
HAL Id: hal-01939365
https://hal.inria.fr/hal-01939365

Submitted on 29 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

In silico experimental evolution shows that complexity
can rise even in simple environments

Guillaume Beslon, Vincent Liard, David P. Parsons, Jonathan
Rouzaud-Cornabas

To cite this version:
Guillaume Beslon, Vincent Liard, David P. Parsons, Jonathan Rouzaud-Cornabas. In silico exper-
imental evolution shows that complexity can rise even in simple environments. ICSB 2018 - 19th
International Conference on Systems Biology, Oct 2018, Lyon, France. pp.1. �hal-01939365�

https://hal.inria.fr/hal-01939365
https://hal.archives-ouvertes.fr


Introduction	 Methods	

Experimental	design	and	complexity	measures	
Experimental	design	

•  To	unravel	the	origin	of	molecular	complexity,	we	
evolved	 populations	 in	 an	 environment	 where	
the	simplest	possible	organism	can	strive.	

•  We	evolved	300	populations	of	1024	 individuals	
for	 250,000	 generations	 under	 3	mutation	 rates	
and	monitored	the	evolution	complexity.	

In	silico	experimental	evolution	shows	that	complexity	
can	rise	even	in	simple	environments	
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Systems	biology,	often	viewed	as	reverse	engineering	
of	biological	systems,	deals	however	with	objects	that	
have	 not	 been	 designed.	 Neither	 do	 they	 have	 a	
prefdefined	 purpose	 nor	 do	 they	 follow	 engineering	
rules.	 Indeed,	 we	 don’t	 know	 what	 are	 the	 “design	
rules”	 that	 evolution	 imposes	 to	 biological	 systems	
while	 this	 knowledge	 would	 be	 a	 valuable	
interpretative	framework	for	systems	biology.	
One	of	 the	 recurrent	questions	on	 that	matter	 is	 the	
origin	of	the	striking	molecular	complexity	of	biological	
systems.	Answering	this	question	requires	deciphering	
the	 complex	 interactions	 between	 all	 the	 forces	 that	
drive	evolution,	 including	selective	and	non-	selective	
ones.	In	this	context,	simulation	is	a	valuable	tool	as	it	
enables	to	observe	how	organisms	grow	in	complexity	
(or	 do	not)	when	 they	 evolve	 in	 environments	which	     
complexity	is	perfectly	controlled.		

Aevol	(www.aevol.fr)	is	an	In	Silico	Experimental	Evolution	(ISEE	–  aka	digital	genetics)	platform	developed	by	
the	Beagle	team	to	study	the	evolution	of	genome	structure.	Aevol	 is	based	on	three	principles	that	makes	it	
perfectly	suited	to	study	the	evolution	of	complexity:	

Complexity	measures	
Qualitative	 measure:	 “simple”	 organisms	 are	 those	
encoding	only	proteins	with	the	same	m and	w values.	
Genomic	 complexity:	 quantity	 of	 information	 encoded	
on	the	genome	(total	amount	of	coding	sequences).	
Functional	complexity:	quantity	of	information	encoded	
on	the	proteome	(number	of	different	parameters).	
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Discussion	

Results	
(1)  Organisms	 evolved	 complex	 functional	 structures	 in	

66%	of	the	simulations	
Whatever	 the	 mutation	 rate,	 ≈1/3	 of	 the	 simulations	
led	 to	 “simple”	 organisms	 with	 few	 genes	 and	 a	 low		
functional	 complexity	 (A).	 ≈2/3	 of	 the	 simulations	 led	
to	 “complex”	 organisms	 despite	 the	 simplicity	 of	 the	
target	function	(B).	

(2)	 Complex	 organisms	 accumulate	more	 information	 at	
the	genomic	and	functional	levels	
Genomic	 complexity	 is	 strongly	 bounded	 by	mutation	
rates	(A)	due	to	robustness	constraints	on	the	genome	
(Knibbe	 et	 al.,	 2007;	 Fischer	 et	 al.,	 2014).	 Mutation	
rates	 also	 constrain	 the	 functional	 complexity	 (B)	 but	
this	effect	is	less	stringent	at	the	functional	level.	

(3)	Simple	organisms	are	fitter	than	complex	ones	
Whatever	the	complexity	measure,	we	observe	a	clear	
trend	 for	 simple	 organisms	 to	 be	 fitter	 than	 complex	
ones	after	250,000	generations.	This	demonstrates	that	
in	our	simulations	complexity	is	not	driven	by	selection.	
On	 the	 opposite,	 complex	 functional	 structures	 have	
evolved	in	spite	of	selection.	

(4)	 Despite	 the	 advantage	 of	 being	 simple,	 complex	
organisms	evolve	greater	complexity	on	the	long	term	
The	simple/complex	identities	are	determined	early	on	
in	 the	 simulation	 and	 generally	 conserved	 thereafter	
(A).	 Complex	 organisms	 evolve	 greater	 complexity	 (B);	
their	 fitness	 grows	 but	 remains	 far	 below	 simple	
organisms.	

	

A.  Genome	and	proteome	of	a	simple	organism	 B.  Genome	and	proteome	of	a	complex	organism	

A.  Distribution	of	genomic	
complexity	for	complex	
(top)	and	simple	(bottom)	
organisms.	The	higher	the	
mutation	rate,	the	lower	
the	genomic	complexity.	
Genomic	complexity	is	
strongly	limited	by	
mutational	robustness.	

B.  Distribution	of	functional	
complexity	for	complex	
(top)	and	simple	(bottom)	
organisms.	The	higher	the	
mutation	rate,	the	lower		
the	functional	complexity.	

A.  Fitness	at	generation	
250,000	vs	genomic	
complexity.	The	higher	the	
genomic	complexity,	the	
lower	the	fitness.	Simple	
organisms	approach	the	
optimum	fitness	(	fopt = 1 ).	
Mean	fitness	of	complex	
organisms:	f = 0.38. 

A.  Starting	from	simple	
organisms	at	generation	0,	
organisms’	identity	
(simple	vs	complex)	is	
determined	before	
generation	10,000	and	
generally	maintained	for	
the	rest	of	the	simulation.	

B.  Long-term	evolution	of	
functional	complexity	in		
a	complex	organism.	
Functional	complexity	
and	fitness	continuously	
grow	during	the	250,000	
generations	but	the	
fitness	remains	far	below	
that	of	simple	organisms.	0	 10,000	 250,000	
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B.  Fitness	at	generation	
250,000	vs	functional	
complexity.	The	higher	
the	functional	complexity,	
the	lower	the	fitness.		

Our	 results	 show	 that,	 in	 such	a	 simple	 constant	 environment,	 there	 is	 a	decoupling	between	 the	molecular	
complexity	of	the	organisms	and	the	complexity	of	the	environment.	This	shows	that	selection	for	complexity	is	
not	 mandatory	 for	 complexity	 to	 evolve	 and	 that	 complex	 biological	 structures	 could	 flourish	 in	 conditions	
where	complexity	 is	not	needed.	Reciprocally,	 the	global	 function	of	complex	biological	structures	could	very	
well	be	simple.	We	think	this	result	is	greatly	significant	for	both	evolutionary	biology	and	systems	biology.		

Functional  
space

Activation  
level

m = 0.5

h = 0.5
w = 0.1

Experiment-specific	target	function:	this	triangular	
target	function	can	be	fitted	by	a	single	gene/protein.	
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:	Simple	organisms	
:	Complex	organisms	

A.  Its	 genotype-to-phenotype	 map	
mimics	 biology	 with	 a	 realistic	
genomic	 structure	 and	 a	 functional	
structure	 based	 on	 a	 graphical	
formalism.	 Proteins	 are	 represented	
by	 triangles	 which	 parameters	 are	
computed	from	the	gene	sequence.	

B.  Evo lu t ion	 i s	 s imu la ted	 by	 a	
generational	 algorithm.	 Organisms’	
fitness	 is	 based	 on	 a	 curve-fitting	
task:	 the	 protein	 triangles	 are	
summed	 to	 compute	 the	 organisms’	
phenotype	 that	 is	 compared	 with	 a	
target	function	(red	curve	below).		

C.  At	 each	 replication	 the	 genome	may	
u n d e r g o	 m u t a t i o n s . 	 A e v o l	
implements	 a	 wide	 range	 of	
mutational	 operators	 including	
switches,	 InDels	 and	 chromosomal	
rearrangements.	 Mutations	 can	
change	 complexity	 at	 both	 genomic	
and	functional	levels.		
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