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On Quantum Slide Attacks
Xavier Bonnetain1,2, María Naya-Plasencia2 and André Schrottenloher2
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2 Inria de Paris, France

Abstract. At Crypto 2016, Kaplan et al. proposed the first quantum exponential
acceleration of a classical symmetric cryptanalysis technique: they showed that, in
the superposition query model, Simon’s algorithm could be applied to accelerate the
slide attack on the alternate-key cipher. This allows to recover an n-bit key with
O(n) quantum time and queries.
In this paper we propose many other types of quantum slide attacks, inspired by
classical techniques including sliding with a twist, complementation slide and mirror
slidex. These slide attacks on Feistel networks reach up to two round self-similarity
with modular additions inside branch or key-addition operations. With only XOR
operations, they reach up to four round self-similarity, with a cost at most quadratic in
the block size. Some of these variants combined with whitening keys (FX construction)
can also be successfully attacked.
Furthermore, we show that some quantum slide attacks can be composed with other
quantum attacks to perform efficient key-recoveries even when the round function is
a strong function classically.
Finally, we analyze the case of quantum slide attacks exploiting cycle-finding, that
were thought to enjoy an exponential speed up in a paper by Bar-On et al. in
2015, where these attacks were introduced. We show that the speed-up is smaller
than expected and less impressive than the above variants, but nevertheless provide
improved complexities on the previous known quantum attacks in the superposition
model for some self-similar SPN and Feistel constructions.
Keywords: quantum cryptanalysis, slide attacks, Feistel networks, Simon’s algorithm,
Kuperberg’s algortihm, slidex attacks, cycle finding

1 Introduction
For a long time, symmetric primitives were believed easy to protect against quantum
adversaries, by simply doubling the key length. As Grover’s algorithm allows to perform
an exhaustive search in the square root of the classical time, this counter measure was
supposed to provide an equivalent ideal security as before. However, little was known on
the attacks a quantum adversary could perform.

Indeed, many new results have recently appeared in this direction, like quantum
generic meet-in-the-middle attacks on iterative block ciphers [Kap14], quantum linear
and differential attacks [KLLN16b], an analysis of the FX construct against quantum
adversaries [LM17], improved algorithms for collisions or multicollisions [CNS17, HSX17]
and [KM10, KM12, Bon18] that respectively analyze the security of 3-round Feistel schemes,
the Even-Mansour construction and quantumly break the AEZ primitive for authenticated
encryption.

Related work. In [KLLN16a], Kaplan et al. considered the superposition query model
and, amongst other results, provided for the first time an exponential acceleration of
a classical cryptanalysis. Using Simon’s algorithm [Sim94] the complexity of quantum
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slide attacks on the alternate-key cipher with bit-wise additions was shown to be of
O(n) in that model. In [AR17] some ideas for countering these attacks were proposed.
The most interesting one, using modular addition, has recently been studied in detail
in [BNP]. This paper provides detailed cost estimates of attacks built over Kuperberg’s
algorithm [Kup05], that applies to modular additions (while Simon’s algorithm only
concerns bit-wise additions). The authors also propose an algorithm for the case of several
parallel modular additions and estimate the cost thereof.

In an independent and very recent result [DDW18], quantized versions of some advanced
slide attacks on 2k- and 4k-Feistel schemes were proposed. They correspond respectively
to Section 3.4 and a small part of Section 5. The authors also propose a quantum attack
on GOST, which is not linked to quantum slide attacks. In [DW17], the three round
distinguisher of [KM10] is exploited to reduce by three the number of keys to search for in
a Feistel cipher with independent keys. In [HS17], some meet-in-the-middle attacks on
Feistel constructions are proposed, in a more restricted model, and the same observation
as [DW17] is presented.

Motivation and Summary of our results. In this paper we propose the quantized
version of several advanced slide attacks proposed in [BW00], like slide attacks on Feistel
constructions, the complementation slide attack and the slide with a twist technique. We
also present situations where quantum attacks can be composed, allowing for instance to
perform efficient key-recovery attacks even when the round functions are clasically strong.
We provide the complexities of these attacks when the key is inserted with bitwise-addition
(where Simon applies), or with modular additions.

We also propose a quantum version of mirror slide attacks from [DDKS15], and quantum
slide attacks exploiting cycle finding, as was proposed in [BOBDK18]. We show that the
quantum speedup of the latter is much smaller than expected by the authors.

All these attacks contribute to a better understanding of the post-quantum security of
symmetric primitives.

We display in Section 1 all quantum improvements of existing slide attacks that we
know of, including our new results.

Organization. The paper is organized as follows. Section 2 presents some preliminaries,
as the quantum algorithms used in the paper, and the general principles of slide attacks.
Section 3 proposes new quantum advanced slide attacks, considering XOR and modular
additions with respect to the ones from [BW00] and [DKS15], mainly considering Feistel
networks. Section 4 presents new attacks composing quantum algorithms even when the
round function is classically hard to attack, with an improved version of encased algorithm
when the key and branch transformations are the same. Section 5 combines the principles
of the previous sections to attack 4-round self-similar Feistel ciphers. Section 6 describes
our quantum slide attacks when exploiting cycle finding, and the paper is concluded in
Section 7.

2 Preliminaries

In this section we provide a brief introduction to classical and quantum slide attacks, the
considered quantum adversary model, and some quantum algorithms used throughout the
paper. A description of the results from [KLLN16a] regarding quantum slide attacks using
Simon’s algorithm is also given. A summary of the classical attacks we considered can be
found in the Appendix.



Xavier Bonnetain, María Naya-Plasencia and André Schrottenloher 3

Table 1: Quantum slide attacks

Cipher Attack details Queries Decryption
oracle

Source

1k-Feistel (XOR) Basic slide n/2 [DDW18]
1k-Feistel (additions) Basic slide 21.2

√
n Section 3.2

1k-Feistel (any) Composed slide n/2 to 22.4
√

n Section 4
2k-Feistel (XOR) Complementation n2n/4 Section 3.3
2k-Feistel (XOR) Sliding with a twist n/2 Yes [DDW18]
2k-Feistel (XOR) Composed slide n Section 4
2k-Feistel (additions) Complementation 21.2

√
n+n/4 Section 3.3

2k-Feistel (additions) Composed slide 21.8
√

n Section 4
3k-Feistel (any) Cycle finding 2n/2 Section 6.3
4k-Feistel (XOR) Complementation,

sliding with a twist
4n2 Yes Section 5

4k-Feistel (XOR) Enhanced reflection 2n/4 Section 5.3
4k-Feistel (any) Cycle finding 2n/2 Section 6.3
4k-Whitened Feistel
(DESX) (XOR)

Complementation,
sliding with a twist

n22n/4

n2n/4 (Distinguish)
Yes Section 5

2k-Whitened Feistel
(DESX)

Mirror slidex n2n/4 Section 5

4k-Whitened Feistel
(DESX) (variant)
(XOR)

Mirror slidex n (Distinguish) Yes Section 5

1k-SPN (XOR) Basic slide n [KLLN16a]
1k-SPN (additions) Basic slide 21.8

√
n Section 3.1

2k-SPN (any) Grover-meet-Simon n2n/2 [LM17]
2k-SPN (any) Cycle finding 2n/2 Section 6.3

2.1 Classical Slide Attacks
Slide attacks were introduced in [BW99]. In their common principle, they are applied
independently from the number of rounds, by exploiting structural properties of the cipher,
especially self-similarity.

Notations. We consider a cipher Ek : {0, 1}n → {0, 1}n, constructed from a round
function F (x, k) : {0, 1}n × {0, 1}m → {0, 1}n applied a certain number of times. There
are r rounds and they use round subkeys k1, . . . kr derived from the master key K of
the cipher. In such constructions, we consider mainly two group operations: the bitwise
xor addition, denoted ⊕, and the modular addition, denoted +. By abuse of notation, a
general group law will also be denoted +.

Assumptions. We assume that F is a weak function, in the sense that given a pair of
equations F (x1, k) = y1 and F (x2, k) = y2, it is computationally easy to retrieve the key
k. Notice that in some settings, F may be more difficult to attack; in which case we will
need more of these equations. Moreover, the notion of weakness is broader in a quantum
setting. This is developed in Section 4.

Basic slide property. Suppose that all the round subkeys are equal: k1 = k, . . . kr = k;
i.e the scheme is one-round self-similar. From the structure of the cipher, which is r similar
applications of the same permutation x 7→ F (x, k), we may write a simple equality, the
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P0 F (·, k) F (·, k) . . . C0

P1 F (·, k) . . . F (·, k) C1

Figure 1: Illustration of the basic slide property

slide property:

EK(F (x, k)) = F (EK(x), k) (1)

Basic slide attack. The goal of the attacker is to find two pairs x, y satisfying F (x, k) = y.
The birthday paradox implies that, among O

(
2n/2) plaintext-ciphertext couples P,C, there

exists a slide pair : P0, C0 and P1, C1 such that F (P0, k) = P1. In that case, we also have:
F (C0, k) = C1. Since we suppose F weak, these two equations suffice to retrieve the key k.
Hence, the simplest attack setting consists in performing O

(
2n/2) queries, then checking

for each pair P0, C0 and P1, C1 if it is a slide pair; and in that case returning the key k.
This requires O

(
2n/2) memory and O(2n) time independently of the length of k (as soon

as the slide equations allow to retrieve it).

Example of weak round function. In the case of a keyed permutation F (x, k) = k⊕Π(x),
as shown in Figure 2, a slide pair (P0, C0), (P1, C1) satisfies F (P0, k) = P1 i.e P1 = k⊕Π(P0),
which is equivalent to C1 = k⊕Π(C0). Hence it suffices to check if P1⊕C1 = Π(P0)⊕Π(C0).

P0

k

Π

k

Π . . .

k

C0

P1

k

Π . . .

k

Π

k

C1

P1

C0

Figure 2: Example of slide attack on a cipher with a weak round function

Slide attacks have been successfully applied to the TREYFER cipher, variants of DES
and Blowfish and Feistel constructions [BW99]. We do not study stream ciphers in this
paper and focus on block ciphers.

2.2 Some Definitions
We define quickly some generic constructions mentioned in the rest of this paper.

rk-Feistel and rk-SPN. We name rk-Feistel and rk-SPN versions of those ciphers where
the round keys form a periodic sequence of period r. In particular, 1k-Feistel denotes the
case where all subkeys are equal. It may be useful to see those schemes as a composition
of the same, repeated, but more intricate, round function F = F (k1) ◦ . . . ◦ F (kr).

Whitened Feistels. We also consider what has been called the DESX construction, which
consists in adding additional independent whitening keys to a Feistel cipher, that is:

WFeistel : {0, 1}k × ({0, 1}n)3 → {0, 1}n

( k , kx, ky,m ) 7→ ky ⊕ Feistel(k,m⊕ kx) .
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This is an example of the FX construction, which consists of applying key whitenings to a
block cipher.

In this paper, the notation rk-WFeistel refers to a rk-Feistel scheme augmented by key
whitenings.

2.3 The Attack Model
In this paper we consider the well introduced and defined model of superposition quantum
queries. It means that the adversary is not only allowed to perform local computations
on a quantum computer, but is also allowed superposition queries to a remote quantum
cryptographic oracle. Given a superposition of inputs to this oracle, it returns the
superposition of the outputs.

This setting has been described in [DFNS13, BZ13, Zha12]. The considered attacks will
be denoted as superposition attacks. This model, though strong, is simple and non-trivial,
and security in this model implies security in any other scenario. It is a well accepted
model and, for discussions on its importance, we refer to [GHS16] and [Gag17].

2.3.1 Cost Metric.

The cost metric we use is the number of quantum encryption/decryption queries we
perform, and the number of quantum gates we have to use. Our quantum time unit is the
cost of one query. We estimate that one quantum query costs Ω(n2) quantum gates, as we
are considering block ciphers, for which we want a dependency between all the input and
output bits. Hence, we estimate that an algorithm with n3 operations has a cost similar
as n queries.

2.4 Quantum Slide Attacks
Quantum Slide Attacks are built upon classical ones and they reduce drastically their
cost, thanks to the use of quantum algorithms and the model of superposition queries.
Classically, the general layout of a slide attack is to perform a certain amount of queries,
among which, thanks to the analysis, we expect one or more slide pairs to occur. Sometimes
these pairs can be detected; sometimes one merely tries all possibilities. Using these pairs,
one can then break a smaller component of the cipher (e.g its weak round function F (·, k))
and retrieve some secret material (e.g some subkeys).

In the quantum setting, an exponential speedup can be obtained by the use of a
quantum Hidden Shift Algorithm. In turn, this puts heavier constraints on the structure of
the attack. Instead of merely promising that some slide pairs will be found, we must ensure
that a Hidden Shift property holds, that must be valid for all inputs. When rewriting
classical into quantum slide attacks, we will call this property a slide-shift property.

Generically, it consists in a functional equality, g0(x) = g1(x+ s), with two functions
g0 and g1 depending on the encryption scheme and some publicly known parameters or
components, and s a secret value (generally a subkey) that we seek. This is not always
doable (in particular, it requires that all the inputs belong to a slide pair), which explains
why some slide attacks have a more efficient quantum counterpart than others. Moreover,
the cost depends on the group law +. For the bitwise XOR additions, we rely on the
polynomial-time Simon’s quantum algorithm [Sim94], and for modular additions, the
subexponential-time Kuperberg’s quantum algorithm [Kup05], which are described below.

Quantum Slide Attacks were first introduced in [KLLN16a], where the authors show
that such rewriting is doable for Figure 2. Their slide-shift property is the equality, for all
x:

Π(Ek(x))⊕ k = Ek(Π(x⊕ k)) .
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Hence g0(x) = g1(x ⊕ k) where g0(x) = Π(Ek(x)) and g1(x) = Ek(Π(x)) ⊕ x, and since
superposition queries to Ek are authorized, Simon’s algorithm can be applied.

2.4.1 Composing Algorithms

The previous method recovers a value s, which depends on the instance. This value can
be fixed, but it can depend on some context parameters, becoming s(y) for a given y,
independent of the inputs of g0 and g1. In that case, we can see the quantum algorithm as
a classical oracle to the function y 7→ s(y). Classically, the function s is often assumed to
be weak, that is, the secrets we seek can be found with a few input-output pairs.

But we can go further, and do all the computation reversibly on the quantum computer,
which means we can make a quantum oracle to the function s, and apply any quantum
algorithm on it. The relevant security notion for s becomes its quantum security, and not
only the classical one.

As we want to make a proper unitary that computes the function y 7→ s(y), the cost is
doubled, as all the intermediate computations need to be uncomputed. This is a case of
quantum algorithm composition, as the Grover-meets-Simon technique [LM17]. Exemples
of compositions are presented in Section 4 and 5.

2.5 Quantum Hidden Shift Algorithms
2.5.1 Simon’s Algorithm

Simon’s algorithm [Sim94] is a quantum algorithm designed to solve the following problem:

Problem 1 (Simon’s Problem). Let G : {0, 1}n → {0, 1}n. Given the promise that there
exists s ∈ {0, 1}n such that for any (x, y) ∈ {0, 1}n, [G(x) = G(y)] ⇔ [x ⊕ y ∈ {0n, s}],
find s.

This problem is a hidden subgroup problem in the group ((Z/(2))n,⊕). Due to the
structure of the group, it can also solve a problem of hidden shift in it, which is as follows:

Problem 2 (Simon’s Problem, Hidden Shift Version)). Let g0, g1 : {0, 1}n → {0, 1}n two
permutations such that there exists s ∈ {0, 1}n such that, for all x, g0(x) = g1(x⊕ s). Find
s.

Proof.

Let G :
{0, 1} × {0, 1}n → {0, 1}n

(b, x) 7→

{
g0(x) if b = 0
g1(x) if b = 1

.

G satisfies G(b0, x0) = G(b1, x1) if and only if (b0 ⊕ b1, x0 ⊕ x1) ∈ {(0, 0), (1, s)}.

Simon’s algorithm finds a value v that satisfies v · s = 0 in only one query. Hence, one
will have enough information to retrieve s with little more than n queries.

In order to retrieve the secret, we then need to solve a linear system. The cost of this
part is in O

(
n3) gates. As one query is estimated to cost Ω(n2) gates, the time cost will

also be n. In the case of a purely quantum implementation, we estimate the cost to be 2n,
to take into account the uncomputing of the intermediate values.

2.5.2 Use in Cryptanalysis.

In cryptanalysis, the function G under study is built from a block cipher and possibly
public components; we suppose that all can be queried in quantum superposition. The
implication: [G(x) = G(y)]⇒ [x⊕ y ∈ {0n, s}] might not be true; indeed, some additional,
random collisions can occur.
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As shown in [KLLN16a, Bon18, LM17], Simon’s algorithm is still very efficient in that
case. There is a fixed multiplicative overhead estimated to be close to 3 [KLLN16a], around
2 [LM17] or less than 1.2 [Bon18], the algorithm being less efficient if some differentials
occurs with a high probability.

We will consider here a cost of n queries for Simon’s algorithm, as the overhead does not
change much on the complexity. The failure rate of this algorithm decreases exponentially
with the number of queries once the threshold is passed, hence we will also neglect the
failure probability of the algorithm when we use it as a routine for another quantum
algorithm.

2.5.3 Kuperberg’s Algorithm and Variants

Kuperberg’s Algorithm aims at solving the abelian hidden shift problem, defined as:

Problem 3 (Abelian Hidden shift problem). Let (G,+) an abelian group, g0, g1 : G→ G
two permutations such that there exists s ∈ G such that, for all x, g0(x) = g1(x+ s). Find
s.

Many variants of Kuperberg’s algorithm have been proposed [Kup05, Kup13, Reg04].
As we consider symmetric primitives, we’re mainly interested in the case of addition modulo
a power of two, which is fairly common. Moreover, we want concrete estimates for given
parameters. This case has been studied in [BNP], where various algorithms and explicit
costs for groups of the form (Z/(2w))p are proposed.

Concretely, the cost estimate (in quantum memory, time and queries) is 2
√

2 log2(3)n '
21.8
√

n for the group Z/(2n). The authors also propose an algorithm with a cost of
2(p/2 + 1)w for the group (Z/(2w))p, which is especially interesting for small w, as it is
polynomial in p, and generalize these algorithms to any group of the form (Z/(2w))p. As
the worst case is for Z/(2n), we will consider this complexity in our cost estimates. As
before, for a purely quantum implementation, we estimate that the cost is doubled.

3 Quantum Slide-shift Attacks
In this section, we first present a quantum slide attack on an iterated keyed permutation,
similar to the one in [KLLN16a], but with modular additions instead of xor, therefore using
the precise results from [BNP] for applying Kuperberg’s algorithm. Next, we present new
advanced quantum slide attacks on Feistel networks, with slide attacks based on one-round
self-similarity and advanced sliding techniques from [BW00], applied to Feistel variants.
We consider all the possible combinations of modular additions and XORs. We also use
some ideas from [DKS15] (mirror slidex attack). The round function is assumed weak.

3.1 Key-alternating Cipher with Modular Additions
The slide attack on the key-alternating cipher is described in Figure 3 (the primitive in
itself is the first line of the figure). � denotes a modular addition. The round permutation
is denoted Π and the whole encryption function Ek.

As with the Simon attack, we can define the following function:

G : {0, 1} × {0, 1}n → {0, 1}n

b, x 7→

{
g0(x) = Π(Ek(x))− x if b = 0,
g1(x) = Ek(Π(x))− x if b = 1.

Also as in the previous attack, we know that all x satisfy Π(Ek(x)) + k = Ek(Π(x+ k))
because of the sliding property. Then we can see that G verifies the conditions of the



8 On Quantum Slide Attacks

P0

k

Π

k

Π . . .

k

C0

P1

k

Π . . .

k

Π

k

C1

P1

C0

Figure 3: Slide attack on the key-alternating cipher with modular additions

hidden shift problem as g0(x) = g1(x+ k):

G(0, x) = Π(Ek(x))− x = Ek(Π(x+ k))− k − x = G(1, x+ k).

We reasonably assume that both Ek ◦Π and Π◦Ek are indistinguishable from a random
permutation, and we can apply Kuperberg’s algorithm. This way we can recover k with a
complexity of 21.8

√
n quantum time and queries.

3.2 Feistel Scheme with One Round Self-similarity and Modular Addi-
tions

We consider from now on Feistel schemes, like the one represented in Figure 4. The block
message is decomposed in two branches, one branch has a round key added, and a round
function applied to it, and is next added (by a xor or a modular addition) to the other
branch before the two branches swap places. This is repeated a number of times before
generating the ciphertext.

For a Feistel construction, if we consider a slide attack over one round, the right part
of the first plaintext R (left side in Figure 4) will be the same as the left part of the second
plaintext, L′. Classical adversaries could use a fixed right part, and take random plaintexts
for the left part.

In our quantum attack, we will consider a fixed and known value for these variables
R0 = R = L′. As the value of R = R0 is fixed, we can consider in our attack the variable
k′ = f(R0 + k), represented in Figure 4, as an equivalent key, and this will be the value
retrieved by Kuperberg’s algorithm. We denote one encryption function as Ek, we denote
by TruncL and TruncR the function that truncates a Feistel state to only its left or right
part respectively, and the round function as f , as represented in Figure 4. We first describe
the function that we will use in our attack:

G : {0, 1} × {0, 1}n/2 → {0, 1}n/2

b, x 7→

{
g0(x) = TruncR(Ek(x,R0)) if b = 0,
g1(x) = TruncL(Ek(R0, x)) if b = 1.

From Figure 4 we can verify the slide shift equation g0(x) = g1(x + k′). By applying
Kuperberg’s algorithm we will recover the value of k′ = f(R0 + k) for the fixed value of
R0 that we fixed in the beginning. Since we know R0, we can retrieve the actual value of
k when f is weak. The cost of this attack, that considers modular additions, is 21.2

√
n. If

instead we had xors, the analysis is quite similar, and the time complexity is reduced to
around n. This basic attack is generalized to any non-denegerate function f in Section 4
(it works as long as the key k is added or xored as on Figure 4).

3.3 The Quantum Complementation Slide Attack
We illustrate the complementation slide attack [BW00] on a Feistel cipher with 2-round
self-similarity, like for instance 2k-DES, introduced in [BW99]. We consider the 3 possible
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Figure 4: Slide attack on Feistel scheme with one round self-similarity and modular
addition

ways of adding the keys when determining the attack complexities, but we only describe
the attack considering key insertions and round combinations by modular additions. In
the next section, we will consider the case where both operations are different.

The main idea of this attack, described in Figure 5, is to consider not two rounds
for the slide pair, but just one. This implies that the round-keys of the middle rounds
are not the same, which can be compensated by adding a relative difference between the
complemented slide pairs. We will describe here the attack for the case when the key and
the Feistel combination are done with modular additions. As can be seen in the figure,
if we denote by ∆ = k0 − k1 and if the following equations are verified: R = L′ −∆ and
L+ f(R+ k0) = R′ + ∆, then, the outputs of both plaintexts, (M,N) and (M ′, N ′) verify
N = M ′−∆ and N ′ = M + f(k1 +N + ∆)−∆. It is easy to verify that, with such inputs,
all the transformations through the f functions will be the same pairwise through all the
slid pairs. The combination of both halves ensures that the input round differences stays
as wanted, and the same property can be found at the end of the functions.

In this case, in order to quantize the attack, we propose to combine an exhaustive
search with Grover and Kuperberg’s algorithm for solving the hidden shift problem. Here,
for the sake of simplicity, we limit ourselves to describing the generic lines of the attack.

We perform an exhaustive search on ∆. The size of a block and of the whole key is n.
Considering the value of R fixed to a chosen and known one, we can redefine an equivalent
round-key k′0 = f(R+ k0): the correspondence between k0 and k′0 is bijective, and when
we recover k′0 we can immediately deduce k0. The exhaustive search can be combined with
Kuperberg’s algorithm applied to the following function (keeping in mind that R and ∆
are known to the attacker):

G : {0, 1} × {0, 1}n/2 → {0, 1}n/2

b, x 7→

{
g0(x) = TruncR(Ek(x,R)) + ∆ if b = 0,
g1(x) = TruncL(Ek(R−∆, x+ ∆)) if b = 1.

From Figure 5 we can verify that g0(x) = g1(x + k′0). For each of the tested values for
∆, by applying Kuperberg’s algorithm we will recover the value of k′0 for the fixed value
of R that we fixed in the beginning, R0. From k′0 and R0 we directly recover k0 because
f is weak, and with ∆, this implies the value of k1. When the tested value for ∆ is the
correct one, we should also obtain a collision given by N ′ = M + f(k1 + N + ∆) −∆,
which happens with a random probability 2−n. When this is the case, this implies that we



10 On Quantum Slide Attacks

L

f
k0

R

f
k1

f
k0

f
k1

NM

R′ + ∆L′ −∆

Encryption

L′

f
k0

R′

f
k1

f
k0

f
k1

N ′M ′

M −∆ N + ∆

Encryption

Figure 5: Representation of the complementation slide attack

have recovered the correct values of k0 and k1.
The cost for this if all the transformations were xors would be of n2n/4, compared to

2n/2 from the quantum accelerated exhaustive search of the generic attack. If we have
modular additions instead, the cost becomes 21.2

√
n+n/4, which is still better than generic

exhaustive search of the key. We can however do better if the key and branch addition are
exactly the same. This is developed in Section 4.

3.4 Sliding with a Twist
A further improved variant of the slide attacks is the sliding with a twist, also intro-
duced in [BW00], that can be applied against some Feistel constructions when we have
superposition access to the decryption oracle.

This attack applies to ciphers with the same structure as in Figure 6, and small variants
can also be applied to DESX or to reduced-round versions of GOST. The quantum version
can be applied as long as the two branches are added with a xor. The round key can
be added also by modular addition or multiple modular additions. We will describe the
attack considering key insertions and round combinations by xor, the addition of the key
being irrelevant for the complexity.

The main idea of this attack is to consider that encryption of a two-round self similarity
Feistel cipher is a slid version of its decryption, modulo the final twists, that are easily
taken into account. For (L,R), (M,N) as inputs and outputs of the encryption function
and (M ′N ′), (L′, R′) as inputs and outputs of the decryption one, we have that if R = N ′

and M ′ = L⊕ f(R⊕ k0), then R′ = N and L′ = M ⊕ f(N ⊕ k0).
We can consider now R = N ′ as a fixed chosen value. Like the previous attack, if we

consider an equivalent key k′0 = f(R⊕ k0), we can apply Simon’s algorithm. Let us denote
the decryption function Dk.

G : {0, 1} × {0, 1}n/2 → {0, 1}n/2

b, x 7→

{
g0(x) = TruncR(Ek(x,R)) = N if b = 0,
g1(x) = TruncR(Dk(x,R)) = R′ if b = 1.

From Figure 6 we can verify the slide shift equation g0(x) = g1(x ⊕ k′0). Simon’s
algorithm recovers the value of k′0, and from it, also the one of k0 with negligible complexity
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Figure 6: Representation of the sliding with a twist technique

because f is easy to invert. We can repeat a similar attack peeling off one layer in order
to recover also k1 with comparable complexity.

The cost when all the transformations are xors is n, compared to 2n/2 for the quantum
accelerated exhaustive search. If we have modular additions between branches, this attack
does not apply, as the decryption scheme has subtractions instead of additions.

4 Composing Quantum Attacks: Key-Recovery with Strong
Round Functions

In this section, we propose efficient key-recovery attacks on self-similar Feistel constructions
when using some classically strong round functions. We show that as long as the round
function is vulnerable to quantum attacks, the key will be recovered with a complexity
at most the cost of the quantum round attack multiplied by the cost of the quantum
attack on the one-round self-similar Feistel (that will be around n if the branch addition is
bitwise, or around 21.2

√
n if it is a modular addition), by composing both algorithms. This

composition allows to recover the key and perform an attack in cases that are classically
sound.

In what follows, we describe the generic case and show an even more efficient attack
when the round function has the form f(x + k) (with f strong as, for instance, a hash
function) and the branch and key additions are the same.

4.1 General Attack

In the attacks presented in the previous section, the round function was supposed to be
weak. If it was not, we would still be able to recover the values of k′ = fk(R0). The
problem next would be to recover k, which would not be directly possible.

We show here how to quantumly attack the round function in some common cases. In
the previous attacks, the value of R0 was fixed to a random chosen value. This means that
we can repeat the same operation for several values Ri.
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Figure 7: Slide attack on a generic one-round self-similar Feistel

Case f(x+k). We consider here that the round function is a key addition composed with
a public function f , as this is a fairly common design. We use the attack of Section 3.2,
which, given a value R0, produces f(R0 + k). As presented in Section 2.4, we consider this
attack as a quantum black box H, that takes an input x, and produces f(x+ k). Given
this H, we can construct the following function G:

G : {0, 1} × {0, 1}n/2 → {0, 1}n/2

b, x 7→

{
g0(x) = H(x) = f(x+ k) if b = 0,
g1(x) = f(x) if b = 1.

It is now easy to identify k as the hidden shift of G.
The cost of the attack is summarized in Table 2 for a Feistel scheme with one-round

self-similarity, and it is easy to extend it to other scenarios. For the case of two modular
additions we can still have different operators if they use, for instance, a different bit order.

Generalization of the attack. We described the attack for a Feistel round function of the
form f(x+ k), but we can use this attack for any keyed function vulnerable to quantum
key recovery, like Even-Mansour (see Figure 8), a 3-round Feistel, a self-similar Feistel. . .

Using the same principle as above, we manage to craft a quantum oracle to the inner
round function. Now, we can attack it using any quantum algorithm that needs a quantum
superposition access on it, without any additional constraint. The total cost of the attack
is the cost to attack the round function multiplied by the cost of the slide attack. This
means that the one-round self-similar Feistel construct offers essentially the security of its
inner round function. This is not the case classically, as the cost to find a slide pair is 2n/2;
it would generally be the cost of the total attack, as the inner round function operates on
n/2 bits.

For the example in Figure 8, the exhaustive search is classically in 2n/2, quantumly
in 2n/4. The classical slide attack can find a pair (x, fk(x)) in 2n/4 queries. Once this is
done, we can easily retrieve some other slide pairs using the slide pairs at the output of
the cipher, and do the standard slide attack to break Even-Mansour in 2n/4 more queries
and time. The quantum slide attack performs in n21.2

√
n queries.
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4.2 With the Same Branch and Key Addition
If the round function is f(x+k) and the branch and the key addition both use the same law,
the attack can be made more efficient. We can consider a Feistel construct Ek composed
of a certain number of iterations of the function fk(x, y) = y, x+ f(y + k). In that case,
we have fk(x, y) + (k, k) = f0(x+ k, y+ k), hence Ek(x, y) + (k, k) = E0(x+ k, y+ k). We
can then consider

G : {0, 1} × {0, 1}n/2 → {0, 1}n

b, x 7→

{
g0(x) = Ek(x, x) + (x, x) if b = 0,
g1(x) = E0(x, x) + (x, x) if b = 1.

The hidden shift is k here.

Case f(x + k), 2-rounds Self-Similarity. It can also be generalized if the Feistel has
two alternating keys (k0, k1), we can use

G : {0, 1} ×
(
{0, 1}n/2

)2
→ {0, 1}n

b, x, y 7→

{
g0(x) = Ek0,k1(x, y) + (x, y) if b = 0,
g1(x) = E0,0(x, y) + (x, y) if b = 1.

As we have the same property Ek0,k1 + (k0, k1) = E0(x+ k0, y + k1), the hidden shift is
(k0, k1).

Table 2 presents a summary of the costs of this attack, depending on the group operation
for the branch addition, and the key addition. + can represent a modular addition, or
multiple additions in parallel, as long as it is the same operation at each round. It can be
different for the branch and the key, except for the sixth and last attack in the table.

5 Advanced Quantum Slide Attacks on Feistels
In this section, we give our best attacks on self-similar Feistel schemes, most of them based
on slide shift properties. These attacks reach up to four rounds of self-similarity, they run
very efficiently and also concern whitened versions, but the operations used (branch or key
addition, whitenings) are limited to xors.

5.1 Mirror Slidex Attack on 2k-WFeistel.
The mirror slidex attack [DKS15] applies to any cipher that can be decomposed as
E = E2 ◦ E1 ◦ E0 where E1 is an involution (E1 ◦ E1 = Id). It is in fact a generalization
of the sliding with a twist, which corresponds to the case where E2 = Id.
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Table 2: Summary of the slide attack costs, n is the block size.

Branch, Key add. Round function quantum query cost Remark
⊕, any Weak n/2
⊕,⊕ f(x⊕ k) n/2
⊕,⊕ fk(x) n2/2 Simon calls purely quantum Simon
⊕,+ fk(x) n21.2

√
n Kuper. calls purely quantum Simon

+, any Weak 21.2
√

n

+,+ f(x+ k) 21.2
√

n Need the exact same addition
+,⊕ fk(x) n21.2

√
n Simon calls purely quantum Kuper.

+,+ fk(x) 22.4
√

n+1 Kuper. calls purely quantum Kuper.
⊕,⊕ f(x⊕ k) n 2-Round self-similarity

+,+ f(x+ k) 21.8
√

n 2-Round self-similarity,
Need the exact same addition

In that case, the equation that we can write is: E−1
0 ◦E

−1
2 ◦E(P ) = E−1◦E2(E0(P )). If

E0 and E2 have a good form, we can turn it into a slide shift property, and quantumly attack
using Simon’s or Kuperberg’s algorithms. A classical mirror slidex does not necessarily
give rise to a quantum one.

Consider a 2k-WFeistel scheme as in [DKS15, Section 7.3] (2K-DESX in the paper).
The authors combine the mirror slidex with the complementation slide. This is also what
we do, although we prefer writing the attack as an updated slide shift. Let us denote

E(x) = kpost ⊕ Ek(kpre ⊕ x)

where E is the full cipher, kpre and kpost are the pre and post-whitening keys, of size
n each (they are xored to the full state of the cipher), and Ek is a 2k-Feistel scheme of
alternating keys k0, k1 of size n

2 each. We have Ek(x) = kpost ⊕ E(kpre ⊕ x). We also
denote kL

post, k
R
post, kL

pre, k
R
pre the respective left and right sides of the whitening keys. The

whole key of E is k0, k1, kpre, kpost of size 3n. We note ∆ = k0 ⊕ k1. Recall the slide shift
property coming from the complementation slide technique:

TruncR(Ek(x,R))⊕∆ = TruncL(Ek(R⊕∆, x⊕ f(R⊕ k0)⊕∆)) .

We replace calls to Ek by E, which is our oracle, and obtain that:

TruncR(E(x⊕ kL
pre, R⊕ kR

pre))⊕ kR
post ⊕∆ =

TruncL(E(R⊕∆⊕ kL
pre, x⊕ kR

pre ⊕ f(R⊕ k0)⊕∆))⊕ kL
post .

Let us denote ∆′ = ∆⊕ kL
pre ⊕ kR

pre as an adapted value of ∆, we rewrite:

TruncR(E(x,R))⊕∆′ ⊕ (kL
pre ⊕ kR

pre ⊕ kL
post ⊕ kR

post) =
TruncL(E(R⊕∆′, x⊕∆′ ⊕ f(R⊕ k0))) .

Our new slide function is:

G : {0, 1} ×
(
{0, 1}n/2

)2
→ {0, 1}n/2

b, x, y 7→

{
g0(x, y) = TruncR(Ek(x,R))⊕ y if b = 0,
g1(x, y) = TruncL(Ek(R⊕∆′, x⊕∆′))⊕∆′ ⊕ y if b = 1.
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where we guess the value of ∆′. Then G verifies the slide shift property g0(x, y) =
g1(x⊕ f(R⊕ k0), y ⊕ (kL

pre ⊕ kR
pre ⊕ kL

post ⊕ kR
post)).

Now, as we did in Section 4, we can consider this whole slide attack as a black box,
that, given an input R, outputs f(R⊕ k0). As f is public, we can create a quantum oracle
to the function G′(R) = f(R)⊕ f(R⊕ k0). This function has k0 as a hidden period, which
can be recovered, by reusing Simon’s algorithm.

Since ∆′ is guessed, we deduce k1 ⊕ kL
pre ⊕ kR

pre. There now remains only one unknown
subkey in the Feistel. We can apply the quantum attack on the FX construction [LM17]
to recover it and the whitening keys in O

(
n2n/4) queries and time.

If different operations are used (e.g, modular additions for the whitenings and a xor
inside the mirror property), this attack does not seem to work anymore, as the whitening
and the slide operation would not commute. Furthermore, using decryption queries (as
in the sliding with a twist attack on 2k-Feistel) does not seem to allow the complexity to
decrease, due to the presence of the whitenings. A guess of n

2 bits of information, with
Grover, seems still mandatory.

5.2 Attacking 4k-Feistel and 4k-WFeistel
Combining twist and complementation slides enables the authors in [BW00] to attack a
4k-Feistel. In this section we show how to efficiently quantize this attack and extend it to
4k-WFeistel. The main idea is that encryption and decryption can be compared in this
way (see Figure 9):

k0k1k2k3k0k1 . . .

k3k2k1k0 . . .

So that the keys k0 and k2 always coincide, whereas the keys k3 and k0 correspond to
rounds having a constant difference.

The slide pairs will have a difference ∆ = k1 ⊕ k3 as can be seen in Figure 9, similarly
to the complementation slide technique. We gather from [BW00] that a slide pair (P,C) =
(L,R), (M,N) (in input to the encryption function), (P ′, C ′) = (L′, R′), (M ′, N ′) (in input
to the decryption function) satisfies the following properties:

L′, R′ = M ⊕∆⊕ f(k0 ⊕N), N
M ′, N ′ = L⊕ f(R⊕ k0)⊕∆, R

For all P = (x,R) we write Dk(M ′, N ′) = (L′, R′), M = TruncL(Ek(x,R)), N =
TruncR(Ek(x,R)), which gives:

Dk(x⊕ f(R⊕ k0)⊕∆, R) = M ⊕∆⊕ f(k0 ⊕N), N
=⇒ TruncR(Dk(x⊕ f(R⊕ k0)⊕∆, R)) = TruncR(Ek(x,R))

Hence, for a fixed R, we have the following function G:

G : {0, 1} × {0, 1}n/2 → {0, 1}n/2

b, x 7→

{
g0(x) = TruncR(Dk(x,R)) if b = 0,
g1(x) = TruncR(Ek(x,R)) if b = 1.

The hidden shift between g0 and g1 is f(R⊕ k0)⊕∆. As in Section 4, we remark that
the function R 7→ f(R⊕ k0)⊕∆⊕ f(R) has k0 as hidden period, which can be recovered
with Simon’s algorithm.
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Figure 9: Complementation and twist combined on a 4k-Feistel scheme

The total cost is around n2/2 queries (the input space is of size n/2, the inner Simon
needs uncomputation), for recovering k0. Once k0 is known, we can directly use the first
attack to get ∆ = k1 ⊕ k3, at a negligible cost of n/2.

Moreover, we can “shift” the cipher, that is, suppress the first round of encryption,
and add it at the last round, in order to get access to the same cipher, but with keys
(k1, k2, k3, k0) instead of (k0, k1, k2, k3). Hence, we can repeat the same attack, to get k1,
and ∆′ = k2 ⊕ k0. With k1 and ∆, we obtain k3, and with k0 and ∆′, we obtain k2. The
total cost is around n2, for a total key size of 2n bits.

As this attack uses the sliding with a twist technique, it does not transpose well to
modular additions (the decryption oracle would use subtractions instead of additions).

Attacking 4k-WFeistel. Building on the 4k-Feistel attack of above, we can further extend
it to 4k-WFeistel, with key whitenings kpre and kpost. Indeed, if we rewrite the slide shift
equation:

TruncR(Dk(x⊕ f(R⊕ k0)⊕∆, R)) = TruncR(Ek(x,R))
using the whole primitive E(·) = kpost ⊕ Ek(kpre ⊕ ·), we obtain:

TruncR(D(x⊕ kL
post ⊕ f(R⊕ k0)⊕∆, R⊕ kR

post))⊕ kR
pre =

TruncR(E(x⊕ kL
pre, R⊕ kR

pre))⊕ kR
post

which we rewrite:

TruncR(D(x⊕ δL ⊕ f(R⊕ k0 ⊕ kR
post), R)) = TruncR(E(x,R⊕ δR))⊕ δR
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where δR = kR
pre ⊕ kR

post and δL = kL
pre ⊕ kL

post ⊕ k1 ⊕ k3.
Now, we can use the function

G : {0, 1} ×
(
{0, 1}n/2

)2
→ {0, 1}n/2

b, x, y 7→

{
g0(x, y) = TruncR(D(x⊕ f(y ⊕ (kR

post ⊕ k0)), y)⊕ y if b = 0,
g1(x, y) = TruncR(E(x, y)) if b = 1.

We have g0(x, y) = g1(x⊕ δL, y ⊕ δR). However, to implement g0, we need to know the
value (kR

pos ⊕ k0). Hence, we first guess the value of (kR
post ⊕ k0) using Grover’s algorithm,

and combine it with Simon’s algorithm as studied in [LM17]. In time and queries 2n2n/4,
this attack recovers δL, δR and (kR

pos ⊕ k0). Now, we can perform the analogue of the
classical attack: swapping the encryption and the decryption, we obtain kL

pre ⊕ kL
post and

kR
pre ⊕ kR

post ⊕ k0 ⊕ k2, which allows to obtain k0 ⊕ k2, k1 ⊕ k3 and kpre ⊕ kpost. This step
costs O

(
n2n/4) time.

But we can also move differently δR in the slide shift property:

TruncR(D(x⊕ δL ⊕ f(R⊕ k0 ⊕ kR
pre), R⊕ δR)) = TruncR(E(x,R))⊕ δR .

We now interpret this as a hidden shift equation on x only and, given an arbitrary R, we
can recover f(R ⊕ k0 ⊕ kR

pre). In turn, this gives us the value k0 ⊕ kR
pre for a total of n2

queries.
Since we have already guessed (kR

pos⊕k0), we deduce k0, k
R
pre, k

R
post, and k2 from k0⊕k2.

Only n
2 bits of key material remain unknown in the Feistel, as k1 ⊕ k3 has been previously

obtained. We can break the complete cipher and finish the key-recovery by applying the
Grover-meet-Simon attack on the FX construction of [LM17], in time O

(
n2n/4).

As this attack uses the sliding with a twist technique, it does not transpose well to
modular additions.

A variant of 4k-WFeistel. We follow [DKS15, Section 7.4] and consider the 4k-WFeistel
scheme (4K-DESX in the paper), with two whitening keys kpre and kpost and four alter-
nating keys k0, k1, k2, k3 scheduled in 4m+ 1 rounds as: (k0, k1, k2, k3)m, k0.

Slide pairs (P,C), (P ′, C ′) have the properties:

P ⊕ C ′ = kpre ⊕ kpost ⊕ (k1 ⊕ k3||0)
Ek(P ⊕ kpre) = E−1

k (C ′ ⊕ kpost)⊕ (k1 ⊕ k3||0)

Where the term ∆ = k1 ⊕ k3 intervenes as in the complementation slide to correct the
inversion of Ek. We can rewrite this as a slide shift equation holding for all input x:

Ek(x) = E−1
k (x⊕ (∆||0))⊕ (∆||0)

=⇒ E(x⊕ kpre)⊕ kpost = E−1(x⊕ kpost ⊕ (∆||0))⊕ kpre ⊕ (∆||0)
=⇒ E(x)⊕ x = E−1(x⊕∆′)⊕ x⊕∆′

where ∆′ = kpre ⊕ kpost ⊕ (∆||0), a slide shift equation holding for all x. We can retrieve
∆′ in only n queries, achieving a very efficient distinguisher. Obtaining the rest of the key
seems more difficult.



18 On Quantum Slide Attacks

5.3 Enhanced Reflection Attack
The enhanced reflection attack was introduced in [DDKS15], as an improvement of the
mirror slidex attack, for ciphers of the form E = E2 ◦ E1 ◦ E0 where E1 is an involution.
It requires to find P such that E0(P ) is a fixpoint of E1. This happens with probability
2−n/2. In this case we get directly C = E2(E0(P )).

In the case of 4-key-alternating Feistels, in this section, multiple pairs (P,C) are needed
but the fixpoints can be detected. Notice that these attacks do not use a slide shift property
as above.

Enhanced reflection attack on 4k-Feistel. In [DDKS15], the authors use a reflection
attack on 4k-Feistel (which they name 4k-DES), where the four alternating subkeys
are denoted k0, k1, k2, k3. They prove (4.1.3, Property 3) that if (P,C) is a plaintext-
ciphertext pair for 4m-round 4k-Feistel, such that in the encryption process of P we have
XL

2m−1 = XL
2m+1 ⊕∆ where ∆ = k1 ⊕ k3, then PL = CL and PR = CR ⊕Out4m ⊕∆.

Out4m is the output of the internal mixing function f at the 4m-th step, so Out4m =
f(XR

4m ⊕ k3) = f(CR ⊕ k3).
Reflection points, that satisfy these properties, can be detected by PL = CL. Only

O
(
2n/2) known plaintexts are required. Given at least three of them, the adversary guesses

∆, then tries to obtain k3 from the equation: if ∆ is good, this works and both k1 and k3
can be obtained.

To complete the attack, the authors note that a similar reflection property holds with
the equation PR = CR to detect reflection points, and PL = CL ⊕Out1 ⊕ (k0 ⊕ k2).

In a quantum setting, only O
(
2n/4) superposition queries are enough, to retrieve the

reflection points, using Grover search over all plaintexts P . Again, trying all values of ∆
requires O

(
2n/4) work. All subkeys are recovered in time O

(
2n/4).

Enhanced reflection attack on 4k-WFeistel. The attack above on 4k-Feistel, using
reflection points, can be turned into an attack for 4k-WFeistel. Suppose that E(x) =
kpost ⊕ E′(kpre ⊕ x) where E′ is a 4k-Feistel procedure. The adversary first has to guess
kL

pre ⊕ kL
post. To do this, remark that reflection points for E′ of the form P ′, C ′ turn into

reflection points for E that satisfy PL ⊕ CL = kL
pre ⊕ kL

post.
In this, the correct value of kL

pre ⊕ kL
post appears with probability 2 · 2−n/2, whereas all

incorrect values have probability 2−n/2 of appearance. This allows to retrieve kL
pre ⊕ kL

post

using O
(
n2n/2) memory and time, the bottleneck of the attack. Indeed, reformulated in

an abstract way, the problem that we are solving is:

Problem 4 (Most frequent value). Given a function f : [N2]→ [N ] such that any value
in [N ] appears N2

N+1 times in the images of f , except a single value y, which appears 2N2

N+1
times (twice as much); find y.

Assume that we make c(2n/2 + 1) queries for some c. Due to Chernoff and union
bounds, given δ, γ < 1, the probability that the number of y among the queries is below
than (1− δ)2c is less than exp(−δ2c). The joint probability that the count of some output,
different from y, exceeds (1 + γ)c, is less than 2n/2 exp(−γ2c/3). We tailor c, δ and γ so
that these probabilities become negligible in n, avoiding the case of a failure. If we take
c = 2n, δ = 1

8 and γ = 3
4 , we find that it suffices to look for the element which appears

more than 7
2n times.

As soon as the value of kL
pre ⊕ kL

post is obtained, the reflection points can be detected
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via the equation PL ⊕ CL = kL
pre ⊕ kL

post, and the second equation:

PR = CR ⊕Out4m ⊕ (k1 ⊕ k3)⊕ kR
pre ⊕ kR

post

= CR ⊕ f(CR ⊕ k3)⊕ (k1 ⊕ k3)⊕ kR
pre ⊕ kR

post

For example, the adversary guesses (k1 ⊕ k3)⊕ kR
pre ⊕ kR

post and checks that two reflection
points indeed yield the same value for k3.

A quantization of this attack would require to solve efficiently the problem of finding
the value of kL

pre ⊕ kL
post. This seems actually difficult, and we don’t know of any quantum

algorithm for Problem 4 that would improve by more than a constant factor the number of
queries required. The main difficulty, due to which the well-known algorithms for element
distinctness [Amb16], collision [BHT16] or multicollision [HSX17] cannot be applied, seems
to be that the most frequent value is not known beforehand. We leave this as an open
question.

6 On Quantum Attacks Exploiting Cycle Finding
A generic framework of cycle-based slide attacks is presented in [BOBDK18, Section 4.1].
The authors suggest that it could be accelerated in a similar way as the slide attacks
from [KLLN16a], expecting for instance exponential speedups. In this section we find
much smaller improvements than expected, as the attack do not seem to have a slide-shift
structure. We are nevertheless able to propose some improved-over-classical quantum
associated attacks.

6.1 Definition of a Cycle Slide Attack
We suppose that Ek = f `

k for some function fk, which happens to be immune to simpler
slide attacks such as those presented above for 1k-, 2k- and 4k-Feistel schemes. Consider a
message P and the cycle built from P using Ek:

P,Ek(P ), E2
k(P ), . . .

Let m2 be the period of this cycle. Let also m1 be the period of the fk-cycle, that is, the
smallest integer such that fm1

k (P ) = P . Then one has m2 = m1/gcd(m1, `). Moreover,
suppose that gcd(m1, `) = 1, then m1 = m2 = m. This condition cannot be checked
directly by the attacker, since he does not have access to fk.

By Bezout’s theorem, there exists d1, d2 such that d1m− d2` = 1. This gives:

fd1m−d2`+1
k (P ) = P

fd1m+1
k = fd2`

k (P ) = Ed2
k (P )

fk(P ) = Ed2
k (P )

Hence (P,Ed2
k (P )) is a slide pair. Moreover, (Et

k(P ), Ed2+t
k (P )) is one for every t. This

gives a certain number of slide pairs “for free”, depending on the length of the cycle. Once
they have been obtained, we can use them to perform an attack on fk and try to recover
the key material.

General cycle size. We assume that Ek is a random permutation. In that case, the i-th
largest cycle has size e−i+1 (1− 1/e) 2n (on average), the largest having size (1− 1/e) 2n.
In particular, on average, half of the points lie on the largest cycle. Finding a cycle of Ek

then requires c2n chosen plaintext queries for some c < 1, which is a little less than the
entire codebook.
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The main interest is the time complexity: suppose that the attack on fk needs time
O(t), then the total time complexity is O(t+ 2n) and not O(t2n) as would require a
standard slide attack (see [BOBDK18, Section 4.1]).

Combining cycles. It is important to note that the probability of success (i.e, m1 is prime
with `) is strictly smaller than one, exactly φ(`)/` where φ is Euler’s totient function. The
only way to check that the slide pairs obtained were good is to try to attack fk. Hence, it
may be difficult to combine (when needed) the data obtained from multiple cycles.

In particular, if one is not able to tell if a given cycle is a good one (i.e, m1 is prime
with `), the complexity can increase dramatically, since we would require all cycles to be
good at the same time: it happens only with probability (φ(`)/`)t if there are t of them.

Classical Examples and Applications. The cycle slide attack is applied in [BOBDK18]
against a palindromic Feistel scheme, where the keys are scheduled as:

k0, k1 . . . kr, kr, kr−1, . . . k0, k0, k1, . . .

The function fk is a Feistel scheme with 2r keys scheduled as k0, k1 . . . kr, kr, kr−1, . . . k0.
In that case, the average cycle length of a plaintext P is of order O

(
2n/2), limiting

considerably the cost of the attack and making it possible. But since the cycle is of length
O
(
2n/2), it gives only O(2n/2) slide pairs: the distinguishing attack on fk required should

need only O
(
2n/2) plaintext-ciphertext pairs.

In [BOBDK18, section 5], the authors present attacks on GOST. First:

• A distinguishing attack on 8-round GOST with unknown S-boxes, using 236 known
plaintexts and time (it relies on differentials);

• A key-recovery attack on 8-round GOST with unknown S-boxes, based on a differential
attack, using 236.5 known plaintexts, data and time.

This allows to attack the 24 first rounds of GOST, that correspond to f3
k where fk is an

8-round GOST, efficiently using the cycle-based slide attack. This requires 263 chosen
plaintext and time.

The authors also attack the palindromic full GOST: having a palindromic key, it is
in fact f4

k where fk is a palindromic Feistel scheme. Hence the cycle-based attack works
more efficiently (the cycles have small size). The distinguishing attack allows to retrieve
the good slide pairs, and once there are enough, the key-recovery attack is launched on fk.
The total needs 240 chosen plaintexts, memory and time.

6.2 Quantization of a Cycle-based Slide Attack
At the end of [BOBDK18, Section 4.1], the authors suggest that a quantum period-finding
algorithm could be applied to cycle-based slide attacks. To the best of our knowledge, this
seems not possible. Indeed, given a point P , the period that is of interest here is the one
of the function:

G : d ∈ Z 7→ Ed
k(P )

If the function G(d) = Ed
k(P ) was implemented using a quantum circuit, we could indeed

use Shor’s period-finding algorithm to retrieve the cycle length. But this would require to
call Ed

k in superposition over d, which seems highly difficult. The encryption oracle Ek is
actually only accessed through queries x→ Ek(x), in superposition over x. To compute
Ed

k for some d, one still needs to perform d successive calls to Ek. A superposition oracle
for G is indeed constructible, but it would have the same time complexity as the classical
one (the highest value of d in the input). On the contrary, Shor’s algorithm uses an oracle
for f(r) = ar mod n, and fast exponentiation allows to compute it efficiently.
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Quantization. It is however possible, using Grover search, to improve on the classical
complexity of some cycle slide attacks. Finding a point that lies on a cycle of length
smaller than d, if there are k such points, can be done in O

(√
2n/k

)
calls to a testing

subprocedure G, implemented using a quantum algorithm, that computes: G(P ) = 1 ⇐⇒
∃u ≤ d,Eu

k (P ) = P . As in the classical case, such a procedure will make successive calls to
Ek, in total d of them, running in overall time O(d) (with d superposition queries to Ek).

In a random permutation, there are on average 1/d cycles of length d; and d points of
period less than or equal to d. So using Grover’s algorithm, one can find a superposition
of points that lie on a cycle of length less than d in O

(√
d2n
)
calls to Ek. In the classical

case, we do not have much choice: the cycle slide pairs found will fall on a large cycle,
with high probability. On the contrary, in the quantum setting, we can specifically look
for points lying on a short cycle. Surprisingly, finding fixed points, or points on very short
cycles, costs less than finding points on bigger cycles, due to the cost of iterating Ek. But
the smallest the cycle, the least slide pairs we can get from it.

If the attack on fk needs time O(t) and O(s) slide pairs, we conclude that the quantized
version of cycle-based sliding costs O

(
t+
√
s2n
)
quantum and classical computations alike.

When s becomes large, we arrive at O(t+ 2n) and there is no improvement w.r.t the
classical setting.

To summarize, cycle-based slide attacks seem to be eligible to an interesting quantum
speedup when the cipher Ek = fr

k does not enjoy a slide-shift property as before, but has
a sufficiently weak round function fk, so that a small number of slide pairs suffice to get
the subkey material.

Example. For example, this would speed up (but not much) the attack on 24-round
GOST of [BOBDK18], since we can tailor the cycle length to our needs.

The attack on fk requires 236.5 slide pairs. Using Grover search, one can find a cycle
of this length (or little more) in around

√
236.5264) time and queries. This diminishes the

amount of work towards around 250 superposition queries instead of 264 classical.

6.3 Quantum Cycle-based Slide Attacks
We are inspired by [BOBDK18] and the attacks against the SA construction and weak
variants of AES. In the classical as in the quantum versions, most of the computation time
required is due to finding the actual slide pairs (via the cycle).

Two Keys and Two Permutations. Consider a cipher with alternating keys k0, k1, xored
or modularly added, and two permutations Π1,Π2. In the case of a SPN, Π1 = Π2 = Π
are the same.

P

k0

Π1

k1

Π2

k0

Π1 . . .

k1

C

P ′

k0

Π1 . . .

k1

Π2

k0

Π1

k1

C ′

Figure 10: Slide attack against a key- and permutation-alternating cipher

This scheme resists to the basic slide attack, but we can write Ek ◦ Π2 = fr
k (x)

where fk(x) = Π2(k1 ⊕ Π1(k0 ⊕ x)), and apply the cycle-finding technique. In O
(
2n/2)
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superposition queries to Ek and computations, we can recover a small number of slide
pairs, say two, from small cycles of Ek ◦Π2. Recall that n is the block size here; the key
length is 2n. Therefore we obtain two equations:

y = Π2(k1 ⊕Π1(k0 ⊕ x))
y′ = Π2(k1 ⊕Π1(k0 ⊕ x′))

Since the permutations can be inverted, we find:

Π−1
2 (y)⊕Π−1

2 (y′) = Π1(k0 ⊕ x)⊕Π1(k0 ⊕ x′)

Solving this equation on k0, if Π1 has no specific property, can be done in O
(
2n/2) time

using Grover’s algorithm, the same complexity as the first stage. This improves on the
Grover-meets-Simon technique of [LM17], which would perform in O

(
n2n/2) queries and

more time (the Grover oracle requires to solve linear systems in superposition).

Attacking 3k-SPN. Cycle-finding can further be applied on a 3k-SPN construction,
where there is a unique permutation Π = A ◦ S, with A a linear layer and S a non-linear
layer of S-Boxes. Still using O

(
2n/2) queries, we now write the slide equations as:

y = Π(k2 ⊕Π(k1 ⊕Π(k0 ⊕ x)))
y′ = Π(k2 ⊕Π(k1 ⊕Π(k0 ⊕ x′)))

=⇒ Π−1(y)⊕Π−1(y′) = Π(k1 ⊕Π(k0 ⊕ x))⊕Π(k1 ⊕Π(k0 ⊕ x′))

To solve efficiently this equation in k0 and k1, we first guess k0 using Grover’s algorithm.
The equation on k1 becomes:

A−1(Π−1(y)⊕Π−1(y′)) = S(k1 ⊕Π(k0 ⊕ x))⊕ S(k1 ⊕Π(k0 ⊕ x′))

Furthermore, we may consider each S-Box separately and solve the equation on k1, S-Box
by S-Box. if s is the bit size of an S-Box, the final complexity of this attack is O

(
2(n+s)/2)

computations, with O
(
2n/2) oracle queries.

Attacking 4k-AES. In the case of AES, we can add one more round. Suppose that, by
the cycle, we obtain four equations of the form:

A−1(Π−1(y)⊕Π−1(y′)) = S(k2 ⊕Π(k1 ⊕Π(k0 ⊕ x)))⊕ S(k2 ⊕Π(k1 ⊕Π(k0 ⊕ x′)))

We use the fact that a column of Π(x) does only depend on a diagonal of x. Since we need
only to guess k2 byte per byte, we need also only to guess k1 column by column, assuming
that the full k0 is guessed. The cycle step has a complexity of approximately 264 queries
(usually, queries to an AES-like black-box should cost a non-negligible quantum time).
The equation step has a complexity of approximately 264 ×

(
216(24 × 4)× 4

)
' 284 calls

to Π: each guess of k0 is tested by searching the good k1 (column by column) and k2 (byte
per byte).

Against 3k-Feistel. A Feistel scheme with a mixing function f , alternating three keys
k0, k1, k2, xored or modularly added, is immune to the complementation slide and sliding
with a twist techniques. It seems difficult to write a slide shift property for this cipher.
Let us write the round function g as:

L,R 7→ R+ f(k1 + L+ f(k0 +R)), L+ f(k0 +R) + f(k2 + f(k1 + L+ f(k0 +R)))

and suppose that we can invert f . In O
(
2n/2) queries, we can find two slide equations

g(L,R) = L′, R′, which imply f(k1 + L + f(k0 + R)) = L′ − R. Regardless of the
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function f , we can invert it in time O
(
2n/4) using Grover and recover two equations

k1 +L+ f(k0 +R) = X. We take the difference (or sum if we replace + by ⊕) to eliminate
k1, and we can solve the remaining equation on k0 using Grover in O

(
2n/4) time. Once

this is done, k1 can be found via the relation k1 = f−1(L′ −R)− L− f(k0 +R) and k2
via L+ f(k0 +R) + f(k2 + f(k1 + L+ f(k0 +R))) = R′.

The whole attack requires O
(
2n/2) time and queries due to the cycle finding, with any

function f .

Against 4k-Feistel. If we append one more round key k3, the round function g becomes:

L,R 7→ L+ f(k0 +R) + f(k2 + f(k1 + L+ f(k0 +R))),
R+ f(k1 + L+ f(k0 +R)) + f(k3 + L+ f(k0 +R) + f(k2 + f(k1 + L+ f(k0 +R))))

Again, we can find some slide equations g(L,R) = L′, R′ from a cycle in O
(
2n/2)

queries. We guess the subkey k0. For each guess, we can rewrite the equations as if there
were only 3 subkeys, and solve them in time O

(
2n/4) using multiple Grover instances, as

seen above, regardless of the properties of f . The whole attack requires O
(
2n/2) time

and queries, the two steps (cycle finding and solving equations) are now balanced. The
time complexity is greater than the other 4k-Feistel attacks seen above, but there is no
restriction on the function f and the operations used; furthermore, we only use encryption
queries, not decryption queries (which is the case of the twist).

7 Conclusion
In this paper, we presented various quantum slide attacks, which target the two main
families of block ciphers: SPN and Feistels. The concrete cost of these attacks vastly
depends on the structure, that is, is there a slide-shift property or not, and in that case,
what is the group law used, whether it is XOR or modular addition (or parallel modular
additions); dependencies which do not occur classically. However, for usual parameters in
symmetric schemes, slide-shift properties remain extremely competitive when compared to
exhaustive search.

We also showed that the relevant security notion for the inner function in a quantum
slide-shift attack is its quantum security, which demonstrates a very powerful chaining
property of some quantum attacks. We used this chaining property to attack 4-round
self-similar Feistel ciphers, at a quadratic cost.

We provided a detailed analysis of cycle-based slide attacks, thought to be quantumly
very efficient, showing a smaller than expected improvement with respect to the classical
attacks.

Classical slide attacks have shown the importance of a good key schedule, as self-similarity
in a cipher allows for powerful breaks. In the quantum setting, these results seem to put
even more weight on this design principle, as the attacks become much more efficient.
Furthermore, as their cost is very low, a possible future direction for improvement would be
to consider new attack patterns, intrinsically infeasible in a classical setting, with stronger
functions relating the slide pairs.

Also, using modular additions instead of bitwise additions as suggested in [AR17] does
not seem to counter the attacks, as already pointed out in [BNP]. While the quantum
complexity of an attack goes from polynomial to subexponential, it would require unrealistic
state sizes to assert enough security. Protecting against slide attacks, classical and quantum,
using e.g a good key schedule, seems a much more desirable option.
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A Summary of Classical Slide Attacks
We provide in Tables 3 and 4 a (certainly non exhaustive) list of classical slide attacks that
we studied for quantum improvements. They are not ordered by efficiency. We refer to the
corresponding source for a presentation of the attack principle. Table 3 contains attacks
on specific constructions, while Table 4 contains attacks on generic constructions (n is the
block size of the cipher attacked; for a Feistel network, round keys have size n/2). Note
that memory usage and required access to a decryption device play a role in the usefulness
of these slide attacks.
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Table 3: Classical slide attacks on specific constructions

Cipher at-
tacked

Attack details Encryption
queries

Time Decryption
queries

Memory Source

2K-DES (64-
bit blocks)

232 250 232 [BW99], Sec-
tion 4

TREYFER
(64-bit blocks)

232 240 232 [BW99], Sec-
tion 5

DESX (64-bit
blocks)

Sliding with a
twist, known-
plaintext only

232,5 287,5 232,5 [BW00], Sec-
tion 4

GOST (20
rounds)

Sliding with a
twist

233 270 265 [BW00], Sec-
tion 5

2K-AES (128-
bit blocks)

269 269 269 [BOBDK18],
Section 2.3

3K-AES (128-
bit blocks)

281 281 281 [BOBDK18],
Section 2.3

24-round
GOST with
unknown
S-Boxes

Slide and trun-
cated differential
on 8 rounds

263 263 263 [BOBDK18],
Section 5.3

Palindromic
GOST with
unknown
S-Boxes

240 240 240 [BOBDK18],
Section 5.4
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Table 4: Classical slide attacks on generic constructions. We omit O notations.

Cipher attacked Remark Encr.
queries

Time Dec.
queries

Memory Source

One-round self-
similar cipher with
weak round function

Exhaustive search of
slide pairs

2n/2 2n 2n/2 [BW99], 2

1k-Feistel Chosen-plaintext
search of slide pairs

2n/4 2n/2 2n/4 [BW99], 3

2k-Feistel Complementation
slide

2n/2 2n/2 2n/2 [BW00], 3.1

2k-Feistel Sliding with a twist 2n/4 2n/4 2n/4 2n/4 [BW00], 3.2
4k-Feistel Complementation

and sliding with a
twist

2n/4 2n/4 2n/4 2n/4 [BW00], 3.3

Even-Mansour con-
struction

Known-plaintext only 2(n+1)/2 2(n+1)/2 2(n+1)/2 [BW00], 4

1k-SPN 2n/2 2n/2 2n/2 [BOBDK18], 2.1
3k-Feistel 25n/6 25n/6 22n/3 [BOBDK18], 3
Palindromic-
scheduled Feistel†

2n/2 2n/2 [BOBDK18], 4.2

Generic* Ek = f l
k Cycle structure 2n−1 t + 2n−1 2n−1 [BOBDK18], 4.1

2k-WFeistel Mirror slidex and
complementation
slide

2n/2 2n/2 2n/2 2n/2 [DKS15], 7.3

4k-WFeistel
with schedule
(ka, kb, kc, kd)mka

Mirror slidex and
complementation
slide

2n/2 2n/2 2n/2 2n/2 [DKS15], 7.4

4k-Feistel Enhanced reflection 2n/2 2n/2 n [DDKS15], 4
4k-WFeistel Enhanced reflection n2n/2 n2n/2 n2n/2 [DDKS15], 4

*t is the time needed to attack fk.
† at best (depends in practice on attacking the palindromic round function)
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