.

2.1 A precise nonrelational abstract domain for floating-point operations

The abstract domain which raises the problems partially addressed in this article is
an improvement over the “intervals” abstract domain. In this new abstract domain,
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a set of floating-point values is represented as a record of boolean flags indicating
the individual presence of +0.0, −0.0, +∞, −∞, and NaN, as well as a floating-
point interval of finite negative values, and an interval of finite positive values.
Thus it is possible to represent the information that a floating-point variable is
either +0.0 or between −1 and −2−52 or between 2−52 and 1, but not −0.0 or
any finite value strictly between −2−52 and 2−52. This single lattice element is
displayed as {+0}∪ [−1;−2−52]∪ [2−52; 1] for the end user. Programmatically, the
static analyzer being implemented in OCaml, it looks like the following record:

{ poszero = true;

negzero = false;

posinf = false;

neginf = false;

nan = false;

negfinite = (-1.0, -. (ldexp 1.0 (-52)));

posfinite = (1.0, ldexp 1.0 (-52)) }

The abstract domain, the abstract versions of the basic operations, and their
projections, are defined in advance and may then be applied to any program. For
this reason, it pays to define them with care and to implement them efficiently.

2.2 Examples

To convince the reader of the advantages of this particular abstract domain, a few
examples where it behaves better than simple interval arithmetic follow.

2.2.1 Direct computations

Let us assume that the double variables a and b have been inferred respectively
to lie in [-2.0; -1.0] and in [1.0; 2.0], and that the next instruction in the analyzed
program is the following assignment:

x = a + b;

After this assignment, the double variable x can be inferred to be in the set
{+0}∪ [−1;−2−52]∪ [2−52; 1]. This is more accurate than the result obtained with
the “intervals” abstract domain. In the “intervals” abstract domain, the lattice
element that best can represent the result is [−1.0; 1.0].

For a second example, let us revisit the assignment x = (double)a; where the
integer variable a is known to be between 0 and 2. We already pointed out that
the resulting set of values for the double variable x when relying on the “interval”
abstract domain is [+0.0; 2.0]. With the improved abstract domain described in this
section, the set of values that x can take can be represented as {+0.0} ∪ [1.0; 2.0].
This set also contains parasitic values that x cannot take during a real execution,
but it contains much fewer of these parasitic values than [0.0; 2.0] does (only 252−1
of them instead of nearly 262).

The design choice of representing NaN, zeroes and infinities as separate boolean
flags attempts to capture many of the natural properties of the IEEE 754 ba-
sic operations. Consider now the following snippet, reached with a ∈ [1.0; 2600],
b ∈ [1.0; 2600], c ∈ [0.125; 0.25], and d ∈ {+0} ∪ [2−52; 1]:
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1 x = ( a ∗ b) ∗ c ;
2 i f ( x == INFINITY) e x i t ( 1 ) ; // o v e r f l o w
3 y = x − 0x1 . 0 p1022 ;
4 z = d / y ;

The abstract domain described in this section precisely captures that after the
first instruction, x is in {+∞}∪ [0.125; 0x1.fffffffffffffp1021]. Thanks to this precise
value for x, the abstract domain can guarantee that the variable y is computed
as a negative value and that z is not computed as NaN. The “intervals” abstract
domain would characterize the value of x at the end of the first line as [1.0; +∞]
and1 would infer that the range [-0x1.0p1022; 0x1.7ffffffffffffp1023] results from the
subtraction at the third line. This range contains zero and positive numbers. As
a consequence NaN would appear to be a possible result from the division of zero
by zero at the fourth line.

The operational steps for direct computations (that is to say the processing of
assignments) in the improved abstract domain are relatively straightforward, and
we will not discuss them any further in this article.

2.2.2 Conditionals

In the last example, the abstract interpreter needed to propagate to line 3 the in-
formation that thanks to the conditional at line 2, x could not be +∞. In general,
the abstract interpreter needs to propagate, in the “then” and “else” branches of a
conditional, abstract states that reflect that the floating-point condition is respec-
tively true and false. The floating-point conditions encountered in the analyzed
program are not always of the form “variable == constant”. For an arbitrary con-
dition, determining the values of variables that make it true or false is arbitrarily
difficult.

The basic problem we study in this article is expressed in terms of an equation
a ⊕ x = b with variables the values of which are initially known as intervals of
finite floats of the same sign, and must be improved as such. Solving this prob-
lem is general enough to provide a treatment for inequations. Optimizing the
bounds of the double variables a, b, x for the “then” branch of the conditional
if (a + x <= b) ... is equivalent to optimizing amin, amax, xmin, xmax, bmin

for the problem a + x = b where a and x are assumed to be in the same range
as the eponymous program variables, and b is assumed to be in the set {+∞} ∪
[bmin, 0x1.fffffffffffffp1023].

In the same spirit, with the aforementioned assumptions about the target com-
pilation platform, the strict inequality a + x < b it equivalent to the inequality
a + x <= b−, where b− is the floating-point number immediately below b.

2.3 Comparison with other abstract domains

2.3.1 Interval analysis

The above discussion may remind the reader of interval analysis [12], where in-
tervals of floating-point values are used to approximate the sets of reals that can

1 Note that designing interval arithmetic operations to work with infinite bounds requires
special care, but is not impossible.
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result from real operations. The important nuance here is that we use intervals
of floating-point values to approximate the sets of floating-point values that can
result from floating-point operations. In other words, our goal is only to accurately
predict how the floating-point program actually behaves, and not to predict the
behavior it would have had if it computed over reals. For this reason, round-to-
nearest is used to compute the bounds of resulting intervals. Indeed, the minimum
double that can be reached by the double addition of [a;b] and [c;d] is the double

addition of a and c, even if the result of the real addition could be lower than that.

2.3.2 Relational abstract interpretation of floating-point programs

Relational abstract interpretation infers, in addition to sets of values for individual
variables, relations that are guaranteed to hold between these variables. Similarly
to non-relational abstract domains, the shape of the relations is fixed in advance, in
effect limiting the sets of values that can be inferred for the tuple of the program’s
variables, in exchange for compactness and efficiency.

As an example, if the double variable y is known to be in [8; 14] and x in the
program is initialized through the assignment x = y + 1.75;, a relational abstract
interpreter may infer that henceforth x is equal to y+ 1.75 + e, where e is an error
term bounded by the ULP of the binade [8; 16]. This allows to automatically gain
information about x when information is gained about y later, or vice-versa. On
the other hand, this sort of design choice does not allow these domains to extract
the “last bit” sort of information that our nonrelational abstract domain is able
to recover on the examples that it is advantageous for. As an illustration, our
nonrelational abstract domain can automatically infer the absence of underflow
for simple floating-point programs, whereas relational abstract domains typically
represent only convex sets of values, and include all denormal values in sets that
contain two normal values of opposite signs. Choosing an abstract domain is a
matter of choices and trade-offs.

In order to take full advantage of the inferred relations’ symmetries, relational
abstract domains are generally defined in terms of constraints of a pre-determined
shape over a field. The field Q of rationals would typically be used to represent
relations between floating-point variables.

The rational parameters typically used in the ideal presentation of a relational
abstract domain can be too costly to represent and compute with for practical
use on floating-point programs. These rational parameters can in turn be approxi-
mated soundly by floating-point parameters in the implementation of the abstract
domain [10,2]. Of course, rather than removing a layer of abstraction, this should
be seen as adding a second one. While this approach improves the practicality
of the relational abstract domain in practice (trading a little accuracy for much
improved space and time requirements), it makes these implementations even less
likely to retrieve the last-bit information that our nonrelational abstract domain
is designed to go after.

2.3.3 Propagation of floating-point constraints

In the non-relational abstract interpretation setting, any relationship that may
exist because of previous computations (for instance the variable b having been
computed from a by the assignment b = a * a * a;) has already been lost at



Optimal Inverse Projection of Floating-Point Addition 7

the time the conditional if (x + a == b) ... is interpreted. Thus, the goal is
to extract as much information as possible, quickly and without relying on prop-
agation between constraints that are not available anyway. The situation would
be similar even if we were using relational abstract domains: at best, a rough
over-approximation of existing relations between variables can be expected to be
available.

The abstract domain sketched out above borrows insights from the field of con-
straint propagation [7], and the optimal solution we describe to the basic problem
may be useful in the same context, in order to minimize the number of times the
same constraints need to be awakened. In this context, it may be useful to remark
about the information flow within the ternary constraint a⊕ x = b. As expected,
information about a and x provide information about b. Moreover, new informa-
tion about a and b may improve the information on x: this is the topic of this
article. Examples exist of intervals for a, b and x that cannot be improved by the
constraint a⊕x = b, but where new information about x can be injected that does
not allow the constraint to improve the range of a, does not allow to improve the
range of b, but allows to improve the range of x. This is not unique in constraint
propagation: a similar situation arises with the integer constraint x%a = b when
x ∈ [0, 10], a ∈ {2} and b ∈ {0}, and the new information x ∈ [0, 9] arrives. The
surprise comes from the fact that floating-point addition, a seemingly simple oper-
ation, suffices to cause this behavior to emerge. This is the reason why the problem
must be phrased: “given the constraint a⊕ x = b and initial information about a,
b, and x, compute the best bounds for x”. An implementation shortcut for simpler
constraints is to compute a solution for x that ignores the initial information about
x, and then to intersect this solution with the information already known about x.
For the reason above, this shortcut does not work when implementing the integer
constraint x%a = b, and it does not work when implementing the floating-point
constraint a⊕ x = b.

2.4 Formalising the Problem

Let x = [x,x], a = [a,a], b = [b,b] floating point intervals. Let

X = {x ∈ x | ∃a ∈ a. x⊕ a ∈ b}.

We want to compute minX and maxX, which always exist for sets of floating
point numbers (with the convention that the minimum of the empty set is +∞
and its maximum is −∞).

We want to do the same for the following sets A and B. Note that the problem
about A is exactly the same as for X since ⊕ is commutative.

A = {a ∈ a | ∃x ∈ x. x⊕ a ∈ b}
B = {b ∈ b | ∃x ∈ x. ∃a ∈ a. x⊕ a = b}

The same questions arise when ⊕ is replaced with ⊗, and also �, but this is
out of the scope of this article. The equation with 	 on the other hand does not
add any conceptual difficulty to the equation using ⊕.

Thanks to the compatibility of the opposite with round-to-nearest rounding
modes, we can assume that b > 0 without loss of generality. Moreover, as explained
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in §2.1, it is useful to split variable domains into positive values, negative values,
zeroes, infinities and NaNs. When at least one of the intervals x, a and b is either
empty or the singleton corresponding to one of the specials values, the problem is
rather easy. Therefore, we will often assume that 0 < b 6 b, and x and x (resp.
a and a) are either both positive or both negative with x 6 x.

3 FP Definitions and Preliminary Results

In order to provide algorithms that compute optimal inverse projections, we rely
on various theorems given in Section 4. Before that, and in order to try to make
this section more readable, we first pose notations and give some useful lemmas.

We define the set F of floating point numbers of the form

(−1)s ∗m ∗ 2e = (−1)s ∗ b0.b1...bp−1 ∗ 2e

where s is the sign bit, the significand m has a fixed precision p and its bits are
(bi)06i<p, and the exponent e is an integer greater than or equal to a fixed number
emin. The smallest positive floating point number is then 2emin−p+1. Moreover,
b0 the first bit of m is always 1 unless the exponent is e = emin. We also add an
element 0 to F (we could distinguish 0+ and 0− but it does not matter here). The
other special values from the IEEE-754 standard [5] are ±∞ and NaNs. Overflows
and these special values are not handled in the following proofs, but may be
handled in the real program using additional tests.

A floating point is even if its last bit bp−1 is 0, odd if it is 1. The FP number
0 is even. As explained, we assume the default rounding mode: round-to-nearest
ties-to-even, noted ◦. We denote ⊕, 	, ⊗, � the FP operations, that are assumed
to have a correct rounding: x⊕y = ◦(x+y). The rounding towards +∞ is denoted
by 4 and towards −∞ by 5.

We denote x+ or succ
(
x
)

the successor of x ∈ F , defined as the expected

minimum: x+ = min{y ∈ F | y > x}. Similarly, we denote x− or pred
(
x
)

the
predecessor of x.

Contrarily to the usual notation ulp [13] (with a choice on what is worth
ulp(2e)), we have two different ulps. First, ulp+(x) = x+ − x, then ulp−(x) =
x − x− for x ∈ F . Moreover, ulp+(r) = ulp−(r) = 4(r) − 5(r) for r /∈ F .
Except for powers of two, the two ulps are equal (and equal to the usual ulp).
For a power of 2 in the normal range, ulp+ (2e) = 2e−p+1 is also equal to the
usual ulp (2e) while ulp− (2e) = 2e−p. Note also that neither ulp+ nor ulp− is a
symmetric function, however there is some symmetry between the two definitions:
ulp+(−x) = ulp−(x). Note also that ulp+(0) = ulp−(0) = 2emin−p+1 that is the
smallest positive (subnormal) number.

We denote I(F) the set of floating point intervals. The usual interval notations
[a, b], (a, b) will represent a floating point interval, that is the set of the floating
point numbers which are between a and b (included or excluded) and we usually
denote x = [x,x]. In particular, bold symbols such as x are intervals and x is
assumed to be its smaller element. Besides, xmin usually denotes the minimum of
a previously-defined set for the sake of readability inside the proofs.

We will also rely on the modulo notation for FP numbers. x ≡ 0[v] means that
x is an integer multiple of v (with v usually a power of 2).
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A last notation is y
even(x)?

6
<

z that stands for

{
y 6 z if even(x)

y < z if odd(x)
and y

even(x)?
<
6 z

for

{
y < z if even(x)

y 6 z if odd(x)
.

Now let us state numerous small properties that will be useful below.

Property 1 For all x, y ∈ F , e ∈ Z, r, s ∈ R:

(ulp∗ may be replaced with either ulp+ or ulp− at each position)

|r| < |s| =⇒ ulp∗(r) 6 ulp∗(s) (0.1)

|x| > |r| =⇒ x ≡ 0[ulp∗(r)] (0.2)

|x| > 2e ⇒ x ≡ 0[2e−p+1] (0.3)

r ≡ 0[ulp∗(r)] =⇒ r ∈ F (0.4)

|r| 6 |s| ∧ r ≡ 0[ulp∗(s)] =⇒ r ∈ F (0.5)

r ≡ 0[2e]⇒ ◦(r) ≡ 0[2e] (0.6)

◦(r) = x ⇐⇒ x− ulp−(x)

2

even(x)?
6
<

r
even(x)?

6
<

x+
ulp+(x)

2

◦(r) > x ⇐⇒ x+
ulp+(x)

2

even(x)?
<
6 r

◦(r) < x ⇐⇒ r
even(x)?

<
6 x− ulp−(x)

2


(0.7)

ulp+(5(r)) = ulp+(r) (0.8)

|r − s| < ulp∗(s) ∧ r ≡ 0[ulp∗(s)] =⇒ r ∈ {5(s),4(s)} (0.9)

ulp+(r) 6
1

4
ulp+(s) =⇒ |r| 6 1

2
|s| (0.10)

x > 2emin+1 =⇒ ulp−(x/2) = ulp−(x)/2 = ulp−(x)� 2 (0.11)

Now let us state two simple lemmas.

Lemma 1 Let x, y ∈ F and v ∈ 2Z. If x 6 y 6 x + v and ulp+(x) 6 v
4 then

ulp+(y) 6 v
2 .

Proof When |x| > v, then |y| < 2|x|, hence the result. We now assume that
|x| 6 v. Then |y| 6 2v and ulp+(2v) = max(2v ∗ 2−p+1, 2emin−p+1) 6 v

4 as
v
4 > ulp+(x) > 2emin−p+1. ut

Lemma 2 Let r, s, t ∈ R such that s 6 r < t and t− s > ulp+(r), then there is at
least a floating point number in the real interval [s, t).

Proof If r ∈ F , the result trivially holds. If 4(r) ∈ [s, t), the result also trivially
holds. Let us assume that r 6∈ F and t ≤ 4(r). Then ulp+(r) = 4(r)−5(r) with
4(r) < r < 5(r). Therefore, we consider 5(r) ∈ F and prove it belongs to [s, t).
First, t > r > 5(r). Second, 5(r) = 4(r)− ulp+(r) ≥ 4(r) + s− t ≥ s. ut
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4 Theorems on the possible values of the addition inverse projection

This section provides the main theorems for the optimal inverse projection of the
floating point addition (computing optimal bounds for x when x ⊕ a = b given
intervals for x, a and b). In §4.1, we decompose this inverse projection problem
into two smaller problems that involve fewer variables. Note that this decompo-
sition holds for any binary operator that is non-decreasing in both arguments; in
particular, it could be used to handle multiplication in future work. §4.2 and §4.3
each solve one of the two smaller problems found in §4.1. For the sake of complete-
ness, we present in §4.4 a theorem for fast direct computation of addition (optimal
bounds for b when x⊕ a = b given intervals for x, a and b).

Note that given intervals a and b, it is easy to determine whether a given
floating point number x verifies ∃a ∈ a, x ⊕ a ∈ b. Indeed, we can compare
b1 = x ⊕ a and b2 = x ⊕ a with b and b. If b1 ∈ b or b2 ∈ b then x trivially
verifies the property. If b1 > b or b2 < b then the property is false by monotony.
If b1 < b and b2 > b, we compute a1 = min{a ∈ F | x ⊕ a > b}; then x verifies
the property if and only if x⊕ a1 6 b (indeed, if x⊕ a1 6 b then a1 ∈ a because
x ⊕ a = b1 < b 6 x ⊕ a1 6 b < b2 = x ⊕ a so the property is true, otherwise
∀y ∈ F , x ⊕ y /∈ b). While §4.2 presents a faster method to compute a1, a naive
approach using dichotomy would also work.

The difficulty lies in finding the extrema of the set of floating point numbers
verifying the property P (x) = ∃a ∈ a, x⊕a ∈ b within a given interval. Dichotomy
does not work here as the property is not convex.

4.1 Decomposition into two smaller problems

In this section, we consider a generic binary operator ? on F , non-decreasing in
both arguments. In the remainder of this article, we will apply this to the floating
point addition. However it could be used for other operators such as floating point
multiplication. The only property about F that we need for now is:

Property 2 (F ,6) is a totally ordered set. Moreover, any subset of F has a min-
imum and a maximum (with the convention +∞ and −∞ respectively for the
empty set).

Theorem 1 Let ? a binary operator on F , non-decreasing in both arguments. Let
x,a,b ∈ I(F) and let

X
def
= {x ∈ x | ∃a ∈ a. x ? a ∈ b}

X0
def
= {x ∈ [x,+∞) | x ? a > b ∧ ∃y ∈ F . x ? y ∈ b}.

Let x0
def
= minX0. If x0 > x or x0 ?a > b then X is empty, otherwise minX = x0.

Proof For any x ∈ X, we have x > x and there is an a ∈ a such that x ? a ∈ b
then x ? a > x ? a > b so x ∈ X0; therefore X ⊂ X0.

– Case x0 > x. From X ⊂ X0 we get minX > minX0 = x0 > x so minX /∈ X
which means X = ∅ (and minX = +∞).
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– Case x0 ? a > b. By contradiction, assume there exists x ∈ X. Then there
exists a ∈ a such that x ? a ∈ b. But from X ⊂ X0 we get x ∈ X0 so x > x0.
Moreover a ∈ a means that a > a. Then x ? a > x0 ? a > b, which contradicts
x ? a ∈ b. Therefore, X is empty.

– Case x0 6 x and x0 ? a 6 b. In particular, this means that x0 ∈ x. From
X ⊂ X0, we get ∀x ∈ X, x0 6 x. To show that x0 = minX, we now only need
to show that x0 ∈ X.
By definition of X0, x0 ? a > b and there exists y0 ∈ F such that x0 ? y0 ∈ b.
– If y0 ∈ a then x0 ∈ X.
– If y0 < a then b 6 x0 ? y0 6 x0 ? a 6 b with a ∈ a, so x0 ∈ X.
– If y0 > a then b 6 x0 ? a 6 x0 ? y0 6 b with a ∈ a, so x0 ∈ X.

In every case x0 ∈ X. As explained above, we conclude that x0 = minX.
ut

Corollary 1 Same notations as Theorem 1. Let x1
def
= min{x ∈ F | x ? a > b}

and x2
def
= min{x ∈ F | x > max(x, x1) ∧ ∃y ∈ F . x ? y ∈ b}. If x2 > x or

x2 ? a > b then X is empty, otherwise minX = x2.

Proof Immediate using that for any x ∈ F , by monotony of ?, x ? a > b is
equivalent to x > min{x′ ∈ F | x′ ? a > b} . ut

This transforms our problem about six numbers x,x,a,a,b,b (finding the
minimum of X = {x ∈ x | ∃a ∈ a. x ? a ∈ b}) into two simpler problems:

– for any two numbers a,b ∈ F , finding the minimum of {x ∈ F | x ? a > b};
– for any three numbers x3,b,b ∈ F , finding the minimum of {x ∈ F | x >
x3 ∧ ∃y ∈ F . x ? y ∈ b}.

For FP addition, the first problem is handled in §4.2, the second one in §4.3.

As there is no asymmetric hypothesis (for example we have not assumed b > 0
here), this is easily applicable to the maximum of X by inversing the inequalities
and swapping lower bounds with upper bounds.

4.2 For a, b ∈ F , minimum of {x ∈ F | x⊕ a > b}

The minimum of {x ∈ F | x⊕ a > b} can be computed easily by dichotomy, as ⊕
is monotone. It can also be computed using [8]. The conditions are indeed: the real
function x 7→ x+a is strictly increasing, it has an exactly rounded implementation
x 7→ x ⊕ a, and its real inverse function x 7→ x − a also has an exactly rounded
implementation x 7→ x	 a.

This method seems faster than dichotomy but requires changing rounding
modes, reading a flag to know whether the result of a computation has needed
to be rounded and, last but not least, it requires an additional bit of precision.

The method described here is also fast, and its implementation stays within
the target set of floating point numbers. We do need to compute predecessors and
successors, or equivalently ulps that can be done efficiently [14]. We prove that
there are at most three possible candidates for the minimum of {x ∈ F | x⊕a > b},
all of them easy to compute, so we can simply take the smallest of them that verifies
the inequality.
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Theorem 2 Let a, b ∈ F with b > 0 and let xmin
def
= min{x ∈ F | x⊕ a > b}.

– If b > 2emin+1 and |b	 a| < b� 2 then{
xmin = (b	 a)	 (ulp−(b)� 2) if b is even;

xmin = succ
(

(b	 a)	 (ulp−(b)� 2)
)

if b is odd.

– If b 6 2emin+1 or |b	 a| > b� 2 then

xmin ∈ {(b	 a)−, b	 a, (b	 a)+}.

Proof Let a, b ∈ F with b > 0 and let xmin
def
= min{x ∈ F | x ⊕ a > b}. From

(0.7): xmin = min{x ∈ F | b− ulp−(b)
2

even(b)?
6
<

x+ a}, in particular xmin is in this

set but xmin
− is not, so{

xmin
− < b− a− ulp−(b)

2 6 xmin if b is even;

xmin
− 6 b− a− ulp−(b)

2 < xmin if b is odd.

– If b > 2emin+1 and |b	 a| < b� 2:

We will show that b− a− ulp−(b)
2 ∈ F . Combined with the inequalities above

and the fact that there is no floating point number strictly between xmin
− and

xmin, this will mean that b−a− ulp−(b)
2 = xmin if b is even, and b−a− ulp−(b)

2 =

xmin
− if b is odd. Moreover, we will show that (b 	 a) 	 (ulp−(b) � 2) =

b− a− ulp−(b)
2 , hence xmin = (b	 a)	 (ulp−(b)� 2) if b is even, and xmin =

succ
(
xmin

− ) = succ
(

(b	 a)	 (ulp−(b)� 2)
)

if b is odd.

From |b 	 a| < b � 2 we get |b − a| < b
2 since ◦ is monotone and compatible

with |.|. This means − b
2 < a − b < b

2 so b
2 < a < 3

2b. Then, from Sterbenz’s

property [15]: b− a ∈ F and a− b ∈ F . Then, since we also have b
2 ∈ F from

b > 2emin−p+1, a − b < b
2 becomes a − b 6 ( b

2 )
−

= b
2 − ulp−( b

2 ), rewritten as

− b
2 6 b − a − ulp−( b

2 ). Together with b − a − ulp−( b
2 ) 6 b − a 6 |b − a| < b

2 ,

this means that |b−a−ulp−( b
2 )| 6 b

2 . Furthermore, from 0 < b
2 < a and (0.2):

a ≡ 0[ulp−( b
2 )], and similarly b ≡ 0[ulp−( b

2 )], so b− a− ulp−( b
2 ) ≡ 0[ulp−( b

2 )].

Using (0.5), we obtain b− a− ulp−( b
2 ) ∈ F .

Moreover, ulp−(b/2) = ulp−(b)/2 = ulp−(b)� 2 from (0.11) with b > 2emin+1,
so (b 	 a) 	 (ulp−(b) � 2) = ◦(◦(b − a) − ulp−( b

2 )) = ◦(b − a − ulp−( b
2 )) =

b− a− ulp−(b)
2 since b− a ∈ F and b− a− ulp−( b

2 ) ∈ F . As explained above,
this allows us to prove the first case of the theorem.

– If |b	 a| > b� 2 or b 6 2emin+1:
To show that xmin ∈ {(b	 a)−, b 	 a, (b	 a)+}, it is sufficient to prove
(b	 a)− 6 xmin 6 (b	 a)+.
We always have b−a < (b	 a)+ (indeed, otherwise by monotony of ◦ we would
get b 	 a > (b	 a)+), so b − a − 1

2ulp−(b) < (b	 a)+. From the inequalities

above, we obtain xmin
− < (b	 a)+ (for b even as well as for b odd), which

means xmin 6 (b	 a)+.
To prove (b	 a)− 6 xmin, it is enough to show that b − a − 1

2ulp−(b) >

(b	 a)−−. Indeed, from the inequalities above, we then obtain (b	 a)−− <
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xmin, which means (b	 a)− 6 xmin. Let us prove b−a− 1
2ulp−(b) > (b	 a)−−

in both cases of the assumption “ |b	 a| > b� 2 or b 6 2emin+1 ”.

– If |b	a| > b�2 then ulp−(b	a) > ulp−(b�2) > 1
2ulp−(b). Then from (b	

a)− 1
2ulp−(b	a) 6 b−a (0.7), we get b−a− 1

2ulp−(b) > (b	a)− 1
2ulp−(b	

a)− 1
2ulp−(b) > (b	a)− 3

2ulp−(b	a). Also, 1
2ulp−(b	a) 6 ulp−((b	 a)−),

so b− a− 1
2ulp−(b) > (b	 a)− ulp−(b	 a)− ulp−((b	 a)−) = (b	 a)−−.

Moreover, we notice that the inequality 1
2ulp−(b 	 a) 6 ulp−((b	 a)−) is

actually strict unless (b	 a)− is a power of 2, in which case b 	 a is odd
and the inequality (b	 a)− ulp−(b	 a)/2 6 b− a is actually strict. In all
cases, we actually obtain b− a− 1

2ulp−(b) > (b	 a)−−.

– If b 6 2emin+1 then ulp−(b) = 2emin−p+1 = min{ulp−(z) | z ∈ F} so
ulp−(b 	 a) > ulp−(b). Using 0.7 as above, b − a − 1

2ulp−(b) > (b 	 a) −
1
2ulp−(b	 a)− 1

2ulp−(b) > (b	 a)− ulp−(b	 a) = (b	 a)− > (b	 a)−−.

As explained above, we have proven (b	 a)− 6 xmin 6 (b	 a)+, therefore
xmin ∈ {(b	 a)−, b	 a, (b	 a)+}.

ut

The previous theorem states that when b 6 2emin+1 or |b 	 a| > b � 2, there

are three possible values for xmin
def
= min{x ∈ F | x ⊕ a > b}: (b	 a)−, b 	 a or

(b	 a)+. Let us give examples that any of these three values is indeed possible.

If a = 1
2 and b = 1, then (b	 a)− is equal to (1

2 )
−

= 1
2 − 2−54 and verifies

(b	 a)− ⊕ a = 1 > b, while its own predecessor does not verify this: (b	 a)−− ⊕
a < b, therefore xmin = (b	 a)−. If a = 2−54 and b = 1, then we also have
xmin = (b	 a)−.

If a = 1
4 and b = 1, then xmin = b	a. We also have this if a = 2−53 and b = 1.

Finally, if a = 2−53 and b = 1− = 1− 2−53, then xmin = (b	 a)+.

Once the possible values of xmin have been narrowed down to two or three
numbers, it is easy to add each of them to a and compare the sum with b,
then take the smallest candidate which meets the condition. This is done by
algorithm XminPT in §5. We can also compute max{x ∈ F | x ⊕ a 6 b} as

( min{x ∈ F | x⊕ a > b+} )
−

.

4.3 Given x0 and an interval b, minimum of
{x ∈ F | x > x0 ∧ ∃y ∈ F . x⊕ y ∈ b}

The goal of this subsection is to compute, for any x0 ∈ F and b ∈ I(F) such that
0 < b 6 b, the minimum of {x ∈ F | x > x0 ∧ ∃y ∈ F . x⊕ y ∈ b}, which we will
here denote xmin.

Theorem 3 provides an exact and efficient computation of xmin. We build up
to it with several lemmas, mainly aiming to tie whether a floating point number
x verifies ∃y ∈ F . x ⊕ y ∈ b to other properties. Let us give some insight about
the organization of this section.

First of all, we prove that for each interval b, there are bounds lg and ug outside
of which no x can verify the property ∃y ∈ F . x⊕ y ∈ b. Definition 1 builds these
bounds, and carefully chosen numbers g ∈ Z and bg ∈ b that appear in the bounds
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themselves as well as later in a few proofs. Lemma 3 provides various properties
about g, bg, lg and ug for later use. Lemma 4 shows that ∃y ∈ F . x⊕ y ∈ b is false
as soon as x > ug, and Lemma 5 is the same for x 6 lg. This already tells us that
if x0 > ug, then {x ∈ F | x > x0 ∧ ∃y ∈ F . x⊕ y ∈ b} is empty and xmin = +∞
by convention. On the other hand, if x0 6 lg, then xmin = lg

+ because we also
have ∃y ∈ F . lg+ ⊕ y ∈ b (this is shown in the proof of Theorem 3).

Then, we study what happens for x0 ∈ (lg, ug]. Lemma 6 is an auxilliary lemma
used in both following lemmas. Lemma 7 states that for such an x0, if b < b then
either ∃y ∈ F . x0 ⊕ y ∈ b or ∃y ∈ F . x0+ ⊕ y ∈ b, which means that either

xmin = x0 or xmin = x0
+. Lemma 8 handles the case b = b

def
= b, where xmin

is either x0 or a more complex expression min{x ∈ F | x ⊕5(b − x0) > b}. This
is enough to always compute xmin, as it is easy to test whether xmin = x0, that
is whether ∃y ∈ F . x0 ⊕ y ∈ b: indeed this is equivalent to x0 ⊕ y0 6 b where
y0 = min{y ∈ F | x0⊕y > b}, as explained in the proof of Theorem 3; moreover we
can easily compute y0 thanks to Theorem 2 of the previous subsection. Therefore,
for x0 ∈ (lg, ug], if x0 ⊕ y0 6 b then xmin = x0, otherwise xmin = x0

+ if b < b
or xmin = min{x ∈ F | x⊕5(b− x0) > b} if b = b.

Finally, Theorem 3 gathers these results into a computation of xmin covering
all cases. Its proof is mostly a more detailed and formal version of the explanations
above, with proofs of a few properties too small to have their own lemma, such as
∃y ∈ F . lg+ ⊕ y ∈ b.

Definition 1 For b ∈ I(F) such that 0 < b 6 b, we denote ExpAndWitness(b)
the couple (g, bg) and gBounds(b) the couple (lg, ug) defined as

g = max{e ∈ Z | ∃b ∈ b. b = 0[2e]},
bg = max{b ∈ b | b = 0[2g]},

lg = −2g+p,

ug = (2g+p)
− ⊕ bg.

The integer g is the exponent of the greatest power of 2 that divides at least
an element of b, and this element is bg. This means bg is the rounder element
of b, as in the one whose mantissa ends with the most zeroes. We have written
its definition with a maximum because this makes it obviously well defined, but
it is actually the only element of b divisible by 2g. Indeed, if there were at least
two elements of b divisible by 2g, this interval would in particular contain two
consecutive multiples of 2g, of which at least one would then be divisible by 2g+1

which would contradict the definition of g.
For example, if b contains a power of 2, then bg is the greatest power of 2 it

contains and g is its exponent. If b is included in (2e, 2e+1) for some e ∈ Z, and
if it contains 2e + 2e−1 then bg = 2e + 2e−1 and g = e − 1. If it is included in
(2e, 2e + 2e−1) and contains 2e + 2e−2 then this is bg and g = e − 2. And so on,
which suggests how we can compute bg and thus g by dichotomy.

The floating point numbers lg and ug are the bounds outside of which no x can
verify ∃y ∈ F . x⊕ y ∈ b. Equivalently: (∃y ∈ F . x⊕ y ∈ b)⇒ lg < x 6 ug. These
bounds may seem a little arbitrary, but they actually delimit the x for which either
the ulp of x or the ulp of (bg − x) is less than or equal to 2g.

The numbers bg, lg and ug can also be found in [7]. Although the definitions
look very different, bg is actually equal to ζ from Section 3.2, and lg and ug are



Optimal Inverse Projection of Floating-Point Addition 15

respectively −(α+) and β from Proposition 1. The minus sign comes from the
problem being presented with ⊕ here instead of 	 there, and we consider the
successor of α because, in order to have simpler expressions, we used one strict
and one loose inequality in the property (∃y ∈ F . x ⊕ y ∈ b) ⇒ lg < x 6 ug
instead of two loose ones. This article has already shown that there is no solution
outside of the bounds. We prove it again in Lemma 4 and Lemma 5 for the sake of
completeness. Moreover, these proofs are shorter than the following ones so they
may help the reader get used to notations and proof methods.

Lemma 3 For all b ∈ I(F) such that 0 < b 6 b, let (g, bg) = ExpAndWitness(b),
then

∀b ∈ b. b 6≡ 0[2g+1] (2.1)

bg ≡ 2g[2g+1] (2.2)

g > emin − p+ 1, ulp−(2g+p) = 2g, ulp+(2g+p) = ulp−(2g+p+1) = 2g+1 (2.3)

bg < 2g+p (2.4)

b < bg + 2g = bg ⊕ 2g (2.5)

(2g+p)
− ⊕ bg = ( 2g+p + (bg ⊕ 2g)︸ ︷︷ ︸

∈F

)
−

(2.6)

(2g+p)
− ⊕ bg = (2g+p)

−
+ bg < 2g+p + bg < 2g+p+1 (2.7)

b < b ⇒ even(bg) (2.8)

bg − lg+ ∈ F (2.9)

Proof (2.1) is immediate from the definition of g.
(2.2) follows from bg 6≡ 0[2g+1] and bg ≡ 0[2g].
(2.3): bg is a positive finite floating point number so bg ≡ 0[2emin−p+1], but

bg 6≡ 0[2g+1] so g+ 1 > emin − p+ 1. Then 2g+p and 2g+p+1 are normal floating
point numbers hence the values for the ulps.

(2.4): bg 6≡ 0[2g+1] so |bg| < 2g+p from (0.3).

(2.5): we have just seen that bg < 2g+p so bg 6 (2g+p)
−

= 2g+p − 2g. Then
|bg+2g| 6 2g+p with bg+2g ≡ 0[2g] so bg+2g ∈ F from (0.5), and bg⊕2g = bg+2g.
But bg + 2g = 0[2g+1] so bg + 2g /∈ b, and bg + 2g > bg > b so bg + 2g > b.

(2.6) and (2.7): from above, bg < 2g+p so (2g+p − 2g) + bg < 2g+p + bg + 2g <
2g+p+1+2g. Moreover, from bg ≡ 2g[2g+1] we get (2g+p−2g)+bg ≡ 2g+p+bg+2g ≡
0[2g+1] so actually 0 < (2g+p − 2g) + bg < 2g+p + bg + 2g 6 2g+p+1, and from

(0.5) we obtain (2g+p)
−

+ bg = (2g+p − 2g) + bg ∈ F and 2g+p + bg + 2g ∈ F .

This means that (2g+p)
−⊕ bg = ◦((2g+p)

−
+ bg) = (2g+p)

−
+ bg and, using (2.5),

2g+p + (bg ⊕ 2g) = 2g+p + bg + 2g ∈ F . Also, 2g+p < 2g+p + (bg ⊕ 2g) 6 2g+p+1

so ulp−(2g+p + (bg ⊕ 2g)) = ulp+(2g+p) = 2g+1 so pred
(

(2g+p + (bg ⊕ 2g))
)

=

(2g+p +bg +2g)−ulp−(2g+p +(bg⊕2g)) = 2g+p +bg−2g = (2g+p)
−⊕bg. Finally,

(2g+p)
−

+ bg < 2g+p + bg < 2g+p+1 is trivial using (2.4) again.
(2.8): by definition, g is the greatest integer such that b contains an element

divisible by 2g, and bg is a witness for g, verifying bg ∈ b and bg ≡ 0[2g]. This
means that bg is divisible by every power of two that divides at least an element
of b. For any odd floating point number x, both its neighbors (predecessor and
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successor) are divisible by a greater power of two than x. If b < b then any element
of b has at least one neighbor in b, in particular for any odd element of b there is
another element divisible by a greater power of two, therefore bg cannot be odd.

(2.9): we have shown that ulp+(−2g+p) = ulp−(2g+p) = 2g (2.3) so lg
+ =

(−2g+p)
+

= −2g+p+2g. Then, using (2.2), bg−lg+ ≡ 2g+2g+p−2g ≡ 0[2g+1] with
−2g+p+1 < bg− lg+ = bg +2g+p−2g < 2g+p+1 (2.7) where ulp−(2g+p+1) = 2g+1,
therefore bg − lg+ ∈ F from (0.5).

ut

Lemma 4 For all x ∈ F and b ∈ I(F) with 0 < b 6 b, if x > (2g+p)
−⊕ bg then

{y ∈ F | x⊕ y ∈ b} = ∅ where (g, bg) = ExpAndWitness(b).

Proof Let b ∈ I(F) with 0 < b 6 b, let (g, bg) = ExpAndWitness(b), and let

x ∈ F such that x > (2g+p)
− ⊕ bg. This proof proceeds by contradiction: assume

that {y ∈ F | x ⊕ y ∈ b} contains at least one element y. Then x ⊕ y 6 b <
bg ⊕ 2g using (2.5), so x + y < bg ⊕ 2g. From (2.6): x > 2g+p + (bg ⊕ 2g), so
y < (bg ⊕ 2g) − x 6 −2g+p. Also x > 2g+p, so from (0.3): x ≡ y ≡ 0[2g+1].
Then x + y ≡ 0[2g+1], so using (0.6): x ⊕ y ≡ 0[2g+1], whereas x ⊕ y ∈ b and
∀b ∈ b. b 6= 0[2g+1] (2.1). By contradiction, we obtain {a ∈ F | x⊕a ∈ b} = ∅. ut

Lemma 5 For all x ∈ F and b ∈ I(F) with 0 < b 6 b, if x 6 −2g+p then
{y ∈ F | x⊕ y ∈ b} = ∅ where (g, bg) = ExpAndWitness(b).

Proof Similar to the proof of Lemma 4. Let b, g, bg as above and let x ∈ F such
that x 6 −2g+p. By contradiction, assume that {y ∈ F | x ⊕ y ∈ b} contains at
least one element y. Then y > −x > 2g+p from x⊕ y > b > 0, so x ≡ y ≡ 0[2g+1]
so x⊕ y = 0[2g+1] which contradicts (2.1). ut

In the following lemmas, we use the notation Yx,b
def
= {y ∈ F | x⊕ y = b}.

Note that Yx,b 6= ∅ is equivalent to ∃y ∈ F . x⊕ y = b. So when the interval b
is reduced to the singleton {b}, that is when b = b = b, the set whose minimum
we are looking for, {x ∈ F | x > x0 ∧ ∃y ∈ F . x ⊕ y ∈ b}, is equal to
{x ∈ F | x > x0 ∧ Yx,b 6= ∅}. And even when b is not a singleton, the set
{x ∈ F | x > x0 ∧ ∃y ∈ F . x⊕ y ∈ b} can be written as {x ∈ F | x > x0 ∧ ∃b ∈
b. Yx,b 6= ∅}.

Lemma 6 Let x0, b ∈ F , g ∈ Z such that b > 0, b ≡ 2g[2g+1] and −2g+p < x0 6

(2g+p)
−⊕ b. Let v

def
= ulp+(b−x0). If Yx0,b = ∅ and Yx0

+,b = ∅ then ulp+(x0) 6 v
4

and ulp−(b) = v
2 (and v

4 ∈ F).

Proof Let x0, b ∈ F , g ∈ Z, v
def
= ulp+(b − x0), and assume b > 0, b ≡ 2g[2g+1],

−2g+p < x0 6 (2g+p)
− ⊕ b, Yx0,b = ∅ and Yx0

+,b = ∅.

First of all, we notice that b− x0 /∈ F . Indeed, if we had b− x0 ∈ F , we would

have x0 ⊕ (b − x0) = ◦(b) = b so b − x0 ∈ Yx0,b
def
= {y ∈ F | x0 ⊕ y = b}, which

contradicts the assumption Yx0,b = ∅. Therefore, b− x0 /∈ F .

By contradiction, assume ulp+(x0) > v.
Then v divides ulp+(x0) as both are powers of 2, so from x0 ≡ 0[ulp+(x0)], we

get x0 ≡ 0[v].
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By assumption and by (2.7): x0 6 (2g+p)
−⊕b < 2g+p+b, so −2g+p < b−x0. If

|x0| > 2g+p then, since we assumed−2g+p, we get x0 > 2g+p > b (2.4), so−2g+p <
b − x0 < 0 so |b − x0| < 2g+p. This means |x0| > 2g+p ⇒ |b − x0| < 2g+p, which
we rewrite as |x0| < 2g+p ∨ |b− x0| < 2g+p. From (0.1) and (2.3): ∀y ∈ F , |y| <
2g+p ⇒ ulp+(y) 6 ulp−(2g+p) = 2g. Then ulp+(x0) 6 2g ∨ ulp+(b − x0) 6 2g.

But ulp+(x0) > v and ulp+(b − x0)
def
= v, therefore v 6 2g. Since v and 2g are

powers of 2, this means v divides 2g; from the assumption b ≡ 2g[2g+1] we get
b ≡ 0[2g] then b ≡ 0[v].

We have shown x0 ≡ 0 ≡ b[v]. This means b−x0 ≡ 0[ulp+(b−x0)], so b−x0 ∈ F
from (0.4), whereas we have shown above that b−x0 /∈ F . Therefore, ulp+(x0) < v.

By contradiction, assume ulp+(x0) = v
2 .

Then from x0 ≡ 0[ulp+(x0)], we get x0 ≡ 0[v2 ].

By assumption and by (2.7): −2g+p < x0 6 (2g+p)
− ⊕ b < 2g+p + b, so

−2g+p < b−x0 < b+2g+p < 2g+p+1, so v
def
= ulp+(b−x0) 6 ulp−(2g+p+1) = 2g+1

by (0.1) and (2.3). Since v is a power of 2, this means v
2 divides 2g, moreover

b ≡ 0[2g] so b ≡ 0[v2 ].
We have shown x0 ≡ 0 ≡ b[v2 ], so there are two possible cases: either b ≡ x0[v]

or b ≡ x0 + v
2 [v]. In the first case b − x0 ≡ 0[v], which leads to the contradiction

b − x0 ∈ F as above. In the second case, b − x0 ≡ v
2 [v] with v = ulp+(b − x0),

so the nearest floating point numbers on either side of b− x0 are b− x0 − v
2 and

b − x0 + v
2 (0.9); in particular b − x0+ = b − (x0 + ulp+(x0)) = b − x0 − v

2 ∈ F
with x0

+⊕ (b−x0+) = ◦(b) = b, so b−x0+ ∈ Yx0
+,b which contradicts Yx0

+,b = ∅.
Therefore, ulp+(x0) 6= v

2 .

We have proven ulp+(x0) < v and ulp+(x0) 6= v
2 . Since ulp+(x0) and v are

both powers of 2, this means that ulp+(x0) 6 v
4 .

This gives us |x0| 6 1
2 |b− x0| using (0.10) with v

def
= ulp+(b− x0). Then, since

b > 0, b = |b−x0+x0| > |b−x0|−|x0| > |b−x0|− 1
2 |b−x0| =

1
2 |b−x0|. Moreover, we

already know that b−x0 /∈ F so 1
2 |b−x0| /∈ F while b ∈ F , so the inequality is strict:

so b > 1
2 |b−x0|. Then, using (0.1), ulp−(b) > ulp+(1

2 (b−x0)) > 1
2ulp+(b−x0) = v

2 .

By contradiction, assume 1
2 (ulp−(b) + ulp+(b)) > v. From Lemma 2, there is a

floating point number y in
[
b− x0 − 1

2ulp−(b), b− x0 + 1
2ulp+(b)

)
, and y verifies

b − 1
2ulp−(b) 6 x0 + y < b + 1

2ulp+(b). If b − 1
2ulp−(b) < x0 + y < b + 1

2ulp+(b)
then x0 ⊕ y = b from (0.7) so y ∈ Yx0,b, which contradicts Yx0,b = ∅. Otherwise
x0 +y = b− 1

2ulp−(b), moreover we know that ulp+(b) > v
2 > 2ulp+(x0), so x0

+ +

y = x0 + ulp+(x0) + y = b− 1
2ulp−(b) + ulp+(x0) < b+ ulp+(x0) 6 b+ 1

2ulp+(b),

so b− 1
2ulp−(b) = x0 + y < x0

+ + y < b+ 1
2ulp+(b); then x0

+ ⊕ y = b from (0.7)

so y ∈ Yx0
+,b, which contradicts Yx0

+,b = ∅. Therefore, 1
2 (ulp−(b) + ulp+(b)) < v.

b > 0 so ulp−(b) 6 ulp+(b), so from above we get ulp−(b) < v. We have also
proven ulp−(b) > v

2 , and both are powers of 2, therefore ulp−(b) = v
2 .

ut

Lemma 7 Let x0 ∈ F and b ∈ I(F) with 0 < b 6 b, and let (lg, ug) =
gBounds(b).
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If b < b and lg < x0 6 ug then

∃y ∈ F , x0 ⊕ y ∈ b ∨ ∃y ∈ F , x0+ ⊕ y ∈ b.

Proof Usual notations including (g, bg), same assumptions as lemma. By contra-
diction, assume {y ∈ F | x0 ⊕ y ∈ b} = ∅ and {y ∈ F | x0+ ⊕ y ∈ b} = ∅.

Since bg ∈ b, we have Yx0,bg
def
= {y ∈ F | x0 ⊕ y = bg} ⊂ {y ∈ F | x0 ⊕ y ∈

b} = ∅ so Yx0,bg = ∅, and similarly Yx0
+,bg = ∅. Then, from Lemma 6 we get

ulp+(x0) 6 v
4 and ulp−(bg) = v

2 where v
def
= ulp+(bg − x0). Since bg > 0, we also

have ulp+(bg) > ulp−(bg) = v
2 .

Let yd
def
= 5(bg − x0) and yu

def
= 4(bg − x0). We are going to prove that

x0 ⊕ yu ∈ [bg, bg
+] and x0 ⊕ yd ∈ [bg

−, bg].
We have yd 6 bg − x0 6 yu so x0 ⊕ yd 6 bg and x0 ⊕ yu > bg, but {y ∈

F | x0 ⊕ y = bg} = ∅ so x0 ⊕ yd < bg and x0 ⊕ yu > bg. Then, from (0.7):
x0 + yd 6 bg − 1

2ulp−(bg) = bg − v
4 , and x0 + yu > bg + 1

2ulp+(bg) > bg + v
4 .

We have bg − x0 /∈ F , because otherwise we would have x0 ⊕ (bg − x0) = bg
hence the contradiction bg − x0 ∈ {y ∈ F | x0 ⊕ y ∈ b} = ∅. This means that
yd < bg − x0 < yu and yu = yd + ulp+(bg − x0) = yd + v.

On the one hand, we obtain x0 + yu = x0 + yd + v 6 bg − v
4 + v. But we

already know ulp+(bg) > v
2 , and since bg > 0 we have ulp+(bg) 6 ulp+(bg

+), so

bg + 3
4v 6 bg + ulp+(bg) + 1

2ulp+(bg) = bg
+ + 1

2ulp+(bg) 6 bg
+ + 1

2ulp+(bg
+).

Therefore x0 + yu 6 bg
+ + 1

2ulp+(bg
+). Moreover, from (2.8) bg is even so bg

+

is odd, and we have bg 6 x0 + yu 6 bg
+ + 1

2ulp+(bg
+), so from (0.7) we obtain

x0 ⊕ yu ∈ [bg, bg
+].

On the other hand, we get x0 + yd = x0 + yu − v > bg + v
4 − v = bg − v

2 −
v
4 =

bg−ulp−(bg)− 1
2ulp−(bg) = bg

−− 1
2ulp+(bg

−). Since bg is even, bg
− is odd which

implies ulp−(bg) = ulp+(bg). Then bg
− − 1

2ulp−(bg
−) 6 x0 + yd 6 bg where bg

−

is odd, so from (0.7) we obtain x0 ⊕ yd ∈ [bg
−, bg].

Finally, b < b means that b contains at least two elements; moreover it con-
tains bg. Then, either bg

+ ∈ b or bg
− ∈ b, so either x0 ⊕ yu ∈ b or x0 ⊕ yd ∈ b,

which contradicts our assumption {y ∈ F | x0 ⊕ y ∈ b} = ∅.
Therefore, {y ∈ F | x0 ⊕ y ∈ b} 6= ∅ or {y ∈ F | x0+ ⊕ y ∈ b} 6= ∅.
(Note: in most of the proof x0

+ does not appear, however we did use the
assumption {y ∈ F | x0+ ⊕ y ∈ b} = ∅ to be able to apply Lemma 6.)

ut

Lemma 8 Let x0, b ∈ F , g ∈ Z such that b > 0, b ≡ 2g[2g+1] and −2g+p < x0 6

(2g+p)
−⊕ b. Let xmin

def
= min{x ∈ F | x > x0 ∧ Yx,b 6= ∅}. Then xmin is either x0

or min{x ∈ F | x⊕5(b− x0) > b}.

Proof Same notations, assumptions and définition of xmin. Let yd
def
= 5(b − x0)

and let x1
def
= min{x ∈ F | x⊕ yd > b}. The lemma states that xmin ∈ {x0, x1}.

Let us assume that xmin 6= x0, and let us prove that xmin = x1.

By definition of xmin, xmin 6= x0 means that Yx0,b = ∅. By definition of 5,
yd 6 b − x0 < yd

+, in particular x0 + yd 6 b so x0 ⊕ yd 6 ◦(b) = b. But we just



Optimal Inverse Projection of Floating-Point Addition 19

saw that Yx0,b
def
= {y ∈ F | x0 ⊕ y = b} = ∅ so x0 ⊕ yd 6= b, therefore x0 ⊕ yd < b.

Similarly, x0 ⊕ yd+ > b but x0 ⊕ yd+ 6= b so x0 ⊕ yd+ > b.

To prove that x1 = xmin
def
= min{x ∈ F | x > x0 ∧ Yx,b 6= ∅}, we will first

prove that x1 > x0, then that Yx1,b 6= ∅, which will mean that x1 ∈ {x ∈ F | x >
x0 ∧ Yx,b 6= ∅}. Then, to show that x1 is actually the minimum of this set, it will
be sufficient to prove that Yx,b = ∅ for any x ∈ F such that x0 6 x < x1.

By definition of x1, x1⊕ yd > b, and we have seen that x0⊕ yd < b so x1 > x0.

We prove Yx1,b 6= ∅ by case analysis:

– If Yx0
+,b 6= ∅, then let y ∈ Yx0

+,b such that x0
+⊕y = b. We have y 6 yd, indeed

otherwise y′ > yd
+ so x0

+ ⊕ y > x0 ⊕ yd+ > b. Then x0
+ ⊕ yd > x0

+ ⊕ y = b

while x0 ⊕ yd < b, so x0
+ = min{x ∈ F | x ⊕ yd > b} def

= x1, so Yx0
+,b 6= ∅

means Yx1,b 6= ∅.
– If Yx0

+,b = ∅, then from Lemma 6 we get ulp+(x0) 6 v
4 and ulp−(b) = v

2 where

v
def
= ulp+(b− x0). (Since b > 0, we also have ulp+(b) > ulp−(b) = v

2 .)
We will prove that x1+yd 6 b. This will give x1⊕yd 6 b, while also x1⊕yd > b
by definition of x1, so x1 ⊕ yd = b which means yd ∈ Yx1,b.
We already know that x0⊕yd+ > b, and from (0.8) ulp+(yd) = ulp+(b−x0) =
v, so ◦(x0 + yd + v) > b. Then, 4(x0 + v) ⊕ yd = ◦(4(x0 + v) + yd) >
◦(x0 + v + yd) > b, so by definition of x1, x1 6 4(x0 + v). Then x1

− 6
pred

(
4 (x0 + v)

)
6 x0 + v. As we already have ulp+(x0) 6 v

4 and x1 > x0
which means x1

− > x0, from Lemma 1 we obtain ulp+(x1
−) 6 v

2 .

By definition of x1, we know that x1
− ⊕ yd < b, so x1

− + yd 6 b− v
4 by (0.7)

with ulp−(b) = v
2 .

If ulp+(x1
−) < v

2 , then ulp+(x1
−) 6 v

4 as they are all powers of 2, so x1+yd =

x1
− + ulp+(x1

−) + yd 6 x1
− + yd + v

4 6 b− v
4 + v

4 = b.

If ulp+(x1
−) = v

2 then x1+yd = x1
−+ulp+(x1

−)+yd = x1
−+yd+ v

2 6 b+ v
4 .

Also ulp−(x1) = ulp+(x1
−) = v

2 , moreover we already have ulp−(b) = v
2 and

ulp+(yd) = v, so x1 ≡ b ≡ yd ≡ 0[v2 ]. Then x1 +yd 6 b+ v
4 with x1 +yd ≡ b[v2 ],

therefore x1 + yd 6 b (as there is no number equal to b modulo v
2 in the real

interval (b, b+ v
4 ] ).

In both cases we obtain x1 + yd 6 b. As explained above, using the definition
of b we get x1 ⊕ yd = b, which means yd ∈ Yx1,b hence Yx1,b 6= ∅.

Finally, let x ∈ F such that x0 6 x < x1, and let us prove that Yx,b = ∅. On
the one hand, by definition of x1, x < x1 means that x /∈ {x′ ∈ F | x′ ⊕ yd > b}
so x⊕ yd < b. On the other hand, x⊕ yd+ > x0⊕ yd+ and we have already shown
x0 ⊕ yd+ > b, so x ⊕ yd+ > b. Moreover, as consecutive floating point numbers,
yd and yd

+ satisfy: for all y ∈ F , either y 6 yd or y > yd
+. Then, for all y ∈ F ,

either x⊕y 6 x⊕yd < b or x⊕y > x⊕yd+ > b so in any case x⊕y 6= b. Therefore
Yx,b = ∅.

Having assumed xmin 6= x0, we have proven x1 > x0 and Yx1,b 6= ∅ and
(∀x ∈ F , x0 6 x < x1 ⇒ Yx,b = ∅ ), which means that xmin = x1 as explained

above. Therefore, xmin ∈ {x0, x1} where x1
def
= min{x ∈ F | x⊕ yd > b}. ut
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We can finally prove the main theorem of this section. Algorithm XminITV in
§5 relies on it.

Theorem 3 Let x0 ∈ F and b ∈ I(F) with 0 < b 6 b, and let (lg, ug) =
gBounds(b).

We define xmin
def
= min{x ∈ F | x > x0 ∧ ∃y ∈ F . x⊕ y ∈ b}.

– If x0 6 lg then xmin = lg
+.

– If x0 > ug then xmin = +∞ (by convention, minimum of an empty set).

For the remaining cases, we introduce y0
def
= min{y ∈ F | x0 ⊕ y > b}.

– If lg < x0 6 ug and x0 ⊕ y0 6 b then xmin = x0.
– If lg < x0 6 ug and x0 ⊕ y0 > b and b < b then xmin = x0

+.
– If lg < x0 6 ug and x0 ⊕ y0 > b and b = b then xmin = min{x ∈ F | x ⊕
5(b− x0) > b}.

Proof Same notations and definitions.

Let E
def
= {x ∈ F | x > x0 ∧ ∃y ∈ F . x⊕ y ∈ b} and xmin = minE.

– Case x0 6 lg. From Lemma 5, for all x ∈ F such that x 6 lg, {y ∈ F | x ⊕
y ∈ b} = ∅ so x /∈ E, therefore xmin > lg. On the other hand, from (2.9)
bg− lg+ ∈ F which means lg

+⊕ (bg− lg+) = bg ∈ b with lg
+ > x0 so lg

+ ∈ E,
therefore xmin 6 lg

+. Combining both inequalities, we obtain xmin = lg
+.

– Case x0 > ug. Then for all x ∈ F such that x > x0, we get x > ug, so from
Lemma 4, {y ∈ F | x⊕y ∈ b} = ∅. This means that E is empty, so xmin = +∞
by convention.

Before handling the remaining cases, let y0
def
= min{y ∈ F | x0⊕y > b} and let

us show that x0 ⊕ y0 6 b ⇔ ∃y ∈ F . x0 ⊕ y ∈ b. On the one hand, x0 ⊕ y0 > b
by definition of y0 so: if x0⊕ y0 6 b then x0⊕ y0 ∈ [b,b] = b. On the other hand,
assume there exists y ∈ F such that x0 ⊕ y ∈ b, then x0 ⊕ y > b so y > y0 by
definition of y0, then by monotony x0 ⊕ y0 6 x0 ⊕ y 6 b.

– Case lg < x0 6 ug and x0⊕y0 6 b. As we have just seen, the second condition
means that ∃y ∈ F . x0 ⊕ y ∈ b. Then x0 ∈ E, and by definition of E, x > x0
for any element x ∈ E, so xmin = x0. (Note that we do not need the first
condition lg < x0 6 ug, which is there to highlight the completeness of the
cases.)

– Case lg < x0 6 ug and x0⊕y0 > b and b < b. As explained above and adding
negations, the second condition means ¬(∃y ∈ F . x0 ⊕ y ∈ b), so x0 /∈ E.
Furthermore, using Lemma 7 (as allowed by the first and third conditions) we
get: either ∃y ∈ F . x0 ⊕ y ∈ b or ∃y ∈ F . x0+ ⊕ y ∈ b, but we know the first
statement to be false so the second one is true. Since x0

+ > x0, this means
that x0

+ ∈ E. Moreover, by definition of E, for any x ∈ E, we have x > x0,
but x0 /∈ E so actually x > x0 which means x > x0

+. Therefore, xmin = x0
+.

– Case lg < x0 6 ug and x0 ⊕ y0 > b and b = b. Once again, the second
condition means ¬(∃y ∈ F . x0 ⊕ y ∈ b) so x0 /∈ E. Furthermore, the first
and third conditions let us use Lemma 8 to obtain that xmin is either x0 or
min{x ∈ F | x ⊕ 5(b − x0) > b} (indeed, for b = b = b and any x ∈ F ,
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Yx,b 6= ∅ ⇔ {y ∈ F | x⊕y = b} 6= ∅ ⇔ ∃y ∈ F . x⊕y ∈ b so the definition of
xmin in the lemma is the same as here). But x0 /∈ E so xmin 6= x0, therefore
xmin = min{x ∈ F | x⊕5(b− x0) > b}.

ut

4.4 Refining B

We still denote x = [x,x], a = [a,a], b = [b,b] nonempty floating point intervals
such that 0 < b 6 b, x ∗x > 0, a ∗ a > 0. We now want to compute the minimum
and maximum of the set B below, denoted bmin and bmax respectively.

B
def
= {b ∈ b | ∃x ∈ x. ∃a ∈ a. x⊕ a = b}.

As we already know how to compute the respective minima (xmin and amin)
and maxima (xmax and amax) of the sets X and A defined below, we will use
them in this section.

X
def
= {x ∈ x | ∃a ∈ a. x⊕ a ∈ b}

A
def
= {a ∈ a | ∃x ∈ x. x⊕ a ∈ b}

First of all, note that an element b belonging to B is based on witnesses x and a that
are actually, by definition, in X and in A respectively. And since X ⊂ [xmin, xmax]
and A ⊂ [amin, amax], we can rewrite B as below. We can do the same for X and
A then forget x, x, a and a.

B = {b ∈ b | ∃x ∈ [xmin, xmax]. ∃a ∈ [amin, amax]. x⊕ a = b}
X = {x ∈ [xmin, xmax] | ∃a ∈ [amin, amax]. x⊕ a ∈ b}

Theorem 4 Let x = [x,x], a = [a,a], b = [b,b] nonempty floating point intervals
such that 0 < b 6 b, and x and x are non zero and have the same sign, and so
are a and a. Let X, A and B the sets defined as above, and let xmin, xmax,
amin, amax, bmin and bmax their respective minimum and maximum. Assume
that xmin 6 xmax, which means X is non empty, so neither are A and B because
of their definitions.

– If xmin ⊕ amin > b then bmin = xmin ⊕ amin.
– If xmin⊕amin < b and xmin < 0 then bmin = amin⊕min{x ∈ F | x⊕amin >

b}.
– If xmin⊕amin < b and amin < 0 then bmin = xmin⊕min{a ∈ F | xmin⊕a >

b}.
– If xmin ⊕ amin < b and xmin > 0 and amin > 0 then bmin = b.

Proof Same notations and assumptions. The assumption that x and x are non
zero and have the same sign means that all the elements of x (which include all
the elements of [xmin, xmax]) are non zero and share the same sign. Similarly, all
the elements of [amin, amax] are non zero and share the same sign.
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We will use the alternative forms for X, A and B explained above:

X = {x ∈ [xmin, xmax] | ∃a ∈ [amin, amax]. x⊕ a ∈ b}
A = {a ∈ [amin, amax] | ∃x ∈ [xmin, xmax]. x⊕ a ∈ b}
B = {b ∈ b | ∃x ∈ [xmin, xmax]. ∃a ∈ [amin, amax]. x⊕ a = b}.

From bmin ∈ B, let x′ ∈ [xmin, xmax] and a′ ∈ [amin, amax] such that x′⊕a′ =
bmin.

– Case xmin ⊕ amin > b. Then, combining this with xmin ⊕ amin 6 x′ ⊕ a′ =
bmin 6 b, we get xmin ⊕ amin ∈ b with xmin ∈ [xmin, xmax] and amin ∈
[amin, amax]. This means that xmin ⊕ amin ∈ B, but we also have xmin ⊕
amin 6 bmin

def
= minB, therefore bmin = xmin ⊕ amin.

– Case xmin ⊕ amin < b and xmin < 0. Then all the elements of [xmin, xmax]
are negative. Moreover, x′ ⊕ a′ = bmin > b > 0 so x′ + a′ > 0 with x′ < 0,
therefore a′ > 0 and all the elements of [amin, amax] are positive.

Let x1
def
= min{x ∈ F | x⊕ amin > b}.

We want to prove that x1 ⊕ amin = bmin.
The definition of x1 means that x1 ⊕ amin > b while xmin ⊕ amin < b, so
x1 > xmin.
By definition of amin, let x ∈ [xmin, xmax] such that x⊕amin ∈ b, then x1 6 x
by definition of x1, so x1 ⊕ amin 6 x⊕ amin 6 b and also x1 6 x 6 xmax.
We have proven xmin < x1 6 xmax, and b 6 x1 ⊕ amin 6 b (using the
definition of x1 for the inequality on the left hand side), and trivially amin ∈
[amin, amax], therefore x1 ⊕ amin ∈ B and x1 ⊕ amin > bmin.
What we wanted to prove is x1⊕ amin = bmin, so there remains to prove that
x1 ⊕ amin 6 bmin. By contradiction, assume x1 ⊕ amin > bmin.
We already know that x1 + amin > b > 0 and x1 6 xmax < 0, so |x1| < amin.
From our assumption x1 ⊕ amin > bmin = x′ ⊕ a′, and from amin 6 a′ by
definition of a′, we obtain x1 > x′.
We have shown that x′ < x1 < 0 and 0 6 |x1| < amin 6 a′. This means that
x′, x1, amin and a′ are all 0 modulo ulp−(x1) from (0.2). So xmin

− + amin =
xmin − ulp−(xmin) + amin ≡ 0[ulp−(x1)], and x′ + a′ ≡ 0[ulp−(x1)] which
gives bmin = ◦(x′ + a′) ≡ 0[ulp−(x1)] using (0.6).
By definition of x1, x1

− ⊕ amin < b 6 bmin so x1
− + amin < bmin with

x1
−+amin ≡ bmin[ulp−(x1)], so bmin−(x1

−+amin) > ulp−(x1) so x1+amin =
x1
− + amin + ulp−(x1) 6 bmin. Then x1 ⊕ amin 6 ◦(bmin) = bmin, which

contradicts x1 ⊕ amin > bmin.
Therefore, x1⊕ amin 6 bmin. But we have also proven that bmin 6 x1⊕ amin,
so bmin = x1 ⊕ amin = amin ⊕min{x ∈ F | x⊕ amin > b}.

– Case xmin⊕amin < b and amin < 0. This is the same as the case xmin⊕amin <
b and xmin < 0 by swapping x and a since ⊕ is commutative.

– Case xmin ⊕ amin < b and xmin > 0 and amin > 0. In particular, all the
elements of [xmin, xmax] and of [amin, amax] are positive.
Without loss of generality, we can assume that xmin 6 amin (otherwise we
swap everything about x and a by commutativity of ⊕).

Let a1
def
= min{a ∈ F | xmin ⊕ a > b}.
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To show that bmin = b, we will show that b ∈ B by proving that either
b = xmin ⊕ a1 or b = xmin

+ ⊕ a1− with xmin, xmin
+ ∈ [xmin, xmax] and

a1, a1
− ∈ [amin, amax].

From amin ∈ A there exists x ∈ [xmin, xmax] such that x ⊕ amin > b. But
xmin ⊕ amin < b, so xmin < x 6 xmax, which means xmin

+ 6 xmax so
xmin

+ ∈ [xmin, xmax].
By definition of a1 we get xmin⊕ a1 > b, but xmin⊕ amin < b, so a1 > amin.
Moreover, from xmin ∈ X there exists a ∈ [amin, amax] such that xmin⊕a > b,
so a1 6 a 6 amax. We obtain a1 ∈ [amin, amax] and a1

− ∈ [amin, amax].
If b = xmin ⊕ a1, then b ∈ B so bmin = b as we wanted to prove.
We now assume that b 6= xmin ⊕ a1. As xmin ⊕ a1 > b from the definition of
a1, this means that xmin ⊕ a1 > b, so xmin + a1 > b + 1

2ulp+(b) using (0.7).

Then xmin
+ + a1

− > xmin + a1
− = xmin + a1− ulp+(a1

−) > b + 1
2ulp+(b)−

ulp+(a1
−). Moreover the definition of a1 gives xmin⊕a1− < b so xmin+a1

− <
b with xmin > 0 so 0 6 a1

− < b so ulp+(a1
−) 6 ulp−(b) 6 ulp+(b) using

(0.1). We obtain xmin
+ + a1

− > b + 1
2ulp+(b)− ulp+(a1

−) > b− 1
2ulp−(b),

therefore xmin
+ + a1

− > b using (0.7).
On the other hand, the definition of a1 gives xmin⊕a1− < b so xmin +a1

− 6
b − 1

2ulp−(b) using (0.7). As we have assumed that xmin 6 amin and shown

that amin < a1, we get 0 < xmin 6 a1
−. Moreover xmin + a1

− < b so
xmin <

1
2 b so ulp+(xmin) 6 ulp−(1

2 b). If b is subnormal, then xmin and a1
−

are subnormal as well, so all of them are multiples of the smallest ulp 2emin−p+1,
so xmin+a1

− < b means xmin+a1
− 6 b−2emin−p+1 therefore xmin

++a1
− =

xmin + 2emin−p+1 + a1
− 6 b. If b is not subnormal, then ulp+(xmin) 6

ulp−(1
2 b) = 1

2ulp−(b), so xmin
+ + a1

− = xmin + a1
− + ulp+(xmin) 6 b −

1
2ulp−(b) + ulp+(xmin) 6 b, therefore xmin

+ + a1
− 6 b.

Finally, we have shown that xmin
+ + a1

− > b and xmin
+ + a1

− 6 b with
xmin

+ ∈ [xmin, xmax] and a1
− ∈ [amin, amax], so b ∈ B therefore bmin = b.

ut

The case where xmin ⊕ amin > b is obvious. To illustrate that we need as
many other cases, consider the following examples in binary64.

If x = [−2100,−299], a = [2100, 2101] and b = [1, 280], then bmin = 247.

Moreover xmin = −2100 as −2100 ⊕ (2100)
+

= 248 ∈ b, and amin = 2100 as

(−2100)
+ ⊕ 2100 = 247 ∈ b. Then we have indeed amin ⊕min{x ∈ F | x⊕ amin >

b} = 247 = bmin. It was obvious that bmin would not be xmin ⊕ amin = 0 which
is smaller than b. But bmin is not equal to b = 1 either, nor xmin ⊕ min{a ∈
F | xmin ⊕ a > b} = 248.

If x = [1, 2100], a = [1, 2100] and b = [253 + 2, 2100], then bmin = b, as for
example b = 253 ⊕ 2 with 253 ∈ x and 2 ∈ a. However, xmin = 1 and amin = 1

as 1 ⊕ 255 ∈ b, and 1 ⊕ 253 = 253 and 1 ⊕ (253)
+

= ◦(1 + 253 + 2) = 253 + 4,
so amin ⊕min{x ∈ F | x ⊕ amin > b} = xmin ⊕min{a ∈ F | xmin ⊕ a > b} =
253 + 4 6= bmin.

5 Algorithms

Here are algorithms to compute the values defined in §4. Note that the theorems
allow several possible algorithms. We are describing one of the possibility, haven
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taken mostly efficiency into account. Note also that the predecessor may be com-
puted using the nextafter function recommended by the IEEE-754 standard or
the algorithm from [14]. Functions return +∞ for the minimum of an empty set,
in accordance with our convention.

As explained in §2.4, we assume that b and b are positive and finite, x and x
are finite, non zero and have the same sign, and a and a are also finite, non zero
and have the same sign.

The function XminPT is based on Theorem 2. For a, b ∈ F with b > 0, it
returns the minimum of {x ∈ F | x⊕ a > b}.

1 function XminPT(a, b)
2 // r e tu rn s min{x ∈ F | x⊕ a > b} , assumes b > 0

3 i f b > 2emin+1 ∧ |b	 a| < b� 2 then

4 x← (b	 a)	 (ulp−(b)� 2)
5 i f x⊕ a > b then return x

6 else return x+

7 end i f
8 else
9 x← b	 a

10 x1 ← x−

11 i f x1 ⊕ a > b then return x1
12 e l s e i f x⊕ a > b then return x

13 else return x+

14 end i f
15 end i f
16 end function

The function XminITV is based on Theorem 3. For x0 ∈ F , b ∈ I(F) with
0 < b 6 b, it returns the minimum of {x ∈ F | x > x0 ∧ (∃y ∈ F , x⊕ y ∈ b )}.

It uses a function ExpAndWitness which is not detailed in this section. For
b ∈ I(F) with 0 < b 6 b, ExpAndWitness(b,b) returns the integer g and the
floating point number bg given by ExpAndWitness(b) in Definition 1. As explained
there, they may be easily computed by dichotomy over the elements in b.

1 function XminITV(x0,b,b)

2 // r e tu rn s min{x ∈ F | x > x0 ∧ (∃y ∈ F , x⊕ y ∈ [b,b] )}
3 // assumes 0 < b 6 b

4 (g, bg)← ExpAndWitness(b,b)

5 ug ← (2g+p 	 2g)⊕ bg // 2g+p 	 2g i s (2g+p)
−

6 lg ← −2g+p

7 i f x0 6 lg then
8 // a s s e r t (lg ⊕ 2g)⊕ (bg 	 (lg ⊕ 2g)) = bg
9 return lg ⊕ 2g // lg ⊕ 2g i s lg

+

10 e l s e i f x0 > ug then
11 return +∞ // the s e t i s empty

12 e l s e i f x0 ⊕XminPT(x0,b) 6 b then
13 return x0
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14 e l s e i f b = b then
15 y1 ←5(b− x0)
16 // a s s e r t XminPT(y1,b)⊕ y1 = b
17 return XminPT(y1,b)
18 else

19 // a s s e r t x0
+ ⊕XminPT(x0

+,b) 6 b

20 return x0
+

21 end i f
22 end function

The function RefineFirstArgument combines the previous functions as de-
scribed in Corollary 1, so that it gives the optimal bounds of X = {x ∈ [x,x] | ∃a ∈
[a,a]. ∃b ∈ [b,b]. x⊕a = b}. It assumes that we also have functions XmaxPT and
XmaxITV, which are almost symmetric to XminPT and XminITV but the as-
sumption 0 < b is not symmetrized (which prevents us from actually symmetrizing
everything to obtain them).

From Corollary 1 we would need to test that xmin 6 x and xmin ⊕ a 6 b to
ensure that X is non empty, in which case xmin is really its minimum and xmax

is really its maximum with no additional test. By construction, xmin > x0 > x
and x0 > XminPT(a,b) so xmin ⊕ a > x0 ⊕ a > b, and similarly xmax 6 x′0 6 x
and xmax ⊕ a 6 b. Then xmin 6 xmax implies both xmin 6 x and xmin ⊕ a 6 b
so xmin and xmax are the extrema of X; whereas xmin > xmax implies that X is
empty (otherwise its extrema would be xmin and xmax, then xmin > xmax would
be a contradiction). Therefore we only need to test whether xmin 6 xmax.

1 function RefineFirstArgument(x,x,a,a,b,b)

2 // r e tu rn s the min and max o f X = {x ∈ [x,x] | ∃a ∈ [a,a]. ∃b ∈ [b,b]. x⊕ a = b}
3 // r e tu rn s (+∞,−∞) if X i s empty

4 // assumes 0 6 b 6 b and no argument i s i n f i n i t e
5 x0 ← max(x,XminPT(a,b))

6 xmin ← XminITV(x0,b,b)

7 x′0 ← min(x,XmaxPT(a,b))

8 xmax ← XmaxITV(x′0,b,b)
9 i f xmin 6 xmax then

10 return (xmin, xmax)
11 else
12 return (+∞,−∞) // X i s empty
13 end i f
14 end function

The function RefineB is based on Theorem 4. With the usual notations, it
assumes that xmin, xmax, amin and amax are indeed the optimal bounds of X
and A, and returns the optimal bounds of B.

Once again, it assumes that we can compute bmax, which should be done almost
symmetrically to the computation of bmin, but the assumption 0 < b prevents us
from simply taking the exact symmetric of this computation.

1 function RefineB(xmin, xmax, amin, amax,b,b)
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2 // Returns (bmin, bmax) the bounds o f B .

3 // Assumes xmin ∗ xmax > 0 , amin ∗ amax > 0 , b ∗ b > 0 , b > 0
4 // and assumes that xmin 6= +∞
5 i f xmin ⊕ amin > b || xmin = xmax || amin = amax then
6 bmin ← xmin ⊕ amin

7 e l s e i f xmin < 0 then
8 bmin ← amin ⊕XminPT(amin,b)
9 e l s e i f amin < 0 then

10 bmin ← xmin ⊕XminPT(xmin,b)
11 else
12 bmin ← b
13 end i f
14 . . . // compute bmax

15 return (bmin, bmax)
16 end function

Finally, the function RefineAll takes the bounds of the input intervals x, a
and b, and it returns the optimal bounds of X = {x ∈ x | ∃a ∈ a. ∃b ∈ b. x⊕ a =
b}, A = {a ∈ a | ∃x ∈ x. ∃b ∈ b. x ⊕ a = b}, and B = {b ∈ b | ∃x ∈ x. ∃a ∈
a. x⊕ a = b}. As discussed in §2.4 and §2.1, it is useful to split variable domains
into positives values, negative values, zeroes, infinities and NaNs; moreover cases
where at least one of the input intervals x, a and b is either empty or the singleton
corresponding to one of the special values are usually rather easy. Therefore, we
assume here that each of these input intervals is nonempty with either only positive
or only negative values. However, we do not assume that b > 0 anymore, but we
handle this case differently so that this assumption holds for every call to the
previous functions.

1 function RefineAll(x,x,a,a,b,b)
2 // Returns (xmin, xmax, amin, amax, bmin, bmax)
3 // the r e s p e c t i v e bounds o f X,A,B .

4 // Assumes x ∗ x > 0 , a ∗ a > 0 , b ∗ b > 0
5 // and no argument i s i n f i n i t e

6 i f x > x || a > a || b > b then
7 return (+∞,−∞,+∞,−∞,+∞,−∞)
8 e l s e i f b < 0 then

9 (x′min, x
′
max, a

′
min, a

′
max, b

′
min, b

′
max)← RefineAll(−x,−x,−a,−a,−b,−b)

10 return (−x′max,−x′min,−a′max,−a′min,−b′max,−b′min)
11 else

12 (xmin, xmax)← RefineFirstArgument(x,x,a,a,b,b)
13 i f (xmin, xmax) = (+∞,−∞) then
14 return (+∞,−∞,+∞,−∞,+∞,−∞)
15 else // i f X 6= ∅ then a l s o A 6= ∅ and B 6= ∅
16 // we do not need to t e s t t h i s anymore

17 (amin, amax)← RefineFirstArgument(a,a, xmin, xmax,b,b)

18 (bmin, bmax)← RefineB(xmin, xmax, amin, amax,b,b)
19 return (xmin, xmax, amin, amax, bmin, bmax)
20 end i f
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21 end i f
22 end function

6 Conclusion and Perspectives

We have shown theorems and proofs about the inverse projection of the FP addi-
tion. All this has lead to several actual algorithms shown in Section 5. The existing
algorithms of the literature are either not optimal or require an unknown number
of iterations (few in practice) to provide the optimal value, while we provide it
immediately. Note that our algorithm may also help in bounding this number of
iteration.

Furthermore, these algorithms have been implemented in a prototype. This
has shown to be quite fast and efficient in practice. It makes sense to be concerned
about the speed of the implementation: this article is an exercise in doing proofs
at design-time in order to minimize the work done at program-analysis-time. For
a more thorough speed evaluation, the following question remains: what is a rep-
resentative input interval? Indeed, should the working intervals of a realistic static
analyzer be expected to small (a few ulps), medium (a 5% difference between
bounds), or large (half the FP range)? There are trivial example programs pro-
ducing all these, and it seems difficult to predict an average width or order of
magnitude for realistic programs. The next step is to incorporate this prototype
abstract domain in the industrial static analyzer TrustInSoft Analyzer. In addition
to statistics about the ranges manipulated during the analysis of real programs,
this will doubtless reveal additional directions of exploration.

Now that we have computed the minimum of {x ∈ F | x ⊕ a > b}, there
remains to compute its maximum. This is not that obvious as we have assumed
b > 0. Nevertheless, we are convinced the proofs will be easy to generalize.

About the perspectives, we have given the optimal inverse projection of a single
FP operation. We have left to study all the other FP operations. Multiplication is
expected to be much easier than addition, especially as the results of Section 4.1
also applies to the multiplication. Square root is also expected to be easy as it
involves a single argument and is monotone [8], therefore dichotomy would work
fine [7]. There remains division, which we expect to be much more challenging. In
the case of the equation b = x�a where b is a constant and for some initial intervals
for a and x, many values can be shaved from a and x because they rebound2 from
b− to b+.

Another perspective concerns the other rounding modes. Given a fixed rounding-
mode, we expect to develop rather similar results, probably even simpler. This is an
interesting development as it covers both the common directed roundings (towards
±∞ or towards zero) but also double rounding (with 80-bits extended registers)
that can be seen as a directed rounding.

2 One example is x ∈[0x1.00068db8bac72p+0,2.0], a ∈[0x1.000d1b71758e2p+0,2.0] and
b = 0x1.fff2e53a4e1dbp−1. The operation 0x1.00068db8bac72p+0 / 0x1.000d1b71758e2p+0
evaluates to 0x1.fff2e53a4e1dcp−1, whereas 0x1.00068db8bac72p+0 / 0x1.000d1b71758e3p+0
evaluates to 0x1.fff2e53a4e1dap−1, and 0x1.00068db8bac73p+0 / 0x1.000d1b71758e3p+0
evaluates to 0x1.fff2e53a4e1dcp−1 again, and so on.
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Another perspective is a clean handling of special values (infinities and NaNs).
The given algorithms have been tested intensively with exceptional values, but
there is no clear study to ensure the correct behavior in all possible cases.
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