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Attribute-value rule learning

(C ) (A1) (A2) (A3) (A4) (A5) (A6)
Price Area Rooms Energy Town District Exposure

1 low-priced 70 2 D Toulouse Minimes
2 low-priced 75 4 D Toulouse Rangueil
3 expensive 65 3 Toulouse Downtown
4 low-priced 32 2 D Toulouse SE
5 mid-priced 65 2 D Rennes SO
6 expensive 100 5 C Rennes Downtown
7 low-priced 40 2 D Betton S

I Task: induce rules to predict the value of the class
attribute (C )

I Rules extracted by Algorithm CN2

πCN2
1 : A5 = Downtown⇒ C = expensive

πCN2
2 : A2 < 2.50 ∧ A4 = Toulouse⇒ C = low-priced

πCN2
3 : A1 > 36.00 ∧ A3 = D ⇒ C = low-priced
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Interpretability of rules and rulesets

I The logical structure of a rule can be easily interpreted by
users

IF conditions THEN class-label

I Rule learning algorithms generate rules according to
implicit or explicit principles1

I are the generated rules the interpretable ones?
I would it be possible to have di�erent rulesets?
I why a ruleset would be better than another one from the

interpretability point of view?

⇒ We need ways to analyze the interpretability of the
outputs of rule learning algorithms

1principles mainly based on statistical properties!
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Analyzing the interpretability of rules
Analyzing the interpretativeness of ruleset

I Objective criteria on ruleset syntax [CZV13, BS15]
I size of the rule (number of attributes)
I size of the ruleset

I Intuitiveness of rules through the e�ects of cognitive
biases [KBF18]

⇒ Our approach formalizes rule learning and some expected
properties on rules to shed light on properties of some
extracted ruleset

In this talk
I We present the formalisation of rule learning, and we

focus on the generalization of examples as a rule
I We introduce the notion of admissible rule that attempts

to capture an intuitive generalization of the examples
I We develop the example of numerical attributes
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Impact of examples generalization on rule

interpretability
(C ) (A1) (A2) (A3) (A4) (A5) (A6)
Price Area Rooms Energy Town District Exposure
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Toward the notion of admissibility

(C ) (A1)
Price Area

1 low-priced 70
2 low-priced 75
4 low-priced 32
7 low-priced 40

I Rote learning of a rule

A1 = {75} ⇒ C = low-priced

I Most generalizing rule

A1 = [32 : 75]⇒ C = low-priced

I Would the following rule be better?
A1 = [32 : 40] ∪ [70 : 75]⇒ C = low-priced

⇒ this is the question of admissibility!

The notion of admissibility has to capture an intuitive notion
of generalization . . .
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At a glance
Rule learning is formalized by two main functions

I φ: selects possible subsets of data

I f : generalizes examples as a rule (LearnOneRule process
[Mit82])

(C) (A1) (A2) (A3) (A4) (A5) (A6)
Price Area #Rooms Energy Town District Exposure

low-priced 70 2 D Toulouse Minimes
low-priced 75 4 D Toulouse Rangueil
expensive 65 3 Toulouse Downtown
low-priced 32 2 D Toulouse SE
mid-priced 65 2 D Rennes SW
expensive 100 5 C Rennes Downtown
low-priced 40 2 D Betton S
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The attribute-value model

A1 A2 A3 A4 A5 A6 A7 · · · An

item 1 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 · · · a1,n
item 2 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7 · · · a2,n
item 3 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7 · · · a3,n
item 4 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7 · · · a4,n
item 5 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7 · · · a5,n
item 6 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7 · · · a6,n
item 7 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7 · · · a7,n
...

...
...

...
...

...
...

...
. . .

...
item m am,1 am,2 am,3 am,4 am,5 am,6 am,7 · · · am,n

Rows: items x1, x2, . . . , xm
Columns: attributes A1,A2, . . . ,An

]
∀i , j aj ,i ∈ RngAi

RngAi denotes the set of possible values for attribute Ai
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Subsets of data to generalize

A1 A2 A3 A4 A5 A6 A7 A8 A9

item 1 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8 a1,9
item 2 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7 a2,8 a2,9
item 3 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7 a3,8 a3,9
item 4 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7 a4,8 a4,9
item 5 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7 a5,8 a5,9
item 6 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7 a6,8 a6,9
item 7 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7 a7,8 a7,9
item 8 a8,1 a8,2 a8,3 a8,4 a8,5 a8,6 a8,7 a8,8 a8,9
item 9 a9,1 a9,2 a9,3 a9,4 a9,5 a9,6 a9,7 a9,8 a9,9

⇒ "Square" = selection of rows and columns in the data
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Rules

A rule π expresses constraints (for a generic item x) which
lead to conclusion C (x) (class which the item belongs to)

π : A1(x) ∈ vπ1 ∧ · · · ∧ An(x) ∈ vπn → C (x) ∈ vπ0 (∗)

where

{
vπi ⊆ RngAi pour i = 1, . . . , n,
vπ0 ⊆ RngC .

attributes i = 1, . . . , n without constraints are such that
vπi = RngAi .
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Eliciting a rule

I S being a square is supposed to capture a rule π requires
that every item of S satis�es π

→ generalisation does not capture the statistical

representativeness of dataset, but only elicits a rule

generalizing all its items

(C) (A1) (A2) (A3) (A4) (A5) (A6)
Price Area #Rooms Energy Town District Exposure

low-priced 70 2 D Toulouse Minimes
low-priced 75 4 D Toulouse Rangueil
expensive 65 3 Toulouse Downtown
low-priced 32 2 D Toulouse SE
mid-priced 65 2 D Rennes SW
expensive 100 5 C Rennes Downtown
low-priced 40 2 D Betton S

A0 = 2 ∧ A4 = Toulouse⇒ C = low-priced

f

(C) (A1) (A2) (A3) (A4) (A5) (A6)
Price Area #Rooms Energy Town District Exposure

low-priced 70 2 D Toulouse Minimes
low-priced 75 4 D Toulouse Rangueil
expensive 65 3 Toulouse Downtown
low-priced 32 2 D Toulouse SE
mid-priced 65 2 D Rennes SW
expensive 100 5 C Rennes Downtown
low-priced 40 2 D Betton S

A0 ∈ [2, 4]⇒ C ∈ {low-priced, expensive}

f

14 / 29



Eliciting a rule (f function)

(A0) (A1) (A2)

Price Area Rooms

1 low-priced 70 2

2 low-priced 75 4

4 low-priced 32 2

7 low-priced 40 2

S0 = {low-priced}

S1 = {32, 40, 70, 75}

S2 = {2, 4}

I For every attribute Ai , Si is the
set of values of Ai in items of S

I Each superset of Si is,
theoretically speaking, a
generalization of Si

I The generalisation process thus
consists in selecting one of these
supersets:

f choice function that is given

as input a collection of

supersets of Si and picks one

We are looking for an appropriate ·̂ for (�) i.e.

A1(x) ∈ Ŝ1 ∧ · · · ∧ An(x) ∈ Ŝn → C (x) ∈ Ŝ0 (�)

Generalization of Si : Ŝi = f ({Y | Si ⊆ Y ⊆ RngAi})
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Generalization of Si : Ŝi = f ({Y | Si ⊆ Y ⊆ RngAi})

15 / 29



Eliciting a rule (f function)

(A0) (A1) (A2)

Price Area Rooms

1 low-priced 70 2

2 low-priced 75 4

4 low-priced 32 2

7 low-priced 40 2

S0 = {low-priced}

S1 = {32, 40, 70, 75}

S2 = {2, 4}
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Notion of admissibility: propositions

Generalization of Si : Ŝi = f ({Y | Si ⊆ Y ⊆ RngAi})

What collection X = {Ŝi | Si ⊆ RngAi} would do?

(i) RngAi ∈ X
(ii) if X and Y are in X then so X ∩ Y .

I X is a closure system upon RngAi .
I ·̂ is an operation enjoying weaker properties than closure

operators; alternatives looked at:
I pre-closure operator
I capping operator

What choice function(s) can in practice capture these
expected algebraic properties?

I Proposal for some classes of choice functions generating
speci�c types of operators

I Concrete examples of such functions for numerical rules
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Weakening closure operators

I List of Kuratowski's axioms [Kur14] (closure system):

∅̂ = ∅
S ⊆ Ŝ ⊆ RngAî̂
S = Ŝ

Ŝ ∪ S ′ = Ŝ ∪ Ŝ ′ (pre-closure)

I Actually, we downgrade Kuratowski's axioms as follows

Ŝ ⊆ Ŝ ′ whenever S ⊆ S ′ (closure)

Ŝ = Ŝ ′ whenever S ⊆ S ′ ⊆ Ŝ (cumulation)

Ŝ ∪ S ′ ⊆ Ŝ whenever S ′ ⊆ Ŝ (capping)

Lemma: Kuratowksi ⇒ closure ⇒ cumulation ⇒ capping
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Class of choice functions satisfying pre-closure

Theorem. Given a set Z , let f : 22
Z → 2Z be a function st

for every upward closed X ⊆ 2Z and every Y ⊆ 2Z :

1. f (2Z ) = ∅
2. f (X ) ∈ X
3. f (X ∩ Y) = f (X ) ∪ f (Y)

whenever
⋃

min(X ∩ Y) =
⋃

minX ∪
⋃

minY
Then, ·̂ : 2Z → 2Z as de�ned by

X̂
def
= f ({Y | X ⊆ Y ⊆ Z})

is a pre-closure operator upon Z .

Intuition: Z is RngAi

X (and Y, too) is a collection of intervals over RngAi

moreover, X is a collection containing all super-intervals

of an interval belonging to the collection
18 / 29
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X̂
def
= f ({Y | X ⊆ Y ⊆ Z})

is a pre-closure operator upon Z .

Numerical attributes: principle of single point (u) interpolation

Ai(x) ∈ [u − r : u + r ]→ C (x) = c .

18 / 29



Class of choice functions satisfying capping

Theorem. Given a set Z , let f : 22
Z → 2Z be a function st

for every X ⊆ 2Z such that
⋂
X ∈ X and for every Y ⊆ 2Z

1. f (X ) ∈ X
2. if Y ⊆ X and ∃W ∈ Y , W ⊆ f (X ) then f (Y) ⊆ f (X )

Then, ·̂ : 2Z → 2Z as de�ned by

X̂
def
= f ({Y | X ⊆ Y ⊆ Z})

is a capping operator upon Z .

Intuition: Z is RngAi

X (and Y, too) is a collection of intervals over RngAi

moreover, X is a collection whose intersection

is itself a member of the collection
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Class of choice functions satisfying capping

Theorem. Given a set Z , let f : 22
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Illustrations of the behaviour of CN2

Generation of synthetic data:

I Data with 2 dimensions: a numerical attribute and a
symbolic class attribute

I Data with two classes (green and blue)

Objective:

I Illustrate the behaviour of the rule learning algorithm in
terms of characteristics of generalisation of examples
. based on a pre-closure (interpolation over single points)

. based on a capping (interpolation over pairs of points)

Using Algorithm CN2 [CN89]
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Separating interesting intervals

Figure: Distributions of the data

for the classes blue and green.

Comparison of rules obtained out of

uniform distributions vs. normal

distributions

I distance between two successive

values are small wrt the range

of the attribute

I mixing normal distributions

causes disparate average

distances (pairwise distance

between examples)

I the second dataset can be

viewed as a super set of the

�rst dataset (add of examples

in between examples)
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Separating interesting intervals

Figure: Distributions of the data

for the classes blue and green.

Expected rules assuming capping
or pre-closure for each class:

• topmost dataset:

• v ∈ [−∞ : 15]⇒ A0 = blue

• v ∈ [10 : +∞]⇒ A0 = green

• bottom dataset:

• v ∈ [−∞ : 15]⇒ A0 = blue

• v ∈ [0 : +∞]⇒ A0 = green

22 / 29



Separating interesting intervals

Figure: Distributions of the data

for the classes blue and green.

Rules learned by CN2, topmost

dataset:

• v ∈ [−∞ : 10.03]⇒ A0 = blue

• v ∈ [12.73 : 14.83]⇒ A0 = blue

• v ∈ [10.65 : 12.81]⇒ A0 = green

• v ∈ [15.01 : +∞]⇒ A0 = green

Rules learned by CN2, bottom

dataset:

• v ∈ [−∞ : 0.96]⇒ A0 = blue

• v ∈ [0.97 : 2.57]⇒ A0 = blue

• v ∈ [3.09 : 10.04]⇒ A0 = blue

• v ∈ [3.50 : 7.18]⇒ A0 = green

• v ∈ [11.55 : 13.14]⇒ A0 = green

• v ∈ [13.15 : +∞]⇒ A0 = green
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Does density in�uence the choice of boundaries?

Figure: Distributions of the data

for the classes blue and green.

Comparison of rules obtained out

of well-separated uniform

distributions, for two similar

situations

I topmost dataset: same

number of examples in both

classes

I bottom dataset: the blue

class is under-represented as

compared to the green class
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Does density in�uence the choice of boundaries?

Figure: Distributions of the data

for the classes blue and green.

Observed behaviour:

I no di�erence between the
extracted rules for either
dataset

I CN2 systematically
chooses the boundary to
be the middle of the limits
in between the two classes
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Does density in�uence the choice of boundaries?

Figure: Distributions of the data

for the classes blue and green.

Behaviour from capping :

I adding extra examples can
alter boundaries

⇒ to be insensitive to density
of examples corresponds
to a cumulation operator
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Conclusion (1)
I The logical structure of rules makes them easy to read

but ...
I The interpretability of rules learned from examples

requires, in particular, to take care of the way examples
are generalized

I Example of numerical attributes, but also symbolic

attributes with structures (e.g. orders)

I Qualifying the interpretable nature of rule learning
outputs is challenging

What can our approach do for rule interpretability

I Our work contributes by giving a way to do such analysis
I A proposal of a general framework for rule learning
I A topological study of admissible generalisations of

examples
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Conclusion (2)

Formalisation of rule learning

I φ: selects possible subsets of data

I ·̂ : elicits the rule

→ o�er a framework for analysing rule learning algorithms

(C) (A1) (A2) (A3) (A4) (A5) (A6)
Price Area #Rooms Energy Town District Exposure

low-priced 70 2 D Toulouse Minimes
low-priced 75 4 D Toulouse Rangueil
expensive 65 3 Toulouse Downtown
low-priced 32 2 D Toulouse SE
mid-priced 65 2 D Rennes SW
expensive 100 5 C Rennes Downtown
low-priced 40 2 D Betton S
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Conclusion (3)

Admissible generalisation of examples

I Admissible generalisations resulting of a choice among the
supersets of the examples

I Proposed topological property of the choice: closure-like
operators (pre-closure, capping)

I De�nition of classes of choice functions
I Proposal of concrete choice functions upon numerical

attributes
I Can be generalized to symbolic attributes, including

attributes with structure (e.g. total order)
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Perspectives

I Long term objective: study the characteristics of
extracted rulesets

I Comparing the set of rules extracted by machine learning

I Need a formalism to represent a set of rules
I A formalism that enables to represent

→ rules actually extracted by machine learning algorithms
(e.g., Ripper, CN2, etc)

→ rules selected using a selection criteria (interestingness
measures, etc)

I Formalize essential notions of rule learning
I The formalism will be a way to reason about the machine

learning algorithms

28 / 29



Bibliography I

Fernando Benites and Elena Sapozhnikova, Hierarchical interestingness measures

for association rules with generalization on both antecedent and consequent

sides, Pattern Recognition Letters 65 (2015), 197�203.

Peter Clark and Tim Niblett, The CN2 induction algorithm, Machine Learning 3
(1989), no. 4, 261�283.

Alberto Cano, Amelia Zafra, and Sebastián Ventura, An interpretable

classi�cation rule mining algorithm, Information Sciences 240 (2013), 1�20.

Tomás Kliegr, Stepán Bahník, and Johannes Fürnkranz, A review of possible

e�ects of cognitive biases on interpretation of rule-based machine learning

models, CoRR abs/1804.02969 (2018).

Kazimierz Kuratowski, Topology, vol. 1, Elsevier, 2014.

Tom M Mitchell, Generalization as search, Arti�cial Intelligence 18 (1982),
203�226.

29 / 29


	Introduction
	Formalizing rule learning
	Admissibility for generalization
	Application to an analysis of CN2
	Conclusion

