
HAL Id: hal-01939857
https://hal.inria.fr/hal-01939857

Submitted on 29 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Oko: Extending Open vSwitch with Stateful Filters
Paul Chaignon, Kahina Lazri, Jerome Francois, Thibault Delmas, Olivier

Festor

To cite this version:
Paul Chaignon, Kahina Lazri, Jerome Francois, Thibault Delmas, Olivier Festor. Oko: Extending
Open vSwitch with Stateful Filters. SOSR 2018 - ACM Symposium on SDN Research, Mar 2018, Los
Angeles, United States. pp.1-13. �hal-01939857�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162959725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01939857
https://hal.archives-ouvertes.fr


Oko: Extending Open vSwitch with Stateful Filters
Paul Chaignon

Orange Labs
Inria Nancy Grand Est

paul.chaignon@orange.com

Kahina Lazri
Orange Labs

kahina.lazri@orange.com

Jérôme François
Inria Nancy Grand Est
jerome.francois@inria.fr

Thibault Delmas
Telecom ParisTech

thibault.delmas@telecom-paristech.fr

Olivier Festor
Inria Nancy Grand Est

Telecom Nancy
University of Lorraine
olivier.festor@inria.fr

ABSTRACT
With the Software-Defined Networking paradigm, software
switches emerged as the new edge of datacenter networks.
The widely adopted Open vSwitch implements the Open-
Flow forwarding model; its simple match-action abstraction
eases network management, while providing enough flex-
ibility to define complex forwarding pipelines. OpenFlow,
however, cannot express the many packets processing algo-
rithms required for traffic measurement, network security, or
congestion diagnosis, as it lacks a persistent state and basic
arithmetic and logic operations.
This paper presents Oko, an extension of Open vSwitch

that enables runtime integration of stateful filtering and
monitoring functionalities based on Berkeley Packet Filter
(BPF) programs into the OpenFlow pipeline. BPF programs
attached to OpenFlow rules act as intelligent filters over pack-
ets, while leaving the packets unmodified. This approach
enables the transparent extension of Open vSwitch’s flow
caching architecture, retaining its high-performance ben-
efits. Furthermore, the use of BPF allows for safe runtime
extension and prevention of switch failures due to faulty
programs.

We compare our implementation based on Open vSwitch-
DPDK to existing approaches with comparable fault isolation
properties and measure a near 2x improvement of perfor-
mance.

CCS CONCEPTS
• Networks→ Programmable networks;

KEYWORDS
Software-DefinedNetworking; Programmable Networks; Dat-
acenter Networks

1 INTRODUCTION
Software switches are taking an increasingly important role
as the edge of datacenter networks. Not only do they switch
packets between virtual machines (VMs) and physical in-
terfaces, but they also often terminate overlay tunnels and
enforce ACLs and QoS policies [22]. The short development
cycle of software switches—compared to their hardware
counterparts—and their ubiquity in datacenter networks
make them an ideal place to implement new network ser-
vices.

There is, additionally, growing pressure on performance
for software switches. Datacenters are moving to 40 Gbps
and 100 Gbps physical interfaces, and network IO-bound
workloads are becoming more common. Furthermore, soft-
ware switchesmust expose programming abstractions simple
enough to enable centralized control at the scale of datacen-
ter networks. These abstractions need to express diverse
forwarding policies, yet allow for efficient implementation.
Open vSwitch, a software switch widely used in virtual-

ization platforms [3, 22], meets these goals through a careful
implementation of the stateless match-action forwarding
pipeline of OpenFlow [31]. Although this stateless design
enables flow caching optimizations, it limits the application
scope of Open vSwitch. Open vSwitch cannot, for example,
aggregate measurements in the dataplane or maintain per-
sistent information on flows and connections. Even simple
arithmetic and logic operations beyond bit matching require
control plane applications—possibly with a collocated con-
troller [26, 38]—or middleboxes and VMs [17, 29], at the cost
of performance.
Recent advances in programmable hardware motivate

the need for new programming languages and abstractions,
such as P4 [8] and Domino [36], which can express complex
operations and access persistent memories in the switch.
With these new abstractions, network operators can pro-
gram switches to debug TCP connections [13], aggregate



SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA P. Chaignon et al.

measurements at the switch-level [37], or mitigate DDoS
attacks [32].
Despite running on flexible commodity hardware, Open

vSwitch did not benefit significantly from this new trend;
it still exposes a stateless match-action pipeline. Building
a stateful extension to Open vSwitch is difficult because it
needs to address the two following design challenges.

1. Prevent switch failures duringupdates.The pipeline
may receive frequent updates in response to attacks, or to
debug transient network problems. The pipeline thus needs
to be updated without interruption of forwarding, as with
classic OpenFlow rules. Without proper verification, how-
ever, loading unsafe programs at runtime increases the risk
of failure. A fault in the new features, whether it may be an
invalid operation or a subtler denial of service (e.g., a mem-
ory leak or an infinite loop), may cause the switch to crash,
thereby disconnecting virtual machines from the network.
The switch must therefore provide a mean to prevent these
failures.

2. Preserve caching mechanisms. Open vSwitch im-
plements several flow caching mechanisms, fundamental to
its high performance, in particular for the long forwarding
pipelines typical of multi-tenant networks [22, 30, 31]. These
mechanisms are built on the assumption that forwarding
rules change infrequently compared to the rate of packet
arrival. Therefore, stateless rules stay valid for a long enough
time to be worth caching. Conversely, with stateful rules,
switches may have to reconstruct cache entries after each
state change, thus eliminating any caching benefit.
Berkeley Packet Filter (BPF) [24] is a known solution to

address the first design challenge. In Linux-based operating
systems, BPF allows userspace applications to extend the
kernel at runtime, without interruption. The kernel relies on
a bytecode interpreter and a verifier to execute BPF programs
if they are deemed safe. BPF received a lot of attention in the
Linux kernel [10, 11, 40].

The second design challenge received fewer attention. In
[18], E. J. Jackson et al. propose SoftFlow, an extension of
Open vSwitch that can execute arbitrary programs as actions
in the OpenFlow pipeline. Program developers can tell Soft-
Flow when rule lookups are unnecessary after a program
execution to skip them and fully leverage Open vSwitch’s
caches.

In this paper, we present Oko, an stateful software switch
that addresses the above two challenges. Oko is based on
Open vSwitch and executes BPF bytecode programs as part
of the OpenFlow pipeline. These programs can access persis-
tent data structures to perform stateful operations such as
tracking the state of TCP connections or aggregating traffic
measurements. Although Oko does not use the in-kernel BPF
infrastructure, it relies on BPF’s bytecode and security model
for its own specialized BPF infrastructure.

Compared to SoftFlow, Oko explores a new point in the
design space of Open vSwitch extensions. Oko programs act
as filters over packets, in the same manner as conventional
OpenFlow match fields. Because its programs never modify
packets, Oko always caches them without requiring further
information from developers. This design choice effectively
limits programs to filtering and monitoring applications. In
this sense, Oko is complementary to the SoftFlow approach
since programs requiring write access to packets could be
implemented as actions.

In summary, we make the following contributions:
• The design of Oko, an software switch based on Open
vSwitch that supports stateful filtering and monitoring
programs as part of its OpenFlow pipeline.

• An implementation of Oko based on Open vSwitch-
DPDK. Thanks to a careful extension, Oko preserves
Open vSwitch’s cache design despite its original state-
less assumption (Section 2.3 and 2.4). Because we lever-
age the high-performance version of Open vSwitch1,
we cannot directly reuse the Linux BPF infrastructure.
Instead, our implementation relies on a userspace BPF
implementation based on uBPF [23] (Section 2.2).

• An evaluation of our implementation and a compari-
son to state-of-the-art approaches to extend software
switches (Section 4), with three security and network
diagnosis programs (Section 3). We show that Oko
provides a near 2x improvement of performance com-
pared to a process using shared memory to exchange
packets with the switch.

Oko is open source and available at https://github.com/
Orange-OpenSource/oko.

2 DESIGN
We first describe the overall workflow of Oko. We then elabo-
rate on our specialized BPF infrastructure and our extension
to Open vSwitch’s caching mechanisms.

2.1 Oko Workflow
In this section, we describe our extensions to OpenFlow as
well as the Oko workflow, from the compilation of programs
at the controller to their execution in switches.
Oko extends match-action tables of OpenFlow with an

optional match field referencing a filter program, a stateful
packet matching program. If all other fields match the packet
headers, the filter program is executed, with the packet as its
sole argument. Filter programs have a binary result: if they
match, their corresponding action is executed; if they do not
match, the lookup continues with rules of lower priority.

1The high-performance Open vSwitch-DPDK helped us uncover several
performance bottlenecks in our initial design.

https://github.com/Orange-OpenSource/oko
https://github.com/Orange-OpenSource/oko


Oko: Extending Open vSwitch with Stateful Filters SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

Each filter program may read and write to its maps, per-
sistent data structures allocated on the switch, with some
restrictions detailed in Section 2.2. Since they are embedded
as match fields in flow tables, filter programs only impact
whether or not actions of a rule are executed; they cannot
define new actions.

Filter programs are written in higher-level languages such
as C or Lua and compiled to BPF bytecode. This compilation
step happens once, at the controller. The controller then
sends the program to switches as an object file embedded
into LOAD_FILTER_PROGRAM OpenFlow messages. Oko
switches load the filter program into a filter program instance,
a memory object that contains both the relocated bytecode
and its allocated persistent memory. At this point, the verifier
performs a series of checks to ensure that the program is safe
(see Section 2.2) and returns an OpenFlow error message if
it is not.
Match-action rules may then reference filter program in-

stances. In particular, several rules may share the same filter
program instance, allowing different rules to share and up-
date the same maps. A filter program may be instantiated
several times to dispose of several different memories. For
example, when implementing a stateful firewall, each ACL
rule may be associated with its own record of established
connections (similar to conntrack zones). In our current im-
plementation, to create a new filter program instance, the
controller must send the program to the switch a second
time.

We extended the OpenFlow protocol with new messages
and fields to load filter programs, retrieve maps, and change
OpenFlow rules with filter programs attached. These exten-
sions to the OpenFlow protocol are summarized in Table
1. We used OpenFlow vendor extensions for new messages,
but had to modify the OpenFlow protocol itself for the new
match field, since such vendor extensions are not available.
We added support for these extensions in both Open vSwitch
and OpenDaylight [4].

The astute reader might notice that Oko does not provide
an OpenFlow message for the controller to proactively re-
trieve the content of maps. To retrieve information collected
by filter programs, the controller defines a SEND_MAPS ac-
tion, which the filter program can then trigger (an example
is given in Section 3). While developing Oko filter programs,
we have not found a need for such an OpenFlow message.
Filter programs are often in a better position to decide when
the content of their maps should be sent to the controller:
they can trigger the SEND_MAPS action when their maps
reach a threshold size, or after a specific network event. Nev-
ertheless, if required, the addition of a controller to switch
SEND_MAPS message would be trivial to implement.

2.2 Specialized BPF Infrastructure
BPF was originally designed as a minimalist bytecode and
an in-kernel infrastructure to filter packets destined to a
userspace capture application [24]. In the Linux kernel, it
evolved into a general purpose infrastructure [10], also re-
ferred to as extended BPF or eBPF. Its current applications in-
clude tracing [14], firewalling [7], and container networking
[5]. In this section, we (1) provide the necessary background
on the security model of BPF and (2) describe the design and
implementation of our userspace BPF infrastructure.

Background on the BPF security model. In the Linux
kernel, the BPF virtual machine consists of a stack and a set
of 64-bit registers. The bytecode it recognizes was designed
to closely match hardware instruction set architectures. Byte-
code programs can call external functions, implemented out-
side the VM, to perform operations or retrieve information
not available within the VM.
In-kernel interpreters2 impose limits on the number of

instructions and the size of the stack and reject programs
with out-of-bounds memory accesses, jumps to non-existing
instructions, or null accesses. In addition, in-kernel inter-
preters expose a BPF machine abstraction with a computa-
tional power equivalent to that of a Decider [35], a type of
Turing machine that always halts. In the Linux kernel, this
computational power is enforced in a strict way by rejecting
all jumps to previously visited instructions. This approach
prohibits cycles when interpreting the bytecode and, at a
higher level, makes long loops difficult to implement3.

The jump restriction, however, does not apply to external
functions; data structures are therefore implemented out-
side the BPF VM. For example, the Linux BPF infrastructure
contains a hash table implementation with linked lists for
collision resolution. It is exposed to BPF programs through
three external functions: bpf_map_lookup_elem,
bpf_map_update_elem, and bpf_map_delete_elem to lookup,
update, or delete an element respectively.

Although external functions can iterate through dynamic
data structures, they do not increase the computational power
of the BPF machine abstraction. Indeed, external data struc-
tures have a bounded size, fixed by program developers, to
ensure termination and limit memory consumption.
Compared to other bytecodes [1, 27], the BPF bytecode

is easier to verify: it has a minimalist instruction set and
external functions with well-defined interfaces (expected
types, such as potential null pointer or pointer to the packet,
for arguments and returned values).

2Both the Linux kernel and the BSD kernel have a form of BPF in-kernel
interpreter.
3Short loops can be unrolled during compilation to bytecode.



SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA P. Chaignon et al.

Name Type Description
LOAD_FILTER_PROG Controller to switch

message
Contains an ID and a filter program as an object file. The switch loads the filter program and
assigns it the given ID.

FLOW_MOD Controller to switch
message

Modified to include a new filter_prog field with a filter program ID. Used to add, remove, or modify
OpenFlow rules.

SEND_MAPS Action Instructs the switch to send the content of data structures given in argument to the controller.
The argument is a bit array where each bit corresponds to a data structure referenced in the filter
program attached to the rule.

SEND_MAPS Switch to controller
message

Contains the binary content of data structures.

Table 1: Oko’s extensions to the OpenFlow protocol.

Oko’s userspace BPF infrastructure. We retain the BPF
bytecode and its abstract machine, but we re-implement a
set of external functions and a verifier tailored to Oko.
Our BPF infrastructure relies on a userspace implemen-

tation of the BPF VM [23] and extends it to support maps
(allocation and external functions). When Oko receives BPF
programs from the control plane, it loads them in BPF VMs.
To this end, it first allocates memory for maps and relocates
addresses in the bytecode. A just-in-time compiler then trans-
lates the BPF bytecode into machine code.
Oko supports two data structures outside the BPF VM: a

hash table and a simple array. The hash table implementation
uses Bob Jenkins’ lookup3 hash function [19] and resolves
hash collisions with linked lists.
We implemented five external functions filter programs

can call:

• Three functions to lookup, update, and delete elements
from data structures.

• ubpf_time to read the current time—used to imple-
ment traffic policing algorithms and to periodically
send measurements to the controller.

• ubpf_hash to compute a 32-bit hash of a variable-
length input. Together with the array data structure,
ubpf_hash can be used to implement probabilistic
data structures common in network monitoring ap-
plications [41], such as Bloom filters and Count-Min
sketches.

For the verifier, we implemented a depth-first traversal of
the control flow graph (CFG) of BPF programs, to detect and
reject programs with cycles (back-edges in the CFG). In a
second traversal of the CFG, the verifier tracks the state of
registers to determine if they contain, for example, a constant,
a pointer to the packet, or a potential null pointer. This
information is then used to reject programs with potential
invalid operations such as null memory accesses or writes
to the packet.

In summary, our verifier implements the same safety checks
as the Linux verifier, except that it only supports the spe-
cific needs of Oko. We do not, however, implement some of

. . .Table 0 Table n

Megaflow cache

Microflow cache

Slow
path

D
atapath

First
packet

Figure 1: Open vSwitch caching architecture.

the optimizations the Linux verifier performs (such as state
pruning).

2.3 Filter Program Caching
Open vSwitch relies on a hierarchy of caches to achieve high
performance without loss of generality [31]. In this section,
we (1) give the necessary background on Open vSwitch’s
caching mechanism and (2) elaborate on our design to pre-
serve the performance of Open vSwitch and execute filter
programs during the cache lookup.

Open vSwitch’s forwarding pipeline. Figure 1 illustrates
the caching architecture of Open vSwitch. The full match-
action pipeline of the OpenFlow forwarding model is im-
plemented in the slow path, in userspace. This userspace
component hence consists of a collection of match-action
tables, where each table contains a number of rules, with
match fields, a priority, and corresponding actions. When a
packet arrives at the slow path, Open vSwitch executes the
action of the matching rule with the highest priority. Pro-
cessing of the packet may continue with subsequent tables
depending on the action applied.

In addition, Open vSwitch includes a number of datapath
implementations for different environments: kernel mod-
ules for the default Linux and Windows datapaths and an



Oko: Extending Open vSwitch with Stateful Filters SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

additional userspace implementation based on DPDK (Data
Plane Development Kit) for Linux. Our implementation of
Oko uses the DPDK userspace datapath as it achieves the
highest performance.

Open vSwitch’s caching mechanisms. The datapath is
sometimes referred to as the fast path of Open vSwitch. It
implements a number of flow caching mechanisms and only
forwards a packet to the slow path if no cached rules are
matched. The DPDK datapath implementation includes two
cache levels illustrated in Figure 1: the megaflow cache and
the microflow cache.
The megaflow cache is a simplified implementation of

the OpenFlow match-action pipeline: it contains a single
OpenFlow table with no priority. The slow path component
can thus only install disjoint rules into this cache. These
megaflow rules are built as an aggregation of rules matched
during the slow path lookup. To this end, and in order to
build only disjoint megaflow rules, Open vSwitch keeps track
of which fields were used during the slow path lookup. The
megaflow rule installed afterwards matches only on the field
used; other match fields are wildcarded. Open vSwitch uses
a number of additional techniques during the construction
of megaflow rules to improve the cache hit rate.
Because even the simplified megaflow table has a high

lookup cost, Open vSwitch includes a second cache, the mi-
croflow cache, implemented as an exact-match table. As any
packet header change results in a cache miss, the microflow
cache does not perform well with many traffic patterns such
as short lived flows, in which case Open vSwitch must fall
back to the megaflow cache.

Oko’s filter programchains. Tomaintain the performance
of Open vSwitch, filter programs need to be cached and ex-
ecuted in the datapath. The caching mechanisms of Open
vSwitch, however, are tailored for its stateless OpenFlow
pipeline. Introducing stateful programs in caches raises an
important challenge.

The result from the execution of a filter program depends
on the full content of the packet and the memory associated
with the program. Conversely, in the OpenFlow forwarding
model, the actions depend only on the packet’s headers. Thus,
two packets with the same header will always be processed
identically in an OpenFlow pipeline, whereas theymay result
in different actions taken when processed by Oko.
Open vSwitch relies on this determinism to aggregate a

succession of OpenFlow rules into a single megaflow rule.
With Oko, the path through the OpenFlow pipeline, and
thus the megaflow aggregated rule, depends on the results
from executed filter programs, which may change from one
execution to the next.

Priority Source Destination Filter prog. Action
100 * 10.0.0.1:80 a drop
10 * *:80 b port 1
1 * * - drop

Table 2: Example of Okomatch-action table. If packets
do not match a they will inevitably run against b.

Source Destination Filter program chain Action
* 10.0.0.1:80 [a:1] drop
* 10.0.0.1:80 [a:0, b:1] port 1

Table 3: Example of megaflow cache in Oko after slow
path lookups for 2 packets toward 10.0.0.1:80. Only
one of the packets matched a, the other matched b.

To overcome this challenge, we introduce the concept
of filter program chains for caches. A filter program chain
consists of an ordered list of filter programs, each with an
expected result. Each megaflow cache entry contains a filter
program chain, assembled during the slow path lookup as the
concatenation of executed filter programs with their result.
By construction, the filter program chain preserves the order
in which filter programs were executed.
Table 3 illustrates a plausible content of the megaflow

cache after Oko processed two packets through the slow path
table defined in Table 2. Program amatched the first packet—
and the filter program chain [a:1] was installed in the cache—
but not the second packet. The slow path lookup continued
for the second packet with rules of lower priority. Program
b matched the second packet, resulting in the installation of
the filter program chain [a:0, b:1] in the cache.
The datapath executes filter program chains by iterating

through them and executing each program until it finds one
that does not return the expected value. A filter program
chain matches a packet if all its filter programs return their
expected results. In the caches’ classifiers, several rules with
the same stateless match fields but different filter program
chains are referenced under the same hash. Oko iterates
through them until it finds a matching filter program chain.
If none of the cached rules match, the traditional behavior
of Open vSwitch is preserved and a slow path lookup is
performed.

For a given set of packet headers, the possible paths through
the OpenFlow pipeline can be viewed as a binary tree whose
nodes are filter programs. Each slow path lookup with this
same set of headers results in a new path through the tree
being cached, i.e. a new result of a filter program of the chain
is reached. Filter program chains encode these paths. Fig-
ure 2 represents the filter program tree of Table 2 for flow



SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA P. Chaignon et al.

a

drop b

port 1 drop

Figure 2: Tree of filter programs from Table 2 for flow
ip_dst=10.0.0.1,port=80. Only branch a->b->drop has
not been cached yet.

ip_dst=10.0.0.1, port=80, with the paths already cached (listed
in Table 3) in bold.
Although filter programs are still not deterministic from

the caches’ perspective, encoding their results into cached
rules enables the aggregation of several stateful rules into a
single disjoint rule.

Filter program chains, however, do not guarantee on their
own that a program is not executed twice for the same packet.
Two filter program chains may share some filter programs
that we do not want executed twice for a same packet. To pre-
vent this, a history of executed filter programs is saved along
with their results for each processed packet. This history is
then checked before executing any filter program.
If filter programs had write access to packets, our filter

program chain extension would not be possible. In this case,
the path through the OpenFlow pipeline would also depend
on the packet modifications, which would have to be encoded
in cache entries as well. Encoding all packet modifications,
in addition to the program results, is prohibitively expensive.

2.4 Cache Invalidation
Because cached rules depend on their aggregated OpenFlow
rules and on higher priority rules, their invalidation is diffi-
cult to compute. Therefore, rather than trying to track which
cache entries need to be updated after an OpenFlow update,
Open vSwitch adopts a brute-force approach and proactively
revalidates the whole cache.

To this end, it runs the set of packet headers that generated
each cached rule through the slow path again. The new rule
generated and its actions are compared against the installed
cached rule. Depending on the result, cached rules may be
updated, removed from the cache, or kept as they are.

Preserving this cache revalidation mechanism is challeng-
ing for filter programs because it presumes that a rule can
be matched against several times and give the same result.
Unfortunately, executing filter programs during cache reval-
idation would update their internal state and so may change
the expected result of a filter program for future incoming
packets. To avoid any execution of filter programs during

cache revalidation, we use the filter program chain attached
to cached rules. During the slow path lookup for cache reval-
idation, we compare the identifier of selected filter program
with those from the cached filter program chain. A cached
rule is deemed valid only if the same filter programs are
selected, in the same order.

3 FILTER PROGRAM EXAMPLES
In this section, we describe three example use cases for Oko: a
stateful firewall, a TCP performance diagnosis system, and a
stateless filtering application. Each use case requires a single
filter program written in C and compiled to BPF bytecode.
We evaluate these filter programs in Section 4.

p0f signature filtering. We describe a simple stateless fil-
tering application of Oko, to emphasize its extended match-
ing capabilities. We implemented a TCP SYN DoS mitigation
application based on p0f signatures [42]. p0f is a passive fin-
gerprinting tool that can identify the system from which a
packet originated based on pre-established signatures. p0f
also includes signatures to discriminate SYN flood packets
from legitimate traffic [6].
Matching p0f signatures against packets requires a few

arithmetic and bitwise operations (e.g., subtractions and bit
shifts) on TCP options, and as such, could not be expressed
with OpenFlow rules, even if new fields were added. Con-
versely, with Oko, the filter program extends the OpenFlow
table and performs the operations required to match p0f sig-
natures against packets. The first rule in Table 4a illustrates
the use of p0f signatures to filter packets at the beginning of
the pipeline (with the highest priority). The filter program
matches and drops packets that match its p0f signatures.
Our application relies on the OpenDaylight REST API to

control the switch. It first generates a p0f signature from
sampled TCP packets (mirrored to the controller). The p0f
signature is then compiled to BPF and loaded in the switch
to block attacks directly in the dataplane.

Stateful firewall. As a descriptive example of Oko’s work-
flow, we implemented a stateful firewall using a filter pro-
gram as the connection tracker and OpenFlow rules for the
ACL rules. As illustrated in Table 4a, the same program, de-
noted as firewall, tracks connections in both directions in
order to protect a web server hosted at 10.0.0.1. It matches
packets if they are part of an established connection. It is
only used to filter packets from the server (fourth rule) since
only packets from established connections are authorized in
that direction. Packets destined to the server are forwarded
to the second table (second and third rules), regardless of
whether they are from an established connection.



Oko: Extending Open vSwitch with Stateful Filters SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

Prio. Source Dest. Filter prog. Actions
12 * 10.0.0.1 anti-ddos drop
11 * 10.0.0.1 firewall table 2
10 * 10.0.0.1 - table 2
10 10.0.0.1 * firewall table 2
1 * * - drop

(a) Table 1

Prio. Source Dest. Filter prog. Actions
10 10.0.0.1 * Dapper send_maps, port 1
10 * 10.0.0.1 Dapper send_maps, port 2
1 10.0.0.1 * - port 1
1 * 10.0.0.1 - port 2

(b) Table 2

Table 4: OpenFlow tables to illustrate example filter programs.

The stateful firewall maintains the state of each connec-
tion, identified by their 5-tuple (protocol, source and des-
tination IP addresses and ports), in a hash table. The filter
program only needs to implement the TCP state machine and
accesses the hash table through the three external functions
defined in Section 2.2.

Dapper: TCPperformance analysis. Dapper [13] is a sys-
tem to analyze TCP connections in real-time near end-hosts.
Dapper collects a set of information on each TCP connec-
tion (e.g., flight size, MSS, sender’s reaction time) at the edge
switch. A controller can then retrieve this information to
determine the limiting factor of a connection among the
sender, the receiver, and the network.

An example integration of Dapper in theOpenFlow pipeline
is given in Table 4b. Our Dapper implementation analyzes
all traffic to and from the server and stores information on
TCP connections in a hash table. By default, the Dapper filter
program returns false and packets therefore match the last
two rules from the OpenFlow table. The program return-
ing true triggers the SEND_MAPS action: statistics on all
connections are sent to the controller. This action allows
the program to send its collected statistics in batches to the
controller when it reaches a given number of connections,
after a given amount of time, or when it detects a troubled
connection.

4 EVALUATION
Our evaluations aim to answer the following questions:

• How does Oko compare to other methods to extend
software switches?

• How much overhead do Oko’s extensions introduce
in Open vSwitch? In particular, how does it impact
traditional stateless forwarding pipelines?

• How efficient is our filter program chain extension for
Open vSwitch’s caching mechanisms?

First, we describe our evaluation environment. Next, through
a set of microbenchmarks, we measure the overhead and
efficiency of our extensions to Open vSwitch. Finally, we
compare, for the three use cases described in Section 3, the

performance of Open vSwitch to that of two alternate solu-
tions to extend software switches: (1) a KVM virtual machine
using a vhost-user interface and running a DPDK application,
and (2) a zero-copy DPDK application running as a process.

4.1 Evaluation Environment
Our testbed consists of two servers directly connected with
Mellanox 40 Gbps NICs. The two NICs use firmware 2.40.700
and are configured with a single queue. The Device Under
Test (DUT) hosting the switch (Oko or vanilla Open vSwitch)
has an Intel Xeon E5-2640 2.6 Ghz with 20 MB of L3 cache
and 16 GB of DDR4 memory at 2133 MHz and runs Linux
4.4.0.

To avoid Linux’s I/O interfaces being the main bottleneck,
and to get a clear view of the performance limitations of
our own modifications, we based our prototype on the high-
performance, userspace datapath of Open vSwitch.
In all experiments, the switch runs on a single core, iso-

lated from the Linux scheduler, with hyper threading dis-
abled. All cores used in experiments are on the same NUMA
node, to which the NIC is connected. Unless stated other-
wise, we use Open vSwitch 2.5.0, on which Oko is based,
with DPDK 2.2 for all comparisons. The switch is configured
with a single poll-mode thread and receive checksum offload
disabled. The second server runs MoonGen [12] to send min-
imum size 64 bytes frames and replay packet captures.
In several of the following evaluations, the packet gener-

ator replays a CAIDA packet trace [2] of 34 minutes. The
trace contains 87 million packets forming 7 million L4 con-
versations. On average, L4 conversations last 5.6 seconds and
contain 11.7 packets. The maximum number of packets in a
single conversation is 11k and the median is 4 packets.

Each experiment lasts 5 minutes and we report the mean
and the standard deviation over 10 runs.

4.2 Microbenchmarks
We first measure the overhead introduced in Open vSwitch
by Oko’s extensions through a set of microbenchmarks.



SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA P. Chaignon et al.

Setup. Because Oko extends only the packet classification
algorithms of Open vSwitch and does not impact the Open-
Flow actions, we configure the switch to drop received pack-
ets after classification. The switch therefore acts as a packet
classifier in all comparisons to vanilla Open vSwitch. We
perform end to end evaluations in Section 4.3.
Because of the two-level caching architecture, the per-

formance of Open vSwitch greatly depends on the traffic
patterns and the cache hit rate of both its microflow and
megaflow caches. Therefore, in all experiments, we provide
results under three switch setups: the first setup is the default
switch configuration with all caches; in the second setup,
the microflow cache is disabled and packets directly hit the
megaflow cache with its single OpenFlow table; in the last
setup, both caches are disabled and all packets go through
the full OpenFlow pipeline in the slow path.

Scenarios. In the followingmicrobenchmarks, we configure
the switch and the MoonGen packet generator according to
two scenarios.

In the synthetic scenario, a single OpenFlow rule match-
ing all incoming packets is installed while the packet gener-
ator sends a single flow of minimum sized (64 bytes) UDP
packets. The rule has a baseline filter program attached, with
a single instruction to return 1, and therefore matches all
packets. This scenario is an ideal case for Open vSwitch’s per-
formance. Once the OpenFlow rule is cached, Open vSwitch
requires few cycles to process subsequent packets, and any
overhead added by Oko is therefore accentuated.
Conversely, the realistic scenario is designed to stress

the switch datapath. It consists of a two-stage pipeline, with
an L3 table over 170 IP prefixes and an ACL table consisting
of 500 rules over destination ports.

We choose the L3 and ACL tables so as to produce a high
number of cached rules at runtime. The L3 table matches the
101 /8 IP prefixes from the trace, as well as the 69 most used
/16 IP prefixes, whereas the ACL table matches the 500 most
used destination ports. As shown in Figure 3, thanks to this
setup, packets are well distributed over all OpenFlow rules.
The two ACL rules matching a larger number of packets are
the default deny rule and the port 80 rule. After a brief ramp
up period, this pipeline results in an average of 170k distinct
rules installed in the datapath4.
The short duration of conversations and the high distri-

bution of packets over OpenFlow rules significantly stresses
the switch caches. Indeed, as can be observed when com-
paring figures 4a and 4b (OVS bar), the efficiency of the two
datapath caches is greatly reduced in the realistic scenario
compared to the synthetic scenario (x5 and x3.6 difference

4We increase the maximum number of rules for the DPDK datapath to 200k.

Figure 3: Cumulative distribution of packets over
OpenFlow rules.

for the microflow and megaflow caches respectively). In par-
ticular, because of the short duration of conversations, the
microflow cache brings little improvement (3%) over the
megaflow cache under the realistic scenario.

Overhead Evaluation. We next measure the performance
of Open vSwitch, Oko without filter programs, and Oko with
a single baseline filter program. Figure 4a shows the packet
classification performance for each cache level under the
synthetic scenario.
Without filter programs in the forwarding pipeline, Oko

has a small performance overhead over Open vSwitch (no
noticeable overhead with all caches, 6% with the microflow
cache disabled) largely due to the initialization of several
additional packet fields to store the history of executed fil-
ter programs. With a baseline filter program, the overhead
grows to 12.6% when all cache levels are enabled, and 11.3%
when the microflow cache is disabled. This evaluation pro-
vides us with an estimated upper bound of the performance
overhead. Under the synthetic scenario, because of the single
OpenFlow rule, the two caches require very few instructions
to classify each packet. Therefore any additional process-
ing (fields initialization, filter program chain iteration, etc.)
appears accentuated. Under the realistic scenario, however,
Oko adds very little overhead (no noticeable overhead with
all caches, 2% with the microflow cache disabled) to Open
vSwitch and the overhead added by a baseline filter program
decreases to 5.5% with all caches (5.6% with the microflow
cache disabled).



Oko: Extending Open vSwitch with Stateful Filters SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

(a) Synthetic scenario, with a standard deviation below 0.30
for all measurements.

(b) Realistic scenario, with a standard deviation below 0.06
for all measurements.

Figure 4: Packet classification performance between Open vSwitch and Oko.

Figures 4a and 4b also highlight the need for our filter
program chain extension to Open vSwitch’s caching mech-
anisms. Without filter program chains, the performance of
Oko with a filter program would be that of the slow path
since the caches would be stateless and all packets would
go through the slow path. Filter program chains therefore
provide an estimated x5 improvement of performance under
the realistic scenario (x18 for the synthetic scenario).

Filter program chains. OpenFlow rules are installed in
the datapath caches after a packet passed through the full
OpenFlow pipeline in the slow path. If filter programs were
executed during the slow path lookup, the cached rule has
a non-empty filter program chain attached. The size of the
filter program chain is equal to the number of filter programs
executed during the slow path lookup.

To obtain a chain of n filter programs in the datapath, we
modify the synthetic scenario and create a pipeline ofn tables
in the slow path. Each table contains a single OpenFlow rule
with a baseline filter program attached and forwards packets
to the next table. Baseline filter programs match all packets.
Figure 5 shows the packet classification performance for
these pipelines. Each new filter program results in about 4%
additional overhead. The packet classification performance is
almost halved (-43.8%) with 10 filter programs in the pipeline.
These numbers are in line with what others have reported
for similar chains of programs executed in Open vSwitch’s
datapath [18].

Figure 5: Packet classification performance for differ-
ent filter program chain lengths, with a standard devi-
ation below 0.30 for all measurements.

Filter Programs Evaluation. To provide an estimate of
the cost of running filter programs as part of the forward-
ing pipeline, we integrate and evaluate each filter program
example from Section 3 under the realistic scenario.
To evaluate the p0f signature filtering program, an ad-

ditional table is added at the beginning of the realistic sce-
nario’s pipeline. This first table has two rules to (1) drop all
packets that match the p0f signature, and (2) forward other
packets to the second table. In addition, at the packet genera-
tor, we inject both legitimate traffic (from the realistic packet



SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA P. Chaignon et al.

Figure 6: Performance evaluation (on a log scale) for
the three Oko use cases, with a standard deviation be-
low 0.08 for all measurements.

trace) and a flood of TCP SYN packets matching the p0f sig-
nature. As in previous tests, the packet trace is replayed with
a single core; 3 additional cores participate in the TCP SYN
flood, resulting in approximately one on four packets being
legitimate.

The results in Figure 6 count all packets successfully clas-
sified by Oko. The Baseline bar reports the performance of
Oko when there are no filter programs in the pipeline, for
comparison. With the p0f filter program, Oko achieves better
performance than the baseline case because it drops illegit-
imate packets at the beginning of the pipeline, before the
L3 and ACL lookups. As highlighted by this p0f example,
Oko can help filter illegitimate or malformed packets at the
beginning of the pipeline to avoid unnecessary processing
steps.

To evaluate our Dapper implementation, tables are added
at the end of the realistic pipeline with corresponding filter
programs. We use the same packet trace as in the realistic
scenario.

The initial implementation of Dapper [13] relies on a fixed
size data structure to store statistics on TCP connections. For
this reason, it can miss some connections if the number of
TCP connections grows larger than the size of the data struc-
ture. With Oko we have the choice to implement a similar
array-based version of Dapper or rely on a hash table to store
statistics. We implement both options and compare their per-
formance in Figure 6. Under our test scenario, the hash table
implementation has a relatively low cost compared to the
array implementation. Oko can therefore benefit from the

Switch DPDK

DPDK

NIC

vhost-user

Sw
itch

m
em

ory
space

V
M

m
em

ory
space VM

Process
Oko

Figure 7: The three evaluation setups for the end-to-
end performance comparison. Packet copies are only
necessary when crossing memory space boundaries.

higher flexibility offered by CPUs to implement algorithms
impractical with specialized hardware.

Since its 2.6.1 version, Open vSwitch can act as a stateful
firewall thanks to a connection tracking module (conntrack)
implemented in the DPDK datapath. We compare this im-
plementation against our Oko stateful firewall under the
realistic scenario, with additional rules to distinguish estab-
lished TCP connections from new connections. The Open
vSwitch firewall uses Open vSwitch 2.6.1 and DPDK 16.07.

As shown in Figure 6, the two stateful firewalls perform
comparably. Our implementation achieves higher packet
classification performance (18% higher with all caches), but
contrary to Open vSwitch’s connection tracking module,
it does not track UDP conversations. With Oko, however,
network operators can customize the connection tracking
program at runtime to fit a particular application’s needs.
In summary, each filter program adds only a small over-

head to the baseline pipeline, with the exception of the p0f fil-
tering program that improves performance when the switch
is under attack. Notice that Dapper and our stateful firewall
implementations achieve very close performance results, de-
spite being completely different applications. An in-depth
analysis of the CPU consumption reveals that, in both cases,
the hash table lookup dominates the running time with a
majority of CPU cycles spent on the 5-tuple hash computa-
tion.

4.3 End-to-End Comparisons

Setups. For each of the three use case examples, we compare
Oko to two existing solutions to extend software switches.

• A DPDK application running inside a KVM virtual ma-
chine. The VM is connected to Open vSwitch using
the vhost-user virtual NIC. Packets are copied from



Oko: Extending Open vSwitch with Stateful Filters SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

the switch memory space to the VM memory space
through a shared memory. vhost-user is the recom-
mended virtual NIC for use with Open vSwitch-DPDK
because it achieves the highest performance by open-
ing a direct channel between the host userspace and
the guest memory space.

• ADPDK application running as a single process on the
host. By using the DPDK Ring Port type, the process
shares the memory space of Open vSwitch, enabling
zero-copy packet processing.

The switch (both Oko and Open vSwitch), the VM, and the
process each have their own dedicated core, isolated from
the Linux scheduler. In each setup, the switch has only two
rules to send packets through the application.
Even though the VM and the process setups each have

two dedicated cores, they use comparable amount of CPU
resources. In both cases, the core dedicated to the switch
does minimal work: it only forwards packets from the NIC
to the virtual port and vice versa.

Figure 7 illustrates our three test setups. When using Oko,
a single core receives packets from the NIC, executes the
filter program on them and sends them back to the NIC, as
per the run-to-completion model of Open vSwitch. Under
the Process setup, however, the addition of a second process
to run the application breaks the run-to-completion model.
Packets are first forwarded by the switch, then processed by
the DPDK application, and finally forwarded back to the NIC
by the switch. Finally, the VM setup entails two additional
packet copies: from the switch to the VM and back.

For the purpose of this comparison, we implemented the
three use cases from Section 3 as DPDK applications. The
two filtering applications, the stateful firewall and the p0f ap-
plication, drop filtered packets in the VM and in the process,
without requiring an additional transfer to the switch.

The packet generator replays the same CAIDA trace as
previously. For the evaluation of the p0f application only, we
configure 3 additional cores at the packet generator to send
a continuous stream of TCP SYN packets.

Results. Figure 8 presents the results of our comparison
evaluation. As expected, Oko outperforms the VM applica-
tions by 2-3x. The difference is less pronounced for the p0f
filtering application because illegitimate packets (3 out of 4
packets) are dropped at the VM, requiring one less copy.
Although VMs are increasingly considered as potential

targets to deploy packet processing application, it is not a
fair comparison to Oko as they provide stronger isolation.
Contrary to Oko, VMs (1) provide resource isolation between
applications, and (2) leverage hardware support for memory
isolation. Using our userspace BPF verifier, Oko provides
memory isolation between filter programs and between the

Figure 8: Comparison of performance for the three use
cases, with Oko, a vhost-user KVM virtual machine,
and aDPDKRing Port process. The standard deviation
is below 0.10 for all measurements.

switch and filter programs, and prevents faults in filter pro-
grams from crashing the switch. These guarantees are closer
to that of processes, which also isolate faults from the switch
and separate each application into its own memory space.
When compared to the Process setup, Oko provides a 1.7-

1.9x improvement of performance. Thanks to the run-to-
completion model of Open vSwitch, Oko benefits from fewer
cache misses, consolidated processing steps (packet parsing
and classification are performed once), and the lack of IPC.

5 RELATEDWORK
There is a large body of work on packet processing in soft-
ware [15, 18, 28, 29, 33, 34, 38]. We focus here on (1) proposi-
tions to extend software switches, (2) alternatives to BPF for
the isolation of packet processing programs, and (3) emerg-
ing usages of BPF in software switches.

Extending Software Switches. Several recent works ad-
dressed the issue of extending software switches to execute
arbitrary packet processing [18, 25, 26, 38].
OFX [38] extends the OpenFlow API to allow SDN appli-

cations to load programs into a switch agent. This agent acts
as a local controller for a few tables at the beginning of the
switch’s OpenFlow pipeline. [26] presents the design of a
similar extension, except the local controller intercepts pack-
ets by modifying table-miss OpenFlow rules. As shown in
Section 4.3, because it breaks the switch’s run-to-completion
model—packets are processed by the local controller in a



SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA P. Chaignon et al.

different execution context than the forwarding pipeline—,
this approach cannot offer the same performance as Oko.

With NEWS [25], the authors of [26] propose an improve-
ment of their design and integrate the local controller in
Open vSwitch. AlthoughNEWSpreserves the run-to-completion
model of Open vSwitch, it runs in the slow path as the au-
thors do not extend caching mechanisms. As hinted in Sec-
tion 4.2, extending Open vSwitch’s caching mechanisms is a
required step to achieve high performance.

SoftFlow [18] is probably the work closest to ours. Based
on Open vSwitch, SoftFlow preserves the run-to-completion
model and runs arbitrary programs in the datapath as Open-
Flow actions. SoftFlow, however, sacrifices isolation to attain
high-performance; as a result, a faulty program may crash
the switch. Thanks to BPF, Oko is immune to such failures.

Because SoftFlow supports arbitrary programs, it relies on
their developers to tell the switch when a program does not
mandate a new rule lookup after its execution. In contrast, in
Oko, programs are integrated and act as match fields; in par-
ticular, they cannot write to packets. This restriction makes
the filter program chain extension possible since new rule
lookups are never required after a filter program execution.
To support programs that require write access to packets, a
future version of Oko could adopt SoftFlow’s approach and
implement those programs as OpenFlow actions. This design
would provide a clear separation between filter programs
that can be chained and action programs that require write
access to packets.

Software Isolation. Besides BPF, several other systems
address the issue of providing memory isolation without the
significant cost of context switches.

In particular, Singularity [16] explores the use of type-safe
languages and memory-safe runtimes to provide memory
isolation in place of the hardware memory management unit.
NetBricks [29] applies this approach to packet processing
and relies on LLVM as the runtime and Rust as the language.
In particular, NetBricks leverages a new compile-time mech-
anism, called Zero-Copy Software Isolation, to ensure packet
isolation without the overhead of packet copies.

Closer to BPF, DTrace [9] is a dynamic tracing infrastruc-
ture for Solaris. DTrace’s bytecode is verified by the kernel
before execution. Safety checks are similar to that of BPF:
invalid operations and forward jumps are prohibited, illegal
memory accesses are intercepted at runtime.
With some adjustments, these systems could be used in

place of BPF in Oko. We chose to use BPF because it has
been tailored for packet processing [24] and provides the
minimum functionalities required for Oko.

BPF for software switching. In a recent work, C.-C. Tu et
al. [39] detail the design of an BPF-based datapath for Open

vSwitch, to replace the Linux kernel module datapath. Their
work focuses on implementing the two caches in BPF and
does not expose BPF capabilities through the switch API.

S. Jouet et al. propose in [20] to use stateless BPF programs
as OXM match fields to build a protocol independent switch.
In [21], they propose a packet processing framework based
on BPF, upon which a software switch can be developed. In
both [20] and [21], the prototypes do not implement any flow
caching mechanisms, which eases the design but severely
limits performance for long forwarding pipelines.

Finally, it is also possible to place BPF hooks in the Linux
kernel networking stack (e.g., at the traffic classifier or in
the driver). Such programs, however, cannot benefit from
the ease and performance of Open vSwitch’s forwarding
pipeline; they would have to reimplement flow tables and
their caching optimizations from scratch. To benefit from
both Open vSwitch and the Linux BPF infrastructure, a new
hook point and an extended Open vSwitch kernel module
would be required. We leave this in-kernel implementation
of Oko to our future work.

6 CONCLUSION
Because of their statelessmatch-action abstractions, software
switches do not leverage the flexibility offered by the com-
modity hardware on which they run. Due to their unique po-
sition at the edge of datacenter networks, software switches
are critical pieces of software, difficult to extend.

In this paper, we introduced Oko, a software switch based
on Open vSwitch that can be extended at runtime with state-
ful programs. Oko protects itself against faulty programs
using the same security model as the BPF in-kernel inter-
preter. As our evaluations demonstrate, Oko can preserve
the high performance of Open vSwitch, while providing a
near 2x improvement over existing approaches to extend
software switches. Thanks to Oko, SDN applications can
load programs in the dataplane to mitigate attacks, diag-
nose performance drops, or customize network services at
runtime.

ACKNOWLEDGMENTS
We thank our shepherd, Petr Lapukhov, and the anonymous
SOSR reviewers for their valuable comments that helped
improve the quality of this paper. We also thank Alex Pale-
sandro, Xiao Han, and Diane Adjavon for their helpful input.

REFERENCES
[1] 2005. The LuaJIT Project. (2005). Retrieved Feb. 16, 2017 from http:

//luajit.org
[2] 2012. The CAIDA anonymized OC48 Internet traces 2002-2003

dataset. (2012). Retrieved Apr., 2017 from http://data.caida.org/
datasets/passive/passive-oc48

http://luajit.org
http://luajit.org
http://data.caida.org/datasets/passive/passive-oc48
http://data.caida.org/datasets/passive/passive-oc48


Oko: Extending Open vSwitch with Stateful Filters SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

[3] 2012. What is Open vSwitch (OVS)? (2012). Retrieved
Feb. 9, 2018 from https://www.sdxcentral.com/cloud/open-source/
definitions/what-is-open-vswitch

[4] 2013. OpenDaylight project. (Feb. 2013). Retrieved Feb. 9, 2018 from
https://www.opendaylight.org

[5] 2015. Linux native, HTTP aware network security for containers. (Dec.
2015). Retrieved Feb. 9, 2018 from https://github.com/cilium/cilium

[6] G. Bertin. 2016. Introducing the p0f BPF compiler. (Aug.
2016). Retrieved Feb. 9, 2018 from https://blog.cloudflare.com/
introducing-the-p0f-bpf-compiler

[7] D. Borkmann. 2018. net: add bpfilter. (Feb. 2018). Retrieved Feb. 27,
2018 from https://lwn.net/Articles/747504

[8] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker.
2014. P4: Programming protocol-independent packet processors. ACM
SIGCOMM Comput. Commun. Rev. 44, 3 (Jul. 2014).

[9] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. 2004. Dynamic
instrumentation of production systems. In Proc. USENIX ATC.

[10] J. Corbet. 2014. BPF: The universal in-kernel virtual machine. (May
2014). Retrieved Feb. 9, 2018 from https://lwn.net/Articles/599755

[11] J. Corbet. 2016. Early packet drop—and more—with BPF. (Apr. 2016).
Retrieved Feb. 9, 2018 from https://lwn.net/Articles/682538

[12] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle.
2015. MoonGen: A scriptable high-speed packet generator. In Proc.
ACM IMC.

[13] M. Ghasemi, T. Benson, and J. Rexford. 2017. Dapper: Data plane
performance diagnosis of TCP. In Proc. ACM SOSR.

[14] B. Gregg. 2016. Linux 4.X tracing tools: Using BPF superpowers.
USENIX LISA.

[15] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy.
2015. SoftNIC: A software NIC to augment hardware. Technical Re-
port UCB/EECS-2015-155. EECS Department, University of Califor-
nia, Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/
EECS-2015-155.html

[16] G. C. Hunt and J. R. Larus. 2007. Singularity: Rethinking the software
stack. ACM SIGOPS Oper. Syst. Rev. 41, 2 (Apr. 2007).

[17] J. Hwang, K. K. Ramakrishnan, and T. Wood. 2014. NetVM: High per-
formance and flexible networking using virtualization on commodity
platforms. In Proc. USENIX NSDI.

[18] E. J. Jackson, M. Walls, A. Panda, J. Pettit, B. Pfaff, J. Rajahalme, T.
Koponen, and S. Shenker. 2016. SoftFlow: A middlebox architecture
for Open vSwitch. In Proc. USENIX ATC.

[19] B. Jenkins. 2016. A hash function for hash table lookup. (2016). Re-
trieved Feb. 9, 2018 from http://burtleburtle.net/bob/hash/doobs.html

[20] S. Jouet, R. Cziva, and D. Pezaros. 2016. Programmable dat-
aplane for next generation networks. (Mar. 2016). Re-
trieved Feb. 9, 2018 from https://netlab.dcs.gla.ac.uk/uploads/files/
d99abd5bbadbed8c0f29808ee812bd26.pdf

[21] S. Jouet and D. P. Pezaros. 2017. BPFabric: Data plane programmability
for software defined networks. In Proc. IEEE ANCS.

[22] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, N. Gude, P. Ingram, E. Jackson, A. Lambeth, R.
Lenglet, S.-H. Li, A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan, S.
Shenker, A. Shieh, J. Stribling, P. Thakkar, D. Wendlandt, A. Yip, and
R. Zhang. 2014. Network virtualization in multi-tenant datacenters. In
Proc. USENIX NSDI.

[23] R. Lane. 2015. Userspace eBPF VM. (Aug. 2015). Retrieved Feb. 9, 2018
from https://github.com/iovisor/ubpf

[24] S. Mccanne and V. Jacobson. 1993. The BSD packet filter: A new
architecture for user-level packet capture. In Proc. USENIX Winter
Conf.

[25] H. Mekky, F. Hao, S. Mukherjee, T. V. Lakshman, and Z.-L. Zhang. 2017.
Network function virtualization enablement within SDN data plane.
In IEEE INFOCOM.

[26] H. Mekky, F. Hao, S. Mukherjee, Z.-L. Zhang, and T. V. Lakshman.
2014. Application-aware data plane processing in SDN. In Proc. ACM
SIGCOMM HotSDN.

[27] J. Meyer and T. Downing. 1997. Java Virtual Machine. O’Reilly &
Associates, Inc.

[28] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. 1999. The Click
modular router. In Proc. ACM SOSP.

[29] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker. 2016.
NetBricks: Taking the V out of NFV. In Proc. USENIX OSDI.

[30] B. Pfaff. 2016. Converging approaches in software switches. ACM
APSys.

[31] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross,
A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado. 2015. The
design and implementation of Open vSwitch. In Proc. USENIX NSDI.

[32] V. Puš, J. Kučera, M. Žádník, and J. Kořenek. 2016. FPGA-based 100
Gbps DDoS protector. TNC17. https://tnc17.geant.org/core/event/31

[33] L. Rizzo. 2012. Netmap: A novel framework for fast packet I/O. In Proc.
USENIX ATC.

[34] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, and
J. Rexford. 2016. PISCES: A programmable, protocol-independent
software switch. In Proc. ACM SIGCOMM.

[35] M. Sipser. 1996. Introduction to the Theory of Computation (1st ed.).
International Thomson Publishing.

[36] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Bal-
akrishnan, G. Varghese, N. McKeown, and S. Licking. 2016. Packet
Transactions: High-level programming for line-rate switches. In Proc.
ACM SIGCOMM.

[37] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford. 2017. Heavy-hitter detection entirely in the data plane. In
Proc. ACM SOSR.

[38] J. Sonchack, J. M. Smith, A. J. Aviv, and E. Keller. 2016. Enabling
practical software-defined networking security applications with OFX.
In NDSS.

[39] C.-C. Tu, J. Stringer, and J. Pettit. 2017. Building an extensible Open
vSwitch datapath. ACM SIGOPS Oper. Syst. Rev. 51, 1 (Aug. 2017).

[40] X. Wang, D. Lazar, N. Zeldovich, A. Chlipala, and Z. Tatlock. 2014. Jitk:
A trustworthy in-kernel interpreter infrastructure. In Proc. USENIX
OSDI.

[41] M. Yu, L. Jose, and R. Miao. 2013. Software defined traffic measurement
with OpenSketch. In Proc. USENIX NSDI.

[42] M. Zalewski. 2012. p0f v3. (2012). Retrieved Feb. 9, 2018 from http:
//lcamtuf.coredump.cx/p0f3

https://www.sdxcentral.com/cloud/open-source/definitions/what-is-open-vswitch
https://www.sdxcentral.com/cloud/open-source/definitions/what-is-open-vswitch
https://www.opendaylight.org
https://github.com/cilium/cilium
https://blog.cloudflare.com/introducing-the-p0f-bpf-compiler
https://blog.cloudflare.com/introducing-the-p0f-bpf-compiler
https://lwn.net/Articles/747504
https://lwn.net/Articles/599755
https://lwn.net/Articles/682538
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
http://burtleburtle.net/bob/hash/doobs.html
https://netlab.dcs.gla.ac.uk/uploads/files/d99abd5bbadbed8c0f29808ee812bd26.pdf
https://netlab.dcs.gla.ac.uk/uploads/files/d99abd5bbadbed8c0f29808ee812bd26.pdf
https://github.com/iovisor/ubpf
https://tnc17.geant.org/core/event/31
http://lcamtuf.coredump.cx/p0f3
http://lcamtuf.coredump.cx/p0f3

	Abstract
	1 Introduction
	2 Design
	2.1 Oko Workflow
	2.2 Specialized BPF Infrastructure
	2.3 Filter Program Caching
	2.4 Cache Invalidation

	3 Filter Program Examples
	4 Evaluation
	4.1 Evaluation Environment
	4.2 Microbenchmarks
	4.3 End-to-End Comparisons

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

