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Chapter 3

Bibliometric Delineation of
Scientific Fields – April 27, 2018

Michel Zitt, Alain Lelu, Martine Cadot, Guillaume Cabanac

Abstract. Delineation of scientific domains (fields, areas of science) is
a prior task in bibliometric studies at the meso-level, far from straight-
forward in domains with high multidisciplinarity, variety and instabil-
ity. The Context section shows the connection of delineation problem to
the question of disciplines vs. invisible colleges, through three combin-
able models: ready-made classifications of science, classical information
retrieval searches, mapping and clustering. They differ in the role and
modalities of supervision. The Tools section sketches various bibliomet-
ric techniques on the background of information retrieval, data analysis,
network theory, showing both their power and their limitations in delin-
eation processes. The role and modalities of supervision are emphasized.
The section Multiple Networks and Hybridization addresses the compar-
ison and combination of bibliometric networks (actors, texts, citations)
and the various ways of hybridization. In the concluding section, typical
protocols and further questions are proposed.

3.1 Introduction

Collecting literature that is both relevant and specific to a domain is a prelim-
inary step of many scientometric studies: description of strategic fields such as
nanosciences, genomics and proteomics, environmental sciences; research mon-
itoring and international benchmarks; science communities analyses. Although
our focus here is on the intermediate levels, informally described in such terms
as areas, specialties, subfields, fields, sub-disciplines. . . this subject is connected
to general science classification and, at the other end of the range, to narrow
topic search.

In Sect. 3.2 “Context” we place delineation at the crossroad of two concepts:
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2 CHAPTER 3. DELINEATION OF SCIENTIFIC FIELDS

the first one is “disciplinarity” (what is a scientific discipline?), which crystal-
lizes various dimensions of scientific activity in epistemology and sociology. The
second one is “invisible colleges” in resonance with the core of bibliometrics, the
study of networks created explicitly or implicitly by publishing actors. From
this point of view, domains of science can be viewed as generalized form of
invisible colleges, sometimes in the form of relatively dense and segregated ar-
eas — at some scale. In other cases however, the structure is less clear and
bounded, with high levels of both internal diversity and external connections
and overlaps. Given a target domain, its expected diversity, inter-disciplinarity
and instability are challenging issues. We outline the main approaches to de-
lineation: external formalized resources, such as science classifications; ad hoc
Information Retrieval (IR) search; network exploration resources (clustering-
mapping).

Sect. 3.3 “Tools” is devoted to the main approaches in domain delineation,
IR search and science clustering-mapping, when off the shelf classification are
not sufficient. Both take root in the information networks of science, but start
from different vantage points, with some simplification: ex ante heavy supervi-
sion for IR search, typically with bottom-up ad hoc queries; ex-post supervision
for bibliometric mapping, with top-down pruning. In difficult cases, these ap-
proaches appear complementary, often within multistep protocols. As a result
of the complex structure and massive overlaps of aspects of science, of the mul-
tiple bibliometric networks involved, of the multiple points of view, the frontiers
are far from unique at a given scale of observation. The experts’ supervision
process is a key element. Its organization depends on the studies context and
demand, to reach decision through confrontation and negotiation, especially in
high stakes contexts. Beforehand, we shall briefly address the toolbox of data
analysis methods for clustering- mapping purposes.

Sect. 3.4 “Multiple Networks and Hybridization” zooms in on the multi-
network approach for delineation tasks, stemming from pragmatic practices of
information retrieval and bibliometrics. The main networks are actor’s graphs
and other relations connected with invisible colleges based on documents and
their main attributes, texts and citations. Other scientometric networks (teach-
ing, funding, science social networks, etc.) offer potential resources. The hy-
bridization covers a wide scope of forms. There is a strong indication that multi-
network methods improve the IR performance and offer a richer substance to
experts/users discussions.

3.2 Context

3.2.1 Background: Disciplinarity and Invisible Colleges

Generally speaking there is no ground truth basis for defining scientific do-
mains. Given a target domain, assigned by sponsors in broad and sometimes
fuzzy terms, delineation is the first stage of a bibliometric study. It is tanta-
mount to a rule of decision involving sponsors/stakeholders, scientists/experts
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and bibliometricians on extraction of the relevant literature. Delineation also
matters as research communities are an object of science sociology as well as a
playground for network theoreticians.

The delineation of scientific domains should be understood in the context of
the structure of science and scientific communities, especially through the game
between diversity, source of speciation, and interdisciplinarity drive towards re-
unification. Disciplinarity and “invisible” colleges are two concepts from the
sociology of science which symbolise two kinds of communities, the first one
more formal and institutional, the second one constructed on informal link-
ages made visible by bibliometric analysis of science networks. The tradition of
epistemology has contributed to highlight the specificity of science by contrast
to other conceptions of knowledge. Auguste Comte proposed the first modern
classification of science and at the same time condemned the drift of specializa-
tion [1], considered a threat to a global understanding of positive science. In
reaction both to epistemology and normative Mertonian tradition [2, 3], Kuhn
emphasized the role of central paradigms in disciplines at some point of their
evolution [4]. The post-Kuhnian social constructivism proceeded along two lines
—at times conflicting [5] — of relativist thinking: the “strong programme” (see
Barnes et al. [6]) and the no less radical Actor-Network Theory (ANT). The
first one was initiated by Barnes and Bloor [7] and flourished in the science
studies movement [8, 9]. The ANT also borrowed from Serres (“translation’
concept [10]) and from the post-structuralist French Theory (Foucault, Derrida,
Bourdieu, Baudrillard), see [11, 12, 13]. These schools of thought emphasize
disciplinarity rather than unity. Lenoir [14] notes that “A major consequence
of [social constructivism] has been to foreground the heterogeneity of science.”
Disciplines are “crucial sites where the skills [originating in labs] are assembled”
and “political institutions that demarcate areas of academic territory, allocate
priviledges and responsibilities of expertise, and structure claims on resources”
(pp. 71–72, 82). Bourdieu stressed the importance of personal relationship and
“shared habitus.” Disciplines exhibit both a strong intellectual structure and a
strong organization. The institutional framework, with, in most countries, an
integration of research and higher education systems, ensures evaluation and
career management. Some communities coin their own jargon, amongst signs of
differentiation, and norms and patterns. Potentially, all dimensions of research
activity (paradigms and theories, classes of problems, methodology and tools,
shared vocabulary, corroboration protocols, construction of scientific facts and
interpretation) appear as discipline-informed, with particular tensions between
superdisciplines, natural sciences and social sciences & humanities. Scientists
discuss, within their own disciplines, the subfield breakdown and the structur-
ing role of particular dimensions, for example research objects in microbiology,
versus integration drive [15, 16].

The endless process of specialization and speciation in science, erecting bar-
riers to the mutual understanding of scientists, is partly counteracted by in-
terdisciplinary linkages which maintain and create solidarity between neighbor
or remote areas of research. Piaget [17] coined the term trans-disciplinarity as
the new paradigm re-engaging with unity of science. A few rearrangements of
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large magnitude, such as the movement of convergence between nanosciences,
biomedicine, information and cognitive sciences and technologies (NBIC, con-
cept coined by NSF in 2002), tend to reunite distant areas or at least create
active zones of overlap.

In contrast with disciplinarity, the concept of “invisible college” in its modern
acceptation, popularized by Price & deBeaver [18] and Crane [19], chiefly refers
to informal communication networks, personal relationship and possibly inter-
disciplinary scope. These direct linkages tend to limit the size of the colleges,
although no precise limit can be given. Science studies devote a large litera-
ture to those informal groups, which exemplify how actors’ networks operate at
various levels of science [20, 21].

Although more formal expressions emerge from the self-organization of those
micro-societies (workshops, conferences, journals), the invisible colleges do not
claim the relative stability and the social organization of disciplines. The various
communication phenomena of the colleges are revealed by sociological studies
or, more superficially but systematically, by analysis of bibliometric networks
such as co-authorship, texts relations and citations. The “bibliometric hypoth-
esis” assumes that the latter process mirrors essential aspects of science: the
traceable publication activity, in a broad sense, expresses the collective behav-
ior of scientific communities in most relevant aspects (contents and certification,
production and structure of knowledge, diffusion and reward, cooperation and
self-organization). It does not follow that bibliometrics can easily operationalize
all hypotheses [22]. Affiliations can, in the background, connect to the layers of
academic institutions or corporate entities. Mentions to funding bodies are in-
creasingly required in articles reporting grant-supported works. These relations,
however, as well as personal interactions, generally require extra-bibliometric in-
formation. Variants of the invisible colleges in sociology of science are known
as epistemic communities, involving scientists and experts with shared convic-
tions and norms [8, 23] and community of practice [24]. The mix of behavior,
stakes and power games, in the interaction of virtual colleges and institutions,
remains an appealing question. A revival of the interest for delineation stud-
ies has been observed at the crossroads of sociology of science and analyses of
networks [25, 26].

Disciplinary views, as well as colleges revealed by bibliometrics, lead to dif-
ferent partitions of literature, depending on the vantage points. In particular,
bibliometricians can be confronted with conflictual situations when revealed
networks and institutional normative perceptions and claims as to the disci-
plinary structure and boundaries diverge. The exercise of delineation generally
consists in reaching some form of consensus, or at least a few consensual al-
ternatives amongst sponsors, stakeholders, experts and scientists. The toolbox
contains information retrieval, data analysis and mapping. Bibliometricians act
as organisers of experts’ supervision, suppliers of quantitative information and
facilitators of negotiations (Fig. 3.1).
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ACTORS’	MODELS	OF	THE	DOMAIN		
sponsors/	stakeholders/scien@sts/	experts...	

DELINEATION	SOLUTIONS	ON	BIB.	NETWORKS	
ready-made/	taylor-made	

EX	ANTE	SUPERVISION	
IR	SEARCH	

EX	POST	SUPERVISION	
EXTRACTION		ON	MAPS	

DELINEATION	WAYS	

N
N	

	N	 BACKGROUND	RELATIONS:		combina@on/nego@a@on	

feedback	

Figure 3.1: Actors’ models / bibliometric models. This scheme evokes the in-
teraction between actors’ mental or social models of science, disciplines and
domains on one hand models from data analyses (clustering-mapping) on bib-
liometric datasources, based on different methods and networks on the other.
The two sides are engaged separately or together in negotiated combinations
to reach (almost) consensual views. Two ways of domain delineation are sin-
gled out, ad hoc IR search and extraction from maps, with different degrees
and moments of supervision. A third way, allowing direct IR search, supposes
permanent classification resources.
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3.2.2 Operationalization: Three Models of Delineation

In their review of (inter)disciplinarity issues, Sugimoto & Weingart [27] stress
that the rich conceptualization of disciplinarity, quite elaborate in sociology
and iconic of science diversity, does not imply clear operationalization solu-
tions for defining fields. Scientists’ claims and co-optation (“Mathematicians
are people who make theorems” with several formulations, including a humoris-
tic one by Alfréd Rényi), university organizations and traditions, epistemology,
sociology, bibliometrics offer many entry points. The stakes associated to disci-
plinary interests and funding, for both scientists and policy makers may interfere
with definitions. Introducing the national dimension, for example, shows that
the coverage of disciplines is perceived differently in national research systems.
Bibliometrics cannot capture the deep socio-cognitive identity of disciplines but
contributes to enlighten some of the facets that collective scientists’ behavior
let appear. The difficulty extends to multidisciplinarity measurement.

In practice, the description of disciplines available in scientific information
systems takes the form of classification schemes at some granularity (articles,
journals) from a few sources: higher education or research organizations for
management and evaluation needs (international bodies or national institutions,
for example CNRS in France); schemes associated to databases from academic
societies, generally thematic; and/or from publishers or related corporations
(Elsevier, ISI/Thomson Reuters/Clarivate Analytics) dedicated to scientific in-
formation retrieval.

We term “model A” the principle of these institutional science classifica-
tions, which do not chiefly proceed from bibliometrics but from the interaction
between scientists and librarians. Subcategories and derived sets offer ready-
made delineation solutions. The effect of methodological options, the social
construction of disciplines by institutions or scientific societies, with struggles
for power and games of interests are unlikely to yield convergence: the various
classifications of science available, not necessarily compatible, should be taken
with caution. Depending on the update system, they also tend to give a “cold”
image of science. Often based on non-overlapping schemes, they tend to handle
multidisciplinarity phenomena poorly. Resources associated with classifications
in S&T databases which often include various nomenclatures (species, objects)
are a distinct advantage. With its limitations this model nevertheless offers
a rich substance to bibliometric studies. Since the development of evaluative
scientometrics in the 70s, in the wake of Garfield and Narin’s works, categories
are used as bases for normalization of bibliometric measures, especially cita-
tion indicators, but classification-free alternatives exist (see Section 3.3.2). The
rigidity of classifications has a advantage, making a virtue out of a necessity, the
easy measure of knowledge exchanges between categories over time. Techniques
of co-classification [28, 29], co-index or co-word methods (see below) make it
possible to transcend the rigidity of the classification scheme.

The concept of virtual college, originally thought as micro or meso-scale
communities with informal contours, exchanging in various ways, can be gen-
eralized to communities in science networks at any scale. Since the 80s, this
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is implicit in most bibliometric studies [30]. Global models of science, either
small worlds or self-similar fractal models, are consistent with this perspective.
We termed here “model C” this scheme which is the very realm of bibliomet-
rics. Formal and institutional aspects are partly visible through bibliometric
networks but need other “scientometric” information on institutional structure
of science systems. Bibliometrics and also scientometrics are blind to other net-
works/relations such as interpersonal networks and to the complete picture of
science funding and science society relations. It follows that the delineation of
fields in model A, which accounts for complex mixes non totally accessible to
bibliometric networks, cannot be retrieved by “model C” approaches. The other
way round, model C makes visible implicit structures ignored by the panel of
actors involved in model A classification design.

For large academic disciplines, model C merely proposes high level group-
ings which might emulate the categories “disciplines” from model A and share
the same label, however with a quite coarse correspondence. In the practice of
model C, large groups receive a sort of “discipline” label through expert super-
vision. Neither the bibliometric approach nor the model A have the property of
uniqueness. Various tests were conducted by external bibliometricians on SCI-
WoS (for Science Citation Index of the Web of Science) subject categories, and
the agreement is not, usually, that good (e.g., [31]) and the existing ready-made
classifications cannot pretend to the status of ground truth or gold standard
for domain delineation. Depending on the organization, the clustering-mapping
operations often fulfill two needs in bibliometric studies, first helping domain
delineation, secondly identifying subdomains/topics within the target. In the
absence of ground truth, the challenge of model C is to find trade-offs for reflect-
ing a fractal reality quite difficult to break down, since boundaries are hardly
natural except for configurations with clear local minima. They are then subject
to optimization with partial information and negotiations [32, 33].

“Model B” based on IR search, borrows from both A and C. In model A,
the operationalization of discipline definition and classification relied on heavily
supervised schemes, aiming chiefly at information retrieval. Model B shares the
same ground, with ad hoc search strategy established by bibliometricians and
experts for the needs of the study. Ad hoc search is sometimes necessary in
order to go beyond the synthetic views provided by clustering and mapping,
and to address analytical questions from users (in terms of theory, methods,
objects, interpretation). The default granularity is the document level.

The three models can incorporate a semantic folder. Some indexing and
classifications systems provide elaborate structures of indexes and keywords:
thesaurus and ontologies (see section 3.2.4). Model B depends on expert’s com-
petence and resources of queried databases to coin semantically robust queries.
Model C can treat metadata of controlled language, indexes of any kind, as well
as natural language texts, and reciprocally shed light, through data/queries
treatment, on the revealed semantic structures of universes.

Reflexivity is present under many aspects: scientists are involved in heavy
ex ante input in ready-made classifications (model A), in IR ad hoc search
(model B) and in softer ad hoc intervention on bibliometric maps (model C).
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The supervision/expertise question goes beyond within-community reflexivity,
with partners associated to projects: decision-makers and stake-holders and
bibliometricians.

Table 3.1 sums up the main features of the three models. They are just
archetypes: in practice, blending is the rule. If classical disciplinary classifica-
tion schemes belong to the first model, the Science Citation Index and variants
incorporate bibliometric aspects. Purely bibliometric classifications, if main-
tained and widely available, give birth to ready-made solutions. In the back-
ground of the three models, the progressive approximation of bibliometrics and
IR tools, addressed below in the section 3.3 should be kept in mind.

3.2.3 Challenges at the Meso-level

Inter-disciplinarity

Interdisciplinarity is quite an old question, which came to the front of the scene
in the early 1970 with the devoted OECD conference and gave rise to an over-
whelming literature and programs. The distinction between multi-, inter-, trans-
disciplinarity formulates various degrees of integration, see [34, 5]. As Choi and
Park [35] put it: “Multidisciplinarity draws on knowledge from different disci-
plines but stays within their boundaries. Interdisciplinarity analyses, synthesizes
and harmonizes links between disciplines into a coordinated and coherent whole.”
Jahn et al. [36] detail two interpretations of “transdisciplinarity” in literature.
Both make sense in a delineation context. One privileges the science-society
relationship: integration between Social Sciences and Humanities (SSH) and
natural sciences with the participation of extra-scientific actors, as a response
to heavy and controversial socio-scientific problems such as climatic change,
genetically modified organisms, medical ethics, etc. The second interpretation
considers that transdisciplinarity simply pushes the logic of interdisciplinarity
towards integration. Russell et al. [37], cited by Jahn et al. [36], “emphasize that
where interdisciplinarity still relies on disciplinary borders in order to define a
common object of research in “areas of overlap (. . . ) between disciplines”, trans-
disciplinarity truly “transgresses or transcends [them]”.” Klein [38] and Miller
et al. [39] stress the theoretical and problem-solving capability of the transdis-
ciplinary view. Many publications evoke the paradox of multidisciplinarity, a
source of radical discoveries, labouring however to convince evaluators in the sci-
ence reward system. Yegros-Yegros, Rafols & d’Este [40] list a few controversial
studies on the topic, and note a specific difficulty for distal transfers. Solomon,
Carley & Porter [41] recall that the impact of many multidisciplinary journals
is misleading in this respect, since their individual articles are not especially
multidisciplinary.

Bibliometric operationalization has to account with those different multi/
inter/ transdisciplinarity forms. ‘Multidisciplinarity’ involves sustained knowl-
edge exchanges in a roughly stable structure; ‘interdisciplinarity’, with an orga-
nization and systematization nuance, supposes strong exchanges creating some
structural strain, between domains overlap and autonomization of merging frac-
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tions; ‘transdisciplinarity’ paves the way for the autonomy of the overlapping
region, within the strong interpretation involvement of SSH and possibly of
extra-scientific considerations. Clearly model C is apter than A to depict those
forms and their transitions when they occur, rather than waiting for the insti-
tutionalization of the emerging structures.

Interdisciplinarity may be outlined at the individual level by co-publications
of scholars with different educational or publication backgrounds, by measures of
knowledge flows (citations), contents proximity, authors’ co-activity or thematic
mobility — if such data exist [42]. Other sources include joint programs, joint
institutions or labs claiming disciplinary affiliation, generally found in meta-
data. Most disciplinary databases lagged behind the Garfield SCI model as to
the integral mention of all authors’ affiliations on an article. The large scope
of bibliometric measures of multidisciplinarity was reviewed in many articles,
e.g., [27, 43].

In model A the first entry point to multidisciplinary phenomena is the cat-
egory classification schemes, with measures of knowledge exchanges by citation
flows between categories (Pinski & Narin’s 1976 seminal work on journal classifi-
cations [44], Rinia et al. [45]), transposable to textual proximity (on patents [46])
or authors co-activity. Despite the heavy input of experts in science classifica-
tion, the delimitation of particular fields varies across information providers and
none can be held as a gold standard. It finds its limits in the inertia and of-
ten the hard scheme of classes, albeit the derived co-classification and co-index
treatments noticed above relax the constraint and instil some of the bibliometric
potential of Model C.

Model C is more realistic in depicting the combinatory, flexible, multinetwork
relationships in science and the demography of topics. Ignoring disciplinarity as
such, it conveys a broader definition of interdisciplinarity, ranging from close to
distant connexions, the latter loosely interpretable, in the common acceptation,
as interdisciplinary and possibly forerunners of more integrated relations. More
generally, the network perspective of model C builds bridges between networks
formalization and scientific communities life, leaving open the question of how
profoundly the socio-cognitive phenomena are captured. Data analysis methods
such as Correspondence Analysis (CA), Latent Semantic Analysis (LSA), Latent
Dirichlet Allocation (LDA) addressed below, claim light semantic capabilities
at least. Bibliometrics cannot substitute to sociological analysis, which exploits
the same tools but goes further with specific surveys. Similarly, it is dependent
on computational linguistics and semantic analysis for deep investigations of the
knowledge contents. Model C is a potential competitor for offering taxonomies,
with recent advances (see Section 3.2.4). It does not follow that dynamics
captured by this model are easy to handle: for example, flows variations in a
fixed structure (A) read more conveniently than multifaceted structural change
(C).



3.2. CONTEXT 11

Internal Diversity

Diversity and multidisciplinarity are two facets of a coin. Internal diversity in a
delineation process qualifies communities inside the target domain. Fig 3.2B–C
expresses the internal diversity of multidisciplinary domains, already striking
for nanosciences and massive for proteomics (Fig. 3.2).

Internal diversity is treated in quite different ways depending on the model.
In cluster analysis part of Model C, the balance of internal diversity and external
connectivity (“multidisciplinarity” in the looser sense) is part of the mechanism
which directly or indirectly rules the formation of groups, with a wide choice
of protocols. Many solutions of density measurement are available in clustering
or network analysis, with some connection with diversity measures developed
in ecology and economics especially. The synthetic Rao index discussed by
Stirling [49] combines three measures on forms/categories: variety (number of
categories), balance (equality of category populations) and disparity (distance of
categories). Delineation through mapping will use smaller scale clusters rather
than attempting to capture the target as a whole large-scale cluster. There is
no risk of missing large parts of the domain, but the way the different methods
conduct the process raises questions about the homogeneity of clusters obtained
and the loss of weak signals especially in hard clustering (see Section 3.3).

In model B internal diversity, especially when generated by projected mul-
tidisciplinarity, is a threat on recall. Entire subareas may be missed out if the
diversity in supervision (panels of experts) does not match the diversity of the
domain. Unseen parts will alter the results. In contrast, on pre-recognized
areas, model B can be tuned to recover weak signals.

In Model A, the existence of a systemic silence risk particularly depends on
how inter-disciplinary bridges are managed.

Unsettlement

The third challenge of domain delineation lies in the science network dynamics.
Conventional model A classifications hardly follow evolutions and need periodic
adjustments. The convenience of measures within a fixed structure is paid by
structural biases. Bibliometric mapping can translate evolutions in cluster or
factor reconfiguration, but the handling of changes in a robust way remains
delicate (see Section 3.3). Model B pictures networks, but intuitively, a fast
rhythm of reconfiguration in the somewhat chaotic universe of science networks
makes it particularly difficult to settle delineation on firm roots. This casts a
shadow on the time robustness of the solutions reached on one-shot exercises,
but also on the predictive value of extrapolations on longitudinal trends. We go
back later to dynamic studies and semantic characterization (see Sect. 3.3.2).
Emerging domains seldom embody institutional organization but bear biblio-
metric signatures of early activity. The difficulty is to capture weak signals with
a reasonable immediacy. Fast manifestations of preferential attachment around
novel publications, whatever the measure (citations, concept markers or altmet-
ric linkages) are amongst the classical alerts of topic emergence at small scale,
to confirm by later local cluster growth.
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(A)

(B)

(C)

Figure 3.2: Map of Science and Multidisciplinary projections. Panel A is a
world-map type science map from a spherical representation. Panel B and C
show hotpots of activity of nanoscience and proteomics projected in a fraction
of a global science map. It basically crosses the map holistic picture and an
overlay of hits from simple term-queries. Source: Börner et al. [47] – world-type
map; Boyack & Klavans [48] – nanoscience and proteomics.
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Source Coverage

For memory’s sake, the question of data coverage is recurrent in practical bib-
liometrics and is raised at the delineation stage of any study. The literature
on the subject is abundant, conveying different points of view: Hicks [50] first
stressed the limitations of both the reference database SCI and the mapping
algorithm of co-citation for research policy purposes. Moed’s review [51, esp.
section 6.2.2] and Van Raan, Van Leeuwen & Visser [52] showed the differential
coverage of disciplines by journals in SCI-WoS using references to non-source
items. Keeping pace with the growth of visible science is another challenge. The
latest UNESCO Science Report estimates that 7.8 million scientists worldwide
publish 1.3 million publications a year [53]. SCI-WoS producers proposed new
products beginning to fill the gap of books literature, essential to social science
& humanities (SSH) and conference proceedings, essential to computer science
[54]. The coverage of social science and humanities with issues of publication
practices and national biases was addressed in many works, e.g., [55, 56, 57].
This is distinct from the within-discipline approach where an extensive coverage
causes instability of indicators due to tails (language biases, national journals
biases), to document types or adaptation issues [58, 59, 60, 61]. Former studies’
figures are outdated but the basic principles remain.

Large-extension databases with enhanced coverage for IR purposes (modern
WoS, Scopus) might require truncation of tails for comparative international
studies. The PageRank selection tool limits the noise of a massive extension of
sources in Google. However, Google Scholar is not considered a substitute for
bibliographic databases for common librarian tasks, but rather a complement
especially for coverage extension in long tails [62] with variations amongst dis-
ciplines. Same applies to another large bibliographic database: the Microsoft
Academic Graph [63, 64, 65]. The lack of transparency in the inclusion process
and the lack of tools beyond original ranking (sorting, subject filters) are stressed
by Gray et al. [66]. Strong concerns with the quality of bibliographic records
were also reported [67, 68]. The coverage of databases has been recently com-
pared by several authors [69, 70], with an extension to alternative sources such
as altmetrics: Mendeley, Academia.edu, CiteULike, ResearchGate, Wikipedia,
Twitter, etc. [71, 72]. Online personal libraries like Mendeley shed new light on
knowledge flows between disciplines through publication records stored together
[73] — a kind of co-citation data from readers instead of authors. In addition,
these sources, often difficult to qualify properly [74], have been addressed by
altmetric studies [42, 75, 76]. The way scientists and the general public commu-
nicate about science on (social) media is field-dependent and it is not easy for
now to anticipate the complementary role of altmetrics and traditional data in
delineation of fields. Altmetric resources can help exploratory and supervision
tasks.

In emerging and multidisciplinarity topics that typically justify careful delin-
eation, controversies and conflicting interests are frequent and the importance of
transdisciplinary problems makes the issues of sources coverage, experts panel
selection and supervision organization more acute.

http://mendeley.com
http://academia.edu
http://citeulike.org
http://researchgate.com
http://wikipedia.org
http://twitter.com


14 CHAPTER 3. DELINEATION OF SCIENTIFIC FIELDS

3.2.4 Ready-made Classifications

Classifications

Table 3.2 below presents some types of science classification valuable in domain
delineation. These co-existing classification schemes reflect various perspectives,
such as cognitive, administrative, organizational, and qualification-based ratio-
nales according to Daraio and Glänzel [77] who stress the difficulties arising
when trying to harmonize them.

The first named classifications directly stem from professional expertise of
scientists and librarians (pure model A). Some are linked to institutional or
national research systems, mainly oriented towards staff management or evalu-
ation, or international instances (UNESCO). More relevant for bibliometric uses
are classifications part of complete information systems on S&T literature, pro-
ceeding from a few sources: specialized academic societies (CAS, Inspec, Biosis,
MathSciNet, Econlit, etc., which usually extend beyond their core discipline)
and/or scientific publishers, and patent offices for technology. Classifications are
typically hierarchical, complemented by metadata (keywords of various kind, in-
dexes from object nomenclatures: vegetable or chemical species, stellar objects,
and so on).

Bibliometrics then entered the competition for science classifications, in con-
trast with the documentation traditional model involving heavy manpower for
indexing individual documents. The prototype is Garfield’s SCI/WoS based
on the “journal” molecule and a selection tool, the impact factor [81, 82]. The
supervision was still heavy in the elaboration of classification, although the Jour-
nal Citation Report is a powerful auxiliary for actual bibliometric classification
based on journals’ citation exchanges [83]. The model of citation index inspired
Elsevier’s Scopus [84, 85]. The Google Scholar alternative, with a larger scope
of less normalized sources, is the extreme case with very little supervision and
does not include a classification scheme.

Following Narin’s works, several journal classifications were developed (fac-
tor analysis in [86], core-periphery clustering in [87]). Many others were pro-
posed over the past decades, some with overlay facilities for positioning ac-
tivities [88]. Other proposals use prior categories and expert judgments as
seeds [89, 90], with reassignment of individual papers. Boyack and Klavans
whose experience covers mapping and clustering with several granularity levels
(journals, papers) [91] recently reviewed seven journal-level classifications (El-
sevier/Scopus ASJC, UCSD, Science-Metrix, ARC, ECOOM, WoS, NSF, JID)
and ten article-level classification (five from ISI and CRP, four from MapOf-
Science, one from CWTS) [92]. The latter authors privilege the concentration
of references in review articles (> 100 references) considered as “gold standard”
literature, as an accuracy measure (a heavy hypothesis). They conclude in favor
of paper-level against journal-level approaches and in favor of direct citations
(vs. co-citations or bibliographic coupling) for long term smoothed taxonomies,
distinguished from current literature analysis, for which they rank first biblio-
graphic coupling (see below). .
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Table 3.2: Science classifications

1. International classifications, often high level. OECD high-level a.k.a.
Frascati Manual. Fields of Science introduced in 2002. Last revision
in 2007. Correspondence table with WoS [78]. 6 major fields were sub-
categorised.

2. Institutional nomenclature frameworks (ex. CNRS sectionsa). Reflects
the vision of the institution and its involvements.

3. Bibliographic databases from science societies. Involve nomenclatures
and/or classifications, with a disciplinary focus, sometimes very large (ex.
Chemical Abstracts Service CAS). Typically based on classical documen-
tation system, with heavy expert input. Another example of classification
in Computer Science: Association of Computer Machinery Classificationb

1964-2012.

4. Alternative “ISI model” ISI/Thomson/Thomson-Reuters/Clarivate; Sco-
pus/Scimago Journal Rankingsc (SJR) as “a publicly available portal that
includes the journal and country indicators developed from the informa-
tion contained in the Scopus database.” Firstly used the editorial entity
“journal” as the basic molecule, and impact as a principle of selection
(see historical account by Garfield [79]). Extensions at a more detailed
level. The balance expertise/bibliometrics to design subject categories is
unclear (see WoS notices on the topic and [80, p. 1113]). Gives a one- or
multi-level hierarchy of groups. The database offers both non-overlapping
schemes (Essential indicators) and overlapping schemes (SCI-WoS).

5. Bibliometric mapping classifications, either at the journal or the document
level: taylor-made maps potentially usable as permanent resources for
public purposes.

a http://www.cnrs.fr/comitenational/english/section_acc.htm
b http://www.acm.org/about/class
c http://www.scimagojr.com/aboutus.php

http://www.cnrs.fr/comitenational/english/section_acc.htm
http://www.acm.org/about/class
http://www.scimagojr.com/aboutus.php
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Those developments mark a new deal in the competition between institu-
tional classification and bibliometric approaches for long-term classifications of
science. It is not clear, however, whether the variety of classifications from
bibliometric research, not always publicly available, can supersede the quasi-
standards of SCI type for current use in bibliometric studies. High-quality
delineation of fields cannot solely rely on journal-level granularity, and this is
still more conspicuous for emerging and complex domains.

Semantic Resources

Science institutions and database producers have a continuous tradition of main-
tenance of linguistic and semantic resources, in relation with document indexing.
The best known is probably the MESH (National Library of Medicine) used in
Medline/PubMed. INSPEC, CAS and now PLOS offer such resources. Con-
trolled vocabulary and indexes, archetypal tools of traditional IR search were
also the main support of new co-word analysis in the 80s. A revival of controlled
vocabulary and linguistic resources is observed in recent works, associated to
the description of scholarly documents [93] and bibliometric mapping [94]. We
shall return to the role of statistical tools in the shaping of semantic resources.

3.2.5 Conclusion

Science, seen through scientific networks, is highly connected, including through
long-range links reflecting interdisciplinary relations of many kinds. Global
maps of science, with the usual reservation on methods settings and artefacts,
display a kind of continuity of clouds along preferential directions (Fig. 3.2
(C), from [47]). The extension of domains has to be pragmatically limited by
IR trade-off with the help, in absence of ground truth, of more or less heavy
supervision. Three models of delineation appear: ready-made delimitation in
databases, rather limited and rigid as is, but prone to creative diversions from
strict model A (co-classification, etc.); model B, ad hoc search strategies com-
bining several types of information; model C, by extraction of the field from a
more extended map, regional or global.

Networks of science may locally show cases of domains ideal for trivial delin-
eation: a perfect correspondence between the target and ready-made categories,
or insulated continents surrounded by sea. Such domains will not require so-
phisticated delineation. This is the exception not the rule.

Areas such such as environmental studies nanosciences, biomedicine, in-
formation and cognitive sciences and technologies (converging NBIC, concept
coined by NSF in 2002) exhibit both internal diversity and strong multidisci-
plinary connections. Commissioned studies often target emerging and/or high-
tech strategic domains which witness “science in action” prone to socio-scientific
controversies à la Latour. These areas combine high levels of instability and
interdisciplinarity. As to transdisciplinarity, the question arises of whether to
include SSH and alternative sources in datasources and panels experts.
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3.3 Tools: IR and Bibliometrics
This section focuses on some technical approaches of the delineation problem:
information retrieval and bibliometric mapping. They share the same basic
objects and networks, chiefly actors and affiliations, publication supports, tex-
tual elements and citation relations. Although general principles of bibliomet-
ric relations studies are quite established, new techniques from data analysis
and network analysis, including fast graph clustering, open new avenues for
achieving delineation tasks on big data at the fine-grain level. The quality of
results remains an open issue. Domain delineation confronts or combines the
three approaches previously stated: ready-made categories (model A) are sel-
dom sufficient; we shall envision ad hoc IR Search (model B) with an occasional
complement of ready-made categories; and on bibliometric processes of map-
ping/clustering along model C.

3.3.1 IR Term Search
The question of delineation spontaneously calls for a response in terms of infor-
mation retrieval search. The only particularity is the scale of the search or more
exactly, as mentioned before, the diversity expected in large domains, which is
particularly demanding for the “a priori” framework of information search. The
verbal description of the domain requires, beforehand, an intellectual model of
the area. In addition to the methodological background brought by IR models,
a broad range of search techniques address delineation issues:

• Ready-made solutions in the most favourable cases, with previously em-
bodied expertise, sketched above.

• Search strategies of various levels of complexity, also depending on the
type of data, relying on expert’s sayings.

• Multistep protocols: query expansion, combination with bibliometric map-
ping.

IR models are outside the scope of this chapter. In the tools section below,
we recall some of the techniques shared by IR and bibliometrics, especially the
vector-space derived models.

IR tradeoff at the meso-level

The recall-precision trade-off is particularly difficult to reach at the meso-level
of domains exhibiting high diversity. Generic terms (say the “nano” prefix if we
wish to target nanosciences and technology) present an obvious risk on preci-
sion. A collection of narrower queries (such as “self-assembly,” “quantum dots,”
etc.) is expected to achieve much better precision. In the simpler Boolean
model, this will privilege the Union operator of subareas descriptors (examples
on nanoscience [33, 95, 96]). However, nothing guarantees a goodness of cover-
age of the whole area by this bottom-up process. An a priori supervision of the
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process by a panel of experts is required, but the experts’ specialization bias,
especially in diverse and controversial areas, generates a risk of silence. Similar
risks are met in the selection of training sets in learning processes. Another
shortcoming is the time-consuming nature of supervision, again worsened by
the diversity and multi-disciplinarity of the domain. A light mapping stage be-
forehand may reduce the risk of missing subareas. As mentioned above, focused
IR searches are, in contrast, able to retrieve weak signals lost in hard clustering.

Poly-representation and Pragmatism

Scientific texts contain rich information, most of it made searchable in the digital
era. Pragmatically, all searchable parts of a bibliographic record, data or meta-
data are candidates for delineating domains: words n-grams in titles, abstracts
and full texts; authors, affiliations, date, journal or book, citations, acknowl-
edgements, transformed data (classification codes, index, controlled vocabulary,
related papers. . . ) depending on the database. These various elements exhibit
quite different properties. In theoretical terms, the variety of networks associ-
ated to these elements are one aspect of the “poly-representation” of scientific
literature [97]. We go back to this question later (Sect. 3.3.2). A specific ad-
vantage of lexical search is the easy understanding of queries — whereas other
elements (aggregated elements such as journals; citations) are more indirect.
However, the ambiguity of natural language reduces this advantage.

Bibliometric literature is packed with examples of pragmatic delineation of
domains based on IR search. By and large, apart from ready-made schemes
when available (indexes, classification codes), a typical exploration combines a
search for specialized journals if any, and a lexical search in complement. At
times, an author-affiliation entry is used, especially in connection with cita-
tion data. Bradford and Lotka ranked lists are therefore good auxiliaries, with
evident precautions on journals or authors’ degree of specialization.

Granularity

We noted above that some ready-made classifications such as SCI scheme (jour-
nals or journal issues) are essentially based on full journals — or journal sections.
These ready-made categories very seldom fit the needs of targeted studies. In-
stead, ad-hoc groupings of selected journals relatively easy to set up with the
help of experts, are a convenient starting base within a Bradfordian logic. The
journal level presents obvious advantages. Journals exhibit a relative stability
in the medium term; they are institutionalized centres of power through gate-
keeping, and a (controversial) evaluation entity in the impact factor tradition.

However, the journal level is problematic for delineation studies. Journals
whose specialization is such that they indisputably belong to the target do-
main, can be taken as a whole, but of course target domain literature are rarely
covered by specialized journals only, and investigations should be extended to
moderately or heavily multidisciplinary sources. Conditions of diversity and
multi-disciplinarity — which prevail in the targets of studies where elaborate



3.3. TOOLS: IR AND BIBLIOMETRICS 19

delineation is worthwhile — hinders efficiency of global Bradford/Lotka based
selections, with problems of normalization (see also [98]). We go back to these
issues in the sub-section devoted to clustering and mapping.

To conclude on this part, the IR resources in scientific texts, data and meta-
data, suggest a poly-representation of scientific information (cognitive model [97]),
which is akin to the multi-network representation of the scientific universe. Ing-
wersen & Järvelin [99, p. 19] propose a typology of IR models and the perspective
of the “cognitive actor.” IR protocols generally involve multistep approaches,
with various core-periphery schemes (see below). In conventional search, heavy
ex-ante supervision is needed for covering the variety of domains, ideally with
good analytic/semantic capability. In the absence of gold standard, proxy mea-
sures of relevance are needed.

Multistep Process

Multistep processes, possibly associated with combination of various bibliomet-
ric attributes, are run-of-the-mill procedures (see for example [32]).

Core-periphery rationale is common, in accordance with the selective power
of concentration laws, both in IR and bibliometrics (journal cores in [100], co-
citation cores in [101], H-core in [102], emerging topics in [103]). For example,
working on highly cited objects — authors, journals or articles — gives a set
of reasonable size, amenable to further expansion with enhanced recall. Cores
inspired from Price law on Lotka distributions or from H-index application are
helpful. Proxies such as seeds obtained from initial high-precision search stages
can do as well. The core or seed expansion process is global or cluster-based.
The risk of core-periphery schemes, by and large favourable to robustness, is
to miss lateral or emerging signals. This may need some input of dynamic
characterization of hotspots at fine granularity level.

A parent method is bibliometric expansion on citations, which also uses in-
formation from a first run (set of documents retrieved by a search formula or a
prior top cited selection, considered as the core) to enhance the recall through
the citation connections, typically operating at the document level with or with-
out clustering/mapping step. In this line the Lex+Cite approach mentioned in
Section 3 relies on a default global expansion, rather than a cluster-based one,
to limit the risk of an exclusive focus on cluster level signals that would miss
across-network bridges.

Query expansion by adaptive search is in the same line. Interactive re-
trieval with relevance feedback identifies the terms, isolated or associated (co-
occurrences), specifically present in the most relevant documents retrieved ac-
cording to various measures [104, 105, 106]. An efficient but heavy process
consists in submitting the output of a search stage to a data analysis/topic
modeling, able to reconstruct the probable structure likely to have generated
the data. By providing information on the linguistic context — also citation,
authoring context, etc. — they in turn help to improve the search formulas
by a kind of retro-querying. This ranges from simple synonyms detection to
construction of topics, orthogonal or not, suggesting the rephrasing of queries.
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Variants of itemset mining uncovering association rules [107, with earlier fore-
runners] are promising in this respect (see below). Evaluation of output from
unsupervised stages can also call for a manual improvement of queries.

Delineation protocols may also use the seed as a training set for learning
algorithms. A difference is that core-periphery schemes usually rely on the se-
lective power of bibliometric laws, whereas the training set might be extracted
on various sampling methods, provided that the seed does not miss the vari-
ety of the target. As Big Data grows bigger, “semi-supervised” approaches are
gaining popularity in the machine learning community. This recent approach
should prove attractive in the bibliometrics community, as considerable interest
seems raising for linking metadata groups and algorithmically-defined commu-
nities [108].

To conclude on this part, whilst typical IR search relies on an “a priori” un-
derstanding of the field, multistep schemes involve stages of data analyses quite
close to bibliometric mapping practices, the topic of the next subsection. IR
and bibliometrics share roots and features, which soften the differences: adaptive
loops, learning processes, seed-expansion and core-periphery schemes. Biblio-
graphic coupling, at the very origin of bibliometric mapping, came from the IR
community [109] and the “clustering hypothesis” about relevant vs. non relevant
documents [110] voice the common interests of IR and bibliometrics, beyond
the background methodology of information models (Boolean, vector-space or
probabilistic) and general frameworks such as the above-mentioned cognitive
model. The tightening of bibliometrics-IR relations has been echoed in a series
of workshops and in dedicated issues of Scientometrics ([111, 112], see also [113]
for a focus on domain delineation) and in the International Journal on Digital
Libraries [114].

3.3.2 Clustering and Mapping

In contrast with conventional IR search, bibliometric mapping starts at a larger
extension level than the targeted domain. This broad landscape, typically built
by unsupervised methods, is scrutinized by experts to rule out irrelevant areas.
The supervision task is limited to the “post-mapping” stage. This is in principle
less demanding than the a priori conception of a search formulation or of a train-
ing set. The default solution is a zoomable general or regional map of science,
with availability and cost constraints. The alternative is the construction of a
limited overset including almost certainly the anticipated domain, using general
search set for massive recall, an operation much lighter than the set-up of a
precise search formula. In terms of scale, the final result is tantamount to the
outcome of a top-down elimination process, although the selection modalities
are diverse. There is currently a great interest in delineation through mapping.
IR and mapping are complementary in various ways. Firstly, we shortly describe
the data analysis toolbox, before addressing the main bibliometric applications
and a few problematic points.
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Background Toolbox

The data structure of matrices in the standard bibliometric model allows schol-
ars to mobilize the large scope of automatic clustering, factor/postfactor meth-
ods and graph analysis. Classical methods of clustering and factor analysis
keep going in bibliometrics, but in the last decade(s) novel methods came of
age, more computer-efficient and fit for big data, an advantage for mapping
science and delineating large domains. Starting with bibliometric data of the
standard model and some metrics of proximity or distances, clustering and com-
munity detection methods produce groups. Element are mapped using various
dimension reduction algorithms. Factor methods produce groups through clus-
tering applied to factor loadings, with an integrated 2D or 3D display when just
two or three factors are needed in the analysis.

A major driving force of bibliometric methodology is the general network
theory, which took large networks of science, especially collaboration and cita-
tion, as iconic objects [115, 116, 117]. Quite a few mechanisms have proposed
to explain or generate scale-free networks since Price’s cumulative advantage
model for citations [118] in the line of Yule and Simon, and later studied in
new terms (preferential attachment) by Albert & Barabási [119], see also [120].
These models have some common features with the Watts-Strogatz small worlds
model, but also differences empirically testable [121]. Amongst other mecha-
nisms: homophily [122], geographic proximity [123], thematic proximity inferred
from linguistic or citation proximity. Börner et al. reviewed a few issues in sci-
ence dynamics modeling [124]. Of great interest in bibliometrics and especially
delineation, community detection algorithms exhibit a general validity beyond
“real” social networks, and belong to the general toolbox of mathematical clus-
tering and graph theory — applicable to various markers of scientific activity,
document citations, words, altmetric networks, etc. see also [120].

Hundreds of clustering and mapping methods have been designed during a
one-century time lapse of uninterrupted research. This section can only provide
a basic overview of the main method families, in the perspective of domain
delineation. More comprehensive descriptions and references, as well as a basic
benchmark of various methods, applied to a sample of textual data, can be
found in [125].

Clustering Methods. Although hierarchical clustering algorithms sometimes
seem old-fashioned because of their computing complexity, O(n2) in the very
best cases, some of them show good performances for relative small universes.
For large ones, they can be coupled to beforehand data reduction stages, classical
(SAS Fastclus O(n)), pre-clustering algorithms for big data (Canopy clustering
[126]), or sampling methods. All-science bibliometric maps rather use faster
algorithms today, not without limitations however. Discipline-level maps, or
simply internal clustering of the domain set at various stages of delineation may
still rely on the classical techniques.

Hierarchical ascending algorithms are local, deterministic and produce hard
clusters, with a few exceptions (pyramidal classification), properties favorable
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to dynamic representations. They do not constrain the number of clusters and
provide multiscale view through embedded partitions, with some indication of
robustness of forms in scale changes. Most hierarchical descending (divisive)
methods are heavier. Hierarchical methods typically rely on ultrametrics, which
down-sides, see [125].

Amongst popular methods in bibliometrics are ascending methods: single
linkage, average linkage and Ward. Single linkage is relatively fast and exhibits
good mathematical properties in relation to spanning trees but produces disas-
trous chain effects which must be limited in various ways. Ward and especially
group average linkage give better results. Group average linkage advocated for
bibliometric sets by Zitt & Bassecoulard [127] and used by Boyack & Klavans
in various works [128] is slightly biased towards equal variance and is not too
sensitive to outliers. Ward is biased towards equal size with a strong sensitivity
to outliers. Properties and biases were studied especially by Milligan [129, 130]
using Monte Carlo techniques.

Density methods are appealing: deterministic too, local, and as such prone
to dynamic representations of publication or citation flows. DBSCAN [131]
(for Density-Based Spatial Clustering of Applications with Noise) is the most
popular to the point of becoming synonymous with “density clustering.” The
SAS clustering toolbox includes hierarchical methods with prior density estima-
tion, with good properties towards sampling and ability to capture of elongated
or irregular classes. However, this property is disputable in bibliometric uses
(see Sect. 3.3.2, cluster shape/properties of clusters). More recently Density
Peaks [132] implements an original and graphical semi-automatic procedure for
determining the cluster seeds.

Not directly hierarchical is the venerable K-means clustering family, still
popular, thanks both to its excellent time/memory performance and sensitivity
to different cluster densities. A shortcoming of not being deterministic, they
converge to local optima of their objective function, depending on their random
(or supervised) initialization. In comparative analyses, they are not considered
too sensitive to outliers. They optionally allow for soft/fuzzy clusters, and
approximate dynamic data-flow analysis.

Factor methods are basically dimension reduction techniques, indirectly linked
to the partition problem. A quick-and-dirty heuristics for extracting a limited
number k of dominant clusters from k factors consists of assigning each en-
tity to the factor axis which maximizes the mode of its projection, subject to
the constraint of a common factor sign for the majority of entities assigned to
this cluster — which eliminates few of them in practice. For a more rigorous
procedure, see the descending hierarchical clustering method Alceste [133] in
the dataspace of Correspondence Analysis. Factor methods rely on the math-
ematical foundation of Singular Value Decomposition (SVD) of data matrices
for reducing dimensionality and filtering noise. The interesting metrics used by
Correspondence Analysis (CA [134]) explains the attention from many scholars
for half a century for mappings or clusterings limited to a few dominant factor
dimensions. Dropping this limit, i.e. taking into account factor spaces with
hundreds of dimensions [135], latent semantic analysis (LSA [136]) unblocked
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and fostered the integration of semantics in textual applications, in a lighter but
more convenient form than handmade ontologies, costly to edit and update.

Hybrid factor/clustering methods, sometimes coined topic models, result in
representing each cluster as a local, oblique factor, with a progressive scale
from core elements to peripheral ones, opened to fuzzy or overlapping inter-
pretations or extensions. Generally powered by the Expectation Minimization
algorithm (EM), they converge to local optima, too. Non-negative Matrix Fac-
torization (NMF) and Self-Organizing Maps (SOM) are well-known examples.
Axial k-Means (AKM in [137]) has been used in a comparative citations/words
bibliometric context (see Sect. 3.4).

Also known as topic models, the probabilistic models try to lay solid statisti-
cal foundations for their hybrid-looking representation: they explicit generative
probabilistic models for the utterance of topics and terms [138]. Probabilistic
LSA (pLSA in [139]) and Latent Dirichlet Allocation (LDA in [140]) are the
best-known examples, claiming good semantic capabilities. The older Fuzzy
C-means Method (FCM) is akin to this family, which uses the EM scheme for
converging to local optima of their objective function.

The graph clustering family, also known as network analysis, or community
detection methods, does not operate on the raw (entities*descriptors) matrix, as
the previous families do, but on the square (entities*entities) similarity matrix,
whose visual counterpart is a graph. Most of these methods operate directly
on the graph, detecting cliques or relaxed cliques (modal classification), e.g.,
Louvain [141], InfoMap [142] and Smart Local Moving Algorithm (SLMA in
[143]). Some of them operate on the reduced Laplacian space drawn from the
graph (spectral clustering [144]). Quite a few comparative studies are available
[145, 146, 147].

Note on Deep Neural Networks. While neural networks were somewhat
in standby during the 1995–2005 decade, challenged by more manageable math-
ematical methods, several factors like the pressure of big data availability and
progress in hardware (GPU, i.e., Graphics Processing Units) triggered a renewal
under the banners “deep neural nets” and “deep learning.” Allowing learning
by back-propagation of errors in many layers network, they gave form to the
dream of knowledge acquisition by growing levels of abstraction: for images,
extraction of local features; contours, homogeneous areas, shapes; for writ-
ten language: characters n-grams, words, words n-grams, expressions/phrases,
sentences. Typically, they avoid heavy Natural Language Processing (NLP)
pre-processing (parsing, unification, weighting, selection. . . ). These techniques
are already widely used in supervised learning, with spectacular progress in
automatic translation, face recognition, listening/oral comprehension, with im-
portant investment from the largest internet-related companies (e.g., Google,
Apple, Facebook, Amazon), especially. As far as informetrics and IR are con-
cerned, the main domain impacted so far is logically the large scale retrieval
(e.g., see [148] which uses a robust letter-trigram based word-n-gram representa-
tion). There are also some attempts of non-supervised processes for information
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retrieval [149].
A promising technique is the Neural Word Embeddings (NWE). Millions of

texts now available online make it possible to develop vector representations of
words in a semantic space in a more elaborate way than LSA — a method coined
“Neural Word Embeddings.” For example, the Word2Vec algorithm [150] pro-
cesses raw texts so as to list billions of words-in-context occurrences (e.g., word
+ previous word + next word), then factorize [151] the word × context ma-
trix (tens of thousands words, a few hundreds of thousands, or millions unique
contexts) and extract some hundreds or thousands semantic and syntactic di-
mensions. We go back later to NWE semantic capabilities.

Note on the definition of distances. Whether starting from a bi-
nary presence/absence matrix or from occurrence or co-occurrence counts, some
methods embed a specific weighting scheme, i.e. a metrics, for computing dis-
tances, or similarities between items. This is the case of probabilistic mod-
els, Correspondence Analysis, and Axial K-Means. Other methods allow for a
limited and controlled choice, as aggregative hierarchical methods do. In the
case of graph clustering methods, the user may freely choose his preferential
distance definition prior to building the adjacency matrix, which adds an ex-
tra degree of freedom beyond the choice of the degree of non-linearity, via a
threshold value. For word-based matrices, heavier than citation-based ones the
methods of k-means family are also making it possible to choose a weighting
scheme (Salton’s Term Frequency – Inverse Document Frequency (TF·IDF),
Okapi-BestMatch25 [152]).

Whereas factor/SVD methods combine metrics and mapping capability, e.g.,
two-factor planes or 3D displays, at the native granularity level (e.g., docu-
ment × words), other mapping algorithms may operate on rectangular or on
square (distance) matrices of elements or on groups from a clustering stage,
or institutional aggregates (journals). Families of mapping techniques rely on
various principles: equilibrium between antagonistic forces — repulsion between
nodes, attraction alongside edges (e.g., Fruchterman & Reingold algorithm [153],
implemented in Gephi [154], alone or combined with clustering (Sandia Vx-
Ord/DrL/OpenOrd [155], CWTS VOS viewer [143]); optimization of diverse
functions: projection stress minimization in the case of MDS, with Euclidean
distances in the case of metric MDS, a variant of PCA, and other distances or
non-linear functions of these distances in the case of non-metric MDS, one of the
non-linear unfolding techniques; maximizing inertia in the case of Correspon-
dence analysis, minimizing edge-cuts in a 2D projection plane; or maximizing
local edge densities (Pajek [156]).

Itemset Techniques. Itemset techniques are used for describing a data
universe in terms of simple procedures, typically Boolean queries with AND,
OR and NOT operators. This may be used for building a stable procedural
equivalent of data, e.g., for updating a delineation task (like probabilistic fac-
tor analyses). It may also be used for query expansion, as mentioned above in
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Sect. 3.3.1. The problem amounts to duplicate a reference partition in a new
universe: machine learning techniques are basically fit to this problem, and, in
the particular context of textual descriptions, itemset techniques. They are akin
to generate Boolean queries with AND, OR and NOT operators, for extract-
ing approximations of the delineated domain, within precision and recall limits
established in the machine learning phase [107, 157].

A Benchmark. To illustrate the capabilities of these various methods on
an example, in the absence of a bibliometric dataset libelled with indisputable
“ground truth” classes we turned towards a reference dataset popular in the
machine learning community, the Reuters 21 578 ModApté split (The corpus
description is available online at http://www.daviddlewis.com/resources/
testcollections/rcv1/. The website http://www.cad.zju.edu.cn/home/
dengcai/Data/TextData.html has made a pre-processed version of this corpus
available to the public, as a supplementary material to [158]). Main features
are:

• Source: a set of short texts: newswires from press agencies.

• Contents: in its 6-class selection used, the number of texts (∼7,000) and
terms (∼4,000) is sufficient with regards to text statistics.

• Class structure considered as ground truth: built by experts, visually
glaring in Fig. 3.3: two big classes, one very dense, the other not, and four
small classes, two of which are linked together. In this way, two major
problems of real-life datasets are addressed: the imbalance between cluster
sizes, and between cluster densities.

We challenge 17 clustering/mapping methods to retrieve this class structure.
The similarity of their cluster solution to ground truth partition is measured
by two indicators, Adjusted Rand Index (ARI [159]) and Normalized Mutual
Information (NMI [160]). Results are detailed in [125]. Let us summarize them
in a user-oriented view, sorted by number of required parameters: the lesser
the better, ideally, facing a bibliometric dataset without prior knowledge, no
parameter.

• Two methods of network analysis require no internal parameterization,
Louvain and InfoMap. However the similarity matrix generally requires
a threshold setting, here fixed to 0.1 in the cosine inter-text similarity
matrix. Infomap obtains the best result in term of NMI (0.436 value vs.
0.423), the index considered the best match for human comparison criteria.
This value is rather poor, this method does not distinguish Classes 1, 2,
3, 4, and splits Class6.

• Nine methods require one parameter: the three hierarchical clusterings
need a level cut parameter, possibly adjusted for 6 resulting clusters, while
for CA, NMF, AKM, pLSA, LDA and Spectral Clustering, the number of
desired clusters (6) has to be specified. As the latter group converges to

http://www.daviddlewis.com/resources/testcollections/rcv1/
http://www.daviddlewis.com/resources/testcollections/rcv1/
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
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Figure 3.3: Benchmark structure (ground truth). “Spy” plot of the cosines
between document vectors of the top6-classes Reuters ModApté split collection.
The rows and column ordering is that of the six Reuters classes. Black pixels
mean: cosine > 0.5.
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local optima, we kept the best results in term of their own objective func-
tion out of 20 runs. The indisputable winner is Average link clustering,
in both ARI (0.62) and NMI (0.71) terms. The lists of the four following
challengers are contrasted: with regard to ARI, first Mac Quitty hierar-
chical clustering (0.50), then LDA, AKM, CA; with regard to NMI, first
AKM (0.51), then Mac Quitty, CA, LDA. If one optimizes ARI all over 20
runs with prior knowledge of the 6-clusters structure — a heroic hypothe-
sis —, Average link clustering still performs best (with a ten-clusters cut,
ARI = 0.71, NMI = 0.64) while the followers reach, at best, ARI = 0.55
and NMI = 0.55.

• The last group of methods (ICA, DBSCAN, FCM, Affinity Propagation,
SLMA, Density peaks) require at least two parameters, a handicap in
absence of prior knowledge of the corpus structure. SLMA obtains the
best rating (ARI = 0.60, NMI = 0.55).

Our general conclusion is that one must be very cautious regarding domain
delineation resulting from one run of one method. Multiple samplings, if nec-
essary, and level cuts of Average links as well as multiple runs of LDA, AKM
and SLMA may help determine core clusters, and possibly continuous gate-
ways between them. Limitations of this benchmark exercise should be kept in
mind. It would benefit from tests on different reference datasets: any method
can be trapped in particular data structures, and the results cannot be ex-
trapolated without caution. As advocated below, processing multiple sources
(lexical, citations, authors. . . ) and investigating the analogies and differences in
their results will always prove rewarding. A number of in-depth benchmarking
studies are found for hierarchical clustering (Milligan [129, 130] not covering
the last techniques), discussing the generation of test data as well as compar-
isons of algorithms. For community detection, usually taken as a synonym of
graph-based clustering rather than clustering of true social (actors) communi-
ties, [145] ranked first Infomap, then Louvain and Pott’s model approach [161].
Leskovec et al. [146] studied the behavior of algorithms with increasing graph
size. Yang & Leskovek [147] add a reflection on the principles of clustering faced
to institutional classifications.

Bibliometric mapping

Classical Way. Most classical bibliometric mapping, as well as information
retrieval, relies on substantive (“feature”) representations of words, words com-
bination, citation, indexes and so forth. Substantive representation implies leg-
ibility and interpretation by experts or users, and a condition for bibliometri-
cians or sociologists to check and possibly deconstruct the document linkages.
It contrasts with featureless machine representation applicable for example to
distances of texts (see below). In contrast, the substantive approach is deepened
in semantic studies: ontologies and semantic networks suppose more elaborate
investigation of terms relationship. Bibliometric mapping and IR techniques
are both a client of ready-made semantic resources, and providers of studies,
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supported by data analyses, likely to help the construction of thesauri and on-
tologies.

The standard bibliometric model starts from the data structure of articles,
essentially a series of basic article × attributes matrices, one of these reflex-
ive: article × cited references, where references can also stand as attributes.
The derived article × article matrices (e.g., bibliographic coupling, lexical cou-
pling) and elements × elements matrices (e.g., co-word or profiles, co-citation
or profiles) cover a wide range of needs. Clusters of words are candidates for
conceptual representation, concepts which in turn can index the documents.
Likewise, clustering of cited articles reveal intellectual structures and in turn
index the citing universe. Basically, the attributes (words from title, abstract,
full text; keywords list, indexes — other fields like authoring) are processed
in bags of monoterms or multiterms, recognized expressions or word n-grams.
Standard bibliometric treatments go rarely further, semantic studies do, for ex-
ample by using chain modeling of the texts. All these forms allow for control
and interpretation of linguistic information.

Assuming that the final purpose is to classify or delineate literature, the ac-
cess is dual: direct classification of articles after their profile on the structuring
elements (words, cited references), or a detour by the structuring items: word
profile (especially co-word), citation profile (co-citation), index (or class profile)
including co-classification, when applicable. The basics of citation-based map-
ping were established in the 60s and the 70s: bibliographic coupling [109],
chained citations [162], co-citation [101, 163], author co-citation [164], co-
classification, etc. The lexical counterpart, with its first technical foundations
in Salton’s pioneer works [165], was reinvested by English and French social con-
structivism in the 80s [166, 167, 168] with a stress on local network measures
quite in line with the development of social network analysis in that period [169].
In bibliometrics, the true metric approach of text-based classification, Benzécri’s
correspondence analysis [134], remained confidential. For convenience reasons,
many large-scale classifications relied on proximity indexes and MDS or hierar-
chical single-linkage (ISI co-citation). We return later to word-citation compar-
ison and combination (Sect. 3.4).

Developments. The principles above, mutatis mutandis, are kept in further
developments of citation mapping: the approach through citation exchanges,
mentioned in Sect. 3.2, assumes predefined entities, journals for example. At
the article level, symmetrical linkages between articles, or between structur-
ing elements, are classical: large-scale co-citation (CiteSpace [170]). Glänzel
& Czerwon [171] advocated bibliographic coupling. As already mentioned, di-
rect citation linkages clustering, first benchmark for co-citation and coupling in
Small’s princeps paper [101], is considered as particularly able to reflect long pe-
riod phenomena [172, 173, 92] but not short-term evolutions. It comes out that
the time range picked and the granularity of groupings desired might suggest
the choice between the three families of citation methods to reflect structure
and changes in science.
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From the theoretical point of view, co-citation (respectively co-word) is se-
mantically superior to coupling, by visualizing the structure of the intellectual
(cognitive) base, but requires a secondary assignment of current citing liter-
ature. Coupling as such, because it by default spares the dual analysis (the
cited structure; the lexical content), is semantically poor but bibliographic cou-
pling handles immediacy better than co-citation does. However, this depends
on the computer constraints and the settings: the thresholding unavoidable in
co-citation analysis drastically reduces weak signals that are counted for in cou-
pling. The dependence of the maximum recall on the threshold of citation and
the assignment strength (number of references), in a close field, is modeled in
[59]. that are accounted for in coupling. Quite a few authors compared the
methods empirically [128] on short time range, [173, 174]. These studies are not
always themselves comparable in their criteria, nor are they convergent in their
outcome, so that it is difficult to come to a conclusion on this basis alone.

The new data analysis toolbox (fast graph unfolding, topic modeling) grad-
ually pervades large-scale studies. From the domain delineation perspective,
a general answer in terms of single best cannot be expected. The benchmark
above recalls us that classical methods, apparently outdated in the big data era,
still prove quite performing. Let us recall a few issues in clustering/mapping for
bibliometric purposes, especially delineation.

A Few Clustering/Mapping Issues

As other decision-support tools, maps in bibliometrics receive contrasted inter-
pretations. In a social constructivist view, maps are mainly viewed as tools
of stimulation of socio-cognitive analysis and also as supports of negotiation
with/amongst actors. If technicalities are not privileged, there is clear prefer-
ence for local network maps, preferably lexical or actors-based, connected to
socio-cognitive thinking. Bibliometricians and librarians are keener on quan-
titative properties and retrieval performances. Expectations as to ergonomics,
granularity, robustness, clusters properties and semantic depth, largely vary
depending on the type of study.

Ergonomics. Maps usage benefits from new displays with interaction facili-
ties. A tremendous variety of mapping methods is available (see [175] although
in practice a few efficient solutions prevail. The progress in interfaces (scale
zooms, bridges between attributes, interaction with users. . . ) changed the land-
scape of mapping. If adding clusters features to cluster maps is trivial [176], the
systematization of overlay maps by Leydesdorff & Rafols [177] is quite appealing.
Since delineation tasks often deals with multidisciplinarity, multiassignments
and cluster expansion, various types of cross-representations (see Sect. 3.4) in-
cluding overlay maps are quite convenient tools for discussion.

Granularity. The granularity considered here is the smallest unit handled.
Progress of data analysis allows large-scale work with a fine granularity. Docu-
ment-level maps are now regularly proposed by Boyack & Klavans (e.g., [91]).
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The classical alternative in bibliometrics uses the “journal” molecule instead
of publications, with the advantages and shortcomings already discussed. De-
lineation tasks used to be conducted at the journal level and this convenient
solution can be somewhat improved using core-periphery scheme with multi-
disciplinary qualification [178].The interest of the journal granularity for delin-
eation remains dependent on their specialization profile at the scale considered,
quite field-dependent. The best fit to journal approach is found in fields with
strong editorial focus, such as Astrophysics, but [179] recalls that the general
rule is the superiority of document granularity. At the global science level, jour-
nals or even journal categories are an option for sketching great regions [177],
with low precision ambitions. In favour of journals, their persistence as institu-
tional entities with slow demography, facilitates longitudinal approaches, again
at the expense of precision (see below “Dynamic Clustering”). Granularity does
not reduce to the question of journals vs. document level. It can also suggest
methodological choices, e.g., the family of citation method to select, depending
on the objective, taxonomies of disciplines or finer level research fronts in a
broad sense.

Shape/properties of clusters. Ex-post supervision of clusters (built by un-
supervised methods) is a critical stage of studies. Discussion on the cluster
aggregate features, or sampled articles, is much easier if clusters are reason-
ably homogenous. Therefore ability to recover clusters of any shape (elongated,
non-convex. . . ) which is essential in other contexts (say image-analysis) may
not be desirable in bibliometric mapping. A few strongly linked compact clus-
ters is easier to assess than the equivalent elongated class. The skewness of
clusters distribution is another concern, especially in citation clustering, and
the inflation of micro-clusters with poor connexions is unconvenient — an argu-
ment voiced in favor of direct citation approach for high-level taxonomies. From
this point of view, the slight tendency of average linkage towards homogeneity
and the tendency of K-means towards size-balance, giving moderately skewed
distribution of cluster size, may be seen as “desirable biases” (see [146] in the
context of community detection) with respect to further cluster supervision. As
the benchmark exercise has shown, this does not prevent average linkage from
recovering heterogeneous structures.

Soft vs. Hard Clusters. For reasons of convenience and computer effi-
ciency, hard clustering is widespread but remains a violent approximation of the
complexity and intrication of communities networks and semantic relations in
scientific literature. Hard clustering is sometimes the first stage of a two-stage
classification: co-citation analysis usually combines hard clustering for cores in
the cited universe, and assignment of the citing literature tantamount to soft
clustering of research fronts. Reciprocally, starting from hard bibliographic cou-
pling clusters makes it possible to generate a soft image of cited clusters. The
conditions of assignment parameters in the second stage determine the degree
of overlap. This is true also for factor analyses more suitable for overlapping en-
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tities, especially with oblique factors, i.e., principal axes of clusters upon which
any entity, in or out, has a projection. The query expansion or bibliometric
expansion practiced at the cluster level also builds soft clusters from an ex-
isting hard partition on the same data, therefore enhancing the recall at the
cluster level. More generally, the wide development of probabilistic clustering
is consistent with fuzzy approaches of assignment of particular articles/items.

Multi-level visualization of partitions is valuable for discussing topic or do-
main borders, especially when obtained from techniques which do not favour
cluster homogeneity, or exploring strongly multidisciplinary phenomena. For
example, assuming a strong proximity of two topics A and B, it is interesting to
know whether this proximity is localized — say to sub-clusters A1 and B1 — or
distributed. Local intense linkages may prefigure capture of a subcomponent or
merge A1-B1. Such interpretation only makes sense with robust methodology.

In a cluster selection process for delineation, all things equal, soft or fuzzy
clusters are allowed to extend towards shared areas, and then slanted towards
recall at the cluster level. This applies to the boundary clusters, with an effect
on domain’s delineation. Bibliometric use of soft clustering remains however
limited and does not usually depart from the holistic perspective (see “Semantics,
Statistics, Informatics” below).

Robustness and evaluation issues. Robustness is an essential aspect of
data analysis applied to bibliometrics. Sensitivity to data issues, to the type of
network, to metrics and clustering algorithms, lead to rather different solutions.
Ground truth or even gold standards are generally unavailable. In empirical
studies, analysts have to get along both with biased representation of panels
and divergences of techniques, as well as sensitivity to settings within one tech-
nique. We already mentioned general problems of bibliometric data, especially
coverage. Within a given data corpus, the skewness of informetric distributions
is a powerful foundation of robustness, but many sources of instability remain.
The particular question of time robustness is sketched later. The particular
question of time robustness is sketched later.

Sensitivity to the network weighting and metrics. For memory’s
sake, some prior transformation of bibliometric networks is practised to compen-
sate across-domain differences, such as citing behavior. In such case, the value
of linkages are weighted by a function of the number of inlinks of given groups
(tantamount to classical cited-side normalization) or the number of outlinks.
The latter is present both in influence measures (Pinski & Narin [44], revival
in the last decade, e.g., [180]) and the limit case of citing-side normalization
which presents original properties [181, 182]. Citing-side normalization of the
citation network is a limit case (removing iteration) of Pinski & Narin influence
weights [44]. It is strictly classification-free if the basic normalization unit is the
paper or the journal [181]. It exhibits interesting properties for any basic unit
making sense, e.g., domains: the dispersion of domains’ impacts calculated this
way with normalization at the domain level is a measure of interdisciplinarity
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of science in a steady state system [183].
A major native characteristic of bibliometric networks is the skewness of

node degree distribution and resulting polarisation: citations, Zipf-Mandelbrot
words usage, Bradford concentration — in connexion with concentration gen-
erating models recalled above in social network theory. Concentration gives
tremendous selective power and at the same time, calls for corrections in IR
context. for information retrieval and usage, depending on the context. A vast
choice of metrics or quasi-metrics (similarity indexes) is available, introducing
weightings with some inverse function of frequency, especially useful in a map-
ping context. It is common knowledge that various similarity indexes produce
contrasted perspectives. Co-word analysis pioneers, notably, compared the un-
weighted index (raw), the asymmetrical (inclusion) index, the partially weighted
index (Jaccard, Ochiai among others), the strongly weighted index (p-index or
affinity amenable to a similarity). After thresholding, the landscape of the
transformed networks is quite different: the first two indexes tend to keep the
frequent items as hubs, the last one highlights infrequent words and associations
at some risk of overexposure of rare forms, amongst them typing errors.

Analogous normalizations, from the abundant repertoire of similarity in-
dexes, are frequent for co-citation [184] and co-authorship analysis [185, 186].
Clustering algorithms build on the final network in various ways. Obviously, any
delineation based on such weighted networks of structuring elements — where
skew distribution is the rule — will be quite sensitive to methodology. In bib-
liometrics, the contrast is extreme between steep landscapes generated by raw
measures, dominated by the centrality of hubs, and information-driven strongly
corrected configurations, at the risk of instability and errors on very low fre-
quencies. Intermediary options are often picked, for example Ochiai-Salton and
Jaccard measure. Document coupling relations, similarly, depend on the nor-
malization of terms frequency, typically inverse frequency weighting, Hellinger,
etc. built-in or not in data analyses methods (tf-idf, χ2 in Correspondence
Analysis, etc.).

Asymmetrical relations. Specific to citations, a complete model of cita-
tion exchanges requires some native or constructed aggregation with relatively
stable entities (authors, journals, pre-existing categories, etc.) in order to allow
both in and out-linkages while document-level direct citation is unidirectional —
with exceptions. Asymmetry at the journal level inspired the CHI classification
of journals after their theoretical vs. applied orientation [44] on the hypothesis
that applied science journals tend to import knowledge and export citations,
and reciprocally for basic science journals. The same phenomenon appears at
the field level (cell biology vs. medical research, for example).

The valuation of bilateral relations calls for methodological choices which
can largely affect mapping and delineation. Take the simplest case where i
and j denote two aggregates (journals, domains. . . ) and assume the ij link
normalized on the basis of the total outflow of i and the total inflow of j, and
conversely for the ji link. Let us calculate the bilateral link between i and j
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by the arithmetic mean, the geometric mean and the maximum of these two
unidirectional normalized flows, a simplified variant of [87, 187] for the sake of
the example. Should these valued networks be used for delineation purposes,
they would tend to produce rather different results. The multiplicative indexes
trivially penalize one-way relations typical of vertical channels, and tend to
group entities with balanced relations, either particularly integrated channels
or basic science fields with multi-disciplinarity relations, or else clients sharing
methods or products. In contrast, the maximum index tends to retrieve vertical
channels (say cell biology–medical research) regardless of flows dissymmetry.
Additive indexes stand in intermediary position, and appear as a middle-ground
choice.

Semantics, Statistics, Informatics. Scientific domains at the meso-level
represent a considerable amount of data, especially in longitudinal series. The
computing requirements, even with sparse bibliometric matrixes, are high, driv-
ing towards clustering or spectral analysis algorithms with high efficiency. The
trade-off between computer efficiency and semantic power is far from simple.
Correspondence analysis [134] was amongst the first factor technique to exhibit
some semantic power in textual applications, especially a robust capability to
group quasi-synonyms with the distributional equivalence property. In its wake,
post-factor analyses keep claiming some semantic power (see above topic mod-
eling) and built-in mapping capability. In parallel, local similarity techniques
associated with traditional or innovative clustering methods from network anal-
ysis privilege the native graph of proximity and elements/links groupings. In
those approaches the duality [structuring elements × documents] needs assign-
ment decisions (e.g., research front assigned to co-cited core) with a semantic
dissymmetry as to the internal scrutiny of clusters: while the detailed map
of structuring elements is appealing for cluster evaluation (cited cores; within
cluster word-map), the document coupling map, internal to a cluster, is hardly
interpretable alone as stressed before.

Now, if word-maps present high potential for sociological interpretation,
mere lexical associations remain semantically shallow with regard to truly se-
mantic analyses. A common limitation to all these methods is the “bag of words”
overlooking the rank of words and the structure of statements — downside
partly alleviated by multi-terms treatment (noun phrases). Citations present
a fuzzier relation to semantics (Sect. 3.4) but co-citation cores are neverthe-
less understandable for experts. Labels or lists of descriptors directly issued
from co-citation or co-word cores, for example a ranked list of specific terms, or
indirectly rebuilt from clusters obtained by coupling, are common but limited
auxiliaries for evaluating clusters. Cards might be reshuffled with new com-
petitors to LSA such as Neural Word Embeddings (Sect. 3.3.2). In addition to
the similarity calculations in the word–context, useful for information retrieval,
semantic calculations on word vectors are possible, allowing good performance
in analogy tests (i.e., “Find X so as X is to A what B is to C”) or inference op-
erations on these vectors, such as "king" − "man" + "woman" → "queen".
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This gain in semantic precision suggests that, applied to scientific corpora —
now increasingly available in full text — it could allow in the future for an an-
alyst to select the semantic dimensions relevant for delineating scientific fields
and constitute crisp or overlapping groups of articles (or parts of these) in this
subspace.

A recurrent problem of more traditional bibliometric representations, a coun-
terpart of statistical simplicity and computer efficiency, is the holistic character
of linkages, especially if combined with hard clustering. In document coupling
techniques, either word-based or citation-based, the standard linkage measure
is the weighted and normalized number of words shared. In lexical coupling, an
implicit hypothesis is that the (weighted-normalized) number of shared tokens
reflects the dominant semantic dimensions of the paper. For example, if very few
words or references refer to methodology, this dimension will contribute less, all
things equal, to the shaping of bibliometric similarity, which can be misleading.
In the opposite case, if methodology markers are prevailing, a transdisciplinary
corpus will tend to be split between hard science literature and soft science
literature on the domain, whereas mixed clusters would probably reflect the do-
main structure in a better way. Were the linkage between two clusters needing
explanation, this should be inferred from the features and given the titles of
the two clusters, unless the technique includes indicators of contribution. In
clusters of structuring elements (word graphs, co-citation cores) the relations
are interpretable when zooming on the fine-grain networks of words or cited
articles, but without semantic characterization.

In delineation context, a minimum of semantic break up would make the
scrutiny of the border region easier and faster. It could especially orient dis-
cussions on preferential extensions of a core zone towards neighbour clusters
with shared methodology but new objects, shared object with new methods,
etc. Ad hoc simple characterization of vocabulary has been successfully applied
for other purposes, e.g., the level of application of biomedical research journals
(see [188]). However, manual semantic tagging is quite intensive and field-
specific. At the document level, many natural sciences articles can be labelled
with simple semantic combinations. In computational linguistics, many works
since Teufel et al. [189] (argumentative zoning) address this issue of categoriza-
tion of scientific discourses and automatic annotation, applicable for example
to the summarization of scientific texts. Several proposals on categorization of
arguments have been made, many of them at the experimental stage. Liakata
et al. [190] developed and automatized the Core Scientific Concept (CoreSC)
categorization whose first layer distinguishes 11 categories: objective (Hypoth-
esis, Goal, Motivation, Object), approach (Method, Model, Experiment) and
outcome (Observation, Result, Conclusion). This line of research is extremely
promising for bibliometric studies, especially domain delineation, but remains
for the time being limited to small universes. In the meantime, oversimplified
semantic indexing would help a lot in qualifying interdocuments or interclusters
relations. Fig. 3.4 shows a fictitious configuration where documents are naïvely
described by semantic triplets with various degrees of kinship. The graph dis-
play could be replaced by a superimposition of three partitions, each one upon
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a different semantic dimension.
More intensive semantic mapping relies on sophisticated ontologies, knowl-

edge models, semantic networks. If such resources have not been established be-
forehand and published, bibliometric studies cannot generally afford such heavy
developments, however see [191].

Directly opposed to semantic approaches are non-feature methods from com-
puter science, which ignore the substantive representations and even more so
the semantic content. In various IR/bibliometric applications (disambiguation
of authors and affiliations, proximity of documents, detection of plagiarism) sim-
ilarity between texts may be calculated on the basis of character n-grams [192]
rather than “feature” word n-grams which is somewhat standard. The link to
the minimal unit with semantic load, the word, is lost (almost completely for
low values of n). Usual metrics can be applied to n-grams. A more radical
way using the bit sequence representation with further compression, is the ba-
sis of measures like Normal Compression Distance (NCD in [193]). NCD is a
dissimilarity measure which is an approximation of the general Kolmogorov in-
formation distance [194, 195], parametrized by the compression algorithm. A
“normal” compressor should satisfy four properties: idempotence, monotonicity,
symmetry and distributivity. From the linguistic point of view the compression
method is a black box. It nevertheless exhibits rather good performances for
calculating texts similarity with a most indirect semantic power of forms unifi-
cation. The Normalized Google Distance (NGD in [196]) is the transposition to
Google searches, at the word level, of the NCD, keeping the “feature” charac-
teristics of the co-word analysis and its semantic power. Its native application
builds on lexical associations from millions of users.

Table 3.3 summarizes the degree of semantic ambition in the case of lexical
approaches — transposable to citation attributes.

Dynamic Clustering. The delineation process has to face changes in the
configuration of networks [124], affecting the value of a delineation solution
at a particular moment. Dynamic clustering is understood in two (related)
acceptations.

A first point of view is the adaptation of algorithms — and computer re-
sources — to processing massive data streams, typically texts, an example today,
online social networks. The initial k-means algorithm of MacQueen [197] was
already an “online” incremental one, generating a cluster structure in one pass
over the dataset — the usual iterative version, for itself converging to a so-
lution independent from the presentation order of the data vectors, is due to
Forgy [198]. Dynamic text streams mining is a growing topic in the research
communities of machine learning and Big Data mining. Changes in the cluster
structure may reflect algorithmic artefacts as well as real phenomenon, hence
ideal methodological characteristics are non-local optima seeking and indepen-
dence from data ordering. An example of incremental hierarchical clustering
method for texts is [199], and a frequent itemsets dynamical clustering is [200].

A second point of view focuses on domains/topics picture and their de-



36 CHAPTER 3. DELINEATION OF SCIENTIFIC FIELDS

A	 B	

C

G
F

E

D

H

I	

Ka2	
b2	
c2	

a1	
b2	
c1	

a3	
b3	
c3	

J	

L

A		Seman8c	aspects	a	b	c	

Cores	(same	color	e.g.	GIJ):	share	the	same	instances	on	the	three	aspects	

A	 B	

C

G
F

E

D

H

I	

Klevel	3:	share	3	aspects	(core)		
level	2:	2	aspects	
level	1:	1	aspect	

J	

L

B		Bibliometric	distance	(holis8c)	

Colored	clusters	(e.g.	GIJ):	cliques	level	3	

Figure 3.4: Semantic and bibliometric linkages. This figure sketches bibliomet-
ric holistic distance vs. decomposition into semantic links, with the (heroic)
hypothesis of tagging with only three criteria, e.g., a = theory-hypothesis, b =
experimental method c = observation-test. For example a1, a2, a3 figure denote
different hypotheses. The second panel represents three kinds of semantic rela-
tions. An article is described by a triplet a, b, c. For example the documents
G, I and J are described by the same triplet {a1, b2, c2}. Documents G and I,
for example, are connected by three links. The second panel aggregates infor-
mation in a single type of linkages with varying degree of intensity. Here the
bibliometric linkage is assumed proportional to the number of shared semantic
instances, which is of course arbitrary. In the real bibliometric world, the lexical
coupling linkage heavily depends on the most developed aspect(s).
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scription over time, through clusters time-series, including the issue of time-
robustness in one-shot pictures. Again the distinction between clustering/map-
ping on “structuring elements” (e.g., co-cited articles or lexical relations) and
“direct clustering of literature” (e.g., bibliographic or lexical coupling), matters.
The first family offers solutions with some durability. The repertoire of words
gradually evolves. Change of the intellectual repertoire of cited literature, sub-
ject to ageing process, is usually faster but, except in emergence or revolutionary
fields and in intrinsically rapid ones (e.g., computer science), it respects a mix
of new and old literature. This gives some clue of robustness, in the short term,
to the cluster solutions. By and large, in slow evolution processes, information
cores are more persistent than peripheries. In one-shot clustering, working on
pluri-annual window data reinforce the robustness of the breakdown and permit
the cross characterization of novelty (median of the co-cited core) and internal
growth in the span of the window (average date of front) [176]. Characterizing
fine-granularity hot spots in the network, such as local preferential attachment
processes, may help to spot promising weak signals. Taxonomic applications
of direct citation linkages might still benefit more from long time-windows set-
tings. This would sketch, as noted before, a possible trend towards division of
tasks between direct citation, co-citation and bibliographic coupling in function
of targeted granularity and immediacy of results.

By construction, direct clustering of documents over a time-period (say the
year) favors immediacy, but is not prolongable without a detour by the struc-
turing elements and derived cluster labels. Another way consists in picking a
coarser granularity, especially the journal level, at the expense of a heavy loss
of precision. Short-time changes may be addressed by projecting a solution for
a period on the reference solution of another period, a classical process in factor
analysis applicable to other methods, an early example within bibliometrics is
found in Noyons & van Raan [32].

A delineation process of any kind may be run on successive slices of time
(e.g., [201]) of different lengths, with or without rolling averaging filters. A
dynamic variant of LDA is [202], in which the word distributions of each topic
varies in each time slice, where the number of clusters is fixed. Interesting
historiographic insights accounting for clusters demography (emergence, death,
splitting, merging. . . ) are exhibited by longitudinal chaining of clusters, known
since ISI’s Atlas of Science, see [203, 204, 205, 206]. The latter work is based on
lexical series. The predictive value of such series, along with life-cycle models,
remains a quite difficult issue.

Last but not least, the rendering of change is closely linked to dynamic
models of science where structure emerges from local properties, for example
in the preferential attachment model. In this view, over time, breakthroughs
(scientific or technological) shape the citation profiles of followers, a common
mechanism in (co-)citation bibliometrics. Local accretions around hot papers
are amongst the signs of emergence. The symmetrical question over whether
the referencing (or lexical) profile of papers has some predictive value, remains
open. This connects to the controversies about interdisciplinary distal transfers
in the discovery process, quoted above, which echo the combinatory nature of
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invention and innovation stressed by Schumpeter. The intuitive but bold hy-
pothesis stating that the more distant the knowledge transfer, the more radical
the discovery or invention is, nevertheless, tricky to test (definition of scien-
tific or technological distance from models A or B–C, scale issues). Attempts
to characterize scientific breakthrough and radical inventions, with an ex ante
notion, are found for example in [207], using both citations and patent classifi-
cation; [208], using changes in forwards and backwards citation profiles; [209],
using citation contexts of outstanding discoveries.

3.3.3 Conclusion

By and large, bibliometric mapping provides landscapes with aggregate groups
(clusters; local factors, etc.) likely to be assessed, and implementation of mul-
tistep and cross points of views help to distinguish cores and border regions,
the latter calling for cluster evaluation, see Sect. 3.5.2. No mapping method is
superior on all criteria and many factors are at play: the bulk of data, the type
of network, the nature of the problem and the ergonomics of outcomes for an
easy supervision. IR search remains an alternative or a valuable complement to
mapping. The next section zooms in on hybrid techniques.

3.4 Multiple Networks and Hybridization

This section addresses the multi-network approaches. We shall especially de-
velop the combination of textual and citation networks but most types of bib-
liometric (and altmetric) networks can naturally contribute where appropriate.
The forms of hybridization encompass a wide scope from fully integrated ap-
proaches to parallel schemes aiming at comparison and eventual combination,
with intermediate sequential schemes.

3.4.1 Multiple Networks

A given document may be accessed by search strategies pointing at all searchable
fields of data or metadata. Modern IR, going beyond the direct query-document
similarity, integrates, with the cluster hypothesis and later the cognitive model,
the documents’ multiple spaces and networks, including citations and collabo-
rations. Bridges between lexical and citation universes were built, especially for
labeling purposes (e.g., keyword-plus [210]).

Likewise, major streams of study in the sociology of science have coined
general theories accounting for the various manifestations of scientists behavior
in communities: communication, collaboration, publication, rhetoric, citation,
evaluation. The networks of science, although diverse, originate in the same
ground. As a result, many classes of bibliometric questions (topic identifica-
tion, characterization of emergence, static and dynamic mapping, diffusion pro-
cesses, knowledge flows in science and more generally in the science-technology-
innovation system) can be answered by working on different networks, with
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respect to their specificity. The multi-network approach to bibliometrics, both
in terms of comparison and complementarity, appears as a natural mode of
thought.

With the coming of age of data representation models such as entity-relation-
ship for Relational DataBase Management Systems (RDBMS) implementation
and of network analysis methods, IR scholars and bibliometricians in the early
90s found flexible tools for easy handling different dimensions of publication
data. In the last decades, the culture of data-mining encouraged mixes between
several networks for pragmatic purposes [211]. We recall the key role of authors
networks (Sect. 3.4.2) before focusing on text and citation networks (Sect. 3.4.3)
and finally their hybridization (Sect. 3.4.4).

3.4.2 Actors Networks

The first analyses of scientific communities in the seventies lead to some dis-
appointing results as to the unambiguous assignment of particular scientists to
a particular group. In a short history of domain delineation Gläser et al. [26]
recall among others Mulkay et al. 1975 work [9] and Verspagen & Werker find-
ings [212]. The archetype is the co-authorship graph. Price & deBeaver [18],
deBeaver & Rosen [213], Luukkonen et al. [214], Kretschmer [215], Katz & Mar-
tin [216] laid the first layers of collaboration studies in connection with invisible
colleges. Authors-based models of science are amongst the central topics in sci-
ence studies and bibliometrics. Studies on scientific collaboration are out of our
scope here, let us just recall the macro-level studies of the determinants of coop-
eration in the wake of Luukkonen et al. [185], geographic proximity [217, 218],
cultural links [186], individual/collective behavior [219]. Those studies empha-
size the importance of metrics and normalization in the interpretation. At the
micro-level, proposals for mechanisms explaining the structure and dynamics of
social networks were recalled in Sect. 3.3.

Actors’ networks present a major theoretical interest: they stand at the
crossroads of actual social networks’ mathematical modeling and sociology of
research, and bridge invisible colleges with cognitive structures [220]. They
also show some drawbacks, echoing the scholars’ disappointment noted above.
Communities detection in practice faces the issue of names unification. The
problem has been for a long time terribly cost and time consuming for data
producers and bibliometricians, at both the institutional level and the author
level, as stressed again in the Name Game project APE-INV (http://www.
academicpatenting.eu), e.g., [221]. Great progress is ongoing due to ORCID
(with the unique identifier of researchers), ISNI, GRID initiatives among others.

Another issue, especially for small topics detection, is the width of the com-
petence spectrum of productive authors likely to produce some noise, but this
shortcoming is alleviated at the level of large domains. In this case perhaps,
community detection (in a narrow sense) has arguments to compete with cita-
tion or lexical clustering. However, in most practical studies multiscale vision
is required: not only does the target domain matters, but also subdomains. At
this scale, the polyvalence of authors limits precision. The problem may be

http://www.academicpatenting.eu
http://www.academicpatenting.eu
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reduced by time-restriction filters, link-level technique, external information or
hybridization with citation or word information. Similar issues appear in “au-
thor co-citation” vs. “article co-citation” [164, 222]. Author co-citation opened
insights in the study of invisible colleges, with connection to researchers’ sociol-
ogy. Topics mapping as such is better addressed by document-level co-citation.

The interplay of co-authorship, citation and linguistic networks as a mirror
of socio-cognitive activity is increasingly gaining attention: relations between
contents and actors’ positions [223, 224], between citations and co-authorship,
and any or both of these with texts [220]. Is the multiple approach-a step
towards more powerful models of authors and community behavior, able to
unify the diverse representations? This unification would spread benefits over
bibliometric analysis, including delineation tasks. Non-feature methods have
not awaited for unification (see below) to mix up all types of information, but
they sacrifice the substantive depth of analysis.

However, the quest for unification might be hindered by the specific features
of every bibliometric network. Changing the type and parameters of the network
is like observing the universe in various wavelengths. The most dense objects
produce various forms of energy and tend to be retrieved albeit with diverse vol-
ume and appearance. Less dense objects like clouds of various composition can
be seen only in specific parts of spectrum. Likewise, we may conjecture that
dense and isolated objects will be retrieved upon any network fit for precise
analysis (e.g., [113]), especially words and citations and perhaps co-authorship
clusters. Sociological investigation is expected to confirm such configurations as
bounded invisible colleges. In less dense and more connected areas, each net-
work is likely to produce non-superimposable images, with different sensibilities.
The convergences suggest strong forms with easy socio-cognitive interpretation,
while the divergences ask for careful tests and investigation. The sociology of
translation associated less dense areas to emergence or ultimate evaporation
phases.

3.4.3 Citations and Words

Lexical and citation characterization classically used in bibliometrics are appro-
priate for themes clustering and mapping at various scales, on the basis of the
toolbox sketched in Sect. 3.3.

A few Analogies and Differences

General. One difference naturally lies in the nature of the original relation:
direct attributes for linguistic elements, reflexive inter-articles for citation, with
several consequences. Firstly, the granularity: words are an ultimate attribute
(in classical “feature” methods) whereas cites target the full article semantic
aggregate. Then, the linguistic content of citations is not explicit, and requires
a statistical detour via the text fields and the data model, to emerge (automatic
labelling of clusters with their specific vocabulary, citation contexts). Secondly,
the time relation, not explicit in lexical relations, directly appears in the cita-
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tion link, both cited and citing article being dated. Bibliometrics makes a large
use of this diachronic relation in immediacy-ageing studies. In contrast, the
word content of an article is readily legible, but deprived of temporal informa-
tion beyond the article date of submission/publication. Going further requires
statistical studies to date the word in terms of chronological profile of use. Lon-
gitudinal studies on words have to rely on time statistics of use, typically with
the assumption of achronicity: constant meaning over time. This is a bold
statement in some cases. Beyond classical dating of word or word linkages after
their usage, determined by the obsolescence of topics, natural language analysis
paved the way for analyses of word transformations in a scientific context [225].

With respect to these constraints, a large class of bibliometric, IR or altmet-
rics issues can be addressed by the lexical way or the (generalized) citation way
with the exception of specific direct chaining [162]. Symmetrized relations (co-
citation, coupling) mitigate the diachronicity, albeit underlying time features
can be invoked if required. The reformulation of the dynamic chaining research
fronts (e.g., [205]) is emulated by word-based clusters [202, 206]. Only the former
directly contains citing-cited information for immediacy characterization.

Due to limitations (indexer effect) and lack of reactivity of controlled lan-
guage, modern bibliometrics moved gradually towards natural language, build-
ing on the increasing availability of full text resources and lexical treatment. In
spite of progress in computational linguistics, the NLP remains tricky, a coun-
terpart of language richness and versatility. Polysemy, metonymy, synonymy,
figures of speech, metaphors, acronyms and disciplinary jargon are well-known
linguistic traps of linguistic difficulties that users, bibliometricians, retrieval spe-
cialists have to cope with. Unification (stemming and lemmatization, synonymy
detection) also benefits from clustering techniques. Unsupervised homonymy
tracking is a more challenging problem, since bridges in word clusters may be
rooted in concept transfers or polysemy or else simple homonymy. This issue
is somewhat alleviated in small (narrow context) studies. If elaborate ontology
or semantic networks are seldom off the shelf, useful tools for term extraction,
parsing, co-word exploration are available. Stemmers (with the Porter’s stem-
mer milestone [226]) or, a step further, lemmatizers are efficient with some risk
in precision. New massive techniques, such as above-mentioned deep learning
based or Neural Networks or targeted methods such as Neural Word Embed-
dings, might bypass or alleviate costly preprocessing. Constraints of bibliometric
studies dealing with large data universes are usually incompatible with refined
semantic treatments, but the supply of large-scale statistical semantics resources
might spare costly ad hoc developments. We mentioned (Sect. 3.2.4) a possible
revival of controlled vocabulary supported by bibliometric treatments.

Statistical Background. The common feature is the skewness of frequency
distribution found, among other disciplines, in information processes (Bradford-
Lotka-Zipf trilogy, see [227]). The classical model to fit word distributions is
the hyperbolic Zipf-Mandelbrot model. Other Paretian distributions are also
used for citation frequency analogous to node degrees in the native oriented
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graph of citations. Similar skewed distributions are found in authors’ collabora-
tion graphs, with a distinction between scale-free distributions and small-world
distributions (see Sect. 3.3). The parameters of citation distributions are mod-
ulated by the citation-windows, the parameters of word distribution modulated
by the type of lexical sources (title, abstract, full text. . . ), the type of lexical
unit picked, the language, the richness of vocabulary.

Comparing the distributions of citations and words on the same corpus,
some authors found that the latter appears more concentrated and less ‘com-
plex’ [33], thus less favorable in principle to precision — without forgetting the
different granularity. Frequency weighting of linkages of the native word or
citations networks, or similarity indexes with various types and degrees of nor-
malization, may be implemented for retrieval or mapping purposes, for favoring
information-rich elements in low and/or medium frequency. The precision of ci-
tation approaches was underlined in comparative retrieval tests, and especially
the interest of cross retrieval [228, 229]. As to co-occurrences, co-word matrices
tend to be less sparse but noisier than co-citations relations.

For the delineation work, the distribution of words or citations designs the
background, with implications for interpretation, but what directly matters is
the arrangement of documents after their texts or their bibliography. For this
purpose, the typical ways are the direct profile proximity on either type of struc-
turing elements, words or references (“coupling” rationale or profile metrics in
vector space), or the secondary assignment on prior classes of structuring ele-
ments such as co-word, co-citation or corresponding profiles. The distribution
of node degrees in bibliographic coupling tends to be less skewed than in the
original citation graph. Again normalization of distances or similarity by some
function of inverse frequency can reduce the unevenness. The recall advan-
tage of word-based techniques suggested to use them in the large-scale mapping
of clusters defined, beforehand, by citations [91]. There is some evidence in
the same direction for patent-publication relations. Composite word-citation
metrics are addressed in Sect 3.4.4. Technicalities involved in term unification
are also different. As information tokens, references are less difficult to match
than natural language elements. Keys on cited references reveal effectivity and
improve with standardization of entries, with residual difficulties in particular
cases like citation analysis of patents towards science.

Sociological Background. The textual contents of an article and its bibliog-
raphy are both the results of authors’ choice in their community context. Both
involve an intricate mix of scientific and social aspects: words and cited refer-
ences are community markers and reflect the sociability of invisible colleges. A
large body of literature (see the review [230]) has been devoted to citation behav-
ior, including Cronin’s classic work [231]. Whatever their determinants can be,
Merton’s rewards, Small’s symbolic beacons or concept symbols [232], Gilbert’s
persuasion tools [223] or Latourian interests, the references mainly point to-
wards the thematic groups where founding fathers, gatekeepers and potential
partners are found, which matters in science mapping. On the textual side,
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rhetoric and jargon expressing community habits, in addition to general words
voicing interests, rejoin focused scientific terms — especially specific multiterms
with medium frequency — to define topics. A substantial amount of conver-
gence between texts and citations is therefore expected when the delineation of
topics and communities are at stake. Some degree of parallelism may be found
between relatively high frequency expressions (after filtering of stop-words) and
highly cited articles in generic knowledge and multidisciplinary linkages. The
measured convergence depends on the information unit and is likely to increase
with small lexical units of citation contexts (see below).

However, the question arose of which network is the more appropriate for
describing science, at a time (the eighties) where citation evaluation, indexing
and mapping were gaining interest. The social constructivist stream and the Ac-
tor Network Theory mentioned above (Sect. 3.2) favoured the co-word networks
[166] against citations to represent knowledge on a background of actor’s inter-
ests. Texts appeared abler to depict more completely “science in action” [233]
especially in controversial areas where social and cognitive aspects are insep-
arable, while citations were supposed confined in the capture of “cold science”
with delays and incompleteness. The delay argument alone is less convincing for
bibliographic coupling. Typical co-citation “research fronts” rely on a high-pass
filter on citation or co-citation scores, favoring old articles, to reduce the data
volume. Bibliographic coupling often works on the whole reference lists, letting
recent and less cited references play. A residual effect of the publication cycle
of the citing side nevertheless subsists. Similar delays may also occur in the use
of new words or expressions qualifying a scientific technique.

In its very realm, academic science, citation analysis encountered lasting
problems in quite a few disciplines, especially in a fraction of SSH, because
of citation sparsity, uncomplete processes of internationalization and lack of
coverage in databases. This argument is somewhat weakened nowadays be-
cause of data source progress and changing behavior of scholars confronted
with the science globalization and bibliometric evaluation. Citation analy-
sis proved an appealing tool, including for the borderlines of standard liter-
ature, for example transfer documents (guidelines and even magazines and
newspapers) explored in biomedicine by “translational research” for improv-
ing health systems services [234]. See also the EUSTM website at https:
//eutranslationalmedicine.org. As to the coverage of technology, the trans-
position of citation analysis to patents was revealed to be rather successful [235]
competing with lexical approaches [236]. Of most importance perhaps, the
Internet produces linkages with an exploitable analogy with citations, as the
Google search engine has demonstrated in the wake of Pinski & Narin’s influ-
ence weights.

Citations are not without their shortcomings, stressed in voluminous lit-
erature from various horizons (see the extensive Bornmann & Daniel’s afore-
mentioned review [230]; for the defense, mostly, see [51]). For the reason stated
above, biases of citations are somewhat less severe in mapping applications than
in citation evaluation (impact, composite indexes) which concentrate controver-
sies. Latourian citations or rare negative citations do not add much noise to

https://eutranslationalmedicine.org
https://eutranslationalmedicine.org
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co-citation topics. Other down-sides are more serious. The bandwagon effect in
citation behavior tends to create spurious cliques in native co-citation networks,
possibly hindering the discriminating power of citation relations. The inflation
of the number of references in authors’ practice, which is a long-term trend [237]
also brings noise to conventional citation clustering. The disciplinary insertion
affects the number of references (“propensity to cite”) justifying citing-side nor-
malization approaches mentioned above.

Albeit language-dependent, textual analysis is media-free, which is valuable
in fields where academic sources with standard citation behavior are not suffi-
cient. Topics peripheral to the academic mainstream, or demanding a mix of
heterogeneous data may be confined to text-based delineation.

In cases where no differential data coverage issue is faced, differences may
arise between these expressions of scientists’ behavior, resulting in alternative
breakdowns into topics, independently from statistical properties. The expec-
tation is that citations, albeit in a blurred and biased way, are more capable to
tracking the intellectual inheritance. A single difference in the semantic mix, for
example different methodology on the same category of problem, will probably
better discriminate amongst micro-communities than lexical analysis, at least
as long as those micro-communities do not secrete specific terminology.

Let us turn towards limit cases, special forms of particularism, especially
perhaps in SSH where intellectual traditions resist globalization. Words as well
as citations would distinguish between schools of thought with opposing theo-
ries, strong community preference and distinct jargon: say in postwar period
marginalist vs. marxist economists. In contrast, if the linguistic repertoire is
shared by the two communities while they diverge in the intellectual base, the
outcomes of the two approaches will be different. The reverse can be true,
with a common recognition of the intellectual base but divergent traditions in
terminology, perhaps again for reasons of national tradition. Such configura-
tions, relatively rare, limit the generality of the conjecture stated above about
local convergence of bibliometric networks in zones with high-gradient borders.
Most of the time, a set of clustered papers belonging to a strong overlap of a
word-based cluster and a citation-based may be considered as a strong form, in
a rationale already present in the first comparisons by McCain [228] on term
vs. citation indexing. The cognitive overlaps between information types was a
keypoint in Ingwersen’s model mentioned above.

Empirical Comparisons

Cross-check of clusters contents is run-of-the-mill operation. For example, the
enhancement of co-citation coverage by two-step expansion could be controlled
by lexical means [127]. A few specific comparisons of the two mapping ap-
proaches on the same data are found in literature. The scale is therefore differ-
ent (sub-areas rather than a large domain) but the method can be applied to an
overset expected to contain the targeted domain, as seen before. In an exten-
sive study of a few promising fields in the 2000s, using bibliometric mapping,
Noyons et al. [238, 239] warned about the difference of concepts: publications
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and keywords and concluded to “totally different structures.”
An opposite conclusion was reached by Zitt et al. [240] on nanosciences and

Laurens et al. [241] on genomics, previously delineated as a whole by a hybrid se-
quence method. They implemented a more direct comparison scheme on clusters
respectively from bibliographic coupling and lexical coupling (natural language,
titles-abstracts), using the same Axial k-Means method (AKM). Cross-tabulate
cluster overlaps (see also [242, 243]) were reordered, giving a quasi-landscape
with a heavy and narrow diagonal load (Fig. 3.5). This gives evidence of a fairly
good convergence of lexical and citation solutions, also confirmed by direct in-
dicators.

On their high-level maps, Klavans & Boyack [244] and Leydesdorff & Rafols
[245] also observe a reasonable degree of convergence. More general compar-
isons of mapping methods including textual are found in [173, 246, 247]. A
recent exercise of mapping comparing clusters methods is reported by Velden
et al. [248]. Most experiments however lack a ground truth reference, and tech-
niques presented as gold standards are disputable.

More generally, suppose we built clusters of documents from several origin:
lexical coupling, bibliographic coupling, fronts from co-citation, author coupling,
etc. Those various cluster solutions may be individually mapped. They can also
be simultaneously represented using normalized overlaps between w-clusters,
c-clusters, a-clusters, with an appropriate metrics. Profiles distance may be
required to overcome the zero overlap between hard clusters of the same family
say w-clusters. Resulting matrices are still quite small and amenable to MDS
display.

The fact that the agreement between citation and lexical approaches is good
but not complete brings one more argument in favor of complementarity. One
thing to keep in mind: due to imperfect optimization of reordering and choice
of the article rather than sentences or narrow contexts as the lexical unit, the
global convergence tends to be under-estimated.

Complementarity

Complementarity, rather than competition, already inspired the “citations in
context” researches, initiated in co-citation studies (e.g., [249, 250]) which are a
natural space to connect referencing, intellectual base and linguistic aspects. In
a step further than linguistic labeling entities in (co)citation analysis, the stud-
ies of “citation in context” range from simple context visualization in citation
engines to investigations in the dynamics of science. They tend to reinvest re-
search in action, associating language and communities’ life. The linguistic and
semantic analysis of citations contexts contribute to topics such as the citations
types or motives [251], the classification and cross analysis of the contents of
the citing or the cited documents [252], the fine-grain relation of citation con-
texts and abstracts terms [253], the exploration of new dimensions of scientific
texts [254]. Some of these advances influence citation techniques in return. An
example is the improvement of co-citation accuracy [255, 256].

As a result of multi-network or poly-representation hypotheses, some issues
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Figure 3.5: Achipelago display: Nanosciences (A) and Genomics (B). Data:
Reordered cross-tabulate matrix of Axial K-Means clusters respectively from
bibliographic and lexical coupling 50×50). Relative overlap (z-axis) measured
by Ochiai Index. Reordering: ranks on 1-dim MDS, making it apparent the diag-
onal accumulation showing the visual convergence between the two breakdowns.
The line is sinuous because of discrepancies between c-clusters vs. w-clusters
size-distribution. The visual rendering suggests superclusters at a larger scale.
In the nano figure, the area of nanotubes as a whole is retrieved by both meth-
ods, but with two different breakdowns and more discriminative power on the
citation side. Source: [113].
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typical of one representation can receive a solution from the other. Conver-
gence at the local level also creates spaces for complementarity: synonyms of
any kind, for example, tend to be retrieved in the same citation-based clus-
ters. Citation techniques escape linguistic polysemy and the reverse is true, but
“citation homonymy” often due to matching keys, is a less important risk.

Finally, textual information preserves its advantages of availability, intu-
itiveness, and interpretation, with easy transposition to concepts and topics. A
major shortcoming is the complexity and ambiguity of natural language, result-
ing in poor precision in case of unsupervised protocols. In spite of the composite
unit handled (the full article rather than the narrow concept), citations are ap-
pealing for tracking intellectual influences and often less noisy, at the expense
of lower recall in weak signal configurations.

The capability of pure lexical approaches to emulate citation-based or hybrid
approaches in challenging topics such as the aforementioned description/anticipa-
tion of early stages of domain emergence, remains a challenge.

3.4.4 Hybridization Modes

Looking for optimal exploitation of these contrasting properties is the quest
of hybrid techniques, in line with pragmatic mixes of dimensions in IR-type
delineation for bibliometric purposes. The same pragmatism inspired mixed
information classification of web sources [257]. The detail of the more sophis-
ticated techniques are not on the table: millions of Google users benefit from
hybrid IR processes every day, but in spite of expansive literature devoted to
the PageRank algorithm itself starting with [258] and published works on lexi-
cal/semantic processing [196], the detailed combination of multi-network oper-
ations in the search engine is not documented. We will limit ourselves here to
quite basic combinations, readily available in bibliometric literature.

The scope of hybridization is quite large: words and citations, on which we
focus, may be taken either as variants of information tokens likely to be indis-
tinctly treated under certain conditions, in a typical informetric posture; or seen
as elements of quite different relations with their own fundamental properties
and interpretation, suggesting to use them in sequential or parallel protocols.
Parallel exploitation, particularly, is “sociology-compatible” allowing for sepa-
rate interpretations and comparison before final combination if necessary

Full Hybrid

The structuring/clustering of fields using a common metrics mixing citation
and term distances at the finer grain level, from the start, is a promising
path [259, 260]. Boyack & Klavans [128] on a large dataset, observed that even
a “hybrid naïve” coupling outperformed pure bibliographic coupling. Statistical
differences between word and citation distribution can be reduced through a
normalization of the similarity measures with different distributions ([261] later
simplification in [262]) achieving a full and flexible integration. Koopman et
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al. [263] established cluster similarities using a combination of tokens, for com-
paring clustering solutions based on direct vocabulary and indirect vocabulary
associated with authors, journals, citation, etc.

Those developments remain in the framework of “feature methods” keep-
ing the substance of information elements, words and citations. In Sect. 3.3
we mentioned purely computational methods (character n-grams on text flow,
compression) for calculating generalized text distances regardless to linguistic
features. An option is to stay within the textual domain (full text, abstract,
title. . . ) or to enlarge to the full article including authors, affiliations, list of
references, etc. We get a massive and blind form of hybridization, dissolving
both terms and references in signals, ignoring all forms of normalization includ-
ing for zones length (text vs. bibliography). Such black boxes are deprived
of any semantic interpretation, but in our experience prove efficient for quick
calculation of inter-document distances.

We have seen above (Section 3.3.2) that Deep Neural Networks have proven
in many areas of supervised learning, including information retrieval, their abil-
ity to do without prior weighting of the variables. Their unsupervised variants,
building upon their success in very constrained fields like the Go game, should
be able to do the same from an informal collection of data — such as “full
hybrid” data — and so an application to domains delineation might be to con-
sider the last layers of a network collecting the many traces of scientific activity,
whatever citations, texts, and so on in the wake of present limited attempts
of hybridization. Research in unsupervised deep learning, though, is still at a
preliminary stage [264]. There is no doubt, however, that in the next years
progress — and controversy — are to be expected from deep learning entry
into the competition. These processes, however, remain black boxes, with quite
difficult interpretations. Perhaps high-level semantic categorization resulting
from the careful interpretation of the last layers might allow experts to select a
subset of explicit dimensions in order to take into account the users’ expecta-
tions of a delineation process. Could this reconcile cognitive classification and
institutional expectations, an issue mentioned above, is another question.

Sequential Hybrid: Citations → Terms

Sequential protocols of delineation may rely on more iterations, we limit our-
selves here to point out the basic sequences. We mentioned above the tradition
of completing citation objects by textual tagging. The question of the validity
of co-citation research fronts (see Sect. 3.2.3) triggered further developments on
retrieval and recall rate and the means to foster it, possibly with the help of
texts. Braam et al. [265] developed a systematic complementation of co-citation
clusters coverage by lexical means, a first operational example of hybrid delin-
eation. The citation → text sequence keeps being explored for other purposes,
especially in global science maps. Boyack & Klavans [91] use textual metrics for
display of co-citation cluster relations at the large scale where citation signals
are weak.
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Sequential Hybrid: Terms → Citations

The perspective is reversed. The remote ancestor is a classical application of
citation indexing, when title words or keywords+ were used to query a citation
index for harvesting papers on a given (set of) topics. The rationale is simple:
starting a multistep process with experts’ help is easier with word queries. In
a second step, the expansion is carried out on the citation network, where un-
supervised or lightly supervised procedures are safer than on texts, with proper
precautions. General conditions for citation analysis are required, especially not
too scarce reference lists. There is some analogy with the “boomerang effect” on
citations [266]. An example of protocol is the lex+cite process explored in Lau-
rens et al. [241], especially for emerging or transverse domains, where classical
methods tend to fall short.

Quite a few options exist for expansion. If the seed is considered globally,
literature with references combinations present in the seed, but not in particular
papers, is recalled. However, not specific cites should be ruled out, which may
require information from the whole database; conversely, if only combinations
at the paper level are allowed (strict bibliographic coupling), a typical litera-
ture is missed; cluster-level enrichment, if a previous breakdown into clusters
is available, stands in the middle. Besides the recall-oriented aim, these hybrid
protocols may also enhance precision by submitting the core itself to biblio-
graphic coupling constraints. In the same line, an elaborate strategy starting
with lexical queries and query expansion, completed by journal selection and
ending by collecting citing papers, is proposed in [267].

Parallel Design

As described above in Sect. 3.4.3, parallel design allows for comparison especially
when metrics and clustering methods are identical, so that the final outcomes
can be compared by factor analyses, parallel clustering-mapping and reordered
cross-tabulations. In parallel clustering, a similarity between clusters from dif-
ferent origins is defined after their degree of overlap, and then the inter-cluster
matrix, of small size, is easily displayed using a MDS-type method. The cross-
tabulation for example highlights strong relative overlaps with two strategies
in addition to choosing either the c-cluster or the w-cluster on a topic: (a)
precision-oriented: a heavy intersection between c-cluster and w-cluster sug-
gests a strong form of topic, strategy possibly extended to superclusters (c)
recall-oriented strategy, taking the union of c-cluster and w-cluster.

3.4.5 Conclusion

The various publication-linked networks, at least words and citations offer glob-
ally convergent views but not at the point that one can be happy with a single
solution: sociology of citing, collaborating behavior and writing rhetorics keep
some distance, and bibliometric protocols can choose to mix up all informa-
tion tokens or to combine parallel approaches at a final stage. Comparison and
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complementarity merit further endeavor. In practice, delineation cannot avoid
supervision and actors’ negotiation. Protocols of experts’ guidance for evalua-
tion purposes are desirable. Cross-validation of parallel processes, and even in
some cases of sequential processes [241] may alleviate the burden of multistep
external validation. There are strong indications that multi-network methods
improve the recall and offer richer substance to expert/user discussions, but
more benchmark studies against ground truth are needed.

3.5 Delineation Schemes and Conclusion

3.5.1 Delineation Schemes
IR Search First

A scheme of bibliometric study asking for careful delineation may be as follows:

• For memory sake, selection of the expert/peers panel, matching the ex-
pected variety of the domain.

• Supervised IR search on specialized journals and specific vocabulary, aim-
ing at precision, building up the core of the domain. Alternatively, use
of cited cores at the article or author level. The granularity is, typically,
the document level. In favourable cases, some partial query formulas are
found in literature.

• Query expansion or bibliometric expansion with citations (the latter usu-
ally requiring lighter supervision). The query expansion is conducted glob-
ally or query by query. Optionally a round of data analysis/clustering can
suggest rephrasing or complementing the queries (Fig. 3.6).

• Evaluation of outcomes especially on borderline. In multilevel processes,
the border region typically stands between high-precision cores/seeds (or
low-recall expanded set) and high-recall expanded set. Circles of expansion
with expected relevance indexes (example in Sect. 3.4) enlighten decision,
again optionally supported by thematic clustering/mapping.

Clustering/Mapping First

Regional overset maps are expected to contain all the target, and the decisions
on border regions are typically made at the cluster level. Granularity obviously
matters: we cannot expect that any high-level clustering of global or superlocal
science will directly produce a class retrieving the target domain as a whole.
A lower-level breakdown yielding fine-grain delineation of the frontier will be
preferred, with a number of subareas large enough to match the diversity of the
domain and eventually increase precision, but small enough to make cluster-
level expertise feasible. Reasonably, the granularity picked fulfils two objectives,
aiding the delineation and preparing the study of the domain’s subareas.
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query	expansion,	high	precision	se2ng	

ini3al	queries	

bo6om-up	from	ini3al	search	to	query	expansion	

query	expansion,	high	recall	se2ng	

A	–	IR	SEARCH	-	EXPANSION:	BY	QUERY	

query	expansion,	high	precision	se2ng	

ini3al	queries	

bo6om-up	from	ini3al	search	to	query	expansion	

query	expansion,	high	recall	se2ng	

B	–	IR	SEARCH	-	EXPANSION:	GLOBAL	

Figure 3.6: IR search and mapping approaches (1/3). (A) IR process: bottom-up
queries and expansion of individual queries. Assumed at the paper-level. (B)
variant of A: expansion based on the entire set (lexical or citation-based). The
border area, to be discussed, is typically determined by the region between high-
precision seed (or a low-recall expanded set) and a high-recall set. Circles of
expansion in the border region, if indirect indicators or relevance are available,
can drive the choice of delineation.
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border	area:	call	for	decision	(area	between	low	and	high	recall	extension)	

preselected:	in	(op3on	here:	low-recall	extension)	

C	–	LOCAL	MAP	WITH	CORE/SEED	PROJECTION	 from	clustering	of		B	(alterna3vely:	A)			

inner	circle:	frac3on	in	core/seed	

preselected:	out	

border	area:	call	for	decision	(low	and	medium	core-seed	docs	%age)	

preselected:	in	(high	%age	of	core-seed	docs)	

top-down	from	general	map	to	working	overset	
and	then	detailed	evalua3on	area	

D	–MAP	WITH	CORE/SEED	PROJECTION	

Figure 3.7: IR search and mapping approaches (2/3). (Optional C) local cluster-
ing from B data (alternatively: from A data). Clusters are helpful for discussion
but the border region and the decision tools may exist in A or B stages. The
map is local and in the general case is not superimposable to a fraction of
the global map D. A discussion on global vs. local mapping is found in [179].
(D) global mapping/clustering: top-down from global or overset map to the
target; detection of border area.



54 CHAPTER 3. DELINEATION OF SCIENTIFIC FIELDS

In the perspective of cluster evaluation procedure, possibly time-consuming
and costly, it is recommended to rely on a lightly supervised preselection of the
border region, located between the internal core, a priori deemed “in,” and the
external zone deemed “out.” Depending on the clustering-mapping protocols
chosen (see the sketch Fig. 3.7), various solutions can address this preselection,
for example:

• Clustering with IR Search Projection. For this preselection, most helpful is
the simultaneous representation of a global map (or at least of an overset-
map) obtained on one criterion and cluster-level properties on another
criterion. The projection of local features over a large context is often
used: in two-steps protocols, seeds for example are projected on clusters
in the expanded set [241] with the ratio of seed articles as indicator for
delineation. Another combination: a global map conveys a particular vi-
sion depending on the network represented and the methodological choices
made, and the hits of a IR search on a lexical marker (with a generous
setting for recall) alerts on clusters of interest. In Fig. 3.2 for example the
central communities might be considered as belonging to a core, whereas
distant colonies, on the borders, require evaluation. Such cases illustrate
the complementarity of IR and mapping techniques for avoiding silence
both on weak and strong signals, as mentioned above. An alleviated pro-
cess uses the projection of specialized journals literature onto a global map
[177]. Such processes help pinpoint clusters forming the border region as
“decision area” and/or suggest journals or groups of papers as candidates
for extending a core. Clusters may also undergo a complementary stage
of query expansion or bibliometric expansion, typically transforming —
in a given universe — a hard partition into an overlapping structure. For
the domain delineation, only the overlaps involving the border region will
matter for the final outcome.

• Crossing methods. An alternative is the crossing of literature sets pro-
duced by different techniques or upon different networks. Instead of
the standard core-periphery schemes, visualization may confront cogni-
tive viewpoints, where areas of convergence (overlaps) are considered as
strong forms (another form of core) and non-overlapping parts as possi-
ble extensions to be validated. An example of crossmaps was shown in
Sect. 3.4. In the limit case of Boolean formulas addressing the whole do-
main to delineate, this would be equivalent to running a word-based search
AND/OR a citation-based search. The AND clause yields the strong form
and the OR clause a possible expansion along two branches, words and
citations.

The principle can be extended in a pragmatic way, given that (a) data
analysis methods are not very robust and tend to yield quite different
outcomes (b) data from different networks do not lead to identical results
(poly-representation). Therefore the combination of methods, or the com-
bination of networks, provides both ways to enhance precision (“strong
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forms” where outcomes of different reliable methods converge), and ways
to enhance recall, in divergence areas, at some risk. Zones of strong con-
vergence can be considered “in.”

• Decision Region and Cluster Evaluation (Fig. 3.8).

– Evaluation at the cluster level. Again, thematic clusters are under-
stood here in a broad meaning, whatever the data analysis method
used. As a rule, there is no ground truth making the evaluation
of recall, precision and F-scores or variants straightforward, so the
relevance of each cluster has to be assessed by indirect indicators
and/or supervision based on available cluster data. A manual light
expertise uses cluster aggregate information such as label, pseudo-
title recomposed from most specific words or phrases, ranked list of
words, specific journals, cited authors/institutions, etc. Specificity of
attributes is calculated by Tf-Idf or other indexes. Features from a
previous IR or mapping process, say ratios of expansion to core, or
results from crossmaps, are particularly helpful. Map displays using
pleasant interfaces make the task easier.

– Evaluation at finer granularity level. Finer-grain information can
be available from the delineation protocol: IR projections of good
quality onto a map; clusters crossings from hybrid methods; combi-
nation with zones of bibliometric expansion, etc. In such cases the
border region may be treated at the infra-cluster or the document
level. In pure mapping exercises, the cluster level may simply reveal
too coarse, with exceedingly large or heterogeneous groupings. In
this case, one has to go deeper in the cluster composition, through
sampling for detailed analysis or further breakdown, at a cost.

The driving of evaluation is conditioned by the mastering of methodolog-
ical effects and biases, likely to yield very different outputs. A particular
attention, at the domain level, should be brought to the tendency of met-
rics and methods to favor particular semantic dimensions: to what extent
can a domain be extended towards its intellectual base, especially theoret-
ical foundations? Towards its tools and techniques? Towards its objects
and products? Decision rules, in absence of a IR standard, will be based
on quantitative indicators of the process, for example the intensity of bib-
liometric linkages in expansion stages, and experts’ advices in terms of
subjective precision, recall, and their balance (tantamount to variants of
F-score). The convergence of experts’ preferences, with the help of self-
rating, may be taken into account.

3.5.2 To Conclude
Delineation at the meso-level deals with intermediary objects. Models in Price’s
tradition cast some light on the dynamics of the whole scientific system, whereas
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E	–	SELECTION	ON	MAP	

Figure 3.8: IR search and mapping approaches (3/3). (E) evaluation and decision
on clusters in border area.

network theory proposes, at the micro-level, various mechanic models explaining
emergence of meso-structures. The connection with practical solutions for topic
and domain delineation, a rather multidisciplinary issue, will stimulate many
research projects.

In practical studies, delineation operations should respect the proportional-
ity principle. In simple cases, specialized and mature fields, the domain can
be defined by using ready-made resources: official classifications, databases
schemes. The complex cases which typically justify scientometric field studies
— multidisciplinary, generic and emerging/unsettled domains — are precisely
those where delineation and expertise are the more challenging. Coarse-grain
approaches (journal-level) are easier to implement, but again hindered by locally
complex network and abundance of non-specific media.

Bibliometrics both exploits and feeds science classification resources, liter-
ature searching and mapping models and human skill. Validation procedures
include cross analyses and direct supervision. The delineation tasks pull to-
gether multiple strands of bibliometrics and IR. They inherit progress in data
and network analysis, as well as common limitations in data coverage, robust-
ness issues, ergonomy challenges with respect to supervision and discussions
with sponsors. Bibliometrics cannot pretend to operationalize in a standard
manner all questions from decision-makers nor, in cognitive applications, all
questions from sociologists of science and other scholars.

Within the scope where “bibliometric hypothesis” applies, a horizon of de-
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lineation is the comparison and combination of solutions from the networks
which reflect scientific activity, essentially actors and institutions, citations and
texts. Taking advantage of all available facets of data is a pragmatic choice, to
which the concept of poly-representation has given a theoretical support. The
cross-study of the three main universes associated to documents is also gaining
attention in bibliometrics and sociology of research, supported by social net-
work analysis. The theoretical profusion around models of growth and decline
of communities is perhaps not settled now, but is very promising for under-
standing the invisible colleges in its various aspects. Will this multi-network
research track converge towards unified hypotheses? There is little doubt that
progress in this matter will enlighten the delineation issue especially in emerg-
ing areas. Meanwhile, the question remains whether networks should be fully
hybridized with more or less radical techniques — substantive or featureless —
or various networks solutions be conducted in parallel with final synthesis. In
the background, the tremendous potential of deep learning on big science data
is likely to reshuffle cards in retrieval and classification methods. The prospects
are unclear right now, as their lack of explainability is a serious drawback in the
bibliometric delineation context.

The management of supervision is central to the feasibility of bibliometric
studies and their delineation tasks. Configurations are diverse, one cannot com-
pare simple problems requiring light supervision, with large studies on contro-
versial areas. In the latter case, the operators of the study deal with a possibly
complex managerial organization, with steering committees and expert panels
mixing policy makers, stakeholders and scientists, possibly with multiple roles.
The selection of data sources and the methods of supervision, and finally the
perimeter of the domain, will reflect those social stakes. The definition of fields
or disciplines is particularly sensitive to academic interests, epistemic convic-
tions and border issues, likely to create conflictual visions, sometimes between
external observers and established players. The panel composition, to be ef-
ficient, should match the diversity of the domain, both in terms of thematic
specialization and social stakes, with possibly some help from a few high-level
generalists. In the mediation role, bibliometrics is also a social practice.

Bibliometric studies, if commissioned by administrations or institutions, en-
ter a complex landscape of decision-help procedures where quantitative propos-
als are elements of discussion and decision among others. The question is vaster,
however. Gläser et al. [26] underline the differences between operational defi-
nitions (say method outputs), pragmatic definitions (for clients and sponsors),
and theoretical definitions (talking to science studies) of topics or domains. The
notion of scientific domains is mobilized for a wide scope of purposes, labelling,
information and evaluation in scientific institutions, science administration, IR
databases of any kinds, laboratory life, scientists’ self-positioning and last not
least the reflexive work of scientometricians and social scientists on understand-
ing the mechanisms of scientific activity.
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