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Abstract By considering a graph as a network of resistances, Klein and
Randić [14] proposed the definition of a distance measure. Indeed, if each edge
of the graph represents a resistance of 1Ω, the equivalent resistance of the
graph between each pair of vertices may be used as a distance. Based upon
random walks in graphs, Stephenson and Zelen [17] built a computational
model to find the probability that each edge is used. From a mathematical
point of view, both articles are based upon exactly the same model and the
link between random walks and the electrical representation was established
by Newman [16] when defining an alternative to Freeman’s betweenness cen-
trality [9,10] based upon random walks.

In the present paper, the similitude between these two processes is ex-
ploited to propose a new random walks based distance measure that may be
defined as the expected length of a walk between any pair of vertices. We call
it the expected distance and we prove that it is actually a distance. From
this new definition, the RW Index is proposed that sums the expected walks
lengths between pairs of vertices exactly in the same way as the Wiener index
sums the shortest paths distances or the Kirchhoff index sums the equivalent
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resistances. We compare the three indices and establish the vertex and the
edge decompositions for both. We compute some value of the RW index for
some families of graphs and conjecture the upper and lower bounds of the RW
index.

Keywords random walks · distance · topological index · graph
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1 Introduction

Let G = (V,E) be a graph without loops or multiple edges on n = |V | vertices
and m = |E| edges. All basic definitions can be found in [5]. A graph G is said
connected if there exists a sequence of edges joining any pair of vertices, i.e.
there exists a geodesic path between any pair of vertices. Connected graphs
with minimum number of edges are called trees. Then, a tree on n vertices has
n− 1 edges. We consider in this paper only connected graphs.

The Wiener index [18], likely the oldest and most popular topological index,
was originally defined for trees as:∑

(s,t)∈E

ns × nt, (1)

where ns is the number of vertices of the connected component containing s
if the edge (s, t) was removed, and similarly for nt. In trees, the Wiener index
corresponds to the sum of distances between pairs of vertices in G:

W (G) =
1

2

∑
s∈V

∑
t∈V

dst =
∑

s<t∈V
dst, (2)

where dst denotes the distance between s and t, i.e. the number of edges in
a geodesic path joining s and t. The definition given in (2) easily extends to
general graphs and is commonly used as the definition of the Wiener index.

The concept of distance is a key feature in the design of molecular descrip-
tors. However, the distance based upon the geodesic paths has only integer
values and inevitably has the same value for a large number of pairs of ver-
tices. To overcome this weakness, Klein and Randić [14] proposed an alter-
native way to define the distance between pairs of vertices. Considering the
graph as a network of resistors and each edge being associated to a resistor
of 1Ω, they proposed to consider the equivalent resistance rst between s and
t as the definition of the distance between s and t. Then, analogously to the
Wiener index, the sum of the equivalent resistances among all pairs of vertices
corresponds to the Kirchhoff index. In practice, these equivalent resistances
can be computed from the flow conservation used for electric circuits. The
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latter could be described as a set of equations characterized by the Laplacian
matrix L = D −A where D is a diagonal matrix of degrees whereas A is the
adjacency matrix.

Studying random walks in social networks, Stephenson and Zelen [17] also
used a matrix that turns out to be related to the Laplacian matrix. The analogy
between random walks and electric circuits was later demonstrated formally
by Newman [16]. Indeed, considering a unit flow of 1 ampere (1A) between two
vertices s and t, the intensity on a given edge e of the network corresponds
to the probability that e is used by a random walk from s to t. A general
reference to random walks on graphs is given by Doyle and Snell [6].

In this paper, we introduce the expected distance between any pair of ver-
tices as the expected length of a path between them based upon the so-defined
probabilities in random walks. Instead of only considering the shortest paths
between pairs of vertices as the Wiener index does, from this distance, we
define a new index based on Random Walks, called RW index.

In Section 2, we present required background on random walks. In Sec-
tion 3, we define the expected distance and the RW index while we compare
the latter to the Kirchhoff and the Wiener indices in Section 4. In Section 5, we
propound a decomposition of the RW index based upon edge or vertex central-
ity measures and the relation with a similar decomposition of the Wiener [4]
and Kirchhoff indices. The values of the RW index for some families of graphs,
conjectures on their bounds and partial results are presented in Section 6 while
Section 7 concludes.

2 Background

As explained in the introduction, the Wiener index of a graph G is usually
defined by the sum of distances between pairs of vertices:

W (G) =
1

2

∑
s∈V

∑
t∈V

dst =
∑

s<t∈V
dst (3)

This index gives an indication on how pairs of vertices are close. Another simi-
lar index is the Kirchhoff index. Before defining this index, we give some basic
tools.

The mathematical aspects involved in the present paper are related to the
use of a graph as representation of an electrical circuit. Suppose a graph G that
represents a network of resistors, each edge corresponding to a unit resistor.
If an electrical flow of 1A is sent through the network from vertex s to vertex
t, this flow will be distributed among the circuit in a way that respects both
the flow conservation equations and the electrical properties of the resistors.
Indeed, according to the flow conservation rule, the sum of flows from s is 1
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as well as the sum of flows to t and the net flow, i.e. the difference between
inflow and outflow, associated to each other vertex is always 0. These rules
are described by the following equations, where iuvst is the intensity of the flow
from u to v when s is the source and t is the sink:∑

k:(s,k)∈E

iskst = 1 (4)

∑
k:(t,k)∈E

itkst = −1 (5)

∑
k:(q,k)∈E

iqkst = 0 ∀q ∈ {1 . . . n} \ {s, t} (6)

The physical representation of the resistor is such that if an intensity iuvst flows

through the edge (u, v) from u to v, the potentials d
(u)
st and d

(v)
st in these vertices

will respect the following general equation:

Potential Difference = Resistance × Intensity. (7)

In our case, with the appropriated notation, it means that

d
(u)
st − d

(v)
st = iuvst , (8)

since the edge (u, v) has a resistance of 1Ω. A consequence is that

−1 6 d
(u)
st − d

(v)
st 6 1 ∀(u, v) ∈ E. (9)

The potential d
(u)
st associated to each vertex u could be computed by the

resolution of the system of equations (4)-(6) and (8). Actually, this system of
equations are represented by a matrix equation, where appears the Laplacian
matrix L:

LV = S, (10)

where V =
{
d
(v)
st

}
is the vector of potentials and S is the net flow vector.

Accordingly, S has 0 entries at each position except s and t where they are 1
and −1 respectively. The problem of computing the flow on each edge consists
in finding the potential vector V in (10). From a technical point of view, since
only differences between potentials are considered, adding a constant to each
potential will not affect the realizability of the system, which has actually an
infinity of solutions. Indeed, 0 is always an eigenvalue of L and an associated
eigenvector is the vector V1 whose all of its components are 1. Accordingly,
the matrix L is not invertible. A way to handle this problem and to find a
solution in (10) is to consider a similar system by adding 1 to each entry of L,
as used by Klein and Randić [14]. Other methods can be used [12,16] to solve
(10). The obtained system will then have a unique solution that will also be a
solution to the original problem, since the sum of the lines of matrices L and
S are both equal to 0.
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From a physical point of view, the equivalent resistance rst between s and
t is obtained by (7):

d
(s)
st − d

(t)
st = rst × ist = rst (11)

since the global intensity ist from s to t is 1A.

Now, since we have all tools, we can define the Kirchhoff index [14]: it is
the sum of equivalent resistances among all pairs of vertices in a graph G, i.e.

Kf(G) =
1

2

∑
s∈V

∑
t∈V

rst =
∑

s<t∈V
rst. (12)

Notice that the equivalent resistance may also be computed using the power
dissipation law, which is described by the following general equation:

Dissipated Power = Potential Difference × Intensity. (13)

The dissipated power Puv
st on an edge (u, v) between s and t is rewritten:

Puv
st = (d

(u)
st − d

(v)
st )× iuvst

by (8)
= (d

(u)
st − d

(v)
st )2. (14)

Since the global dissipated power Pst between s and t is the sum of dissipated
powers on each edge, this global dissipated power is then

Pst =
∑

(u,v)∈E

(d
(u)
st − d

(v)
st )2. (15)

From a high point of view, the latter is also, by (13),

Pst = (d
(s)
st − d

(t)
st )× ist

ist=1
= d

(s)
st − d

(t)
st

by (11)
= rst, (16)

thus the equivalent resistance rst between s and t is defined by d
(s)
st − d

(t)
st , as

well as ∑
(u,v)∈E

(d
(u)
st − d

(v)
st )2.

3 The expected distance and the RW index

Based upon the same model as the electric one, when viewing the network
from the random walks point of view, we define the expected length d̃st of the
walk from s to t as the sum of the weighted lengths of paths from s to t.
Observe that the weight of a path is its probability, i.e. the absolute value
of its intensity. Moreover, the expected length d̃st can be decomposed by the
edges, i.e.

d̃st =
∑

(u,v)∈E

|d(u)st − d
(v)
st |. (17)
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As expected, the expected distance defined by the expected length be-
tween any pair of vertices is actually a distance, as established in the following
theorem.

Theorem 1 Let G = (V,E) be a graph. The expected distance is a distance
on V .

Proof By definition in (17), the expected distance is well-defined. Reversing
the source and the sink in a flow is imposed to take opposite potentials. Since
the expected distance is defined by means of the absolute value of difference
of potentials, it is symmetric. Separating distance is ensured because the only
case where all potentials are equal is when the source are the sink.

The last property to check is the triangle inequality. Let s, r, t be three
vertices in G. We need to prove that d̃st 6 d̃sr + d̃rt. By the electric property,
we know that if f1, respectively f2, is a flow through the network G from s to

r with potentials d
(.)
sr on V , respectively from r to t with potentials d

(.)
rt , then

f = f1 + f2 is a flow from s to t with potentials

d
(.)
st = d(.)sr + d

(.)
rt . (18)

Accordingly, we have

d̃st =
∑

(u,v)∈E

|d(u)st − d
(v)
st |

(18)
=

∑
(u,v)∈E

|(d(u)sr + d
(u)
rt )− (d(v)sr + d

(v)
rt )|

=
∑

(u,v)∈E

|(d(u)sr − d(v)sr ) + (d
(u)
rt − d

(v)
rt )|

6
∑

(u,v)∈E

|d(u)sr − d(v)sr |+
∑

(u,v)∈E

|d(u)rt − d
(v)
rt |

= d̃sr + d̃rt.

2

Similarly to the Wiener and the Kirchhoff indices, we define the RW index
of a graph G as:

RW (G) =
1

2

∑
s∈V

∑
t∈V

d̃st =
∑

s<t∈V
d̃st. (19)

4 Comparison of the Wiener, Kirchhoff, and RW indices

The following theorem establishes a comparison of the Wiener, Kirchhoff, and
RW indices for all graphs. In addition, it yields that these three indices are
the same only in the class of trees.



Expected distance based on random walks 7

Theorem 2 Let G = (V,E) be a graph, then we have:

Kf(G) 6W (G) 6 RW (G). (20)

Moreover, the following statements are equivalent:

(i) Kf(G) = W (G),
(ii) W (G) = RW (G),
(iii) Kf(G) = RW (G),
(iv) G is a tree.

Proof To be self-contained, we proof the first inequality. Let s and t be two
vertices of G. From an electric point of view, the equivalent resistance rst is
always the length dst of a shortest path from s to t when there is only one path
between s and t, otherwise the equivalent resistance is strictly smaller than
this value dst. Then, rst 6 dst for every pair of vertices s, t ∈ V . Accordingly,
Kf(G) 6W (G).

Now, we show the second inequality. Since the expected length d̃st is by
definition a convex combination of lengths of paths between s and t, d̃st is
always greater than the smallest length of these paths, i.e. d̃st > dst. Therefore,
W (G) 6 RW (G).

We focus on the equivalences. First, we assume that G is a tree. By
definition, there exists only one path between every pair of vertices. Thus,
rst = dst = d̃st for every pair of vertices s and t. Accordingly,

Kf(G) = W (G) = RW (G).

The last case is when G contains a cycle. Let C be an arbitrary cycle in G
with the ordered vertices v1, . . . , vk. According to the Kirchhoff’s circuit laws,
assuming that vk+1 = v1,

k∑
i=1

ivivi+1
v1v2 = 0,

i.e.

iv1v2
v1v2

=

k∑
i=2

ivivi+1
v1v2 .

Moreover, iv1v2v1v2 6= 0 since the edge (v1, v2) is the shortest path between v1

and v2. Accordingly,
∑k

i=2 i
vivi+1
v1v2 6= 0, i.e. there exists an edge (u, v) such that

iuvv1v2 6= 0. It is necessary that this edge is from a path from v1 to v2 with
non-zero probability. Notice that the length of this path must be greater than
dv1v2

= 1. Thus, there are 2 paths from v1 to v2 with a non-zero probability and
with different length, so dv1v2 < d̃v1v2 , which implies that W (G) < RW (G),
since dst 6 d̃st ∀s, t ∈ V . Moreover, by the same argument, we have that
rv1v2 < dv1v2 . Because for every pair of vertices s, t ∈ V , rst 6 dst, we conclude
that Kf(G) < W (G) and then Kf(G) < RW (G). 2
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5 Vertex and edge decompositions of Wiener, Kirchhoff, and RW
indices

5.1 Decompositions of the Wiener index

The computation of the Wiener index may be achieved through two distinct,
but related, concepts, that are the transmission and the edge betweenness [1,9,
11]. Recall that the edge betweenness of an edge e is defined [11] as the number
of shortest paths between pairs of vertices that use e. On the one hand, the
transmission Tv of the vertex v is defined as:

Tv =
∑
u∈V

duv. (21)

The vertex decomposition of the Wiener index is naturally:

W (G) =
1

2

∑
v∈V

Tv. (22)

On the other hand, if buv denotes the edge betweenness associated to the edge
(u, v), then Caporossi et al. [4] proved the edge decomposition of the Wiener
index, i.e.

W (G) =
1

2

∑
u∈V

∑
v:(u,v)∈E

buv =
∑

(u,v)∈E:u<v

buv. (23)

5.2 Decompositions of the Kirchhoff index

Similarly to the decompositions of the Wiener index through transmission
and edge betweenness, one can also decompose the Kirchhoff index through
the related concepts of equivalent resistance and power dissipation. As stated
by Klein and Randić [14], the equivalent resistance between any pair of vertices
may be considered as a distance measure. It is then possible to compute the
resistance transmission RTv of a vertex v as follows:

RTv =
∑
u∈V

ruv. (24)

The Kirchhoff index then writes by the following vertex decomposition:

Kf(G) =
1

2

∑
v∈V

RTv (25)

If Puv the power dissipation associated to each edge (u, v), independently of
the source and the sink, is defined by:

Puv =
∑
s,t∈V

(
d
(u)
st − d

(v)
st

)2
, (26)
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then the edge decomposition of the Kirchhoff index of a graph G is:

Kf(G) =
1

2

∑
u∈V

∑
v:(u,v)∈E

Puv =
∑

(u,v)∈E:u<v

Puv. (27)

5.3 Decompositions of the RW index

In the same way as the Wiener and the Kirchhoff indices, the RW index can
be decomposed according to vertices and edges. As the transmission is defined
by the use of shortest paths, the random walks transmission RWTv of a vertex
v is defined as:

RWTv =
∑
u∈V

d̃uv. (28)

The vertex decomposition of the RW index of a graph G is then

RW (G) =
∑
v∈V

RWTv. (29)

Moreover, the edge decomposition of the Wiener and the Kirchhoff indices
can be also extended to the RW index. Indeed, while the edge betweenness
represents the number of shortest paths through pairs of vertices that uses a
given edge, the random edge betweenness rbuv of the edge (u, v) represents the
sum of the probabilities that the edge (u, v) is used over all pairs of vertices
as follows:

rbuv =
∑
s,t∈V

|d(u)st − d
(v)
st |. (30)

Accordingly, the RW index of a graph G has the following edge decomposition:

RW (G) =
1

2

∑
u∈V

∑
v:(u,v)∈E

rbuv =
∑

(u,v)∈E:u<v

rbuv. (31)

5.4 Further remarks

As the adjusted1 vertex betweenness [4], a vertex related value, was defined
by

b′v =
∑

u:(u,v)∈E

buv, (32)

1 We are interested by the adjusted vertex betweenness, a centrality measure computing,
for a given vertex u, the number of pairs of vertices such that u belongs to the shortest
path between this pair of vertices. This definition allows that u can be an extremity of the
shortest path, at the opposite of the vertex betweeness defined by Freeman [9,10].
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we can define, in the same way, the vertex power dissipation pv and the vertex
random betweenness rbv of a vertex v by the following equations:

pv =
∑

u:(u,v)∈E

puv, (33)

rbv =
∑

u:(u,v)∈E

rbuv. (34)

6 Bounds and values of the RW index

6.1 Value of RW index for some families of graphs

In this section, we study the RW index for some families of graphs: paths,
cycles, complete graphs and stars. Recall that a star is a tree on n vertices
with a vertex of degree n− 1.

Theorem 3 We denote by

– Cn a cycle on n vertices,
– Pn a path on n vertices,
– Sn a star on n vertices,
– Kn a complete graphs on n vertices.

Then, the following results yield:

(i) RW (Cn) = RW (Pn) = n
6 (n2 − 1),

(ii) RW (Sn) = RW (Kn) = (n− 1)2.

Proof As mentionned in Theorem 2, in the class of trees, the three indices
match. Moreover, Entringer, Jackson and Snyder [7] proved that W (Pn) =
n
6 (n2 − 1) and W (Sn) = (n− 1)2, proving two of the four equalities.

We consider the cycle Cn on n vertices. Since every vertex has the same
role in the graph, we can fix one of them, say s, as a source. Let k be the
distance between the source and the sink. By the property of the cycle, there
are only two paths between s and t: one of length k and another one of length
n−k. So, the potential difference all along each path is constant and inversely
proportional to its length, i.e. the shortest path has a probability of n−k

n and
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the longest one k
n . Accordingly,

RW (Cn) =
1

2

∑
s∈V

∑
t∈V

d̃st

=
n

2

n−1∑
k=1

(
k
n− k
n

+ (n− k)
k

n

)

=
n

2

n−1∑
k=1

2

n
(k(n− k))

=

n−1∑
k=1

(k(n− k))

=
n

6
(n2 − 1).

The last case is the complete graph Kn. We fix arbitrarily a vertex s as a
source and another vertex t as a sink, since every pair of vertices has the same
feature. Paths of length strictly greater than 2 receive 0 as probability because
theses paths contain at least two successive vertices, distinct from the source
and the sink, and because these two vertices have an identical role, and so the
same potential. Thus, paths with non-zero probability have length 1 or 2. By
a similar argument of the previous case, there are one path of length 1 with
probability 2

n and n− 2 paths of length 2 with probability 1
n . Therefore,

RW (Kn) =
1

2

∑
s∈V

∑
t∈V

d̃st

=
1

2
n(n− 1)

(
2

n
+ (n− 2)

2

n

)
= (n− 1)2.

2

6.2 Bounds on RW index

We observe that in the class of trees, stars and paths are extremal graphs
of the RW index, since it is the case for the Wiener index [7]. More gener-
ally, we present the two following conjectures for extremal graphs, found by
AutoGraphiX [2,3].

Conjecture 1 The graph on n vertices that minimizes the RW index is either
the star Sn or the complete graph Kn.

Conjecture 2 The graph on n vertices that maximizes the RW index is either
the path Pn or the cycle Cn.
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If previous conjectures are true, we deduce the following conjecture by
Theorem 3.

Conjecture 3 Let G be a graph. Then,

(n− 1)2 ≤ RW (G) ≤ n

6
(n2 − 1).

Since the intensity of the edges are also related to the number of spanning
trees [13,15], it is interesting to observe that the graphs on n vertices minimiz-
ing the number of spanning trees [8] are exactly the ones minimizing the RW
index, according to the Conjecture 1, and that is not the case for the Kirchhoff
index.

7 Concluding remarks and extensions

A possible extension of the RW index could be on graphs with weights on the
edges. Indeed, in this paper, we consider the case when each edge is associated
to a resistor of 1Ω. In the case of weighted graphs, we could set a resistor of
weΩ on each edge e with the weight we.
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