
HAL Id: hal-01939850
https://hal.inria.fr/hal-01939850

Submitted on 29 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Offloading Security Services to the Cloud Infrastructure
Paul Chaignon, Diane Adjavon, Kahina Lazri, Jerome Francois, Olivier Festor

To cite this version:
Paul Chaignon, Diane Adjavon, Kahina Lazri, Jerome Francois, Olivier Festor. Offloading Security
Services to the Cloud Infrastructure. SecSoN 2018 - SIGCOMM Workshop on Security in Softwarized
Networks: Prospects and Challenges, Aug 2018, Budapest, Hungary. �hal-01939850�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162959731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01939850
https://hal.archives-ouvertes.fr


Offloading Security Services to the Cloud Infrastructure
Paul Chaignon

Orange Labs
Inria Nancy Grand Est

paul.chaignon@orange.com

Diane Adjavon
Eurecom

Orange Labs
adjavon@eurecom.fr

Kahina Lazri
Orange Labs

kahina.lazri@orange.com

Jérôme François
Inria Nancy Grand Est
jerome.francois@inria.fr

Olivier Festor
Inria Nancy Grand Est

Telecom Nancy
Univesity of Lorraine
olivier.festor@inria.fr

ABSTRACT
Cloud applications rely on a diverse set of security services from
application-layer rate-limiting to TCP SYN cookies and application
firewalls. Some of these services are implemented at the infras-
tructure layer, on the host or in the NIC, to filter attacks closer to
their source and free CPU cycles for the tenants’ applications. Most
security services, however, remain difficult to implement at the
infrastructure layer because they are closely tied to the applications
they protect.

In this paper, we propose to allow tenants to offload small fil-
tering programs to the infrastructure. We design a mechanism to
ensure fairness in resource consumption among tenants and show
that, by carefully probing specific points of the infrastructure, all
resource consumption can be accounted for.

We prototype our solution over the new high-performance data-
path of Linux. Our preliminary experiments show that an offload to
the host’s CPU can bring a 4-6x performance improvement. In ad-
dition, fairness among tenants introduces an overhead of only 14%
in the worst case and approximately 3% for realistic applications.

CCS CONCEPTS
• Security and privacy → Network security; • Networks →
Cloud computing;

ACM Reference Format:
Paul Chaignon, Diane Adjavon, Kahina Lazri, Jérôme François, and Olivier
Festor. 2018. Offloading Security Services to the Cloud Infrastructure. In
SecSoN’18: ACM SIGCOMM 2018 Workshop on Security in Softwarized Net-
works: Prospects and Challenges, August 24, 2018, Budapest, Hungary. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3229616.3229624

1 INTRODUCTION
To defend against network threats, cloud applications rely on a
diverse set of security services from application-layer rate limit-
ing to TCP SYN cookies and application firewalls. Many of these
services are closely tied to the applications they protect; for exam-
ple, anti-DDoS services often rely on deep knowledge of targeted
applications to filter malformed packets. These security services,
however, share a common characteristic: they all implement a form
of filtering, and as such, they are best executed closer to the wire.

In the past few years, new and faster packet processing frame-
works have been developed at the infrastructure layer. Several
software switches can now execute arbitrary programs [1, 2, 11],

the Linux kernel allows userspace processes to execute programs
at the lowest point of the networking stack [7], and some Smart-
NICs can execute offloaded programs on their embedded CPUs [12].
These frameworks have strong execution constraints inherited from
their environment or required to achieve higher performance. For
example, several of the above cited examples impose a bounded
execution time to ensure programs running in the kernel or in the
NIC terminate. In addition, they have a run-to-completion execu-
tion model: a single thread processes each packet from reception to
transmission, often without interruptions (e.g., context switches).

These high-performance packet processing frameworks are al-
ready leveraged to offer security services to cloud tenants [9]. Never-
theless, because they are tighly coupled to the services they protect,
many security services remain difficult to abstract and expose to
tenants.

In this paper, we discuss and propose a framework to offload
security services from cloud applications to the cloud infrastructure.
The benefits of filtering packets at the infrastructure layer, before
sending them to VMs or containers, have been noted in previous
work [5]. We propose to go a step further and enable tenants to
offload near-arbitrary programs to the infrastructure, significantly
extending the range of candidate programs for offload compared
to stateless filters. As concrete examples, in Section 4, we describe
and evaluate two programs we offloaded using our framework: a
SYN cookie mechanism similar to that of the Linux kernel and a
DNS rate-limiter.

The main challenge to enable the offload of these programs re-
sides in the high-diversity of their resource consumptions. Current
security services for tenants (firewalling, stateless filtering, etc.)
executed at the infrastructure layer have fairly stable and well-
understood resource consumptions. For this reason, fairness can be
achieved by limiting the number of processing steps taken for each
tenant (e.g., the number of rules for firewalls). With our proposal,
however, tenants can offload programs with very different resource
consumption to the infrastructure. Without a mechanism to ensure
fairness, a tenant with a resource-hungry program could starve
other tenants.

To achieve fairness among tenants independantly of their own
custom offloaded programs, we monitor the CPU time consumed
by each packet’s processing. We then ensure each tenant does not
consume more than its fair share of CPU time, while retaining the
run-to-completion model typical of these execution environments.

https://doi.org/10.1145/3229616.3229624


SecSoN’18, August 24, 2018, Budapest, Hungary P. Chaignon et al.

Host α

Tenant 1’s
domain

Tenant 2’s
domain

vSwitch

Agent

SmartNIC

Compiler agent

API

prog1.c
progn.c. . .
prog2.c tmplt.c

++

host_α

1 1 0 0 1
0 1 0 1 1
0 0 1 1 0
0 1 0 1 1
0 0 1 1 0

Figure 1: Offload workflow from the request to the API to
the execution on the host or NIC.

We first describe the design of our framework and the algorithm
for our CPU fairness mechanism in Section 2. In Section 3, we
detail our implementation over XDP, Linux’s high-performance
datapath. Section 4 presents our initial evaluation results and shows
that our framework provides a 4-6x performance improvement
for containerized applications while enforcing fairness with a 14%
worst-case overhead. Finally, we discuss related works and conclude
this paper in Sections 5 and 6 respectively.

2 DESIGN
In this section, we first describe the different steps executed when
tenants decide to offload a security service to the underlying in-
frastructure. We then elaborate on our mechanism to ensure CPU
fairness among tenants while retaining the high-performance run-
to-completion model. Finally, we discuss the feasibility of the per-
packet tracing of CPU consumption.

2.1 Offload Workflow
As illustrated in Figure 1, from the implementation of security
programs to their actual execution at the infrastructure layer, a
number of steps must be executed to ensure a fair, secure offload.

As a first step to any offload, cloud tenants must port their secu-
rity programs to the infrastructure environment. In our prototype
we only support C programs, but support for other languages is
possible with the appropriate compiler. Porting programs to the
infrastructure environment usually involves changing a few API
calls, such as the initial reception of the packet pointer, and re-
placing data structure to use those exposed by the infrastructure
environment.

Once programs are written, tenants can request an offload to the
infrastructure through their usual cloud API. They send the source
code of the program to offload and the list of containers or virtual
machines they want to protect.

New tenant programs are sent to the Compiler agent. For each
host, the Compiler agent relies on a template to combine all tenant
programs into a single infrastructure program. The template also
contains (1) a demultiplexer to execute the code from the appro-
priate tenant when a packet arrives on the system and (2) a few
operations to enforce fairness among tenants. Since programs are

attached to a tenant and not to specific applications, the demulti-
plexer only needs to select the appropriate tenant, not the exact
container or virtual machine; for example, demultiplexing can rely
on the VLAN identifier or the GRE key. This infrastructure program
is then compiled into a bytecode the infrastructure environment
can understand (in our case, BPF bytecode to install in the kernel
or in the NIC) and sent to all hosts that require an update, i.e., all
hosts where the new tenant program should be executed.

On each host, an agent receives the infrastructure program and
replaces the currently running program with the new one. We
expect the replacement of a program to be an atomic operation, as
is the case in the Linux kernel.

Our fairness mechanism relies on an assignment of tokens to
tenants. Tenants consume tokens as they process packets and the
host agent produces new tokens at regular intervals. The CPU share
of each tenant on the host (or in the embedded CPU of the NIC)
is a direct function of the number of tokens produced by the host
agent for that tenant. By default, all tenants get the same CPU fair
share, but the fairness mechanism allows for different CPU shares
among tenants.

2.2 Run-to-Completion CPU Fairness
Many high-performance execution environments at the infrastruc-
ture have a run-to-completionmodel inwhich packets are processed
from reception to transmission (or end of processing) by a single
thread, with as few interruptions as possible. Retaining this model
with several programs competing for CPU resources calls for a
non-preemptive CPU scheduler as, with a preemptive scheduling
policy, programs (or, to be exact, their processes) would be regularly
interrupted by the scheduler.

Fine-grained CPU allocation. The usual approach to allocate
CPU resources to multiple programs in a run-to-completion en-
vironment consists in giving each program its own core. This ap-
proach has several drawbacks. First, it requires a prior demultiplex-
ing step, to assign packets to the appropriate core. Not all NICs
support programmable demultiplexing policies to cores and, even
when they do, they are often limited to a few specific fields (e.g., L4
ports or MAC addresses). Second, this approach doesn’t allow for
fine-grained allocation of CPU resources. Contrary to pre-emptive
scheduling policies, it may not, for example, assign half a core to a
first application and the remaining cores to a second application.

Token consumption. As described in the previous section, for
each host, all tenants’ programs are incorporated into a single
infrastructure program. We therefore execute all programs as part
of the same process and apply our fairness mechanism on each
tenant program. Programs consume tokens in proportion to the
time they spend on the CPU.

Fairness is enforced indirectly: instead of limiting the CPU time
for each program—which would require a preemptive scheduler—,
we limit the packet rate depending on the current CPU consumption
(number of tokens remaining).

The fairness mechanism is part of the infrastructure program; it
runs after the demultiplexer and before the tenants’ programs. It
rejects the packet if its tenant’s bucket contains a null or negative



Offloading Security Services to the Cloud Infrastructure SecSoN’18, August 24, 2018, Budapest, Hungary

number of tokens (we explain the negative case below). If the bucket
contains a strictly positive number of tokens, the tenant’s program
is exeuted.

Once the CPU consumption for the packet has been fully ac-
counted for (see Section 2.3 below), an equivalent number of tokens
is removed from the bucket. At this point, the bucket may contain
a negative number of tokens since we don’t know before executing
the program if there are enough tokens to process the packet.

Token generation. Whereas the rate-limiting and consumption
of tokens is straighforward, the generation of tokens requires more
care. Our token generation algorithm, summarized in Algorithm 1,
allows for different generation rates among tenants (i.e., different
CPU shares). In addition, it implements a work-conserving alloca-
tion of CPU time: a tenant that already consumed its fair share may
use the fair share of idle tenants, if any.

Algorithm 1 Token generation algorithm
▷ Each tenant i has a bucket bi and a token generation speed
vi . Tokens are generated at ∆t intervals. Buckets contain a
maximum of B tokens.
▷ Distribute tokens to buckets and count surplus tokens:

1: ri ← vi · ∆t
2: r ′← 0
3: for all i ∈ I do
4: r ′← r ′+ ri −min(B − bi , ri )
5: bi ←min(B,bi + ri )

6: end
▷ Distribute surplus tokens fairly until none are left or all buck-
ets are full:

7: while r ′ > 0 and ∃i ∈ I : bi < B do
8: J ← {i ∈ S : bi < B}
9: r ′′← 0
10: for all j ∈ J do
11: r j ← r ′ ·

vj∑
i∈J vi

12: r ′′← r ′′+ ri −min(B − bi , ri )
13: bj ←min(B,bj + r j )

14: end
15: r ′← r ′′

16: end

The generation algorithm runs at ∆t intervals, in two steps. In
the first step, each tenant receives a number of tokens proportional
to their fair share (lines 1 and 5), expressed as a token generation
speed,vi . Each tenant’s bucket may contain a maximum of B tokens
and surplus tokens are kept for the second step (line 4).

The second step runs as many times as necessary to distribute
the surplus tokens fairly among tenants. At each iteration, surplus
tokens are distributed among tenants who do not yet have full
buckets, as a ratio of their speed compared to other tenants with
non-full buckets (lines 11 and 13). This second step stops when there
are no more surplus tokens or when all tenants have full buckets.
This step makes the allocation of CPU time work-conserving, as
it ensures that tokens won’t be wasted as long as there are busy
tenants.

2.3 Per-Packet Tracing of CPU Shares
To properly apply our fairness mechanism, we need to monitor all
CPU consumption on the infrastructure, including for tenants that
didn’t offload security services.

As a toy example, consider a server with only two tenants, the
first with an offloaded program that consumes few CPU cycles
per packet, the second without any offloaded program. If the first
tenant receives and drops a large number of illegitimate packets,
she will consume less CPU cycles per packet, on average, than
the second tenant. However, if we only accounted for and limited
the CPU consumption of tenants with offloaded programs, the
second tenant would always receive the same—or a larger—number
of packets than the first tenant, who may be rate-limited by our
fairness mechanism. The second tenant would therefore receive a
larger, undue share of the CPU time.

We therefore need to trace, for each packet and for all tenants, the
CPU time consumed in the infrastructure. In particular, we need to
monitor all CPU time consumed on the infrastructure, i.e., all CPU
time that is not already allocated through traditional preemptive
schedulers (be it in operating systems or in hypervisors).

After an offloaded program has been run on a packet, there
are three possible actions: the packet may either be dropped, sent
up the networking stack to the tenant’s domain, or retransmitted
back on the interface (as is the case with the TCP SYN proxy for
example). We therefore need to account for (1) the CPU time spent
to execute the offloaded program and (2) the CPU time spent for any
subsequent action. We therefore need to install probes to monitor
the CPU time spent for the three possible actions. We detail their
implementation in Section 3. In each case, once the packet is fully
processed, we remove the CPU time spent on that packet from its
tenant’s bucket.

3 IMPLEMENTATION

eXpress Data Path prototype. We prototyped our design on
eXpress Data Path (XDP), the recent high-performance datapath
for Linux [7]. XDP allows userspace programs to load BPF bytecode
programs in the kernel, to be executed on the reception of packets
in the driver, right after packets are DMAed from the NIC to the
main memory.

BPF is a bytecode and an infrastructure in the kernel to execute
userspace-defined programs at multiple hook points (e.g., in the
driver with XDP, but also in the traffic classifier or on functions
with kprobes for tracing use cases). A key characteristic of BPF is its
verifier, a piece of software in the kernel that verifies programs are
safe to execute. For example, it guarantees the absence of infinite
loops and the correctness of memory accesses. Of particular interest
to our work is the use of BPF by several other high-performance
packet processing frameworks [6, 12], which eases porting of our
prototype to these frameworks.

In our prototype, buckets are implemented using an array map
of counters; buckets are updated by a separate process, running in
userspace.

CPU consumption tracing. We also use BPF programs attached
to kprobes to trace the CPU consumption at the infrastructure for



SecSoN’18, August 24, 2018, Budapest, Hungary P. Chaignon et al.

each packet. Using BPF for tracing allows us to share metadata on
packets (e.g., start time of processing and tenant identifier) with
the XDP program.

To measure the CPU time for retransmitted packets and packets
sent to the tenant’s domain, we trace two functions in the network
device driver. These two functions are specific to the driver we use,
but we expect finding equivalent functions for other drivers to be
straightforward; these functions only need to mark the point in time
when the packet is retransmitted (respectively, sent to the tenant’s
domain) and don’t need to access any particular information.

4 EVALUATION
This section aims to evaluate two main aspects of our design and
prototype: (1) the cost and benefit of the fairness mechanism and
(2) the performance gain from the offload itself.

4.1 Evaluation Setup
Our testbed consists of two servers connected with Mellanox 40
Gbps NICs. The Device Under Test (DUT) has an Intel Xeon E5-2640
2.6 Ghz with hyper threading disabled, 20 MB of L3 cache, and 16
GB of DDR4memory at 2133 MHz. The DUT runs Linux 4.9 without
the KPTI patch.

In all experiments, we use a single core at the DUT. To do so, we
ensure all packets arrive on the same queue at the NIC, and there-
fore on the same CPU on the host. Packet processing performance
with several cores strongly depends on the efficiency of packet
demultiplexing to queues at the NIC (e.g., receive-side scaling).

We configure three tenants on the DUT, each with a single
Docker container and their own VLAN. Tenant 1 and 2 offloaded a
TCP SYN cookie proxy and a DNS rate-limiter in the host’s high-
performance datapath respectively, whereas tenant 3 doesn’t have
any security service offloaded. All tenants receive the same number
of tokens at each generation interval and, therefore, have the same
CPU share on the host. The second server uses MoonGen [8] to
launch a TCP SYN flood against the first tenant, a DNS flood against
the second, and replay a CAIDA packet capture against the third.

Each experiment lasts 5 minutes and we report the mean and
the standard deviation over 10 runs.

4.2 Fairness Mechanism
First, using our probes in the driver, we measure the CPU consump-
tion of each tenant as a percentage of the total CPU time. Figure 2
depicts the results, both with and without our fairness mechanism.

While they all receive the same number of packets, because
tenant 3 receives all packets in userspace and does not drop any
at the infrastructure, she consumes the majority of the CPU time
on the host. In contrast, due to her offloaded program, tenant 2
requires few CPU cycles to drop packets. Nevertheless, without the
fairness mechanism, tenant 2 is allowed a smaller share of the CPU
time. This result illustrates the need for our fairness mechanism to
ensure that one tenant will not starve other colocated tenants.

We next measure the overhead caused by the installation of our
probes in the driver. On the DUT, we configure three application,
in Docker containers: the first simply drops packets and serves as
a baseline to measure the worst possible overhead, the second is
an Unbound DNS recursive server, and the last an Apache HTTP

Figure 2: CPU consumption as a percentage of the total time
for a single core, for each tenant, with and without fairness
mechanism.

Figure 3: Packet processing performance with the probes en-
abled and disabled. The throughput is measured in requests
per seconds for Apache only.

server. On the second server, we configure MoonGen to send DNS
requests to the first two applications. For the Apache server, we
use Apache Benchmark to send a flood of HTTP GET requests. We
measure the maximum number of packets (respectively, requests
for the Apache server) the application is able to process on a single
core, both with and without our probes.

As shown in Figure 3, our probes in the driver only add a slight
overhead on the end-to-end performance of applications. Because
our probes require a constant number of cycles per packet, the
overhead is larger for application that require few cycles to process
each packet, as with the baseline application. While for the Apache
application we measure 2.6% overhead, we could not measure any
perceived overhead for the Unbound DNS server. Because it per-
forms the minimum operations possible on each packet (receive



Offloading Security Services to the Cloud Infrastructure SecSoN’18, August 24, 2018, Budapest, Hungary

Figure 4: Packet processing performance for different fair-
ness mechanisms.

and drop), the baseline application provides a good estimate of the
worst possible overhead.

To compare our fairness mechanism to the Linux preemptive
scheduler, we ported it to DPDK. Our DPDK application polls pack-
ets directly from the NIC, enforces fairness, and sends packets back
to the NIC; the offloaded programs are empty for this evaluation.
Tokens are generated in a second thread running on the same
core as the DPDK process. We compare this setup with a second
DPDK-based setup using the Linux schedulers and the cgroups
feature: each program runs as a DPDK task and the Linux scheduler
preempts tasks to enforce fairness. In both setups, programs are as-
signed an equal share of the CPU and run on a single core. We vary
the number of concurrent programs and measure the throughput
at the sink.

As shown in Figure 4, because it breaks the run-to-completion
model of DPDK, the Linux scheduler has a severe impact on perfor-
mance: the frequent context switches between tasks increasingly
impede performance as the number of concurrent tasks grows. Con-
versely, our approach has a lower overhead and its performance
only slightly decreases with the number of tasks; in our system,
only the complexity of the token generation algorithm depends on
the number of programs.

4.3 Performance Gain
Finally, we evaluate the performance gain our prototype can bring
to applications by allowing them to offload security services to
the infrastructure. We port our TCP SYN cookie proxy and our
DNS rate-limiter to userspace, on the Linux API, and execute them
both in containers. We compare the performance of these two
applications to their offloaded counterparts.

Figure 5 shows the packet processing performance in each case
for the two applications. The offload to the infrastructure—in this
case the host’s kernel—brings a 4-6x performance improvement by
avoiding unecessary packet copies to userspace and leveraging the

Figure 5: Packet processing performance gain from offload.

higher performance of the infrastructure’s datapath. Whereas the
rate-limiter drops most packets, the TCP proxy replies to received
flood packets with a TCP SYN ACK packet (with a SYN cookie)
and therefore requires more cycles per packet. For this reason, the
performance gain is lower for the TCP proxy.

Note that this performance improvement is only possible because
we can ensure each tenant still receives a fair share of CPU time.

We also note that the performance improvement largely depends
on the offload capabilities of the underlying infrastructure. For this
reason, we expect a slightly better performance improvement if
the infrastructure relies on kernel bypass technologies (in which
case, solutions such as [6, 11] could be used to execute offloaded
programs) and a much stronger improvement if programs can be
offloaded to a SmartNIC.

4.4 Discussion
Because it takes a few tens of CPU cycles to read a packet inmemory,
identify its tenant, and free its memory buffer [3], a tenant that
does not have any tokens left but still receives a large number of
packets may impact the overall performance. Since this weakness
affects all CPU-based systems, one approach to mitigate it could
leverage upstream hardware devices (e.g., NICs and switches) to
install a first, coarse-grained rate-limiter and filter oversized flows
before they reach the host’s CPU. We leave the design of such a
defense to future work.

5 RELATEDWORK
Recent works to accelerate packet processing at the infrastructure
layer provided a strong motivation for this work. Packet processing
programs can now be executed at the software switch [1, 2, 6, 11],
at the lowest point of the Linux kernel networking stack [7], or
even in NICs [9, 12], in all cases with significant performance gains.
Our work allows cloud tenant to benefit from these recent advances
to secure their applications with high-performance.

Although they do not allow arbitrary program offload to the
infrastructure, both [9] and [4] leverage recent packet processing
advances to build services for tenants at the infrastructure layer. In



SecSoN’18, August 24, 2018, Budapest, Hungary P. Chaignon et al.

particular, Ahmed et al. designed InKeV [4], a framework to manage
network function chains running in the host’s kernel. InKeV also
relies on BPF to load network functions in the host’s kernel, but
loads BPF programs higher in the networking stack, at the Linux tc
classifier. We execute BPF programs in the device driver using XDP
as it avoids unnecessary memory allocations (sk_buff) for dropped
packets [7]. In addition, InKeV targets network services offered by
the cloud provider (e.g., routing, switching, and firewalling) and
does not provide a viable mechanism to execute tenant’s programs
concurrently. For example, if the cloud provider was to offer a
TCP SYN proxy service to its tenants using InKeV, (1) it would not
be customizable by tenants (e.g., to change the cookie generation
algorithm) and (2) it would not prevent a tenant that isn’t using the
service from starving other tenants (as shown in Section 4.2).

In [5], Cardigliano et al. propose vPF_RING, a framework to ac-
celerate network monitoring in virtualized environments. Similarly
to our work, they let tenants define filters that are applied in the
host’s kernel, using PF_RING. However, with vPF_RING, tenants
can only install simple, stateless filters at the infrastructure layer.
While these may be enough for packet capture or simple security
services such as stateless firewalling, more complex programs are
required to implement most security services. In contrast, we al-
low tenants to offload complex, stateful security services, and we
address the associated challenge (that is, ensuring all tenants get
their fair share of resources).

A recent trend in networking research discusses outsourcing
enterprise network functions to the Cloud and focuses on the asso-
ciated challenges [10, 14, 15]. In contrast, we consider the offload
to the host of network services already deployed in the cloud—
although it may be an on-premise, private cloud. Offloading to
the host improves performance without requiring complex traffic
redirections; packets are processed on their original path to the
applications, albeit closer to the wire. In addition, our approach
doesn’t require additional protections [14] against the third party
executing network services since the host is already trusted to run
the tenant’s VMs or containers.

In a concurrent work [3], Addanki et al. designed a fair dropping
mechanism close to ours, though for a different use case. Their
system aims to enforce max-min fairness among different flows
inside software switches. Compared to our system, theirs processes
packets in batches to improve performance, but it approximates the
per-packet CPU consumption from the exact CPU consumption for
a whole batch.

Finally, offloading tenant’s services to the infrastructure raises
evident security concerns. While the frameworks we have discussed
have their own security protections—usually to defend the kernel
or the NIC against malicious userspace programs [7]—, we note
that they could benefit from stronger, formally verified mecha-
nisms. In particular, we could draw inspiration from [13] and [16]
to strengthen our current BPF-based prototype. [16] is a formally
verified compilation toolchain from high-level rules to native code
for in-kernel interpreters, whereas [13] is a mechanism to ensure
the safety of programs installed in the kernel, with each program
carrying its own proof to be verified by the kernel.

6 CONCLUSION
Cloud applications rely on a diverse set of security services that are
often closely tied to the applications they protect. These services are
therefore difficult to abstract and implement at the infrastructure
layer and cannot leverage recent advances in packet processing.

In this paper, we proposed a new framework to enable the offload
of these services to the infrastructure. We addressed the fairness
concerns with a token-based mechanism that ensures each ten-
ant gets their fair share of CPU time, regardless of the program
they offloaded. We prototyped our design on Linux’s eXpress Data
Path and measured a 4-6x performance improvement for offloaded
security services.

As our next step, we are working on an extension to our proto-
type to offload programs directly to the SmartNICs.

ACKNOWLEDGMENTS
We thank our shepherd, Alexander von Gernler, and the anonymous
reviewer for their valuable comments that helped significantly im-
prove this paper’s quality. We also thank Céline Comte for pointing
out Addanki et al.’s paper and for the helpful discussion that ensued.

REFERENCES
[1] 2015. BESS: Berkeley Extensible Software Switch. (2015). http://span.cs.berkeley.

edu/bess.html
[2] 2017. Vector Packet Processing (VPP). (2017). https://fd.io/technology/#vpp
[3] V. Addanki, L. Linguaglossa, J. Roberts, and D. Rossi. 2018. Controlling software

router resource sharing by fair packet dropping. In Proc. IFIP Networking.
[4] Z. Ahmed, M. H. Alizai, and A. A. Syed. 2016. InKeV: In-kernel distributed

network virtualization for DCN. ACM SIGCOMM CCR (2016).
[5] A. Cardigliano, L. Deri, J. Gasparakis, and F. Fusco. 2011. vPF_RING: Towards

wire-speed network monitoring using virtual machines. In Proc. ACM IMC.
[6] P. Chaignon, K. Lazri, J. François, T. Delmas, and O. Festor. 2018. Oko: Extending

Open vSwitch with stateful filters. In Proc. ACM SOSR.
[7] J. Corbet. 2016. Early packet drop—and more—with BPF. (Apr. 2016). https:

//lwn.net/Articles/682538
[8] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle. 2015. Moon-

Gen: A scriptable high-speed packet generator. In Proc. ACM IMC.
[9] D. Firestone. 2017. VFP: A virtual switch platform for host SDN in the public

cloud. In Proc. USENIX NSDI.
[10] G. Gibb, H. Zeng, and N. McKeown. 2012. Outsourcing network functionality. In

Proc. HotSDN.
[11] E. J. Jackson, M. Walls, A. Panda, J. Pettit, B. Pfaff, J. Rajahalme, T. Koponen, and

S. Shenker. 2016. SoftFlow: A middlebox architecture for Open vSwitch. In Proc.
USENIX ATC.

[12] J. Kicinski and N. Viljoen. 2016. eBPF/XDP hardware offload to SmartNICs.
NetDev 1.2.

[13] G. C. Necula and P. Lee. 1996. Safe kernel extensions without run-time checking.
In Proc. USENIX OSDI.

[14] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy. 2018. SafeBricks: Shielding
network functions in the cloud. In Proc. USENIX NSDI.

[15] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar. 2012.
Making middleboxes someone else’s problem: Network processing as a cloud
service. In Proc. ACM SIGCOMM.

[16] X. Wang, D. Lazar, N. Zeldovich, A. Chlipala, and Z. Tatlock. 2014. Jitk: A
trustworthy in-kernel interpreter infrastructure. In Proc. USENIX OSDI.

http://span.cs.berkeley.edu/bess.html
http://span.cs.berkeley.edu/bess.html
https://fd.io/technology/#vpp
https://lwn.net/Articles/682538
https://lwn.net/Articles/682538

	Abstract
	1 Introduction
	2 Design
	2.1 Offload Workflow
	2.2 Run-to-Completion CPU Fairness
	2.3 Per-Packet Tracing of CPU Shares

	3 Implementation
	4 Evaluation
	4.1 Evaluation Setup
	4.2 Fairness Mechanism
	4.3 Performance Gain
	4.4 Discussion

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

