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Abstract. This chapter provides a state-of-the-art account of the use of Sugeno integrals in decision evalua-
tion, when it is difficult to use meaningful figures of merit when assessing the worth of a decision and when
only a finite scale of, e.g., linguistic categories, can be used. Here, Sugeno integrals are thought of as idem-
potent lattice polynomial functions on a finite bounded chain, which makes it possible to assign importance
weights to groups of criteria or states. Algebraic and behavioral characterizations of the Sugeno integral are
presented and discussed, including in the special cases of weighted minima and maxima. Extensions of this
framework are also surveyed, namely: the lexicographic refinements that increase the discrimination power
of this approach; the use of local utility functions in order to cope with criteria having distinct rating scales;
and the generalization of the criteria weighting scheme at work in Sugeno integrals. Another kind of extension
considered is when ratings belong to a bipolar scale where good and bad figures are explicitly present, thus
giving rise to the symmetric Sugeno integral or to the separate evaluation of pros and cons. Moreover, it is
pointed out that Sugeno integrals encode decision rules and that this bridge leads to methods for extracting
knowledge from qualitative data. The results of empirical studies of the latter are also presented and discussed,
accordingly.
Keywords Sugeno integral, lattice polynomial, bipolarity, qualitative decision theory, decision rule.

1 Introduction: motivation for qualitative evaluation methods

In the setting of Artificial Intelligence (for instance, recommender systems, cognitive robotics, but other
fields as well), the use of decision rules based on numerical aggregation functions is not always natural.
In particular, probabilities, utilities, importance weights cannot always be easily elicited from the user,
by lack of time or lack of precision. Information systems advising persons cannot ask too many ques-
tions to users for modeling their preferences, nor collect from them meaningful numbers representing
probabilities or criteria importance levels, or yet utility values. Even if they get them, making numerical
operations on them needs justification, for instance, does the scale used authorize such calculations? To
illustrate, suppose that a referee fills a form to assess the merits of a paper for a journal, and numerical
ratings are required by the system. What is the precise meaning of these ratings? Does it make sense to
compute averages from them?

In such situations it is more natural to resort to a qualitative approach to multicriteria evaluation. The
rationale is to refrain from using numbers that look arbitrary or hard to collect, namely address decision
problems in the ordinal setting. Gigerenzer and Todd [70] have argued that human decisions are often
made on the basis of an ordinal ranking of the strength of criteria rather than on numerical evaluations,
and hence the qualitative nature of the decision process. In daily life, people seldom resort to explicit
numerical computations of figures of merit. This idea has also been exploited in Artificial Intelligence for
a long time in qualitative decision theory [33]. For instance, so-called conditional preference networks
(CP-nets) [9] allow for an easier representation of ordinal preference relations on multidimensional sets
of alternatives, using local conditional preference statements interpreted ceteris paribus. See [40] for a
survey of qualitative decision rules under uncertainty.

There are two advantages to using a qualitative approach: (i) a gain in robustness and the need for
less data; (ii) qualitative methods lend themselves to a logical representation (which makes proposed



choices more easily explainable). There are two possible choices of qualitative settings for representing
notions such as utility ratings stemming from several agents, importance levels and likelihood degrees:

– use distinct non-commensurate scales, which makes the framework very restrictive as impossibility
theorems regarding rational aggregation processes are often obtained (e.g., in voting theory).

– use finite commensurate scales (taking advantage of notions facilitating commensurateness such as
certainty equivalents), which leads to a finite ordered set of value classes.

In multi-criteria decision making, Sugeno integrals [101, 102] are commonly used as qualitative
aggregation functions [75] using finite scales under the commensurability assumption between them.
The definition of these integrals is based on a monotonic set-function named capacity or fuzzy measure
that aims to qualitatively represent the likelihood of sets of possible states of nature, the importance of
sets of criteria, etc. These set functions are currently used in many areas such as uncertainty modeling
[59, 60], multiple criteria aggregation [10, 71, 78] or in game theory [97]. See also a recent book devoted
to capacities in such areas [74]. Moreover, Sugeno integrals naturally lend themselves to a representation
in terms of if-then rules involving thresholds [?,53, ?], which makes them easy to interpret.

This chapter surveys several results around Sugeno integral as well as some of its extensions in the
problem of evaluating decisions under uncertainty or objects according to several criteria. We shall speak
of alternatives to stand for acts, decisions or objects to be evaluated. In section 2 we recall basic defini-
tions and various mathematical properties of Sugeno integrals, including the links with conjunctive and
disjunctive normal forms of lattice polynomials, and the close connection between Sugeno integrals and
medians. Axiomatic characterisations of Sugeno integrals are also surveyed, as well as the expression
of Sugeno integrals in possibilistic logic. Section 3 reviews generalisations of Sugeno integrals, namely
their lexicographic refinements, the use of local utility functions that cope with the use of several local
scales, and the use of more general conjunction and implication connectives for combining weights of
criteria and local ratings. Section 4 discusses the notion of bipolar qualitative evaluation by means of
special cases or variants of Sugeno integrals, which use bipolar scales with explicit positive and negative
values, or yet a positive and a negative scale, in order to balance the pros and the cons. The last sec-
tion deals with qualitative data analysis, namely how to represent qualitative data by means of Sugeno
integrals or by a set of if-then rules.

2 Sugeno integrals

We consider a finite set of criteria C = {1, · · · , n}, also denoted by [n]. The alternatives considered are
evaluated using these criteria. Here, the evaluation scale L is supposed to be common to all criteria and
is assumed to be a finite totally ordered set, for instance a subset of the interval [0, 1]. In any case, the
bottom of L is denoted by 0 and the top is denoted by 1. Using a single evaluation scale means that the
ratings according to different criteria are commensurate, which is a strong assumption and that will be
lifted later on in the paper.

The maximum (resp. minimum) will be denoted by ∨ (resp. ∧). An alternative is represented by
a function f : C → L, or equivalently, by a tuple of ratings on the different criteria, i.e., by f =
(f1, · · · , fn) ∈ Ln where fi is the rating of f according to criterion i. We assume that the rating scale
L is equipped with an involutive operation, denoted by 1 − ·, such that whenever λ ∈ L, 1 − λ ∈ L as
well.

2.1 Basic definitions and preliminaries

In usual multicriteria evaluation based on weighted average, importance weights are assigned to criteria.
In this paper, importance levels can be assigned to sets of criteria (instead of single ones) by means
of a capacity which is a mapping µ : 2C → L such that µ(∅) = 0, µ(C) = 1, and if A ⊆ B then
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µ(A) ≤ µ(B). This generalized importance assignment enables dependencies between criteria to be
accounted for; namely, redundant criteria in a set A are such that µ(A) = maxi∈A µ({i}) (since the
weight of group A is the one of the most important criterion in it), while a synergy between them is
expressed when µ(A) > maxi∈A µ({i}). Capacities qualify to represent uncertainty in decision theory
as well as importance weights in multicriteria decision-making.

The discrete Sugeno integral, widely used to aggregate qualitative local evaluations in multiple at-
tribute evaluation [101], is defined by:

Sµ(f) =
∨
A⊆C

(µ(A) ∧
∧
i∈A

fi) (1)

The name “integral” for such an expression may sound surprising. However, it was proposed first by
Sugeno [101] under the name “fuzzy integral” in analogy with Lebesgue integral under the following
equivalent form:

Sµ(f) =
∨
λ∈L

λ ∧ µ({i : fi ≥ λ})

The idea was to replace integral (sum) and product in Lebesgue integral by fuzzy set union (max) and
intersection (min). For further background see, e.g., [76, 101, 102].

There are alternative expressions of Sugeno integral as follows [84, 101, 102]:

Sµ(f) =
∨
A⊆C

(µ(A) ∧
∧
i∈A

fi) =
∧
A⊆C

(µ(A) ∨
∨
i∈A

fi)) (2)

=
n∨

i=1

f(i) ∧ µ({(i), . . . , (n)}) =
n∧

i=1

f(i) ∨ µ({(i+ 1), . . . , (n)}). (3)

=
∨
λ∈L

λ ∧ µ({i : fi ≥ λ}) =
∧
λ∈L

a ∨ µ({i : fi > λ}). (4)

where we have supposed f(1) ≤ · · · ≤ f(n) and A is the complement of A in C. It turns out [81] that
Sµ(f) is the median of the set

{f1, . . . , fn} ∪ {µ({(n)}), . . . , µ({(2), . . . , (n)})}.

For instance, if fi = λ for i ∈ A and θ < λ otherwise, it is easily seen that Sµ(f) is the median of
λ, θ, µ(A).

Note that Sugeno integral has exponential complexity in terms of the number of criteria, but its
expression can be reduced to one of linear size by ranking the values fi. Besides not all values µ(A)
are always useful for defining Sµ. The qualitative Mœbius transform µ# of the capacity µ [73, 86] is a
mapping from 2C to L defined by

µ#(E) =

{
µ(E) if µ(E) >

∨
B⊊E µ(B)

0 otherwise.

It contains the minimal information needed to reconstruct the capacity µ. Due to monotonicity of µ
we can replace

∨
B⊊E µ(B) in the above equation by

∨
i∈E µ(E \ {i}). The function µ# is also the

qualitative counterpart of a basic probability assignment in evidence theory [46], since it holds µ(A) =∨
E⊆A µ#(E). The set F(µ) = {E : µ#(E) > 0} is called the set of focal subsets of µ. Then, Sugeno

integral then can be expressed in a simplified form as

Sµ(f) =
∨

A∈F(µ)

(µ(A) ∧
∧
i∈A

fi) (5)
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which contains no mathematically redundant min-terms.
A special case of capacity is a possibility measure [49, 52, 105] which is a maxitive capacity, i.e.,

a capacity Π such that Π(A ∪ B) = Π(A) ∨ Π(B). Since the set of criteria is finite, the possibility
distribution π : πi = Π({i}), here representing individual criteria weights, is enough to recover the set-
function: ∀A ⊆ C, Π(A) =

∨
i∈A πi: focal sets of Π are singletons. In this case, criteria are considered

redundant with one another.
The conjugate µc(A) of capacity µ is a capacity defined by µc(A) = 1 − µ(A),∀A ⊆ C. The

conjugate of a possibility measureΠ is a necessity measureN(A) = 1−Π(A), and thenN is a minitive
capacity, i.e., N(A ∩ B) = N(A) ∧ N(B). Moreover, N(A) =

∧
i ̸∈A ι(i) where ι(i) = N(C \ {i})

(this is the degree of impossibility of iwhen dealing with uncertainty), and ι(i) = 1−πi, where π defines
the conjugate possibility measure Π = N c. In a group A of criteria, we may have N({i}) = 0, ∀i ∈ A
but N(A) > 0 which suggests that necessity measures account for criteria in positive synergy. Focal
sets of necessity measures are nested, they are the cuts of the possibility distribution π, i.e., we have that
F(N) = {{i : πi ≥ λ} : λ ∈ L \ {0}}.

It is easy to see (and well-known [44, 77]) that if the capacity is a possibility measure, the Sugeno
integral simplifies in the form of a prioritized maximum [47]:

SΠ(f) = SLMAXπ(f) =
∨
i∈C

πi ∧ fi.

Likewise it can be shown that if the capacity is a necessity measure, Sugeno integral simplifies in the
form of a prioritized minimum [47]:

SN (f) = SLMINπ(f) =
∧
i∈C

(1− πi) ∨ fi.

The use of the optimistic criterion SLMAXπ captures the so-called focus effect: the order of magnitude
of the importance of a group of criteria is the one of the most important argument, in the group. This
assumption perfectly suits the intuition of a qualitative scale as it means that weaker arguments are
always negligible compared with a single stronger one.

2.2 Sugeno integrals as lattice polynomials under normal form

A convenient way to introduce the discrete Sugeno integral is via the concept of (lattice) polynomial
functions, i.e., functions which can be expressed as combinations of variables and constants using the
lattice operations ∧ and ∨. More precisely, given a bounded chain L, by an n-ary polynomial function,
we simply mean a function ϕ : Ln → L defined recursively as follows:

(i) For each i ∈ [n] = {1, . . . , n} and each λ ∈ L, the projection ϕ(λ1, . . . λn) 7→ λi and the constant
function ϕ 7→ λ are polynomial functions from Ln to L.

(ii) If ϕ and ψ are polynomial functions from Ln to L, then ϕ ∨ ψ and ϕ ∧ ψ are polynomial functions
from Ln to L.

(iii) Any polynomial function from Ln to L is obtained by finitely many applications of the rules (i) and
(ii).

We refer to those polynomial functions constructed from projections by finitely many applications
of (ii) as lattice term functions (or simply, term functions). A well-known example of a term function is
the ternary median function, which is given by

median(λ, λ′, λ′′) = (λ ∧ λ′) ∨ (λ′ ∧ λ′′) ∨ (λ′′ ∧ λ)
= (λ ∨ λ′) ∧ (λ′ ∨ λ′′) ∧ (λ′′ ∨ λ).
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As shown by Marichal [85], the discrete Sugeno integrals are exactly those polynomial functions
ϕ : Ln → L which are idempotent, i.e., that satisfy ϕ(λ, . . . , λ) = λ.

In this subsection we revisit classical normal form representations of lattice polynomials and recall
the median normal form representation that follows from median decomposability.

Disjunctive and conjunctive normal forms Goodstein [67] has shown that in the case of bounded dis-
tributive lattices, polynomial functions are exactly those which allow their representations in disjunctive
and conjunctive normal forms. In this subsection we recall some related useful results.

Proposition 1. Let ϕ : Ln → L be a function. The following conditions are equivalent:

(i) ϕ is a polynomial function.
(ii) There exists a set function µ : 2[n] → L such that ϕ(f) =

∨
I⊆[n](µ(I) ∧

∧
i∈I fi).

(iii) There exists a set function κ : 2[n] → L such that ϕ(f) =
∧

I⊆[n](κ(I) ∨
∨

i∈I fi).

The expressions given in (ii) and (iii) of Proposition 1 are usually referred to as the disjunctive
normal form (DNF) representation and the conjunctive normal form (CNF) representation, respectively,
of the polynomial function ϕ. Notice that the DNF and CNF representations of a polynomial function
ϕ : Ln → L are not necessarily unique.

For each I ⊆ [n], let 1I be the element ofLn whose ith component is 1, if i ∈ I , and 0, otherwise. Let
µϕ : 2

[n] → L be the set function given by µϕ(I) = ϕ(1I). It is monotone with inclusion. It is easy to see
that if moreover µϕ([n]) = 1 and µϕ(∅) = 0, then letting µ = µϕ in Proposition 1, ϕ is a Sugeno integral
in DNF. This representation is not unique: we still get the same Sugeno integral ϕ if we change µϕ into
any set-function µ in DNF(ϕ) = {µ ∈ L2[n]

: ϕ(f) =
∨

I⊆[n] µ(I) ∧
∧

i∈I fi} = {µ : µ#ϕ ≤ µ ≤ µϕ},

using the qualitative Moebius transform µ#ϕ .
Dually, let κϕ : 2[n] → L be the function given by κϕ(I) = ϕ(1[n]\I) = µϕ(I). Function κϕ is

clearly antitone, and if µϕ is a capacity, we recognize again the Sugeno integral in CNF in Proposition 1
(iii).

Remark 1. Note that µϕ is the only monotone set function in DNF(ϕ) and, similarly, κ is the only
anti-monotone set function in CNF(ϕ) = {κ ∈ L2[n]

: ϕ(f) =
∧

I⊆[n](κ(I) ∨
∨

i∈I fi)}.

Median normal form For instance, consider act f resulting in a good consequence x if event A occurs
and a bad consequence y (with u(x) > u(y)) otherwise. It is easily seen that Sγ,u(f) is the median of
{u(x), u(y), γ(A)}

It is not difficult to see that every lattice polynomial function ϕ : Ln → L is median decomposable,
i.e., for every f ∈ Ln,

ϕ(f) = median
(
ϕ(fk→0), fk, ϕ(f

k→1)
)
, (6)

where fk→λ = (f1, . . . , fk−1, λ, fk+1, . . . , fn) for k ∈ [n] is obtained by changing fk into λ ∈ L in the
vector (f1, . . . , fn). In fact, the converse is also true, and thus we have the following characterization of
lattice polynomial functions.

Theorem 1 ([85, Theorem 17]). The solutions of the median decomposition equation (6) are exactly
the lattice polynomial functions from Ln to L.

For further characterizations, we refer the reader to the survey paper [25]. This median decomposi-
tion scheme naturally leads to a recursive procedure for obtaining median representations of functions
independent from the way functions are given [24]. Indeed, by setting a ranking of variables, we can
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repeatedly apply Theorem 1 to the variables of any given function in order to derive a nested formula
made of medians applied to variables and constants. To illustrate, consider the 5-ary median function
median5. This naı̈ve approach leads to a median representation of median5:

median5(f1, f2, f3, f4, f5) = median
(
median5(0, f2, f3, f4, f5), f1,median5(1, f2, f3, f4, f5)

)
= median

(
median

(
median5(0, 0, f3, f4, f5), f2,median5(0, 1, f3, f4, f5)

)
,

f1,median
(
median5(1, 0, f3, f4, f5), f2,median5(1, 1, f3, f4, f5)

))
= . . .

In this way, we obtain a median normal form representation of median5 with 1 + 2 + 4 + 8 + 16 = 31
occurences of median, which is not optimal. Indeed, there exists a much smaller representation with
only 4 occurences of median:

median5(f1, f2, f3, f4, f5) = median(median(median(f2, f3, f4), f4, f5),median(f2, f3, f5), f1).

Now, it is not difficult to extend the results in [21] and show that the median normal form pro-
duces representations that make use, up to polynomial equivalence, of the least number of monotonic
connectives. However, an efficient procedure for computing the smallest median normal form is still
unknown and the problem of deciding whether a median representation is minimal seems to be (mildly)
untractable [28, 29].

2.3 Algebraic and behavioral characterizations

Sugeno integral has been characterized by a few properties, especially decomposability for comonotonic
functions f and g : Ln → L, i.e., such that fi > fj ⇒ gi ≥ gj , ∀i, j ∈ [n]. Namely,

Theorem 2. Let I : LC → L. There is a capacity µ such that I(f) = Sµ(f) for every f ∈ LC if and
only if the following properties are satisfied

1. I(f ∨ g) = I(f) ∨ I(g), for any comonotonic f, g ∈ LC .
2. I(λ ∧ f) = λ ∧ I(f), for every λ ∈ L and f ∈ LC .
3. I(1C) = 1.

Equivalently, conditions (1 -3) can be replaced by conditions (1’-3’) below [57]:

1’. I(f ∧ g) = I(f) ∧ I(g), for any comonotonic f, g ∈ LC .
2’. I(λ ∨ f) = λ ∨ I(f), for every λ ∈ L and f ∈ LC .
3’. I(0C) = 0.

Most older formulations of this theorem [13, 92] redundantly add an assumption of increasing mono-
tonicity of the functional I (if f ≥ g then I(f) ≥ I(g)) to the three conditions (1-3). But these papers do
not point out the equivalent conditions (1’-3’). The existence of these two equivalent characterisations is
due to the possibility of equivalently writing Sugeno integral in conjunctive and disjunctive normal form
(see Equation (2)). As a consequence, the De Morgan dual 1− Sµ(1− f) of a Sugeno integral Sµ(f) is
also a Sugeno integral in the sense that (2) can be expressed as

Sµ(f) = 1− Sµc(1− f) (7)

for the conjugate capacity µc. Note that a functional I(f) satisfies conditions (1-3) if and only if 1 −
I(1− f) satisfies conditions (1’-3’). Marichal [84] provides several similar characterizations, especially
one assuming maxitive and minitive comonotonicity (conditions 1 and 1’) along with idempotence,
one assuming homogeneity conditions 2 and 2’ plus increasing monotonicity. However, the proof that

6



conditions (1-3) are necessary and sufficient seems to first appear in a thesis [94] (and then used in [76,
74]).

Another characterization has been provided in the context of decision under uncertainty, in a setting
similar to Savage’s approach to expected utility functionals. The set of criteria C is replaced by a finite
set [n] of states, and alternative decisions are just functions f from [n] to a set of consequences X . We
consider again a finite totally ordered scale (L,≤) with bottom 0 and top 1. A mapping u : X → L
is named a utility function. We assume that X contains an ideal consequence x∗ with u(x∗) = 1 and a
worst consequence x∗ with u(x∗) = 0. Note that the use of a single scale for rating the consequences of
acts is more natural than for rating alternatives in multiple-criteria evaluation problems.

The decision-maker is supposed to supply a preference relation ⪰ on the set XC of alternatives
(called acts), that is, a non trivial preorder: ⪰ is transitive and complete.

We introduce new notations that will be useful in the following:

– A constant act x is such that ∃x ∈ X, ∀i ∈ C, x(i) = x. In particular, the acts x∗ and x∗ are such that
x∗(i) = x∗, ∀i ∈ C and x∗(i) = x∗, ∀i ∈ C.

– For acts f, g, fAg is the act defined by fAg(i) = f(i) for all i in A and fAg(i) = g(i) for all i in
A.

– When using the mapping that assigns to each state i the utility value u(x) of its consequence f(i) =
x under act f , namely u ◦ f , the values u(f(i)) will be simplified as fi.

Note that the preference relation ⪰ induces a complete preordering ≥P on consequences: x ≥P y
if and only if x ⪰ y; this ordering can be extended to acts as follows: f ≥P g if and only if f(i) ≥P

g(i), ∀i ∈ C. This is the Pareto-ordering. Then, one can define an act f ∨ g making the best of f and g,
such that ∀i ∈ C, (f ∨ g)i = fi if fi ≥ gi and gi otherwise; and an act f ∧ g making the worst of f and
g, such that ∀i ∈ C, (f ∧ g)i = fi if gi ≥P fi and gi otherwise. Acts are thus combined like fuzzy sets.

The axioms proposed in [58] are as follows:

A1 Totality: ⪰ is a non-trivial total preorder, i.e., it is transitive and complete, and f ≻ g for some acts.
WP3 Weak compatibility with constant acts: ∀A ⊆ C, ∀x, y ∈ X, ∀f, x ⪰ y implies xAf ⪰ yAf .
RCD Restricted conjunctive dominance: For any acts g, h and any constant act x, x ≻ h and g ≻ h

imply x ∧ g ≻ h.
RDD Restricted max-dominance: For any acts g, h and any constant act x, h ≻ x and h ≻ g imply

h ≻ x ∨ g.

Axioms A1 and WP3 entail Pareto-dominance: if f ≥P g then f ⪰ g (see Lemma 4 in [59]).
Moreover, RCD and RDD make sense for one-shot decisions, i.e., without repetition, making the com-
pensation of bad results by good ones impossible.

We recall here the main result about this axiomatization for decision under uncertainty [58].

Theorem 3. Let (XC ,⪰) be a preference structure. The following propositions are equivalent:

– (XC ,⪰) satisfies A1, plus WP3, RCD, RDD.
– there exists a finite chain L of preference levels, an L-valued monotonic set-function µ, and an
L-valued utility function u on X , such that f ⪰ g if and only if Sµ(f) ≥ Sµ(g).

The proof of this theorem as it appears in [58, 59] is incomplete. See [61] for a complete proof.
The area of significance of this qualitative decision theory and more precisely the one of axioms

RCD and RDD, is restricted to the case whereX and C are finite and where the value scale is coarse. For
instance, RCD means that limiting from above the potential utility values of an act g, that is better than
another one h, to a constant value that is better than the utility of act h, still yields an act better than h.
This is in contradiction with expected utility theory and debatable in the latter setting. Indeed, suppose
g is a lottery where you win 1000 euros against nothing with equal chances. Suppose the certainty
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equivalent of this lottery is 400 euros, received for sure, and h is the fact of receiving 390 euros for
sure. Now, it is likely that, if f represents the certainty-equivalent of g, f ∧ g will be felt strictly less
attractive than h, as the former means you win 400 euros against nothing with equal chances. Axiom
RCD implies that such a lottery should ever be preferred to receiving 400−ϵ euros for sure, for arbitrary
small positive values of ϵ. This axiom is thus strongly counterintuitive in the context of economic theory,
with a continuous consequence set X . However the area of significance of qualitative decision theory is
precisely when both X and S are finite.

Two presuppositions actually underlie axiom RCD (and similar ones for RDD)

(i) There is no compensation effect in the decision process: in case of equal chances, winning 1000
euros cannot compensate the possibility of not earning anything. It fits with the case of one-shot
decisions where the notion of certainty equivalent can never materialize: you can only get 1000
euros or get nothing if you just play once. You cannot get 400 euros. The latter can only be obtained
in the average, by playing several times.

(ii) There is a big step between one level λi ∈ V in the qualitative value scale and the next one λi+1 with
V = {1 = λ1 > · · · > λm = 0}. The preference pattern f ≻ h always means that f is significantly
preferred to h so that the preference level of f ∧ g can never get very close to that of h when g ≻ h.
The counterexample above is obtained by precisely bringing these two preference levels very close
to each other so that f ∧ g can become less attractive than the sure gain h. Level λi+1 is in some
sense considered negligible in front of λi.

Axioms RDD and RCD can be replaced in Theorem 3 by non-compensation assumptions [59]:

Axiom NC:


1LAy ∼ y or 1LAy ∼ 1LA0
and
xA0L ∼ x or xA0L ∼ 1LA0L

Non-compensation formalizes the following intuition: in order to evaluate act 1LAy, there is no middle
term between values u(y) and µ(1LA0L). Theorem 3 also holds if in the expression of RCD and RDD
one considers any two comonotonic acts. Indeed Sugeno integrals are “linear” for operations maximum
and minimum with respect to disjunctions and conjunctions of comonotonic acts as seen in condition 1
of Theorem 2 and the associated condition 1’. In this sense, Sugeno integral is a qualitative counterpart
to Choquet integral. It is easy to check that these equalities hold with any two acts f and g, for the
pessimistic and the optimistic possibilistic preference functionals respectively:

SLMINπ(f)(f ∧ g) = min(SLMINπ(f), SLMINπ(g))

SLMAXπ(f ∨ g) = max(SLMAXπ(f), SLMAXπ(g)).

The criterion SLMINπ(f) can be axiomatized by strengthening axiom RCD as follows:

Axiom CD: ∀f, g, h, f ≻ h and g ≻ h jointly imply f ∧ g ≻ h (Conjunctive Dominance).

This axiom means that if two acts f, g are individually better than a third one, the act f ∧ g which
yields the worse result of both acts still remains better than the third one. It makes sense in the scope of a
one-shot-decision. Together with Sugeno integral axioms, it implies that the set-function µ is a necessity
measure and so, Sµ(f) = SLMINπ(f), for some possibility distribution π. In order to figure out why
axiom CD leads to a pessimistic criterion, Dubois, Prade and Sabbadin [60] have noticed that it can be
equivalently replaced by the following property:

Axiom PESS ∀A ⊆ S, ∀f, g, fAg ≻ g implies g ⪰ gAf (Pessimism).
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This property can be explained as follows: if changing g into f when A occurs results in a better act,
the decision maker has enough confidence in event A to consider that improving the results on A is
worth trying. But, in this case, there is less confidence on the complement A than in A, and any possible
improvement of g when A occurs is neglected. So, g ⪰ gAf . For instance, g means losing (= A) or
winning (= A) 10,000 euros with equal chances according to whether A occurs or not, and f means
winning either nothing (= A) or 20,000 euros (= A) conditioned on the same event. Then fAg is
clearly safer than g as there is no risk of losing money. However, if axiom PESS holds, then the chance
of winning much more money (20,000 euros) by choosing act gAf is neglected because there is still a
good chance to lose 10,000 euros with this lottery. Such a behaviour is clearly cautious.

Similarly, the optimistic criterion SLMAXπ(f) can be axiomatized by strengthening the axioms
RDD as follows:

Axiom DD: ∀f, g, h, h ≻ f and h ≻ g jointly imply h ≻ f ∨ g (Disjunctive Dominance.)

Together with properties appearing in Theorem 3 it implies that the set-function µ is a possibility
measure and so, Sµ(f) = SLMAXπ(f) for some possibility distribution π. The optimistic counterpart
to property axiom PESS that can serve as a substitute to axiom DD for the representation of criterion
SLMAXπ is:

Axiom OPT ∀A ⊆ S, ∀f, g, g ≻ fAg implies gAf ⪰ g. (Optimism).

2.4 Sugeno integral and decision rules

So far, only a few works try to provide a logical reading of decision processes. One of such few attempts
is given in [42] in the framework of decision under uncertainty, where uncertain knowledge and pri-
oritized preference are respectively represented by means of two distinct possibilistic logic bases, and
where the pessimistic or optimistic decision criteria that are maximized are particular cases of Sugeno
integrals. Another attempt is given in [66] in the framework in a multiple criteria decision making, where
a qualitative approach (in the spirit of possibilistic logic) is compared to the numerical analogue based
on the Choquet integral. However, the most successful approach was initiated by Greco et al. in [78]
where they provided a preliminary study (later completed by Bouyssou et al. in [10]) pointing out that
the set of the elements for which a Sugeno integral is greater than a given score µ can be described by
if–then rules.

Selection rules Consider Sugeno integral in the form given by (5), using the set F(µ) of focal sets
of µ. It is straightforward to see that the inequality Sµ(f) ≥ θ is equivalent to ∃T ∈ F(µ) such that
µ(T ) ≥ θ and ∀i ∈ T, fi ≥ θ. On this basis, it can be claimed that Sugeno integral based on capacity µ
is equivalent to the set of if-then rules of the form:

Rs
T : If ∀i ∈ T, fi ≥ µ(T ) then Sµ(f) ≥ µ(T ).

for T ∈ F(µ). Note that these rules are not redundant because either focal sets are not nested or, if they
are, they correspond to distinct weights, and the greater the set, the larger the weight. Moreover, they
are single-thresholded rules, which indicates the limited expressive power of Sugeno integrals. As such
rules are bounding the global evaluation from below, they are meant to select “good” alternatives, so we
can call them selection rules.

Conversely, a set of single-thresholded selection rules of the form “If ∀i ∈ Tj , fi ≥ θj then ϕ(f) ≥
θj for j = 1, . . . , k” can be represented by the Sugeno integral with focal sets among {Tj : j = 1, . . . , k}
and such that µ(A) = maxj:Tj⊆A θj (the integral representation does away with redundant rules).

This set of rules can be encoded in possibilistic logic [50] as a set of weighted cubes [53]. Define
for each criterion i a family of Boolean predicates Pi(θ), θ > 0 ∈ L such that Pi(θ) is true if fi ≥ θ
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and 0 otherwise (we write f |= Pi(θ)). Then we consider weighted Boolean formulas of the form
[
∧

j∈T Pj(θ), θ] and interpreted as

π[T,θ](f) =

{
θ if fi ≥ θ, ∀i ∈ T ;

0 otherwise
.

Each weighted cube [
∧

j∈T Pj(µ(T )), µ#(T )] for a focal set T encodes a selection ruleRs
T as stated

above. The lower possibility distributions associated to a set of such weighted formulas is interpreted as
the maximum of the lower possibility distributions associated to each weighted formula. The possibilistic
base

G−
µ = {[

∧
j∈T

Pj(θ), θ] : µ(T ) ≥ θ > 0, T ∈ F(µ)}

with lower possibility distribution π−µ (f) = max{π−[ϕ,θ](f) : µ(T ) ≥ θ > 0 and T ∈ F(µ)} encodes
a Sugeno integral since Sµ(f) = π−µ (f) (see Proposition 4 in [53]).

Elimination rules Symmetrically, we can obtain rules for the rejection of bad alternatives associated to
the Sugeno integral, namely rules expressing the inequality Sµ(f) ≤ γ [35]. The idea is to use the con-
junctive min-max form of Sugeno integral in equation (2), which corresponds to possibility distributions
over interpretations in standard possibilistic logic [50].

The focal sets of the conjugate of µ are sufficient to calculate the Sugeno integral, namely [35]:

Sµ(f) = min
F∈F(µc)

max(1− µc#(F ),max
i∈F

fi).

It is then clear that Sµ(f) ≤ θ if and only if ∃F ∈ F(µc) with µc(F ) ≥ 1− θ s.t. ∀xi ∈ F fi ≤ θ.
This result shows that for each focal set F of the conjugate µc we have the following single-thresholded
elimination rule:

Re
F : If fi ≤ 1− µc#(F ) for all i ∈ F then Sµ(f) ≤ 1− µc#(F ).

Conversely, a set of single-thresholded elimination rules can be represented by a Sugeno integral.
The possibilistic logic encoding of elimination rules associated to Sugeno integral, is now obtained

as set of weighted clauses. Define for each criterion i a family of Boolean predicates Pi(θ), θ > 0 ∈ L
such that Pi(θ) is true for f if fi > θ and 0 otherwise.

The set of weighted clauses {(
∨

j∈F Pj(θ), 1− θ)) : θ < 1} induces an upper possibility distribu-
tion:

π+F (f) = min
θ<1

max(θ,max
j∈F

Pj(θ)) = max
j∈F

fj .

Each weighted clause (
∨

j∈F Pj(1 − µc(F )), µc(F ))) for a focal set F of µc corresponds to the elimi-
nation rule Re

F stated above.
A logical rendering of the Sugeno integral in the min-max form is obtained as follows. First consider

the following base of clauses BF
µ = {(

∨
j∈F Pj(θ), 1 − θ)) : 1 − µc#(F )) ≤ θ < 1}. It can be proved

[35] that the induced upper possibility is now of the form

π+
BF

µ
(f) = max(1− µc#(F ),max

i∈F
fi).

The possibilistic base

G+
µ = {(

∨
j∈F

Pj(θ), 1− θ)) : 1− µc(F )) ≤ θ < 1, F ∈ F(µc)},

induced by all focal sets induces the possibility distribution with upper possibility distribution π+µ (f) =
minF∈F(µc) π

+
BF

µ
(f), is precisely equal to Sµ(f).

This rule-based approach to the description of Sugeno integral delivers several lessons:
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– A Sugeno integral can be equivalently expressed by a set of single-thresholded selection and elimi-
nation rules, respectively squeezing it from above and from below,

– The expressive power of Sugeno integrals is limited to a class of very specific decision rules.

3 Extensions

The finite scale approach to qualitative decision criteria is simple (especially in the case of weighted max
and min). Strictly speaking, it belongs to the class of decision problems that were coined “sorting” by
B. Roy [96]. Elements of the scale L correspond to a totally ordered set of classes of situations thatare
more or less attractive, and computing the global evaluation of an alternative comes down to assigning it
to a class. In the context of DMU, the restriction of the pessimistic approach to the most plausible states,
at work in possibilistic criteria, makes them more realistic than the maximin criterion, and more flexible
than purely ordinal approaches with no commensurateness assumption.

However, approaches based on an absolute qualitative value scale have their own shortcomings.

– Naturally, a complete preorder on alternatives is obtained from the Sugeno integral. But this preorder
is very coarse, especially if the number of elements in L is small. It cannot be large as the human
mind cannot make sense of more than seven levels of absolute worth [91]. So many alternatives,
some of which being intuitively better than other ones, will be put in the same class. Hence, one
issue is to make Sugeno integral more discriminant via suitable refinement tools. This is the topic of
the first subsection.

– Moreover, one has to accept the commensurability assumption between the dimensions of the deci-
sion problem. In decision under uncertainty this is not so problematic as there is a single value scale,
and the uncertainty scale can be related to the value scale via the notion of certainty equivalent of
an uncertain event. However this assumption is much more problematic in the MCDM problem, as
each criterion has its own scale that may not be directly commensurate with other ones. In such a
situation, Sugeno integral cannot be directly applied. Utility functions that relate the criteria scales
to a single one must be introduced, which requires an extension of Sugeno integral described in the
second subsection.

– Finally, the role of weights in Sugeno integral is confined to being bounds that limit the value scales
from above and from below. In a weighted max, a little important criterion can only deliver poor
grades, while in a weighted min it can only deliver good grades. Other ways of letting importance
degrees affect the local evaluations can be envisaged, changing the minimum or the maximum oper-
ations into more general conjunction and disjunction operations. This is the topic of the last subsec-
tion.

3.1 Lexicographic refinements

The main reason for the lack of discrimination power of absolute qualitative criteria is the fact that they
do not use all the available information to rank alternatives, since an alternative f can be considered
indifferent to another alternative g, even if f is at least as good as g in all criteria and strictly so for some
of them (violation of the strict Pareto ordering). This is typically the case when an alternative is rated
by its worst performance or its best performance across criteria. This defect is absent from the expected
utility model.

Refining min and max The lack of discrimination of the maximin rule itself (using mini∈C fi to eval-
uate alternative f ) was actually addressed a long time ago by Cohen and Jaffray [18] who improved it
by comparing acts on the basis of their worst consequences of distinct merits, i.e. one considers only the
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set D(f, g) = {i, fi ̸= gi)} to compare alternatives f and g. Denote the refined strict preference relation
between acts by

f ≻dmin g ⇐⇒ min
i∈D(f,g)

fi > min
s∈D(f,g)

gi

and the weak preference by f ⪰dmin g ⇐⇒ ¬(g ≻dmin f). This refined rule always rates an act
f better than another act g whenever f strictly Pareto-dominates g. However, only a partial ordering
of acts is then obtained. This last decision rule is actually no longer based on a preference functional
(i.e. it cannot be encoded by a function, like expected utility). This decision rule has been independently
proposed by Fargier et al. [63] and used in fuzzy constraint satisfaction problems [41] under the name
discrimin ordering.

This ordering can be further refined by the so-called Leximin ordering well-known in economics
[32]: The idea is to reorder vectors f = (f1, . . . fn) by non-decreasing values as (f(1), . . . , f(n)), where
f(k) is the kth smallest component of the vector (i.e., f(1) ≤ . . . ≤ f(n)). Define the Leximin (⪰lmin)
and Leximax (⪰lmax) rules as:

– f ⪰lmin g ⇔ either ∀j, f(j) = g(j) or ∃i,∀j < i, f(j) = g(j) and f(i) > g(i)
– f ⪰lmax g ⇔ either ∀j, f(j) = g(j) or ∃i, ∀j > i, f(j) = g(j) and f(i) > g(i).

Similarly, a Leximax preorder can be envisaged as a refinement of the one induced by the maximum.
Let f, g ∈ Ln. The two possible alternatives f and g are indifferent if and only if the correspond-
ing reordered vectors are the same. The Leximin-ordering is a refinement of the discrimin ordering,
hence of both the Pareto-ordering and the maximin-ordering [39]: f ≻dmin g implies f ≻lmin g. Lex-
imin optimal alternatives are always discrimin maximal alternatives, and thus indeed min-optimal and
Pareto-maximal: ≻lmin is the most selective among these preference relations. The Leximin ordering can
discriminate more than any symmetric aggregation function, since when, e.g., in the numerical setting,
the sum of the fi’s equals the sum of the gi’s, it does not mean that the reordered vectors are the same.
Similar comments apply for the Leximax ordering.

Weighted Leximax / Leximin criteria Suppose that Leximin and Leximax orderings are defined on sets
of tuples whose components belong to a totally ordered set (V,⊵), say Leximin(⊵) and Leximax(⊵).
Now, suppose (V,⊵) = (Lp,⪰lmin) or (V,⊵) = (Lp,⪰lmax), with any positive integer p. Then,
nested lexicographic ordering relations that enable L-valued matrices to be compared can be recursively
obtained as Leximin(⪰lmin), Leximax(⪰lmin), Leximin(⪰lmax), or yet Leximax(⪰lmax).

Consider for instance the procedure Leximax(⪰lmin) defining the relation ⪰lmax(⪰lmin). It applies
to matricesA of dimension p×q with coefficients aij in (L,≥). These matrices can be totally ordered in
a very refined way by this relation. Denote row i of A by ai·, and let A⋆ and B⋆ be rearranged matrices
A and B such that terms in each row are reordered increasingly and rows are arranged lexicographically
top-down in decreasing order. The relation A ≻lmax(⪰lmin) B is defined as follows:

∃k ≤ p s.t. ∀i < k, a⋆i· =lmin b
⋆
i· and a⋆k· >lmin b

⋆
k·

Relation ⪰lmax(⪰lmin) is a complete preorder. A ≃lmax(⪰lmin) B if and only if both matrices have the
same coefficients up to the above described rearrangement. Moreover, ⪰lmax(⪰lmin) refines the ranking
obtained by the optimistic criterion:

max
i

min
j
aij > max

i
min
j
bij implies A ≻lmax(⪰lmin) B.

and especially, if A Pareto-dominates B in the strict sense (∀i, j, aij ≥ bij and ∃i∗, j∗ such that ai∗j∗ >
bi∗j∗), then A ≻lmax(⪰lmin) B.

The comparison of alternatives f and g using the weighted maximum SLMAXπ can be refined
using relation ⪰lmax(⪰lmin) applied to n× 2 matrices on (L,≤), n being the number of criteria, namely
comparing matrices Fπ and Gπ with coefficients fi1 = πi and fi2 = fi, gi1 = πi and gi2 = gi.
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Likewise the comparison of alternatives f and g using the weighted maximum SLMINπ can be
refined using relation ⪰lmin(⪰lmax) comparing matrices [f ]1−π and [g]1−π with coefficients fi1 = 1−πi
and fi2 = fi, gi1 = 1− πi and gi2 = gi.

Leximaxmin criteria and weighted average. It has been proved [64] that the above refinements of
SLMINπ and SLMAXπ can be represented by weighted averages (e.g., expected utility functionals)
using special kinds of probability distributions and real-valued utility functions. First note that, in a
finite setting, the qualitative Leximin and Leximax rules can be simulated by means of a sum of utilities
provided that the levels in the qualitative (finite) utility scale L are mapped to values sufficiently far
away from one another on a numerical scale. Consider an increasing mapping ϕ from L to the reals. It
is possible to define this mapping in such a way as to refine the max ordering:

max
i=1,...n

fi > max
i=1,...n

gi implies
∑

i=1,...n

ϕ(fi) >
∑

i=1,...n

ϕ(gi) (8)

For instance, the transformation ϕ(λi) = N i with N > n achieves this goal. It is a super-increasing
mapping in the sense that ϕ(λi) >

∑
j<i ϕ(λj), ∀i = 1, . . . ,m. In order to map L to [0, 1] so that

ϕ(λ0) = 0 and ϕ(λn) = 1 just let ϕ(λi) = N i−1
Nm−1 . Note that it is a convex function [n] → R+. It

can actually be checked that the Leximax ordering is equivalent to applying the Bernoulli criterion with
respect to such a convex utility function ϕ(.):

f >Leximax g if and only if
∑

i=1,...n

ϕ(fi) >
∑

i=1,...n

ϕ(gi). (9)

A similar encoding of the Leximin procedure by a sum can be achieved using another super-increasing
mapping (for instance, the transformation ψ(λi) = 1−N−i

1−N−m a concave function L→ R+):

f >Leximin g if and only if
∑

i=1,...n

ψ(fi) >
∑

i=1,...n

ψ(gi) (10)

The Leximin ordering comes down to applying the Bernoulli criterion with respect to such a concave
utility function ψ(.). The qualitative pessimistic and optimistic criteria under total ignorance are thus
refined by means of a classical criterion with respect to a risk-averse and risk-prone utility function
respectively, as can be seen by plotting L against numerical values in the ranges ϕ(L) and ψ(L).

The same results apply to possibilistic criteria SLMINπ and SLMAXπ [64] that can be simu-
lated by weighted averages. Consider first the optimistic possibilistic criterion SLMAXπ under a given
possibility distribution π. We can again define an increasing mapping χ from L to the reals such that
χ(λ0) = 0 and especially:

maximin(πi, fi) > maximin(πi, gi)
implies∑

i=1,...n χ(πi) · χ(fi) >
∑

i=1,...n χ(πi) · χ(gi)
(11)

A sufficient condition is that: ∀i ∈ {1, . . . ,m}, χ(λi)2 ≥ N · χ(λi−1) · χ(1) for some N > n. The
increasing mapping χ(λi) = N

N2m−i , i = 1, . . . ,m, and χ(λ0) = 0, with N = n + 1 can be chosen,
with n = |C|;m = |L|. It is such that χ(λm) = 1

Moreover, let {E0, . . . , Ek} be the well-ordered partition of C induced by π, Ek containing the most
important criteria, and E0 the least important. Let K = 1∑

i=1,k |Ei|·χ(πi)
. Define χ∗(λi) = K ⊙χ(λi), it

holds that:

13



– The weights pi = χ∗(πi) define a probability assignment respectful of the possibilistic ordering of
criteria. In particular, distribution p is uniform on equally important criteria (the sets Ej). Moreover,
if i ∈ Ej then pi is greater than the sum of the probabilities of all less probable elements, that is,
pi > P (Ej−1 ∪ · · · ∪ E0). Such probabilities introduced by Snow [100], are said to be big-stepped
in [2].

– the values χ(fi) form a big-stepped numerical utility function (a super-increasing sequence of reals
ul > · · · > u1 such that ∀l ≥ i > 1, ui > n · ui−1) that can be encoded by a convex real mapping
[n] → R+.

– The preference functional
EU+(f) =

∑
i=1,...n

χ∗(πi) · χ(fi) (12)

is an expected (big-stepped) utility criterion for a risk-seeking decision-maker, that refines the weighted
maximum.

The pessimistic criterion SLMINπ can be similarly refined since SLMAXπ(f) = 1−SLMAXπ(1−
f) using the order-reversing map of L. Then, choosing the same mapping χ∗ as above, one may have
that

minimax(πi, fi) > minimax(πi, gi)
implies∑

i=1,...n χ
∗(πi) · ϕ(fi) >

∑
i=1,...n χ

∗(πi) · ϕ(gi)
(13)

where ϕ(λi) = 1 − χ(1 − λi)) (it is equal to 1 − n+1

(n+1)2i
, here). Function ϕ(·) is a super-increasing

numerical utility function that can be encoded by a concave real mapping [n] → R+, and the weighted
average criterion

EU−(f) =
∑

i=1,...n

χ∗(πi) · ϕ(fi) (14)

is a risk-averse one, that refines SLMINπ.
The big-stepped functionals EU+(f) and EU−(f) turn out to represent the relations ⪰lmax(⪰lmin)

and ⪰lmin(⪰lmax): it is proved in [64] that

EU+(f) ≥ EU+(f) if and only if [f ]π ⪰lmax(⪰lmin) [g]π (15)

EU−(f) ≥ EU−(g) if and only if [f ]1−π ⪰lmin(⪰lmax) [g]1−π. (16)

These results point out the deep agreement between qualitative possibilistic criteria and weighted
averages. The former is just coarser than the latter, and as such cannot account for compensative effects.
As a consequence, the additive preference functionals EU+(f) and EU−(f) refining the possibilistic
criteria are qualitative despite their numerical encoding (numerical utility values are meaningless, but
for ensuring a refined ranking over alternatives).

Refining Sugeno integral Applying the increasing transformation χ that changes a maxmin expression
into a sum of products to the minimal disjunctive form

∨
A∈F(µ)(µ#(A) ∧

∧
i∈A fi) of Sugeno integral

Sµ(f) yields:

Elsug
# (f) =

∑
A∈2C

χ(min
i∈A

fi) · χ∗(µ#(A)) =
∑
A∈2C

min
i∈A

χ(fi) ·m#(A), (17)

where χ(λm) = 1, χ(λ0) = 0, χ(λj) = K

K2m−j , j = 1,m − 1, and we set K = 2|C|. Function χ∗

normalizes χ in such a way that
∑

A∈2C m#(A) = 1, where the positive weights m#(·) = χ∗(µ#(·))
define a random set. Ranking tuples by Elsug

# (f) comes down to a Leximax(≥lmin) comparison of (2n×
2) matrices with rows of the form (µ#(A),mini∈A χ(fi)). It is clear that Elsug

# (f) is a Choquet integral
w.r.t. a belief function with basic mass assignment m#. It refines the original Sugeno integral. More
details can be found in [36, 37].
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3.2 Sugeno utility functionals

In practice, each criterion in an MCDM problem may have its own scale, which requires an extension
of Sugeno integral. We will assume that there are possibly distinct scales L1, . . . , Ln, one per criterion,
that are are finite chains, and, with no danger of ambiguity, we will denote the top and bottom elements
of Li by 1 and 0, respectively, for all i ∈ C. We say that a mapping φi : Li → L, i ∈ [n], is a local utility
function if it is order-preserving. It is a qualitative utility function since it is a mapping between finite
chains. A function Φ : L =

∏n
i=1 Li → L is said to be a Sugeno utility functional (SUF) if there is a

Sugeno integral Sµ : Ln → L and local utility functions φi : Li → L, i ∈ [n] with φi(0) = 0, φi(1) = 1,
such that

Φ(f) = Sµ(φ1(f1), . . . , φn(fn)). (18)

an expression first proposed by Greco et al. [78]. We shall denote SUFs by Sµ,φ. Note that Sugeno
utility functionals are order-preserving. Moreover, it was shown in [30] that the set of functions obtained
by composing lattice polynomials with local utility functions is the same as the set of Sugeno utility
functionals.

Sugeno utility functionals can be characterized in complete analogy with polynomial functions by
extending the notion of median decomposability. We say that Φ : L → L is pseudo-median decompos-
able if for each k ∈ [n] there is a local utility function φk : Lk → L such that

Φ(f) = med
(
Φ(fk→0), φk(fk), Φ(f

k→1)
)

(19)

for every f ∈ L.

Theorem 4 ([31]). A function Φ : L → L a Sugeno utility functional if and only if Φ is pseudo-median
decomposable.

Remark 2. In [30, 31] a more general notion of pseudo-median decomposability was considered where
the inner functions φi : Li → L, i ∈ [n], where it is only required to satisfy boundary conditions.

Note that once the local utility functions φi : Li → L (i ∈ [n]) are given, the pseudo-median
decomposability formula (19) provides a disjunctive normal form of a polynomial function p0 which
can be used to factorize Φ. To this extent, let 1̂I denote the characteristic vector of I ⊆ [n] in L, i.e.,
1̂I ∈ L is the n-tuple whose i-th component is 1Li if i ∈ I , and 0Li otherwise.

Theorem 5 ([31]). If Φ : L → L is pseudo-median decomposable w.r.t. local utility functions φk : Lk →
L (k ∈ [n]), then Φ = p0(φ1, . . . , φn), where the polynomial function p0 is given by

p0 (f1, . . . , fn) =
∨

I⊆[n]

(
Φ
(
1̂I

)
∧
∧
i∈I

fi
)
. (20)

In other words, this theorem characterizes SUFs, namely, p0 (f1, . . . , fn) = Sµ,φ(f) if p0 is idempotent
(i.e., we must have Φ

(
1̂[n]

)
= 1 and Φ

(
1̂∅

)
= 0, and Φ is order preserving).

Remark 3. Procedures to obtain local utility functions φi : Li → L (i ∈ [n]), which can be used to
factorize a given Sugeno utility functional f : L → L into a composition (18), were presented in [30]
when L is an arbitrary chain, and in [31] when L is a finite distributive lattice.

Another kind of axiomatization was proposed quite early by Greco et al. [78], namely conditions
under which a preference relation ⪰ on L =

∏n
i=1 Li → L can be represented by a Sugeno utility

functional. Namely, the following equivalence between the two following statements is obtained (a part
of Th. 1 in [78], here recalled in the finite setting):

– the preference relation ⪰ on L is a complete preordering such that for all f, g, h, h′ ∈ L, θ, β ∈
Li, i ∈ [n], if f i→θ ⪰ h, and gi→β ⪰ h′, then gi→θ ⪰ h or f i→β ⪰ h′;
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– There is a Sugeno integral and local utility functions φk : Lk → L (k ∈ [n]) such that

Sµ(φ1(f1), . . . , φn(fn)) ≥ Sµ(φ1(g1), . . . , φn(gn)) if and only if f ⪰ g

Bouyssou et al [10] reconsider this result in the scope of conjoint measurement for their non-compensatory
decomposable representation model, and show that Greco et al. axiom is a strong form of their non-
compensation axiom stating that for all f, g, h, h′ ∈ L, i ∈ [n], if f ⪰ h and g ⪰ h′ then f i→gi ⪰ h or
gi→fi ⪰ h′.

Finally, another, simpler axiom has been used by Couceiro et al. [20] (Th. 3.6) to characterize Sugeno
utility functionals:

for all f, g ∈ L, θ ∈ Lk, k ∈ [n), if fk→θ ≻ fk→0 and gk→1 ≻ gk→θ then gk→θ ⪰ fk→θ.

This axiom is closely connected to the median-decomposability of Sugeno integrals. Note that when
Li = L, ∀i ∈ [n], Sugeno utility functionals are more expressive than Sugeno integrals even in the
special cases of SLMINπ and SLMAXπ, as shown by the counterexample given in [20]:

Example 1. Let L = {0, λ, 1} endowed with the ordering 0 < λ < 1, and consider the preference
relation ⪰ on L = L2 whose linearly ordered equivalence classes are

[(1, 1)] = {(1, 1), (1, λ), (1, 0), (0, 1), (λ, 1)},
[(λ, λ)] = {(λ, λ), (λ, 0)},
[(0, λ)] = {(0, λ), (0, 0)}.

This relation does not satisfy axiom RCD, e.g., take f = (0, λ), g = (0, 1) and h = (λ, λ), where
g ≻ f and h ≻ f but f = h ∧ g. Thus it cannot be represented by a Sugeno integral. However, letting
Sµ(f) = f1 ∨ f2 (i.e. µ is the uniform possibility distribution), and utility functions φ1 equal to the
identity and φ2(1) = 1, φ2(λ) = φ2(0) = 0, it can be checked that ⪰ is represented by the Sugeno
utility functional f1 ∨ φ2(f2).

3.3 Generalized Sugeno integrals

In Sugeno integrals, the role of weights is devoted to shrinking the evaluation scales of each group of
criteria. For instance, in the weighted maximum, the range of evaluation for a criterion i of weight πi < 1
is restricted to [0, πi] ⊂ L; in a weighted minimum, it is restricted to [1− πi, 1] ⊂ L. Any evaluation fi
greater than πi in SLMAXπ (resp. less than 1− πi in SLMINπ) is brought back to πi (resp. 1− πi).
This role of weights is very peculiar. In this part we explore various alternative weighting schemes. More
precisely we are going to generalize rating modification schemes by weights in Sugeno integrals. We
first consider generalized forms of aggregation functions SLMINπ and SLMAXπ,

∧n
i=1(πi▷ fi) and∨n

i=1(πi ⊗ fi) respectively, where ▷ and ⊗ are suitable rating modification operations.
We first discuss the nature of such operations ▷ and ⊗ following intuitive requirements.
In a conjunctive aggregation

∧n
i=1(πi ▷ fi), the following conditions are natural:

(i) The global evaluation should not be affected by a useless criterion (πi = 0) even if the rating is
maximal (fi = 1), hence we assume 0▷ fi = 1.

(ii) A very poor rating on a criterion with top importance πi = 1 should be enough to bring the global
evaluation down to 0, hence we assume 1▷ 0 = 0.

(iii) The better is the local rating fi, the greater is the modified rating πi ▷ fi (πi ▷ fi should increase
with fi).

(iv) The less important the criterion, the more lenient should be the modified local rating (πi ▷ fi should
decrease with πi).
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So the operation ▷ should be a generalized implication.

Definition 1. A fuzzy implication is a two-place operation → on L such that:

(i) 0 → 1 = 1; 1 → 0 = 0; 1 → 1 = 1; 0 → 0 = 1.
(ii) α→ β is increasing in the wide sense with β for all α ∈ L.

(iii) α→ β is decreasing in the wide sense with α for all β ∈ L.

In a disjunctive aggregation
∨n

i=1(πi ⊗ fi) similar conditions should hold:

(i) For the same reason as in the conjunctive case, we should have 0⊗ fi = 1.
(ii) A top rating on a criterion with top importance should be enough to bring the global evaluation to 1,

hence we assume 1⊗ 1 = 1.
(iii) πi ⊗ fi should increase with fi as in the conjunctive case.
(iv) A good rating on an important criterion should have more positive influence that one on a little

important criterion (πi ⊗ fi should increase with πi).

So the operation ⊗ should be a generalized conjunction.

Definition 2. A fuzzy conjunction is a two-place operation ⊗ on L such that:

(i) 0⊗ 1 = 0; 1⊗ 0 = 0; 1⊗ 1 = 1; 0⊗ 0 = 0.
(ii) α⊗ β is increasing in the wide sense with α, for all β ∈ L.

(iii) α⊗ β is increasing in the wide sense with β for all α ∈ L.

Note that to each fuzzy implication ▷ in the sense of Def. 1 corresponds a fuzzy conjunction in the
sense of Def. 2 ⊗ = S(▷) such that αS(▷)β = 1 − (α ▷ (1 − β)). We shall say that such a pair of
operations (▷,⊗) are semidual. Moreover these connectives can be exchanged, i.e., α▷β = αS(⊗)β =
1 − (α ⊗ (1 − β)), i.e., semiduality is an involutive transformation. Note that α ▷ β = 1 if and only
if αS(▷)(1 − β) = 0 that is, α and 1 − β, when positive, are divisors of 0 for the fuzzy conjunction
⊗ = S(▷).

It is interesting to notice that the equality (2) can be expressed using the conjugate capacity µc(A) =
1 − µ(A) for every A ⊆ C and the semi-dual of ∧, namely αS(∧)β = max(1 − α, β), which is
Kleene-Dienes implication →KD:

Sµ(f) =
∨
A⊆C

(
µ(A) ∧

∧
i∈A

fi
)
=

∧
A⊆C

(µc(A) →KD

∨
i∈A

fi). (21)

This equality corresponds to extending the duality relation between a capacity µ and its conjugate to
Sugeno integrals [77], i.e. (7) (Sµ(f) = 1− Sµc(1− f)).

Sugeno integral can be generalised with other inner fuzzy conjunction or implication functions
linked by semiduality, using expressions we call q-integrals and q-cointegrals, denoted respectively
by

∫ ⊗
µ f and

∫→
µ f .

Definition 3. [57] Let ⊗ be a fuzzy conjunction. A q-integral is the mapping
∫ ⊗
µ : LC → L defined by∫ ⊗

µ
f =

∨
A⊆C

(
µ(A)⊗

∧
i∈A

fi
)
, for all f ∈ LC .

Definition 4. [57] Let → be a fuzzy implication, a q-cointegral is a mapping
∫→
µ : LC → L defined by∫ →

µ
f =

∧
A⊆C

(
µc(A) →

∨
i∈A

fi
)
, for all f ∈ LC .
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Note that, when ⊗ is the product and L = [0, 1], the q-integral is Shilkret integral [98] proposed
in 1971 (and later reintroduced by A. Kaufmann [82] in 1979, under the name of “admissibility”).
Grabisch et al. [77] introduce so-called Sugeno-like integrals, which are similar to q-integrals, where ⊗
is a triangular norm. Borzová-Molnárová et al. [8] study this type of integrals in the continuous case as
well when ⊗ is a semicopula and L = [0, 1]. This kind of definition is also proposed by Dvořák and
Holčapek [62] assuming (L,⊗, 1) is a commutative monoid and considering the complete residuated
lattice generated by this monoidal operation. In fact, what they study is an extension of Definition 3:
Namely, they study fuzzy integrals of this type extended to algebras of fuzzy sets, that is, where µ is now
a fuzzy set function that assigns an importance value µ(Ã) to any fuzzy subset Ã of C.

Now if we consider the dual quantity 1 −
∫ ⊗
µ (1 − f), it is of the form of a cointegral

∫→
µ f with

respect to the semi-dual implication →= S(⊗). But it can be checked that we no longer have the equality
(2), that is now ∫ ⊗

µ
f ̸=

∫ S(⊗)

µ
f

while we do have that Sµ(f) =
∫ ∧
µ f =

∫→KD

µ f , for every capacity µ and every f ∈ LC , as expressed
by identity (2). There are not many works considering q-cointegrals in the above sense. Grabisch et
al. ([77], p. 302) notice the failure of the duality relation (7) for Sugeno-like integrals that use t-norms
other than min, which hints at co-integrals using implications that are semi-duals of t-norms. The study
of solutions to the equality

∫ ⊗
µ f =

∫ S(⊗)
µ f is carried out in [5]. It turns out that there exist very

few operations other than Kleene-Dienes implication and Kleene conjunction for which these integrals
coincide (the conjunctions must be of the form φ(α) ∧ ψ(β) for local utility functions φ,ψ : L→ L).

In [55], we study q-cointegrals induced by Gödel implication: α →G β =

{
1 if α ≤ β,

β otherwise
and the

q-integral induced by its semi-dual non-commutative conjunction [45]:

α⊗G β = 1− (α→G (1− β)) =

{
0 if a ≤ 1− β,

β otherwise.

We also study q-cointegrals induced by the contrapositive symmetric of Gödel implication defined by

α →GC β =

{
1 if α ≤ β,

1− α otherwise
and its semidual conjunction, which is equal to β ⊗G α. Using a

necessity measure for µ and implication →G, the aggregation
∫→G

µ f selects all alternatives that pass the
prescribed threshold for each criterion and ranks the remaining ones according to their worst local ratings
(forming a waiting list). Using →GC , the aggregation selects all alternatives that pass the prescribed
threshold for each criterion and ranks the remaining ones according to the importance of violated criteria,
putting the objects that violate the least important criteria upfront. Moreover it is shown in [55] that∫ ⊗Gf
µ >

∫→G

µ f and
∫ ⊗GC

µ f >
∫→GC

µ f in general. This inequality cannot even be generalised to

other conjunctions. More precisely, if ⊗ is a triangular norm, or a copula, then
∫→
µ (θAλ) >

∫ ⊗
µ (θAλ)

in general (θAλ is the alternative that takes value θ for i ∈ A and λ otherwise). However, if ⊗ is
greater than the minimum (which is the case with the semi-dual of the contrapositive symmetric of
Gödel implication), then

∫→
µ (αAβ) <

∫ ⊗
µ (αAβ) in general. Other q-integrals and q-co-integrals are

studied in [57].

Elementary properties of q-integrals and co-integrals The counterpart of the Sugeno integral expres-
sion in terms of the nested family of subsets {(i), · · · , (n)}, induced by f , where f(1) ≤ · · · ≤ f(n), and
the simplified form of Sugeno q-integral are still valid for q-integrals:∫ ⊗

µ
f =

n∨
i=1

µ({(i), · · · , (n)})⊗ f(i),

∫ ⊗

µ
(f) =

∨
λ∈L

µ({f ≥ λ})⊗ λ.
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If µ is a possibility measure Π based on possibility distribution π we retrieve the ⊗-weighted max-
imum:

∫ ⊗
Π f = MAX⊗

π (f). However, if µ is a necessity measure, the expression of the q-integral will
not simplify when ⊗ ̸= min. In other words we do not have that

∫ ⊗
N f = MIN→

π (f) for →= S(⊗)
except when ⊗ = ∧.

Using semi-duality, q-cointegrals can be expressed in terms of q-integrals since
∫→
µ f = 1−

∫ ⊗
µc(1−

f). In [57] we derive the following results from the ones on (conjunction-based) q-integrals:∫ →

µ
f =

n∧
i=1

µc({(1), · · · , (i)}) → f(i),

∫ →

µ
f =

∧
λ∈L

µc({f ≤ λ}) → λ.

We also get that when µ is a necessity measure N based on possibility measure π, the q-cointegral
reduces to the →-weighted minimum:

∫→
N f = MIN→

π (f) = ∧n
i=1πi → fi. However the q-cointegral

with respect to a possibility measure
∫→
Π f does not reduce to a weighted maximum.

The characterization result in Theorem 2 for Sugeno integrals can be extended to q-integrals and
co-integrals.

Theorem 6. [57] Let I : LC → L be a mapping. There are a capacity µ and a fuzzy conjunction ⊗ such
that I(f) =

∫ ⊗
µ f for every f ∈ LC if and only if

(i) I(f ∨ g) = I(f) ∨ I(g), for any comonotone f, g ∈ LC .
(ii) There are a capacity κ : 2C → L and a binary operation ⋆ on L such that I(λ∧ 1A) = κ(A) ⋆ λ for

every λ ∈ L and every A ⊆ C.
(iii) I(1C) = 1 and I(0C) = 0.

In that case, we have µ = κ and ⊗ = ⋆.

If the fuzzy conjunction ⊗ satisfies λ ⊗ 1 = λ, then under the assumptions of Theorem 6, the
functional I is of the form I(f) =

∫ ⊗
µ f where µ(A) = I(1A). There is a specific result in [57] when

the functional I is fully maxitive, to characterize possibilistic q-integrals of the form I(f) =
∫ ⊗
Π f .

Since the fuzzy conjunction ⊗ is not supposed to be commutative, there is a companion q-integral∫ ⋆
µ f with λ ⋆ λ′ = λ′ ⊗ λ and a similar characterization result.

For q-cointegrals defined from fuzzy implications, similar characterization results have been de-
rived. However they use counterparts of properties (i’), (ii’) and (iii’) of Sugeno integral recalled un-
der Theorem 2. We consider a fuzzy implication →, which can always be assumed to be of the form
α → β = 1 − α ⊗ (1 − β) for a fuzzy conjunction ⊗. This semi-duality property leads to obtain the
following characterisation result.

Theorem 7. Let I : LC → L be a mapping. There are a capacity µ and a fuzzy implication → such that
I(f) =

∫→
µ f for every f ∈ LC if and only if the following properties are satisfied.

(i) I(f ∧ g) = I(f) ∧ I(g), for any comonotone f, g ∈ LC .
(ii) There are a capacity ρ : 2C → L and a binary operation ▷ such that

I(λ ∨ 1A) = ρc(A)▷ λ, ∀λ ∈ L.
(iii) I(1C) = 1 and I(0C) = 0.

In that case ρ = µ, and ▷ =→.

Note that the homogeneity condition I(λ ∨ 1A) = ρc(A) → λ for q-cointegrals is better understood
if we express the latter expression (1 − ρ(A)) → λ as ρ(A) ⊕ λ, where ⊕ is a disjunction built as
the De Morgan dual 1 − (1 − ·) ⊗ (1 − ·) of ⊗ = S(→), which means it is indeed the disjunctive
counterpart of the homogeneity condition I(a ∧ 1A) = λ(A) ⊗ a for q-integrals. Clearly, if the fuzzy
implication function is such that λ → 0 = 1 − λ, then I(1A) = 1 − ρc(A) = ρ(A) (for instance → is
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the symmetric contrapositive of a residual fuzzy implication induced by a conjunction having two-sided
identity 1, such as ∧, for which we have λ →CG 0 = 1 − λ). There is a specific result in [57] when
the functional I is fully minitive, to characterize possibilistic q-integrals of the form I(f) =

∫→
N f . In

the same paper, representation results for the companion q-cointegral defined from a q-cointegral by
contrapositive symmetry are proposed.

To summarize, the above results indicate that properties of Sugeno integrals remain valid for more
general functionals where the weights of groups of criteria may variously act to modify local evaluations.
However these set of properties is split into some for q-integrals and others for q-co-integrals:

– Comonotonic maxitivity is specific to q-integrals and comonotonic minitivity is specific to q-cointegrals.
– Q-integrals and q-cointegrals do not satisfy the same homogeneity conditions, the former being

homogeneous with respect to the meet ∧ and the latter with respect to the join ∨.
– Q-integrals simplify if computed wrt a possibility measure and q-cointegrals simplify wrt a necessity

measure but not conversely.

4 Bipolar evaluation methods

When rating alternatives on a scale L, it is useful to have a clear understanding of the meaning of its
end-points. The explicit handling of positive and negative judgments when selecting an alternative must
be distinguished from the simple need for ranking alternatives in terms, e.g., of preference. People also
need to express that some alternative is good or bad for them, a notion that simple preference relations
cannot express. Using a simple preference relation, the best available choice may fail to be really suitable
for the decision-maker. In other circumstances, even the worst ranked option remains somewhat accept-
able. To discriminate between these two situations, one absolute landmark or reference point expressing
neutrality or indifference, and explicitly separating the positive and the negative judgments, must appear
in the model. 1

Modeling this situation requires a bipolar scale (L,>), i.e., a totally ordered set with a prescribed
interior element e called neutral, separating the positive range of evaluations λ > e from the negative
one λ < e. Mathematically, if the scale is equipped with a binary operation ⋆ (an aggregation operator),
e is an idempotent element for ⋆, possibly acting as an identity. Interestingly, classical utility theory does
not exploit bipolarity. Utility functions are defined up to an increasing affine transformation (i.e., they
rely on an interval scale), and the separation between positive and negative evaluations has no special
meaning. In contrast, Cumulative Prospect Theory (CPT, for short) proposed by [103] is an attempt to
explicitly account for positive and negative evaluations using the real line as a genuine bipolar scale.
The simplest qualitative bipolar scale contains three elements: {−, 0,+}. In bipolar scales, the negative
side of the scale (below e) is the mirror image of the positive one (above e). An object is evaluated on
such a bipolar scale as being either positive or negative or neutral. It cannot be positive and negative at
the same time. This is called a univariate bipolar framework.

However, it is known from many experiments in cognitive psychology [87, 12, 99] that humans often
evaluate alternatives for the purpose of decision-making by considering positive and negative aspects
separately. Under this bipolar view, comparing two alternatives comes down to comparing pairs of sets
of arguments or features, namely, the set of pros and cons pertaining to one alternative versus the set of
pros and cons pertaining to the other. This view of bipolarity requires the use of two unipolar qualitative
scales L+ and L− (a positive one and a negative one) instead of a unique bipolar scale. This is the
bivariate unipolar framework. Here each scale is unipolar in the sense that the neutral level is at one
end of the scale. In a positive scale the bottom element is neutral. In a negative scale the top element is

1 Even ordinal decision methods need to inject some form of bipolarity. Note that multicriteria decision methods based on
the merging of outranking relations use concordance and discordance tests between criteria [96], where the notion of veto
prevents the choice of alternatives that rate too low with respect to some criteria. It can be viewed as an attempt to capture
the idea of bipolar preference [88].
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neutral. A bipolar scale can be viewed as the union of a positive and a negative scale L+∪L− extending
the ordering relations on each scale so ∀λ+ ∈ L+, λ− ∈ L−, λ+ > λ−.

There are in fact three forms of bipolarity can be found at work in the literature, we call types I, II,
III in [51]:

– Type I: Symmetric univariate bipolarity. It relies on the use of bipolar scales.
– Type II: Symmetric bivariate bipolarity. It relies on the use of two unipolar scales related via

duality. Positive and negative strengths are computed similarly on the basis of the same data and can
be conflicting. This is the case of argumentation systems where reasons for an alternative and reasons
against it are collected from the same knowledge base prior to making a decision. Psychologists have
shown that the simultaneous presence of positive and negative arguments prevents decisions from
being simple to make, except when their strengths have different orders of magnitude.

– Type III: Asymmetric bipolarity. In this form of bipolarity, the negative part of the information is
not of the same nature as the positive part, while in type II bipolarity only the polarities are opposite.
In decision-making, this kind of bipolarity corresponds to the opposition between soft constraints
(that eliminate unwanted alternatives) and criteria (that evaluate preferred ones), as discussed in [3].
Constraints have a prominent role and first select the most tolerated alternatives; positive preferences
(such as goals and desires) then act to discriminate among this set of non-rejected alternatives. Hence
a positive evaluation, even if high, can never outperform a negative evaluation even if very weak. In
this approach, negative features prevail over positive ones. The latter matter only when no constraint
is violated. In the previous type of bipolarity, positive and negative arguments play symmetric roles.

In this section, we review two bipolar approaches to decision related to Sugeno integrals, namely the
symmetric Sugeno integral, and a qualitative counterpart of CPT, where positive and negative sides of
alternatives are evaluated separately in the spirit of argumentation theory.

4.1 The symmetric Sugeno Integral

Let L be a totally ordered set with bottom element 0, and let −L := {−λ : λ ∈ L} be its “symmetric”
copy endowed with the reversed order. Consider the symmetric ordered structure L̃ := L∪(−L)\{−0},
a bipolar scale analogous the real line where the zero that acts as a neutral element and such that λ +
(−λ) = 0. In particular, −(−λ) = λ. The question is thus how to define lattice polynomial functions
on such bipolar ordered structures while keeping the symmetry with respect to 0. In particular, we seek
a symmetric extension of the Sugeno integral.

As we saw, lattice polynomial functions on distributive lattices (in particular, on linearly ordered sets)
are can be represented in disjunctive normal form (see, e.g., [26, 27, 67]). Thus any lattice polynomial
function could be in principle defined on a symmetric structure L̃ if one could define the symmetric
extensions of maximum and minimum on L over the bipolar L̃.

The symmetric minimum 7 (playing the role of the product in the real line) is rather simple. Define
the absolute value of λ ∈ L̃ as:|λ| = λ if λ ∈ L and −λ otherwise. Grabisch [72, 73] proposed the
following notion of symmetric minimum:

λ7λ′ :=

{
−(|λ| ∧ |λ′|) if sign(λ) ̸= sign(λ′)
|λ| ∧ |λ′| otherwise.

(22)

The absolute value of λ7λ′ equals |λ| ∧ |λ′| and λ7λ′ < 0 if and only if the two elements λ and λ′

have opposite signs. Like the usual minimum operator ∧, the symmetric minimum 7 is associative.
Now, the symmetric notion of maximum playing the role of a sum is more challenging. Intuitively,

the symmetric maximum 6 should extend the maximum onLwith 0 as neutral element, and should fulfill
the symmetry requirement: for every λ ∈ L̃, λ6(−λ) = 0. However, unlike with the minimum, this
symmetry requirement immediately implies that any extension 6 of the maximum operator ∨ cannot be
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associative. To illustrate this point, let L = N and observe that (26 3)6(−3) = 36(−3) = 0 where as
26(36(−3)) = 26 0 = 2.

Nonetheless, Grabisch [72] showed that the “best” definition of 6 (see Theorem 8 below) is:

λ6λ′ =


−(|λ| ∨ |λ′|) if λ′ ̸= −λ and |λ| ∨ |λ′| = −λ or = −λ′
0 if λ′ = −λ
|λ| ∨ |λ′| otherwise.

(23)

In other words, if λ′ ̸= −λ, then λ6λ′ returns the element that is the larger in absolute value among
the two elements λ and λ′. Moreover, it is not difficult to see that 6 satisfies the following properties:

(C1) 6 coincides with the maximum on L2;
(C2) λ6(−λ) = 0 for every λ ∈ C̃;
(C3) −(λ6λ′) = (−λ)6(−λ′) for every λ, λ′ ∈ C̃.

Hence, 6 almost behaves like + on the real line, but for associativity. As shown in [72], if one requires
that (C1), (C2) and (C3) hold, then (23) is the best possible definition for 6.

Theorem 8. [72, Prop. 5] No binary operation satisfying (C1), (C2), (C3) is associative on a larger
domain than 6.

The following result presents some further properties of 6 and describes the sequences that reveal
the nonassociativity of 6.

Proposition 2. [72, 22, Prop. 5] The symmetric maximum has the following properties:

(i) 6 is commutative on L̃.
(ii) 0 is the neutral element of 6.

(iii) 6 is associative on an expression involving α1, . . . , αn ∈ L̃, with |{i : αi ̸= 0}| > 2, if and only if∨n
i=1 αi ̸= −

∧n
i=1 αi.

(iv) 6 is nondecreasing in each argument on L̃.

Sequences fulfilling condition (iii) were referred to as associative in [22].
Now the ambiguity in evaluating 6 on nonassociative sequences makes it hard to use it for defining

lattice polynomial functions on L̃, since the result of 6k
i=1 ai depends on the particular way the binary6 is applied to the terms of (αi)1≤i≤k. Grabisch [72] suggested ways of making 6 associative that were

fully developed in [22], namely, by fixing beforehand a systematic way of putting parentheses on any
sequence of L̃∗, procedure that was called a rule of computation.

Making 6 associative: rules of computation We now recall the formalism of [22]. As, we will only
consider countable sequences of elements of L̃, without loss of generality, we may assume that L̃ = Z.
In this way, elements of L̃∗ are (finite) sequences of integers, denoted by σ = (λi)i∈I for some finite
index set I , including the empty sequence ε, i.e.,

L̃∗ =
( ∪

n∈N
(L̃)n

)
∪ {ε}.

This convention will simplify our exposition and establish connections to the theory of integer means.
Also, as 6 is commutative, the order of symbols in the word does not matter, and we can consider the

decreasing order of the absolute values of the elements in the sequence (e.g., 5, 5,−5,−3, 2,−2, 1, 0).
Since sequences are ordered, we can consider the following convenient formalism for representing se-
quences. For an arbitrary sequence

σ = (n1, . . . , n1︸ ︷︷ ︸
p1 times

,−n1, . . . ,−n1︸ ︷︷ ︸
m1 times

, . . . , nq, . . . , nq︸ ︷︷ ︸
pq times

,−nq, . . . ,−nq︸ ︷︷ ︸
mq times

)
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let θ(σ) = (n1, . . . , nq) be the sequence of absolute values (magnitudes) of integers in σ, and let
ψ(σ) = ((p1,m1), . . . , (pq,mq)) be the sequence of pairs of numbers of occurrence of these integers.
For instance, if σ = (3, 3,−3, 2,−2,−2, 1, 1, 1, 1), then

θ(σ) = (3, 2, 1); ψ(σ) = ((2, 1), (1, 2)(4, 0)).

Let S denote the set of all integer sequences in this formalism, including the empty sequence, and let
S0 be the subset of all nonassociative sequences.

This formalism facilitates the precise definition of rules of computation in terms of 5 elementary
rules ρi : S → S that act on σ in the following way:

(i) Elementary rule ρ1: if p1 > 1 and m1 > 0, then p1 is changed to p1 = 1;
(ii) Elementary rule ρ2: idem with p1,m1 exchanged;

(iii) Elementary rule ρ3: if p1 > 0, m1 > 0, the pair (p1,m1) is changed into (p1 − c,m1 − c), where
c = p1 ∧m1;

(iv) Elementary rule ρ4: if p1 > 0, m1 > 0, and if p2 > 0, then p2 is changed into p2 = 0;
(v) Elementary rule ρ5: idem with m2 replacing p2.

Hence, elementary rules delete terms only in nonassociative sequences, and leave the associative ones
invariant.

A (well-formed) computation rule R is a word built with the alphabet {ρ1, . . . , ρ5}, i.e., R ∈
L(ρ1, . . . , ρ5), such that R(σ) ∈ S \ S0 for all σ ∈ S. The set of (well-formed) computation rules
is denoted by R. Examples of rules are (words are read from left to right)

(i) ⟨·⟩0 = ρ∗3, that corresponds to putting parentheses around each pair of maximal symmetric terms.
(ii) ⟨·⟩= = (ρ1ρ2ρ3)

∗, that corresponds to putting parentheses around terms with the same absolute value
and sign, and then to putting parentheses around each each pair of maximal symmetric resulting
terms.

(iii) ⟨·⟩+− = (ρ4ρ5)
∗ρ1ρ2ρ3, that corresponds to first putting parentheses around all positive terms and all

negative terms, and then computing the symmetric maximum of the two results.

It is shown in [22] that each each computation rule R ∈ R corresponds to an arrangement of paren-
theses together with a permutation on the terms of sequences. Thus each R ∈ R turns the symmetric
maximum into an associative operation 6R : S∗ → S defined by 6R = 6 ◦R, since R(σ) ∈ S \S0

for all σ ∈ S 2. Moreover, each computation rule has the form R = T1T2 · · · , where each Ti has the
form ωρα1 ρ

β
2ρ3, with ω ∈ L(ρ4, ρ5) and α, β ∈ {0, 1} (factorization scheme)3

Now to compute 6R(σ), one needs to delete symbols in the sequence θ(σ) exactly as they are deleted
in ψ(σ). This entails an ordering of R that is discussed below.

Let R,R′ ∈ R and, for each sequence σ = (ai)i∈I , let Jσ ⊆ I and J ′
σ ⊆ I , be the sets of indices of

the terms in σ deleted by R and R′, respectively. Then, we write R ⩽ R′ if for all sequences σ ∈ S we
have Jσ ⊇ J ′

σ. Clearly, it is reflexive and transitive, and thus it is a preorder. This induces an equivalence
relation ∼ defined as follows: R ∼ R′ if R ⩽ R′ and R′ ⩽ R. The following proposition provides
equivalent definitions of ∼.

Proposition 3. Let R,R′ ∈ R. Then the following assertions are equivalent.

(i) R ∼ R′.
(ii) 6R = 6R′ .

(iii) Ker(6R) = Ker(6R′)4.

2 For convenience, we assume that 6R(ε) = 0 and 6R(a) = a, for every a ∈ C̃
3 Here, ρ0 = ε and ρ1 = ρ.
4 The kernel of 6R is defined by Ker(6R) = {σ ∈ S | 6R(σ) = 0}.
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Furthermore, they have exactly the same factorized irredundant form (see [22]).

The structure of the poset R/∼ of equivalence classes endowed with the partial order induced by
⩽ was investigated in [22] and shown to be highly complex. To give an idea, the subposet R123/∼ of
equivalence classes of rules R ∈ L(ρ1, ρ2, ρ3) has infinitely many maximal elements, and (R123/∼,⩽)
(and thus (R/∼,⩽)) embeds the powerset (2N,⊆) of natural numbers, and hence it is of continuum
cardinality. For further results on R/∼, see [22].

Characterizations of symmetric maxima 6R We now briefly describe the class of those integer func-
tions ϕ : L̃∗ → L̃ that coincide with symmetric maxima 6R, for R ∈ R, by making use of the tight
connections to the theory of integer means.

A function ϕ : C̃∗ → C̃ that verifies anonymity5, internality6, monotonicity7, and decomposability8

is called an integer mean in [1], where it was shown that all such functions are extremal9. However, the
three last properties are too stringent for functions of the form ϕ = 6R. This led us to considering some
relaxations and variants of these properties, which culminated in the following characterizations of the
class of symmetric maxima 6R, R ∈ R.

Theorem 9. [23] Let ϕ : L̃∗ → L̃ be an anonymous and weakly associative function that satisfies (C1),
(C2), (C3) on L̃2, and let R ∈ R. Then ϕ = 6R if and only if one (or, equivalently, all) of the following
assertions hold:

(i) Ker(6R) ⊆ Ker(ϕ) and ϕ is decomposable on every K ⊆ JR
σ ,

(ii) ϕ is extremal w.r.t. R ∈ R, i.e., ϕ(σ) =
(
mini∈I\JR

σ
αi

)6(
maxi∈I\JR

σ
αi

)
,

(iii) ϕ is retractive w.r.t. R, i.e., ϕ(σ) = ϕ(αI\JR
σ
),

for every σ = (αi)i∈I in S.

Formulating the symmetric Sugeno integral The question is how to define the Sugeno integral for
functions which may take negative values, i.e., functions f : [n] → L̃. We proceed by analogy with the
Choquet integral. We recall its expression for a function f : [n] → [0, 1] w.r.t. a capacity µ:

Cµ(f) =
n∑

i=1

(f(i) − f(i−1))µ(A(i)), (24)

with f(0) := 0. The usual way of defining the Choquet integral for functions taking negative values is
the following one:

Cµ(f) = Cµ(f
+)− Cµc(−f−),

with f+, f− the positive and negative parts of f , i.e., f+ = f ∨ 0 and f− = (−f)+, and µc is the
conjugate or dual of µ, defined when L̃ = R by µc(S) = µ([n]) − µ(Sc). This is sometimes called the
asymmetric Choquet integral, as it does not satisfy the property Cµ(−f) = −Cµ(f). The motivation
for its definition is that this is the only expression which is invariant by translation, i.e., Cµ(f + h) =
Cµ(f) + hµ([n]), h being a constant function of value h. In our context of ordinal scales, translation
has no meaning, and consequently mimicking the definition of the (asymmetric) Choquet integral for
the Sugeno integral of L̃-valued functions is meaningless.

5 ϕ is anonymous if for every σ = (αi)i∈I ∈ S and every permutation π on I , 6R(σ) = 6R(σ◦π), where σ◦π = (απi)i∈I
6 ϕ is internal if for every σ = (αi)i∈I ∈ S, mini∈I αi ⩽ ϕ(σ) ⩽ maxi∈I αi
7 ϕ is monotone if ϕ(σ) ⩽ ϕ(σ′) whenever σ = (αi)i∈I ∈ S and σ′ = (a′

i)i∈I ∈ S are such that αi ⩽ α′
i for every i ∈ I .

8 ϕ is decomposable if for every σ = (αi)i∈I and K ⊆ I , ϕ(αK) = b implies ϕ(αK , αI\K) = ϕ(|K| · b, αI\K), where
|K| · b means b, b, . . . , b (repeated |K| times).

9 ϕ is extremal if for every σ = (αi)i∈I ∈ S, ϕ(σ) = ϕ
(
mini∈I αi,maxi∈I αi

)
.
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On the other hand, the symmetric Choquet integral is defined by

Čµ(f) = Cµ(f
+)− Cµ(f

−). (25)

Its name comes from the fact that indeed this integral satisfies symmetry: Cµ(−f) = −Cµ(f). Its
explicit expression is found to be:

Čµ(f) =

p−1∑
i=1

(f(i) − f(i+1))µ({(1), . . . , (i)}) + f(p)µ({(1), . . . , (p)})

+ f(p+1)µ({(p+ 1), . . . , (n)}) +
n∑

i=p+2

(f(i) − f(i−1))µ({(i), . . . , (n)}), (26)

where f(1) ≤ · · · ≤ f(p) < 0 ≤ f(p+1) ≤ · · · ≤ f(n).
Based on this, we define the symmetric Sugeno integral of f : [n] → L̃ w.r.t. a capacity µ as follows:

Šµ(f) = Sµ(f
+)6(−Sµ(f−)), (27)

where again f+, f− denote the positive and negative parts of f , i.e., f+ = f ∨ 0 and f− = (−f)+.
Observe that thanks to property (C1), the symmetric Sugeno integral extends the usual Sugeno integral
on L̃. Moreover, thanks to (C2) and (C3), the symmetric Sugeno integral behaves like the symmetric
Choquet integral on the real line. In particular, by (C3) we have that −Sµ(f) = Sµ(−f), and thus the
explicit expression of Šµ(f) is also close to the symmetric Choquet integral:

Šµ(f) =
[ n6
i=p+1

(f(i) 7µ({(i), . . . , (n)}))
]6 [ p6

i=1
(f(i) 7µ({(1), . . . , (i)}))

]
, (28)

with f(1) ≤ · · · ≤ f(p) < 0 ≤ f(p+1) ≤ · · · ≤ f(n) and 7 is the symmetric minimum. Notice that there
is no ambiguity due to lack of associativity in this formula.

Now, by using the computation rule ⟨·⟩−+, (28) can be rewritten as:

Šµ(f) = 6⟨·⟩−+
( f(1) 7µ({(1)}), . . . , f(p) 7µ({(1), . . . , (p)}), (29)

f(p+1) 7µ({(p+ 1), . . . , (n)}), . . . , f(n) 7µ({(n)}))).

This fact together with our general framework for computation rules motivates several other definitions
of the symmetric Sugeno integral, each of which reflecting different tendencies (e.g., pessimistic vs
optimistic views). Indeed, it is tempting to consider replacing ⟨·⟩−+ by any computation rule R:

Šµ(f) = 6R( f(1) 7µ({(1)}), . . . , f(p) 7µ({(1), . . . , (p)}), (30)

f(p+1) 7µ({(p+ 1), . . . , (n)}), . . . , f(n) 7µ({(n)}))).

However, we must be careful due to the fact that not all computation rules are monotonic, i.e., increas-
ing one of the elements of a sequence σ cannot decrease the result. For example, the rule ⟨·⟩= is not
monotonic as the following example shows:

6⟨·⟩=(5,−5,−5, 4, 3) = 4 whereas 6⟨·⟩=(5,−5,−4, 4, 3) = 3.

This naturally raises the question of determining those computation rules that are monotonic, which
constitutes a topic of current research.
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4.2 Deciding by evaluating pros and cons

A formal elementary framework for a bivariate bipolar multicriteria decision analysis requires a positive
scale L+ and a negative scale L− which are unipolar. We consider the symmetric case, namely there
is an order-reversing bijection between L+ and L−. Basically they are copies of a finite totally ordered
scale. In other words, the pair (L+, L−) can be viewed as the two parts of a bipolar scale. In the sim-
plest qualitative setting, criteria are valued on a bipolar scale LB = {−, 0,+}, whose elements reflect
negativity, neutrality and positivity respectively. Then L+ = {0,+}, L− = {−, 0}, which are copies of
the Boolean scale {0, 1}.

The importance of criteria is evaluated on a scale L that is commensurate with the two scales L+

and L−, in the sense that there is an order-preserving (for L+) and an order-reversing (for L−) injections
preserving top and bottom between L+, L− and L: for instance L+ ⊆ L and L− ⊆ {−λ : λ ∈ L}.

In the following we assume that alternatives map C to L×L; namely fi is of the form (f−i , f
+
i ) with

−f−i ∈ L− and f+i ∈ L+, with the assumption that min(f−i , f
+
i ) = 0 (the rating of f wrt a criterion

is either positive or negative). Each value fi expresses that criterion i brings an argument in favor of f
(f+i > 0) or in disfavor of f (f−i > 0) or yet is neutral to f (when f+i = f−i = 0). In other words we
can split the alternative f into positive f+ and negative parts f−, that can be independently evaluated
on the scale L. In a nutshell, with respect to an alternative f , each criterion i has

– a polarity: the criterion i judges f positively, or negatively in the wide sense.
– a degree of importance πi ∈ L that does not depend on the alternative. More generally, we can use

a capacity for weighting dependent criteria.

The proposed framework is clearly of type II in the bipolarity typology.

Example Suppose that Luc has to choose a holiday destination and considers two options for which
he has listed the pros and cons. Option f is in a very attractive region (a strong pro), and hotel has a
swimming pool ; but it is very expensive, and the plane company has a terrible reputation (two strong
cons). Option g is cheaper but it is in a non-democratic country, and Luc considers it a strong con. On
the other hand, Option g includes a tennis court and a swimming pool. These are three pros, but not very
decisive: they do matter, but not as much as the other arguments.

Formally, let:

– C = {Attractiveness (1), price (2), democracy(3), sport facilities(4), airline (5)}.
– L+ = {0,+,++}, L− = {−−,−, 0}, L = {0, λ, 1}.
– Available alternatives:
f gets ++ on attractiveness, −− on price and airline, + on sport facilities
so f+ = (1, 0, 0, λ, 0) and f− = (0, 1, 0, 0, 1);
g gets + on price −− on democracy and ++ for sports
so g+ = (0, λ, 0, 1, 0) and g− = (0, 0, 1, 0, 0).

A special case of this framework is studied at length in Bonnefon et al.[6, 7], where scales L+, L−

are Boolean, while L is any bounded scale for assessing importance of criteria. Then an alternative f is
modelled by two disjoint subsets of C: F+ = {i : f+i = 1} and F− = {i : f−i = 1} collecting the pros
and cons for and against f . The set F = F+ ∪ F− is the set of relevant criteria (i.e. those that matter)
for f .

There are two approaches to deciding preference among alternatives.

– Either we consider for each alternatives positive and negative summaries of arguments via an aggre-
gation operator, here Sugeno integral, and define a partial ordering between alternatives.

– Or we can build a preference relation via pairwise comparisons assuming that, when comparing f
and g, that criteria in disfavor of g give reasons to prefer f and conversely.
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Comparing pairs of positive and negative ratings by Pareto-dominance Suppose the set of criteria
is weighted by means of a capacity µ valued on L, and that L+ = L− = L. In the above bipolar setting,
an alternative f will then be evaluated by a pair (Sµ(f−), Sµ(f+)). Note that Sµ(f−) is rated on a scale
where 1 is interpreted as bad, 0 is neutral. If we wish to express it on a positive unipolar scale where
0 means bad, we have to replace Sµ(f−) by Dν(f

−) = S1−µc(1 − f−) (using a monotone decreasing
set-function ν = 1− µc). Dν(f

−) is named a desintegral in [55]. A first way of comparing alternatives
f and g is to use a kind of Pareto-dominance between (f−, f+) and (g−, g+).

f ⪰PB g ⇐⇒ Sµ(f
+) ≥ Sµ(g

+) and Sµ(f−) ≤ Sµ(g
−) (31)

This ordering is exactly Pareto dominance if we use the desintegral for f−. It satisfies obvious mono-
tonicity conditions, namely if f and g are such that f+i ≥ g+i , ∀i ∈ [n] and f−i ≤ g−i , ∀i ∈ [n], then
f ⪰PB g.

In the special case of Boolean positive and negative ratings, Bonnefon et al.[6, 7] use a possibility
assignment to weight criteria and a pair of possibility measures (Π(F−), Π(F+)) as a bipolar rating of
this alternative. These evaluations 10 are justified by the focus effect according to which humans compare
alternatives with respect to the most important criteria first, neglecting other ones. Note that the ordering
⪰PB collapses to Wald’s pessimistic ordering if F+ = ∅ (choosing based on the worst feature), and to
its optimistic max-based counterpart if F− = ∅.

This decision rule has some deficiencies:

– The bipolar outranking relation ⪰PB concludes to incomparability in some cases when a preference
would sound more natural. When f has both pros and cons, it is incomparable with the neutral
alternative f̂ such that f̂+i = f̂−i = 0, ∀i ∈ [n] if the importance of the cons in f is negligible in
front of the importance of its pros.

– Whenever two criteria i and j are such that f−i = 1 and f+j = 1 (a very bad rating on criterion i and
a very good one on j) and these criteria have maximal importance µ#({i}) = µ#({j}) = 1, then
(Sµ(f

−), Sµ(f
+)) = (1, 1), so that such alternatives are considered equally preferred. There can be

many of them, hence a lack of discrimination.

A bipolar model in decision under uncertainty The approach of Giang and Shenoy [68, 69] to deci-
sion under uncertainty is of the same vein. They have tried to obviate the need for making assumptions on
the pessimistic or optimistic attitude of the decision-maker and thus, improve the discrimination power
in the qualitative setting, by using, as a utility scale, a totally ordered set of possibility measures on a two
element set {0, 1} containing the values of the best and the worst consequences of acts. Each such pos-
sibility distribution represents a qualitative lottery in a set LΠ = {(α, β),max(α, β) = 1, α, β ∈ L}.
Coefficient α represents the degree of possibility of obtaining the worst consequence, and coefficient β
the degree of possibility of obtaining the best. This set can be viewed as a bipolar value scale ordered by
the following complete preordering relation expressing preference:

(α, β) ≥ (γ, δ) if and only if (α ≤ γ and β ≥ δ)

The bottom of this utility scale is (1, 0), its top is (0, 1) and its neutral point (1, 1) means “indifferent”.
The fact this relation is complete is due to the fact that pairs (α, β) and (γ, δ) such that (α, β) >
(γ, δ) and (γ, δ) > (α, β) cannot both lie in LΠ since then either max(α, β) < 1 or max(γ, δ) <
1. The canonical example of such a scale is the set of pairs (Π(A),Π(A)) of degrees of possibility
for event A = “getting the best consequence”, and its complement. The inequality (Π(A), Π(A)) >
(Π(B), Π(B)) means that A is more likely (certain or plausible) than B (because it is equivalent to
Π(A) > Π(B) or N(A) > N(B)). In fact the induced likelihood ordering between events

A ⪰LΠ B if and only if (Π(A),Π(A)) ≥ (Π(B),Π(B))

10 interpreted in terms of order of magnitude of importance, hence the notation OM in [6].
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is self-adjoint, that is, A ⪰LΠ B is equivalent to B ⪰LΠ A.
Each consequence is supposed to have a utility value (α, β) in LΠ . The proposed preference func-

tional maps acts, viewed as n−tuples f = ((f−1 , f
+
1 ), . . . , (f−n , f

+
n )) of values in LΠ , to LΠ itself. The

uncertainty is described by possibility weights (π1, . . . , πn) with maxi=1,...,n πi = 1. The utility of an
act f , called binary possibilistic utility is computed as the pair

WGS(f) = ( max
i=1,...,n

min(πi, f
−
i ), max

i=1,...,n
min(πi, f

+
i )) ∈ LΠ .

Clearly, WGS(f) is of the form (Sµ(f
−), Sµ(f

+)) for µ = Π . This form results from simple and very
natural axioms on possibilistic lotteries, which are counterparts to the Von Neumann and Morgenstern
axioms in decision under risk. Weng [104] proposed a Savage-style axiomatization of this binary pos-
sibilistic utility functional. It puts together the axiomatizations of the optimistic and the pessimistic
possibilistic criteria by Dubois et al. [60], adding, to the axioms justifying Sugeno integral, two condi-
tions: (i) the self-adjointness of the preference relation on binary acts, and (ii) an axiom enforcing axiom
OPT on the subset of acts weakly preferred to a special act that plays the role of a neutral point sep-
arating favorable from unfavorable acts. Pessimistic and optimistic possibilistic criteria SLMINπ and
SLMAXπ are of course special cases of this bipolar criterion. They respectively correspond to either
using the negative part of LΠ only (not telling (1, 1) from (0, 1) in case of pessimism) or using the
positive part of LΠ only (not telling (1, 0) from (1, 1) in case of optimism).

The bipolar possibility relation The problem with the bipolar Pareto-dominance is that it does not
account for the fact that the two evaluations share a common importance scale L. Another idea for
comparing alternatives f and g is to focus on criteria in F ∪G, i.e., those that matter for both alternatives.
The principle at work is simple: any argument against f (resp. against g) is an argument pro g (resp., pro
f ). The most supported decision is then preferred, by comparing global evaluations on F+ ∪ G− and
F−∪G+: Instead of comparing f and g we compare f+∨g− with g+∨f− with respective components
f+i ∨ g−i and f−i ∨ g+i :

Definition 5 (Bipolar Sugeno Dominance). f ⪰BS g ⇐⇒ Sµ(f
+ ∨ g−) ≥ Sµ(f

− ∨ g+).

It would be worth studying this preference relation and compare it to the preference relation induced
by the symmetric Sugeno integral (27). In particular Bipolar Sugeno Dominance does not require new
operations on a bipolar scale since all computations are brought back to the positive part of the scale in
Definition 5.

This kind of preference relation was first proposed in [6] when scales L+ and L− are Boolean, µ is
a possibility measure, and F− ∩G+ = F+ ∩G− = ∅. It yields the bipolar possibility relation

f ⪰BΠ g ⇐⇒ Π(F+ ∪G−) ≥ Π(G+ ∪ F−)

This rule decides that f is at least as good as g as soon as there are important arguments either in
favour of f or attacking g that are at least as strong as the best arguments in favour of g or attacking
f . Obviously, ⪰BΠ collapses to Wald’s pessimistic ordering if F = F−, G = G− and to its opti-
mistic counterpart when G = G+, F = F+. In some sense, this definition is the most straightforward
generalisation of possibility relations [83, 34] to the bipolar case.

The bipolar possibility relation satisfies the following properties

(i) It is complete and its strict part is transitive.
(ii) The restriction of ⪰BΠ to f such that F = {i}, i = 1, . . . n is a weak order.

(iii) Ground Monotony: ∀f, g, h, h′ such that H = {i},H ′ = {i′}, F ∩ {i, i′} = ∅ and h′ ⪰BΠ h:
f ∨ h ≻ g ⇒ f ∨ h′ ≻ g; f ∨ h ∼ g ⇒ f ∨ h′ ⪰ g;
g ≻ f ∨ h′ ⇒ g ≻ f ∨ h; g ∼ f ∨ h′ ⇒ g ⪰ f ∨ h.
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(iv) Positive Cancellation: ∀f, g, h such that f+i = 1 and 0 otherwise, g+j = 1 and 0 otherwise, h−k = 1
and 0 otherwise and denoting by 0 the alternative that receives 0 for each criterion: f∨h ∼ 0 and g∨
h ∼ 0 ⇒ f ∼ h.

(v) Negative Cancellation: ∀f, g, h such that f−i = 1 and 0 otherwise, g−j = 1 and 0 otherwise, h+k = 1
and 0 otherwise: f ∨ h ∼ 0 and g ∨ h ∼ 0 ⇒ f ∼ h

(vi) Strict negligibility: ∀f, gf ′, g′ : f ≻ g and f ′ ≻ g′ ⇒ f ∨ f ′ ≻ g ∨ g′.
(vii) Idempotent Negligibility ∀f, gf ′, g′ : f ⪰ g and f ′ ⪰ g′ ⇒ f ∨ f ′ ⪰ g ∨ g′.

Remarks:

– Note that the weak relation ⪰BΠ is generally not transitive.
– Properties (iv) and (v) express a form of anonymity. It is required when a positive argument blocks

a negative argument of the same strength: this blocking effect should not depend on the arguments
themselves, but on their position in the importance scale only.

– The two last properties are direct consequences of working with importance levels that are orders of
magnitude. f ≻ g means that f is much better than g, so much so as there is no way of overthrowing
f by sets of weaker arguments (property (vi)).

– The last property presupposes that several arguments of the same strength are worth just one.

The above properties turn out to be characteristic of the bipolar possibility rule [6]. They imply the
existence of the importance scale, and the importance assignment to criteria as a possibility distribution.

Comparison with Cumulative Prospect Theory (CPT) There is a similarity between the bipolar
possibility relation and the preference ordering of CPT. The latter assumes that the strength of reasons
supporting an alternative f and the strength of reasons against it can be measured by means of two
numerical capacities σ+ and σ− respectively mapping subsets F+ and F− to the unipolar scale [0,+∞).
The capacity σ+ reflects the importance of the group of positive arguments for f , and σ− the importance
of the group of negative arguments against it.

This approach moreover admits that it is possible to combine these evaluations by subtracting them
and building a so-called “net predisposition” score expressed on a bipolar numerical scale (the real line):

∀f,NP (f) = σ+(F+)− σ−(F−)

It is a special case of symmetric Choquet integral described in the previous section. Alternatives are
then ranked according to this net predisposition: f ⪰CPT g ⇐⇒ σ+(F+) − σ−(F−) ≥ σ+(G+) −
σ−(G−). The relation ⪰BΠ can be viewed as the natural qualitative counterpart of ⪰CPT ; indeed,
the bipolar possibility decision rule comes down to changing + into max in the equivalent inequality
σ+(F+)+σ−(G−) ≥ σ+(G+)+σ−(F−), that is, if σ+ = σ− is additive, σ+(F+ ∪G−) ≥ σ+(G+ ∪
F−).

So, there is a joint framework encompassing the CPT framework and the qualitative bipolar possi-
bility relation, turning possibility measures into standard capacities κ : 2X → L [40]:

f ⪰κ g ⇐⇒ κ(F+ ∪G−) ≥ κ(G+ ∪ F−)

adopting the view that an argument against alternative f is an argument in favour of g in the pairwise
comparison of alternatives.

The following properties clearly hold for ⪰κ: it is complete, and the restriction to single arguments
is a weak order. However it is not clearly transitive, not even quasi-transitive in the general case. And
while the non triviality, and both positive and negative monotony properties hold, the weak unanimity
property, that would make ⪰κ a bipolar monotonic set relation, requires that κ satisfy an additional
property on top of inclusion-monotonicity of capacities [15]:
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Weak additivity: Let A,B,C,D ⊆ X such that A ∩ C = ∅, B ∩ D = ∅; if κ(A) ≥ κ(B) and
κ(C) ≥ κ(D) then κ(A ∪ C) ≥ κ(B ∪D).

This property is, for capacities, equivalent to the following property involving only three subsets
A,B,C(= D) [34]:

If κ(A) ≥ κ(B) then κ(A ∪ C) ≥ κ(B ∪ C), provided that (A ∪B) ∩ C = ∅.

It implies that κ is a decomposable measure [15], that is, there exists an operation ⋆ such that if
A ∩ B = ∅, κ(A ∪ B) = κ(A) ⋆ κ(B). Due to compatibility with the underlying Boolean algebra of
events, it is natural to consider that ⋆ is a co-norm. Choosing an Archimedean continuous co-norm on
L = [0, 1], it is clear that ⪰κ can verify additional properties:

– Transitivity: κ(F+ ∪G−) ≥ κ(G+ ∪F−) and κ(G+ ∪C−) ≥ κ(C+ ∪G−) imply κ(F+ ∪C−) ≥
κ(C+ ∪ F−). Indeed the preconditions imply

κ(F+) ⋆ κ(G−) ⋆ κ(G+) ⋆ κ(C−) ≥ κ(G+) ⋆ κ(F−) ⋆ κ(G−) ⋆ κ(C+)

which yields the expected result by simplification (if ⋆ is a strict t-norm or κ is properly normalized).
This simplification cannot be made if ⋆ = max.

– Ground monotony holds under the same assumptions about ⋆.
– Positive and negative cancellation properties reduce to the trivial statement that κ({x}) = κ({y})

and κ({z}) = κ({y}) imply κ({x}) = κ({z}).

In fact, relation f ⪰κ g is a conjoint generalisation of ⪰CPT and ⪰BΠ that either comes down to
one of them (⪰CPT is obtained, if L = [0, 1], ⋆ is a nilpotent Archimedean t-norm and κ is properly
normalized, or a strict co-norm, taking the logarithm of κ) or a combination of them (if ⋆ is an ordinal
sum of the basic conorms α+ β − αβ, min(1, α+ β), max) up to a rescaling.

Bipolar lexicographic outranking relations The last property (Idempotent Negligibility) of the bipolar
possibility rule is by far the most debatable feature of ⪰BΠ . It causes a drowning effect, usual in standard
possibility theory. For instance, if the most important criteria satisfied by f are of the same importance
as most important criteria satisfied by g, but there are more of the latter, the two alternatives are judged
equally.

A tempting way of refining ⪰BΠ , is to use a leximax relation instead. Then the number of arguments
of equal strength on each side is then taken into account. Among the two basic axioms of qualitative
modeling, it comes down to giving up Idempotent Negligibility, while retaining Strict Negligibility.
Preference can then be based on counting arguments of the same strength, but we still do not allow
an important argument to be superseded by several less important ones, however large their number be
(focus effect). The criteria satisfied or violated in f and g are scanned top down, until a level is reached
such that the numbers of positive and negative arguments pertaining to the two alternatives are different;
then, the option with the least number of violated criteria and the greatest number of satisfied ones is
preferred.

There are two such decision rules respectively called “Bivariate Levelwise Tallying” and (univariate)
“Levelwise Tallying” [7], according to whether positive and negative arguments are treated separately
or not.

For any importance level λ ∈ L, let Fλ = {i ∈ F, πi = λ} be the λ-section of f , the set of relevant
criteria of strength λ in f . Let F+

λ = {i ∈ Fλ : f+i = 1} (resp., F−
λ = {i ∈ Fλ : f−i = 1}) be

its positive (resp., negative) λ-section. Let δ(f, g) be the maximal level of importance where either the
positive or the negative λ-sections of f and g differ, namely:

δ(f, g) = max{λ : |F+
λ | ̸= |G+

λ | or |F−
λ | ̸= |G−

λ |}.
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δ(f, g) is called the decisive level pertaining to (f, g). The Bivariate Levelwise Tallying preference rule
reads:

f ⪰BL g ⇐⇒ |F+
δ(f,g)| ≥ |G+

δ(f,g)| and |F−
δ(f,g)| ≤ |G−

δ(f,g)|.

It is easy to show that ⪰BL is reflexive, transitive, refines the bipolar Pareto ordering but is not
complete. Indeed, ⪰BL concludes to an incomparability if and only if there is a conflict between the
positive view and the negative view at the decisive level. From a descriptive point of view, this range of
incomparability is a good point in favour of ⪰BL.

Now, if one can assume a compensation between positive and negative arguments at each importance
level, one argument canceling another one on the other side, the following refinement of relation ⪰BL,
called Univariate Levelwise Tallying, can be obtained:

f ⪰ULT g ⇐⇒ ∃λ ∈ L \ 0L s. t.
{
∀θ > λ, |A+

θ | − |A−
θ | = |B+

θ | − |B−
θ |

and |F+
λ | − |F−

λ | > |G+
λ | − |G−

λ |
or |A+

θ | − |A−
θ | = |B+

θ | − |B−
θ |, ∀λ ∈ L \ 0L (the latter case is when f ∼ULT g).

Interestingly, relation ⪰ULT is closely related to the decision rule originally proposed two centuries
ago by Benjamin Franklin [65].

The two decision rules proposed in this section obviously generate monotonic bipolar outranking
relations. Each of them refines ⪰BΠ . The most decisive one is ⪰ULT , which is moreover complete and
transitive. This relation is the refinement of ⪰BΠ that is a weak order and that satisfies the principle
of preferential independence without introducing any bias on the importance order elementary criteria
(that is, preserving the restriction of ⪰BΠ to single criteria). See [6] for such an axiomatisation. It turns
out that Levelwise Tallying is the most likely decision rule to be used by people as an empirical study
suggests [7].

5 Qualitative data analysis

As a general family of aggregation functions, it is of interest to identify the family of Sugeno integrals
that are compatible with a dataset made of vectors of criteria values together with the corresponding
global evaluations. When the family is non empty, it can be described by bracketing the data by means
of a lower capacity and an upper capacity. Such a dataset can be also described by means of sets of
selection and deletion rules, which then correspond to a combination of Sugeno utility functionals. In
this section, we briefly discuss nonparametric methods based on Sugeno integral for learning rule-based
models that are widely used in multicriteria decision aid and ordinal classification [79] tasks.

5.1 Approach by bracketing datasets with standard Sugeno integrals

The problem considered here is the elicitation of a family of Sugeno integrals that are compatible with
a dataset. Here, a dataset is a collection of L-valued tuples f = (f1, . . . , fn) associated with a global
rating δ ∈ L.

Definition 6. A pair (f, δ) is compatible with a Sugeno integral Sµ if and only if Sµ(f) = δ.

In the following, we study the constraints induced by a pair (f, δ) on the Sugeno integrals compatible
with it and we fully characterize this family following ideas first given in [95]. For convenience, we
assume that the fi’s are already increasingly ordered, i.e., f1 ≤ . . . ≤ fn. Since

n∧
i=1

fi ≤ Sµ(f1, . . . , fn) ≤
n∨

i=1

fi,
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there exists a Sugeno integral that satisfies Sµ(f) = δ if and only if f1 ≤ δ ≤ fn. We assume here that
this consistency condition holds for the pairs (f, δ) considered. For discussing the equation Sµ(f) = δ,
it is useful to distinguish two cases.

DIF Case : ∀i ∈ C, fi ̸= δ.
Let i be the index such that f1 ≤ . . . ≤ fi−1 < δ < fi ≤ . . . ≤ fn. We can then define two

particular capacities µ̌f,δ,DIF and µ̂f,δ,DIF :

Definition 7.

∀X ∈ 2C , X ̸= ∅, C µ̌f,δ,DIF (X) =

{
δ if {i, . . . , n} ⊆ X
0 otherwise

and

∀X ∈ 2C , X ̸= ∅, C µ̂f,δ,DIF (X) =

{
δ if X ⊆ {i, . . . , n}
1 otherwise

.

It can be shown that :

∀µ s.t. Sµ(f) = δ we have µ̌f,δ,DIF ≤ µ ≤ µ̂f,δ,DIF .

Thus µ̌f,δ,DIF and µ̂f,δ,DIF are the lower and upper bounds of the lattice of capacities which define the
family of Sugeno integrals compatible with the pair (f, δ) in the DIF case.

EQU case : ∃i ∈ C, fi = δ.
Let i and j be the indices such that f1 ≤ . . . ≤ fj−1 < fj = . . . = fi−1 = δ < fi ≤ . . . ≤ fn. We

can then define two particular capacities µ̌f,δ,EQU and µ̂f,δ,EQU :

Definition 8.

∀X ∈ 2C , X ̸= ∅, C µ̌f,δ,EQU (X) =

{
δ if {j, . . . , i− 1, . . . n} ⊆ X
0 otherwise

and

∀X ∈ 2C , X ̸= ∅, C µ̂f,δ,EQU (X) =

{
δ if X ⊆ {i, . . . , n}
1 otherwise

.

It can be shown that :

∀v s.t. Sµ(f) = δ we have µ̌f,δ,EQU ≤ µ ≤ µ̂f,δ,EQU .

Thus µ̌f,δ,EQU and µ̂f,δ,EQU are the lower and the upper bounds of the lattice of capacities which define
the family of Sugeno integrals compatible with the pair (f, δ) in the EQU case.

Consistent family of a Sugeno integral with respect to a dataset A dataset is consistent if there
exists a non empty family of Sugeno integrals that are compatible with each pair (f, δ) in the dataset.
Otherwise, it means that there is no representation of the dataset by a unique family of Sugeno integrals
and that several families thereof are necessary, each covering a distinct subpart of the dataset. Let us
consider a dataset (fi, δi)i∈{1,...,p} that contains p pairs. In order to simplify notations, we denote by µ̌i
the lower bound for (fi, δi) and µ̂i the upper bound associated with (fi, δi). Thus the lower and upper
bounds of the family of compatible Sugeno integrals, if it exists, are respectively

µ̌ =

p∨
i=1

µ̌i and µ̂ =

p∧
i=1

µ̂i.

32



Thus, when a new piece of information (f, δ) is considered, µ̌ and µ̂ are then revised by

µ̌revised = µ̌ ∨ µ̌f,δ and µ̂revised = µ̂ ∧ µ̂f,δ.

These results have been applied to a case study [91] on mental workload data where the global
evaluation rely on six criteria, where several families of Sugeno integrals were necessary for recovering
the whole data set, thus revealing different aggregation attitudes with respect to mental workload. The
families of Sugeno integral were identified thanks to a simulated annealing method [91]. Besides, it has
been shown [89] that the bracketing procedure can be viewed as a graded extension of the version space
approach in machine learning [90].

5.2 Approach by best approximation using Sugeno utility functionals

We consider datasets that can be accurately modeled by a nondecreasing function. Since a SUF uses
utility functions as arguments of the Sugeno integral, it can model rules with different thresholds. We
consider sets of (selection) rules of the form

if f1 ≥ α1 and . . . and fn ≥ αn then y ≥ δ (32)

where (α1, . . . , αn) ∈ Ln. Using results in Subsection 2.4, a SUF induces single-thresholded rules of
the form

if φ1(f1) ≥ δ and . . . and φn(fn) ≥ δ then y ≥ δ

which can be turned into the form (32), if we choose monotone utility functions such that φi(αi) ≥ δ.
Let R be a set of rules of the form (32). There may be several functions that are compatible with R.

We denote by ΦR the smallest function compatible with R, defined by ΦR = maxr∈R Φr such that for
each rule r:

Φr(f) = δr, if ∀i ∈ C, fi ≥ αr
i , and 0 otherwise.

We will say that a function Φ is equivalent to R if Φ = ΦR. It was shown in [19, 11] that:

(i) Any SUF Sµ,φ is equivalent to a rule set.
(ii) Any single rule is equivalent to a SUF.

(iii) Some rule sets are not equivalent to a single SUF.

Any SUF Sφ,µ is equivalent to the rule set∪
I⊆[n]

∪
δ≤µ(I)

{∀i ∈ I, fi ≥ αi ⇒ y ≥ δ}, (33)

where αi = min{λ ∈ Li | φi(λ) ≥ δ}. Note that this set is likely to contain redundant rules.
So each multiple-thresholded rule induces constraints on the utility functions. But the constraints

induced by two or more rules can be inconsistent [19]. In other words, some combinations of rules cannot
be expressed by a single SUF. Nonetheless, the second assertion shows that any rule set is equivalent to
some function MS : Ln → L defined by

MS(f) = max{Sµ,φ(f) | Sµ,φ ∈ S},

where S is a set of SUFs. We call such a function a max-SUF.
In [11] a method of translation of a rule set R into a SUF is provided:

(i) Initialize µ and φ = (φ1, . . . , φn) with minimal values.
(ii) For each rule f1 ≥ α1, . . . , fn ≥ αn ⇒ y ≥ δ in R:

(a) let A = {i ∈ [n] | αi > 0},
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(b) increase µ(A) up to δ,
(c) for each i ∈ A, increase φi(αi) up to δ

After these steps we always have Sµ,φ ≥ ΦR. When Sµ,φ > ΦR, no SUF is equivalent to R.
In some cases, it is not problematic that Sµ,φ > ΦR. For example, if ΦR is a model of a dataset D,

we may want to find an SUF that best fits D. Obtaining Sµ,φ = ΦR is not always possible since SUFs are
not expressive enough. However, equality can be always achieved using a max-SUF [11]. The method
presented in the next section relies on this fact.

Learning rules from empirical data Now there is no reason to think that a max-SUFis more inter-
pretable than its equivalent rule set. Thus, an interesting question is whether SUFs can serve as an
intermediary model that helps guiding the learning process of a rule based model. Indeed, in [11], such
a learning algorithm is proposed. Let D be a dataset. The following three steps provide a method for
modeling D by a max-SUF.

1. Selection of an order-preserving subset of data. Two data items (f, δ) and (g, γ) can be anti-
monotonic together, i.e, f ≤ g and γ ≤ δ. We iteratively remove instances from D, starting from those
that are anti-monotonic with the highest number of other instances, until no anti-monotonic pair remains.
We denote by D− the dataset obtained in this way.

2. Modeling D− by a rule setR. InitializeR to ∅. For each instance ((α1, . . . , αn), δ) in D−, search
for A ⊆ [n] with minimal cardinality, such that the rule

∀i ∈ A, fi ≥ αi ⇒ y ≥ δ, (34)

is not contradicted by any instance in D−. Add the rule (34) to R. At the end of this step, the class of
each instance in D− is exactly predicted by ΦR.

3. Translation of R into a max-SUF. See Algorithm 1. The obtained max-SUF is not necessarily
equivalent to R, but it fits D− precisely.

Algorithm 1: Makes a partition P of R such that the max-SUF MS verifies MS(f) = y for each
instance (f, y).
1 P← {}
2 for each r ∈ R do
3 affected← false
4 for each P ∈ P do
5 translate P into a SUF Sµ,φ

6 if Sµ,φ(f) ≤ y for all instance (f, y) in D− then
7 add r to P
8 affected← true
9 break loop

10 if affected = false then
11 add {r} to P

Note that the max-SUF given by this method can be translated back into a rule set, which constitutes
an equivalent model and is easier to interpret.

Empirical study The VC-DomLEM algorithm [4] is another method that can learn such a set of rules,
which yields a good accuracy compared to other interpretable models. This method requires the tuning
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of hyperparameters, contrary to ours. Our method is competitive with VC-DomLEM in terms of accu-
racy. Moreover, this method raised new questions about the relevance of capacities (i.e., monotonically
increasing set functions) in data-modeling.

The method in [4] was compared to VC-DomLEM on the 12 datasets. In order to get an idea of the
importance of Step 3 in our method, we separately evaluated the rule set given by steps 1 and 2 alone,
and the max-SUF given by steps 1,2, and 3. We see that Step 3 does not increase the accuracy on average.

1 2 3 4 5 6 7 8 9 10 11 12 avg.
Steps 1,2. 74.4 95.8 97.7 93.6 91.7 65.6 83.2 27 67 63.6 58.2 51.4 72.4
Steps 1,2,3. 76 95.3 97.2 89.3 92.4 65.2 84.5 26.4 69.4 63 56.7 53.2 72.4
VC-DomLEM 76.7 96.3 97.1 91.7 95.4 67.5 87.7 26.9 66.7 55.6 56.4 54.6 72.7

Table 1: Accuracy obtained with each method on each dataset. Datasets are numbered as in [4]

Therefore, the good results of this method are not due to the use of SUFs, but to the 2 first steps.
Now, the length of a rule is the number of attributes i where αi > 0 (since the condition αi ≥ 0 is

trivial). Shorter rules are easier to interpret and constitute more concise models. In [11] it was presented
an empirical study of rule length distributions obtained after steps 1, 2, and 3.

Moreover, it was compared to an analogous method using the dual max-SUFs. The dual of max-
SUFs are the min-SUFs that correspond to sets of (rejection) rules of the form

if f1 ≤ α1 and . . . and fn ≤ αn then y ≤ δ.

When learning min-SUFs by a dual method, the rule-length distribution differs from that obtained
by learning max-SUFs. Long rules of one type sometimes go along with short rules of the other type.
This empirical result hints at a combined method for rule length improvement.

6 Conclusion

This chapter has tried to advocate the merits of Sugeno integral as a tool for the qualitative evaluation
of alternatives when utility values are not supposed to be numerical. After recalling the algebraic nature
of Sugeno integral and its close links to the notion of median, recent developments of the approach,
overcoming some of its limitations, have been surveyed: namely the enhancement of its expressiveness
for the pairwise comparison of alternatives via lexicographic refinements, the use of utility functions
when several attribute scales need to be reconciled, and the extension of the role of attribute weights in
the aggregation process. The question of borrowing concepts from cumulative prospect theory for the
distinct treatment of pros and cons in Sugeno integral has been also discussed.

Finally, methods for representing a qualitative dataset by means of one or several Sugeno integrals
have been outlined, questioning the possibility of learning them from data. These results provide an
extended range of tools for processing qualitative preference data in a non-trivial way, thus obviating
the need to use numerical scales for attributes that are not easily and meaningfully measured. Besides,
the close connection between Sugeno integral and fuzzy decision rules suggest a way to extract meaning
from data. However, the bracketting method may yield imprecise results, the SUFs are not expressive
enough, and the max-SUFs may be complex. So, the quest for concise and faithful models devoted to
qualitative data looks challenging.

References
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Paris I Sorbonne (2002)
95. Rico, A., Grabisch, M., Labreuche, C., Chateauneuf, A.: Preference modeling on totally ordered sets by the Sugeno

integral. Discrete Applied Mathematics, 147: 113–124 (2005)
96. Roy B.: Multicriteria Methodology for Decision Aiding. Nonconvex Optimization and its Applications, vol. 12. Kluwer

Academic Publishers, Dordrecht (1996)
97. Schmeidler D.: Cores of exact games. J. of Math. Anal. and Appl., 40(1): 214–225 (1972)
98. Shilkret N.: Maxitive measure and integration. Indag. Math., 33: 109–116 (1971)
99. Slovic P., Finucane M., Peters E., MacGregor D.G.: Rational actors or rational fools? implications of the affect heuristic

for behavioral economics. The J. of Socio-Economics, 31: 329–342 (2002)

38



100. Snow P.: Diverse confidence levels in a probabilistic semantics for conditional logics. Artificial Intelligence, 113(1-2):
269–279 (1999)

101. Sugeno M.: Theory of Fuzzy Integrals and its Applications. PhD Thesis, Tokyo Institute of Technology (1974)
102. Sugeno M.: Fuzzy measures and fuzzy integrals: A survey. In: M. M. Gupta, et al., eds.Fuzzy Automata and Decision

Processes, North-Holland, 89–102 (1977)
103. Tversky A., Kahneman D.: Advances in prospect theory: Cumulative representation of uncertainty. J. of Risk and Uncer-

tainty, 5: 297–323 (1992)
104. Weng P.: An axiomatic approach in qualitative decision theory with binary possibilistic utility. In Proc. of the 17th

European Conference on Artificial Intelligence (ECAI 2006), Riva del Garda, Italy, 467–471. IOS Press (2006)
105. Zadeh L. A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1: 3–28 (1978)

39


