
HAL Id: hal-01947589
https://hal.archives-ouvertes.fr/hal-01947589

Submitted on 7 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Integration of Web APIs and Linked Data Using
SPARQL Micro-Services - Application to Biodiversity

Use Cases
Franck Michel, Catherine Faron Zucker, Olivier Gargominy, Fabien Gandon

To cite this version:
Franck Michel, Catherine Faron Zucker, Olivier Gargominy, Fabien Gandon. Integration of Web APIs
and Linked Data Using SPARQL Micro-Services - Application to Biodiversity Use Cases. Information,
MDPI, 2018, Special Issue ”Semantics for Big Data Integration”, 9 (12), �10.3390/info9120310�. �hal-
01947589�

https://hal.archives-ouvertes.fr/hal-01947589
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

 information

Article

Integration of Web APIs and Linked Data Using
SPARQL Micro-Services—Application to Biodiversity
Use Cases †

Franck Michel 1,*, Catherine Faron Zucker 1, Olivier Gargominy 2 and Fabien Gandon 1

1 I3S laboratory, University Côte d’Azur, CNRS, Inria, 930 route des Colles, 06903 Sophia Antipolis, France;
faron@i3s.unice.fr (C.F.Z.); fabien.gandon@inria.fr (F.G.)

2 Muséum National d’Histoire Naturelle, 36 rue Geoffroy Saint-Hilaire, 75005 Paris, France; gargo@mnhn.fr
(O.G.)

* Correspondence: fmichel@i3s.unice.fr (F.M.)
† This paper is an extended version of our paper published in Michel F., Faron Zucker C. and Gandon F.

(2018). SPARQL Micro-Services: Lightweight Integration of Web APIs and Linked Data. In Proceedings of
the Linked Data on the Web (LDOW2018), Lyon, France, 23 April 2018.

Received: 9 November 2018; Accepted: 3 December 2018; Published: 6 December 2018

Abstract: In recent years, Web APIs have become a de facto standard for exchanging machine-
readable data on the Web. Despite this success, however, they often fail in making resource
descriptions interoperable due to the fact that they rely on proprietary vocabularies that lack
formal semantics. The Linked Data principles similarly seek the massive publication of data on the
Web, yet with the specific goal of ensuring semantic interoperability. Given their complementary
goals, it is commonly admitted that cross-fertilization could stem from the automatic combination
of Linked Data and Web APIs. Towards this goal, in this paper we leverage the micro-service
architectural principles to define a SPARQL Micro-Service architecture, aimed at querying Web
APIs using SPARQL. A SPARQL micro-service is a lightweight SPARQL endpoint that provides
access to a small, resource-centric, virtual graph. In this context, we argue that full SPARQL Query
expressiveness can be supported efficiently without jeopardizing servers availability. Furthermore,
we demonstrate how this architecture can be used to dynamically assign dereferenceable URIs to
Web API resources that do not have URIs beforehand, thus literally “bringing” Web APIs into the
Web of Data. We believe that the emergence of an ecosystem of SPARQL micro-services published
by independent providers would enable Linked Data-based applications to easily glean pieces of
data from a wealth of distributed, scalable, and reliable services. We describe a working prototype
implementation and we finally illustrate the use of SPARQL micro-services in the context of two
real-life use cases related to the biodiversity domain, developed in collaboration with the French
National Museum of Natural History.

Keywords: Web API; REST; SPARQL; micro-service; data integration; linked data; biodiversity

1. Introduction

With the advent of the Big Data era during the last fifteen years, many works have tackled the
challenge of dealing with large volumes of data produced at a high velocity (commonly known as the
first two V’s of Big Data). This has led to the emergence of new types of databases (so-called NoSQL
databases [1]) and new processing paradigms (e.g., MapReduce [2]). But volume and velocity are
just one part of the new issues that we are given to face. The dramatic proliferation of data sources
available on the Web poses an unprecedented challenge upon data integration, i.e., the techniques
involved in combining heterogeneous data residing in different systems and locations, into a common,

Information 2018, 9, 310; doi:10.3390/info9120310 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
http://dx.doi.org/10.3390/info9120310
http://www.mdpi.com/journal/information

Information 2018, 9, 310 2 of 26

consistent view. This is where we have to tackle the third and fourth V’s of Big Data: Variety
refers to data syntactic and semantic heterogeneity, while veracity addresses questions such as data
interpretation, bias, uncertainty, provenance, and, ultimately, trust.

Various types of interfaces can enable access to and querying of big data sets. In particular,
Web APIs have gained significant traction during the last decade, to the extent they became a de
facto standard for exchanging data on the Web. They are routinely published by Web portals and data
producers to enable HTTP-based, machine-processable access to their data. Let us illustrate this with a
few examples. As of October 2018, the ProgrammableWeb.com portal was registering over 20,000 Web
APIs pertaining to topics as diverse as social networks, entertainment, or finance. Many governments
around the world have set up data portals accessible through Web APIs to inventory open data sets
originating from the public sector [3]. In the biodiversity domain, data aggregators and Natural
History museums maintain specialized Web APIs giving access to billions of records about taxonomies,
occurrences, and traits of biological organisms [4].

Despite their success in ensuring a relatively uniform access to resource descriptions, Web APIs
fail in making these descriptions interoperable. Indeed, they commonly rely on service-specific data
models and proprietary vocabularies that are hardly connected with other ones. More importantly,
these vocabularies lack a clear semantic description that is essential to address the variety and (to a
lesser extend) veracity issues. The Linked Data principles [5] specifically seek to address this lack.
They propose to publish data (1) in a common machine-readable format (RDF, the Resource Description
Framework [6]); (2) using shared and linked vocabularies with clearly defined semantics; (3) while
linking related resources throughout datasets. Links bring about the ability to consolidate and make
sense of disparate datasets, thus building a uniform distributed knowledge graph. Similarly to Web
APIs, large amounts of data about all sorts of topics are increasingly being published in compliance
with the Linked Data principles. As of October 2018, over 25,000 Linked Data datasets were inventoried
by LODAtlas (http://lodatlas.lri.fr/).

Given the complementary goals of Web APIs and Linked Data, it is commonly admitted that
cross-fertilization could stem from their mutual integration. Initiatives like Google’s Knowledge Graph
(https://goo.gl/BqMC21) or Facebook’s Open Graph (http://ogp.me/) are continuously enriching
vast knowledge graphs by gathering data from these two worlds alongside other types of data sources.
Strikingly however, no standard approaches have emerged so far. Several issues can be pointed out,
that explain this lack:

• Vocabularies: Web APIs typically rely on standard representation formats such as JSON or XML,
but how to invoke a Web API and interpret resource representations is usually documented in
Web pages meant for human readers. By contrast, Linked Data best practices [7] advocate the use
of standard protocols and common, well adopted vocabularies described in machine-readable
formats. Consequently, consuming Web API data and RDF triples alike is often achieved through
the development of Web API wrappers implementing bespoke vocabulary alignment.

• Resource identifiers: Web APIs commonly name resources using proprietary, internal identifiers.
The downside is that such internal identifiers do not have any meaning beyond the scope of the
Web API itself. Linked Data principles address this issue by relying on HTTP URIs to identify
resources. Not only URIs are unique on the Web, but they can also establish uniform affordances
of the resources in that they can be dereferenced to a description of the resource. Therefore,
integrating Web APIs and Linked Data requires a mechanism to associate internal identifiers
to URIs.

• Parsimony: Web APIs frequently consist of many different services (search by name/tag/group,
organize content, interact with contents, etc.). Such that providing a Linked Data interface for
all of these services may require substantial efforts, although a tiny fraction of them may fulfill
the needs of most use cases. Therefore, a more parsimonious, on-demand approach may be
more relevant.

http://lodatlas.lri.fr/
https://goo.gl/BqMC21
http://ogp.me/

Information 2018, 9, 310 3 of 26

• Suitable interface: Controversy exists with respect to the type(s) of interface(s) most suitable to
query Web APIs in a way that allows for their integration with Linked Data. Each type of Linked
Data interface has its own benefits and concerns. RDF dumps allow in-house consumption but do
not fit in when data change at a high pace; URI dereferencing (i.e. looking up a URI to retrieve a
resource representation in a negotiated media type such as one of the RDF serialization syntaxes)
provides subject-centric documents hence lacking query expressiveness. At the other end of the
spectrum, SPARQL [8], the W3C recommendation to query RDF graphs, is more expressive but
puts the query processing cost solely on the server, and studies suggest that allowing clients to
run arbitrary SPARQL queries against public endpoints leads to availability issues [9]. Besides,
on-the-fly SPARQL querying of non-RDF databases proves to be challenging, as attested by the
many works on SPARQL-based access to relational [10,11] or NoSQL [12,13] databases.

In this article, we propose to harness the Semantic Web standards to enable automatic combination
of disparate resource representations coming from both Linked Data interfaces and Web APIs.
Our contribution is threefold. Firstly, we define the SPARQL Micro-Service architecture aimed at
querying Web APIs using SPARQL while assigning dereferenceable URIs to Web API resources (that
do not have URIs beforehand). Secondly, we suggest that leveraging the micro-service architectural
principles [14] could help to design more distributed and modular Linked Data-based applications.
Thirdly, we illustrate the use of SPARQL micro-services in several real-life use cases related to the
biodiversity domain.

The rest of this article is organized as follows. Section 2 introduces background elements
with respect to Web APIs and micro-service architectural principles. Section 3 defines the SPARQL
micro-service architecture, while Sections 4 and 5 present our implementation and the experimentation
we have conducted. This is then complemented in Section 6 with the description of two concrete use
cases in the biodiversity area. Related works are discussed in Section 7 while the last section sums up
our approach and suggests future leads.

2. Background

2.1. Web APIs

Web APIs are a loosely defined category of services accessed over the Web. Since the term is used
in the literature to refer to somewhat different things, below we outline more precisely what it means
within the context of this article.

Web APIs are invoked over the HTTP/HTTPS protocols. Unlike WSDL-based Web services,
they leverage the HTTP protocol to denote actions, spawning relatively simple interfaces where
service arguments are traditionally passed as regular parameters of an HTTP query string. These APIs
are informally called REST interfaces although they are generally more “REST-like” than RESTful, i.e.,
they comply with some of the REST architectural principles [15] (stateless interaction, uniform interface)
but relax others (self-contained response, resources identified with URIs, hypermedia links to navigate
resource states).

Most Web APIs use a standard representation format such as XML and JSON, thereby ensuring
a relatively uniform access to resource representations. These descriptions however often rely on
proprietary vocabularies typically documented in Web pages meant for software developers but hardly
machine-readable. This is a major difference with Linked Data best practices [7] that advocate the
use of common, well adopted vocabularies whose semantics is described in machine-readable format.
Some initiatives make Web APIs documentation machine-readable, such as OpenAPI (https://github.
com/OAI/OpenAPI-Specification) (formerly Swagger). This description however hardly touches
upon semantic concerns; it mostly consists of a syntactic description of the operations supported by
the interface, and aims to automate the generation of client-side and server-side code. In this respect,
OpenAPI is no different from what WSDL allowed to do. By contrast, smartAPI [16] extends OpenAPI

https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification

Information 2018, 9, 310 4 of 26

with an extensive set of metadata, but the link with vocabularies and ontologies from the Web of Data
is still to be defined.

2.2. Micro-Service Architectures

The term micro-service, also called fine-grained SOA, refers to an architectural style where
an application builds upon a set of services that are fine-grained (they fulfill a single,
well-defined function), loosely coupled and independently deployable [14]. Although no
standard definition of micro-services exists so far, consensus is emerging about commonly
agreed upon principles [17,18]. For instance, a proposition rewords these principles by
stating that micro-services should be elastic, resilient, composable, minimal and complete
(https://www.nirmata.com/2015/02/02/microservices-five-architectural-constraints/). Away from
traditional monolithic applications, the micro-service architectural style improves modularity by
making applications easier to develop, maintain, and test. Development teams are typically geared
towards continuous refactoring, delivery and deployment of the services they are responsible for,
independently of other teams and services. Instead of being constrained to use specific technologies,
each team picks the programming language(s), software stacks, and other third-party technologies
that it deems most appropriate for a specific service, hence giving rise to polyglot applications.

Micro-services have gained increasing traction during the last few years, not only from
the Web companies who inspired this architecture, but also from many other companies that
need to make their development and deployment processes more agile. Micro-services are
often associated with lightweight container technologies such as the popular Docker
(https://www.docker.com/). These technologies can underpin the quick and elastic deployment of
applications by enabling on-demand scaling up or down of the micro-services.

Obviously, beyond these seemingly idealistic principles, the experience shows that
micro-services have pitfalls of their own (https://www.infoq.com/news/2014/08/failing-
microservices). For instance, figuring out the right functional scope of a micro-service so as to
keep it minimal and complete is critical in many aspects. With “too minimal” micro-services, an
application may soon consist of several hundreds of micro-services, far from the intuitive idea of
“easily maintainable”. Furthermore, insofar as complex services are achieved by composing multiple
micro-services, “too minimal” services tend to entail complex dependency networks that, again,
cause maintainability issues.

Still, despite these downsides, we argue that leveraging micro-service principles may foster
the design of Linked Data-based applications in a more distributed and modular way, by building
on independent and lightweight services. Such services may typically be URI dereferencing
services, SPARQL endpoints, triple stores, Linked Data Platform [19] components etc. The SPARQL
micro-service architecture is a proposition designed with this mindset.

3. The SPARQL Micro-Service Architecture

3.1. Definition

A SPARQL micro-service Sµ is a wrapper of a service Sw of a Web API, that allows querying Sw

using SPARQL. Sµ behaves as a regular SPARQL endpoint insofar as it supports the SPARQL Query
Language [8] (including all query forms: SELECT, ASK, CONSTRUCT, DESCRIBE) and the SPARQL
Protocol [20]. Accordingly, a client invokes Sµ over HTTP/HTTPS by passing a SPARQL query Q and
optional default and named graph URIs (arguments default-graph-uri and named-graph-uri).

Additionally, Sµ expects a possibly empty set Argw of arguments that are specific to the service
being wrapped. In turn, Sµ invokes Sw with the arguments in Argw, and produces a SPARQL result
set that matches Q. Figure 1 illustrates this architecture.

The semantics of SPARQL micro-services differs from that of standard SPARQL endpoints in that
a SPARQL micro-service is a configurable SPARQL endpoint whose arguments (Argw) delineate the

https://www.nirmata.com/2015/02/02/microservices-five-architectural-constraints/
https://www.docker.com/
https://www.infoq.com/news/2014/08/failing-microservices
https://www.infoq.com/news/2014/08/failing-microservices

Information 2018, 9, 310 5 of 26

virtual graph being queried. Formally, each pair (Sµ, Argw) is a standard SPARQL endpoint. As we
see it, a SPARQL micro-service provides access to a small, resource-centric graph that corresponds to a
small fragment of the whole dataset served by the Web API. This graph is shaped at runtime by (i) the
Web API service being wrapped; (ii) the set Argw of arguments passed to micro-service Sµ; and (iii) the
types of RDF triples that Sµ is designed to produce.

Figure 1. Architecture of a SPARQL micro-service with one argument param1. In this example,
the argument is passed as a parameter on the HTTP query string.

How Argw is passed to micro-service Sµ is implementation-dependent. The implementation we
describe in Section 4 passes the arguments as parameters of the HTTP query string, and we discuss
several possible alternatives in Section 4.4. Likewise, how the Web API response is transformed into a
SPARQL result set matching Q is implementation-dependent. Various methods may be used at this
point, involving e.g., different flavors of mapping, reasoning or rule processing. In the context of
JSON-based Web APIs, our implementation applies a JSON-LD profile to the Web API response and
executes an optional SPARQL query to yield additional triples.

With regards to the micro-service architectural principles, we think of SPARQL micro-services
as lightweight, independent software units being developed along with the arising of needs.
A micro-service development team focuses on one Web API at a time, defines how to wrap the
services of interest for clearly identified use cases, tests and deploys the micro-services. Using a
container infrastructure like Docker, each micro-service is deployed within a dedicated container that
can scale up or down automatically in response to changes in the workload.

Example 1. Let Sw be a service of Flickr’s Web API (Flickr is a photography-related social network; its API
is described at https://www.flickr.com/services/api/), that retrieves photos posted in a specific Flickr group
and having a specific tag (https://www.flickr.com/services/api/flickr.groups.pools.getPhotos.html). Argw (the
arguments of Sw) comprises two arguments, group_id and tags. Let Sµ be a SPARQL micro-service that wraps
Sw and takes its arguments as parameters on the HTTP query string.

Let us assume a client wants to retrieve the URLs of photos of dolphins, posted to the Encyclopedia of
Life Images group (https://www.flickr.com/groups/806927@N20) wherein photos are tagged with the species
scientific name formatted as “taxonomy:binomial=<scientific name>”. To do so, the client executes the SPARQL
query below against any SPARQL 1.1 endpoint, in which the SERVICE clause invokes Sµ while passing the
group_id and tags arguments:

PREFIXPREFIXPREFIX s: <http :// schema.org/>
SELECTSELECTSELECT * WHEREWHEREWHERE {

SERVICESERVICESERVICE <http :// example.org/flickr/getPhotosByGroupByTag? \
group_idgroup_idgroup_id =806927 @N20&tagstagstags=taxonomy:binomial=Delphinus+delphis >

{ SELECTSELECTSELECT ?img WHEREWHEREWHERE { ?photo s:image ?img. } }
}

https://www.flickr.com/services/api/
https://www.flickr.com/services/api/flickr.groups.pools.getPhotos.html
https://www.flickr.com/groups/806927@N20

Information 2018, 9, 310 6 of 26

Sµ invokes Flickr’s Web API service Sw with the arguments in Argw, possibly in addition to technical
arguments required by the Web API. Listing 1 shows the invocation URL (top) and sketches a snippet of the
response (bottom). Sµ translates this response into an RDF graph G such as the one depicted in Listing 2.
Remember that how this translation is carried out is implementation-dependent. Finally, Sµ evaluates the client’s
SPARQL query against G and returns the response in one of the media types supported by the SPARQL client
(following a regular content negotiation [21]).

Listing 1. Top: Invocation of a Flickr’s Web API service (technical parameters were left over for clarity).
Bottom: Snippet of the JSON response.

Version December 3, 2018 submitted to Information 6 of 28

https :// api.flickr.com/services/rest/?

method=flickr.groups.pools.getPhotos&format=json&per_page =500&

group_idgroup_idgroup_id =35034350743 @N01&tagstagstags=taxonomy:binomial=Delphinus+delphis

{ "photosphotosphotos ": {

"pagepagepage": 1, "pagespagespages": "15",

"photophotophoto": [

{ "ididid": "31173091406" , "titletitletitle": "Delphinus delphis 5 (13-7-16 San Diego)",

"ownerownerowner": "10770266 @N04", "ownernameownernameownername ": "Barbol",

"secretsecretsecret ": "8 c7437e970", "serverserverserver ": "5718" , "farmfarmfarm": 6 }

]

}}

Listing 1: Top: invocation of a Flickr’s Web API service (technical parameters were left over for
clarity). Bottom: snippet of the JSON response.

PREFIXPREFIXPREFIX sss: <http :// schema.org/>

<http :// example.org/ld/flickr/photo /31173091626 >

aaa sss:PhotographPhotographPhotograph;

sss:namenamename "Delphinus delphis 5 (13-7-16 San Diego)";

sss:imageimageimage <https :// farm6.staticflickr.com /5718/31173091626 _88c410c3f2_z.jpg >;

sss:mainEntityOfPagemainEntityOfPagemainEntityOfPage <https :// flickr.com/photos /10770266 @N04 /31173091626 >;

sss:authorauthorauthor [

sss:namenamename "Barbol ";

sss:urlurlurl <https :// flickr.com/photos /10770266 @N04 >

].

Listing 2: Example of RDF graph representing the Web API response in Listing 1, in the Turtle
syntax [22].

Let us assume a client wants to retrieve the URLs of photos of dolphins, posted to the Encyclopedia190

of Life Images group11 wherein photos are tagged with the species scientific name formatted as191

“taxonomy:binomial=<scientific name>”. To do so, the client executes the SPARQL query below192

against any SPARQL 1.1 endpoint, in which the SERVICE clause invokes Sµ while passing the group_id193

and tags arguments:194

PREFIXPREFIXPREFIX s: <http :// schema.org/>195

SELECTSELECTSELECT * WHEREWHEREWHERE {196

SERVICESERVICESERVICE <http :// example.org/flickr/getPhotosByGroupByTag? \197

group_idgroup_idgroup_id =806927 @N20&tagstagstags=taxonomy:binomial=Delphinus+delphis >198

{ SELECTSELECTSELECT ?img WHEREWHEREWHERE { ?photo s:image ?img. } }199

}200

Sµ invokes Flickr’s Web API service Sw with the arguments in Argw, possibly in addition to technical201

arguments required by the Web API. Listing 1 shows the invocation URL (top) and sketches a snippet202

of the response (bottom). Sµ translates this response into an RDF graph G such as the one depicted203

in Listing 2. Remember that how this translation is carried out is implementation-dependent. Finally,204

Sµ evaluates the client’s SPARQL query against G and returns the response in one of the media types205

supported by the SPARQL client (following a regular content negotiation [21]).206

11 https://www.flickr.com/groups/806927@N20

Listing 2. Example of RDF graph representing the Web API response in Listing 1, in the Turtle
syntax [22].

Version December 3, 2018 submitted to Information 6 of 28

https :// api.flickr.com/services/rest/?

method=flickr.groups.pools.getPhotos&format=json&per_page =500&

group_idgroup_idgroup_id =35034350743 @N01&tagstagstags=taxonomy:binomial=Delphinus+delphis

{ "photosphotosphotos ": {

"pagepagepage": 1, "pagespagespages": "15",

"photophotophoto": [

{ "ididid": "31173091406" , "titletitletitle": "Delphinus delphis 5 (13-7-16 San Diego)",

"ownerownerowner": "10770266 @N04", "ownernameownernameownername ": "Barbol",

"secretsecretsecret ": "8 c7437e970", "serverserverserver ": "5718" , "farmfarmfarm": 6 }

]

}}

Listing 1: Top: invocation of a Flickr’s Web API service (technical parameters were left over for
clarity). Bottom: snippet of the JSON response.

PREFIXPREFIXPREFIX sss: <http :// schema.org/>

<http :// example.org/ld/flickr/photo /31173091626 >

aaa sss:PhotographPhotographPhotograph;

sss:namenamename "Delphinus delphis 5 (13-7-16 San Diego)";

sss:imageimageimage <https :// farm6.staticflickr.com /5718/31173091626 _88c410c3f2_z.jpg >;

sss:mainEntityOfPagemainEntityOfPagemainEntityOfPage <https :// flickr.com/photos /10770266 @N04 /31173091626 >;

sss:authorauthorauthor [

sss:namenamename "Barbol ";

sss:urlurlurl <https :// flickr.com/photos /10770266 @N04 >

].

Listing 2: Example of RDF graph representing the Web API response in Listing 1, in the Turtle
syntax [22].

Let us assume a client wants to retrieve the URLs of photos of dolphins, posted to the Encyclopedia190

of Life Images group11 wherein photos are tagged with the species scientific name formatted as191

“taxonomy:binomial=<scientific name>”. To do so, the client executes the SPARQL query below192

against any SPARQL 1.1 endpoint, in which the SERVICE clause invokes Sµ while passing the group_id193

and tags arguments:194

PREFIXPREFIXPREFIX s: <http :// schema.org/>195

SELECTSELECTSELECT * WHEREWHEREWHERE {196

SERVICESERVICESERVICE <http :// example.org/flickr/getPhotosByGroupByTag? \197

group_idgroup_idgroup_id =806927 @N20&tagstagstags=taxonomy:binomial=Delphinus+delphis >198

{ SELECTSELECTSELECT ?img WHEREWHEREWHERE { ?photo s:image ?img. } }199

}200

Sµ invokes Flickr’s Web API service Sw with the arguments in Argw, possibly in addition to technical201

arguments required by the Web API. Listing 1 shows the invocation URL (top) and sketches a snippet202

of the response (bottom). Sµ translates this response into an RDF graph G such as the one depicted203

in Listing 2. Remember that how this translation is carried out is implementation-dependent. Finally,204

Sµ evaluates the client’s SPARQL query against G and returns the response in one of the media types205

supported by the SPARQL client (following a regular content negotiation [21]).206

11 https://www.flickr.com/groups/806927@N20

3.2. Assigning URIs to Web API Resources

Web APIs usually identify the resources they manage with internal, proprietary identifiers.
For instance, string “31173091406” identifies the photographic resource represented in Listing 1.
But beyond the scope of Flickr’s Web API, this identifier is totally meaningless. As a first approach,
the URL of this photo’s Web page could serve as a URI. This practice is however discouraged as it
tends to mix up the resource (a photographic work in this case) with an HTML representation thereof.

Therefore, bridging Web APIs and Linked Data not only requires to enable SPARQL querying
of Web APIs, but also to dynamically create URIs that identify Web API resources. Furthermore,
according to Linked Data best practices [7], it should be possible to look up these URIs in order to
retrieve a description of the resources in a negotiated media type. Conventionally, dereferencing a URI
returns a set of RDF triples where the URI is either in the subject or object position. This is typically
achieved through a CONSTRUCT or DESCRIBE SPARQL query.

SPARQL micro-services can be used to implement URI dereferencing in a straightforward manner.
Once a domain name and URI scheme are chosen, a Web server can be set up to deal with this URI
scheme. When the Web server receives a look-up query for a URI that matches the scheme, it generates

Information 2018, 9, 310 7 of 26

an invocation of the relevant SPARQL micro-service. Technically, the Web server acts as a reverse
proxy: It queries the SPARQL micro-service and transparently proxies the response back to the client.
Figure 2 sketches this architecture.

Hence, by smartly designing SPARQL micro-services, we can build a consistent ecosystem where
some micro-services respond to SPARQL queries by assigning URIs to Web API resources, while some
micro-services (possibly the same) are able to dereference these URIs to an RDF content.

Figure 2. Using a SPARQL micro-service to dereference URIs to RDF content.

Example 2. Let us assume that the getPhotoById SPARQL micro-service retrieves photos by their Flickr
identifier (argument photo_id). When the Web server receives a look-up query for URI “http://example.org/
ld/flickr/photo/38427227466”, it invokes the getPhotoById service with the following inputs: (i) The photo
identifier passed as argument photo_id; (ii) a SPARQL query to retrieve a graph representing the resource,
typically a DESCRIBE query on the URI being looked up; (iii) the Accept HTTP header from the look-up query,
to enable end-to-end content negotiation. An example of the URL generated by the Web server in response to this
URI look-up is shown below:

http :// example.org/flickr/getPhotosById?
photo_idphoto_idphoto_id =38427227466&
queryqueryquery=DESCRIBE \%20\%3 Chttp \%3A\%2F\%2 Fexample.org \%2 Fld \

\%2 Fflickr \%2 Fphoto \%2 F38427227466 \%3E

The Web server finally proxies the response back to the client in one of the negotiated media types.
If the SPARQL query is more verbose that in the example above (e.g., a large CONSTRUCT query), the

Web server rewriting configuration may become cumbersome and more difficult to maintain. The implementation
described in Section 4 mitigates this issue by allowing each micro-service to provide a CONSTRUCT query that
shall be used to answer a URI dereferencing query.

3.3. Analysis of SPARQL Micro-Services with the Linked Data Fragments Framework

There exist several types of interfaces to interact with and query Linked Data. The Linked Data
Fragments [23] framework was designed to enable the analysis and comparison of such Linked Data
interfaces. Within this framework, a query response returned by a Linked Data interface is called
a Linked Data Fragment (LDF). Different types of LDF can be sorted out according to their query
granularity and the way processing workload is balanced between a server and a client. Common LDF
types are depicted on Figure 3: on the left hand-side, querying consists of a mere download operation
and clients bear the full cost of evaluating queries against RDF dumps; on the right hand-side,
SPARQL enables expressing specific queries but endpoints fully bear the evaluation cost. Between these
two extremes lies a spectrum of intermediate approaches. A Linked Data document results from a
URI dereferencing. A Triple Pattern Fragment [23] (TPF) results from evaluating a single triple pattern
against an RDF dataset. The TPF approach succeeds in balancing the query evaluation cost between the
client and the server, thereby ensuring better server availability than full-fledged SPARQL endpoints,
at the cost of a loss of efficiency. SaGe [24] mitigates this issue with a modification of the SPARQL
protocol. A SaGe server can interrupt the processing of a SPARQL query and send back to the client
the current results alongside the information needed by the server to carry on processing during a
subsequent invocation.

We see SPARQL micro-services as an alternative Linked Data Fragment interface. A SPARQL
micro-service Sµ provides access to a virtual graph that corresponds to a fragment of the dataset
served by the Web API. By designing it carefully, we can ensure that Sµ will yield small (typically

http://example.org/ld/flickr/photo/38427227466
http://example.org/ld/flickr/photo/38427227466

Information 2018, 9, 310 8 of 26

resource-centric) virtual graphs. In this context, virtually any query can be processed at low cost.
In other words, full SPARQL Query expressiveness can be supported without jeopardizing the service
availability. Consequently, in Figure 3, SPARQL micro-service results stand nearby SPARQL results
since SPARQL micro-services allow requests as specific (expressive) as SPARQL, and to the right of
SaGe results since they do not put any additional processing cost on the client.

Figure 3. Granularity of different types of Linked Data Fragments.

4. Implementation

To evaluate the architecture proposed in Section 3, we have developed a prototype implementation
written in the PHP language and available on GitHub (https://github.com/frmichel/sparql-micro-
service/tree/0.1.0/) under the Apache 2.0 license. This prototype targets Web APIs able to return a
JSON response. This pragmatic choice stems from the fact that most modern Web APIs support JSON.
Nevertheless, it would be easy to extend the prototype with respect to other formats such as XML.

Also, the prototype requires that the Argw set of arguments of a micro-service be passed as
parameters on the HTTP query string (as exemplified in Section 3.1). Thus, while the URL of a
regular SPARQL endpoint is of the form “http://example.org/sparql”, in our implementation a
SPARQL micro-service is invoked with additional parameters, like “http://example.org/sparql?
param1=value1”. Alternatives to this choice are discussed in Section 4.4.

4.1. Processing SPARQL Queries

A SPARQL micro-service evaluates a query against an RDF graph built at run-time from data
obtained from the Web API. The steps involved in this evaluation are depicted in Figure 4, and we
describe them further on in Algorithm 1 (the algorithm’s step numbers match those in Figure 1).

Algorithm 1 Evaluation of a SPARQL query by a SPARQL micro-service Sµ.

1. Sµ receives a SPARQL query Q along with the arguments in Argw.
2. Sµ invokes the Web API service with the arguments in Argw along with other parameters possibly

required by the Web API.
3. Sµ translates the Web API response (formatted in JSON) into an RDF graph: first, it applies a

JSON-LD profile to the response and loads the resulting graph G into a triple store; then, it runs
an optional SPARQL INSERT query that enriches G with additional triples.

4. Sµ evaluates Q against G and returns the result to the client.

Figure 4. Prototype implementation of SPARQL micro-services. In step 3, a JSON-LD profile first
translates the Web API JSON response into a temporary RDF graph G stored in the local triple store.
An optional INSERT query then augments G with triples that JSON-LD cannot yield. Lastly, the client’s
query is evaluated against G.

https://github.com/frmichel/sparql-micro-service/tree/0.1.0/
https://github.com/frmichel/sparql-micro-service/tree/0.1.0/
http://example.org/sparql
http://example.org/sparql?param1=value1
http://example.org/sparql?param1=value1

Information 2018, 9, 310 9 of 26

Example 3. To illustrate this algorithm, we follow up on the example introduced in Section 3.1. Steps 1 and 2
are as exemplified in Listing 1. In step 3, let us assume that the getPhotosByGroupByTag micro-service provides
the JSON-LD profile below, that turns each JSON field name into an ad hoc RDF predicate within name space
“http://sms.i3s.unice.fr/schema/” (note that any arbitrary complex profile may be used at this point):

{ "@context@context@context ": {
"@vocab@vocab@vocab ": "http :// sms.i3s.unice.fr/schema /"

}}

The resulting graph G is stored into the local triple store. It consists of various proprietary and somehow
technical predicates. For instance, the servers and farms identifiers are of little interest for a Linked Data
representation, but the API documentation describes how to reconstruct the URLs of photos and users pages
from these fields. This however involves the concatenation of several fields, that JSON-LD is typically incapable
of describing. Therefore, the micro-service provides an INSERT query shown in Listing 3, that augments G with
triples based on the Schema.org vocabulary. Listing 4 shows the graph obtained after completing both steps. The
two blank nodes correspond to the application of the JSON-LD profile, while the other triples result of executing
the INSERT query.

Finally, the client’s SPARQL query is evaluated against G and the response is returned to the client. In
the example, it consists of a solution binding for variable ?img, presented below in the SPARQL Results JSON
format [25]:

{ "headheadhead": {
"varsvarsvars": ["img"] },

"resultsresultsresults ": {
"bindingsbindingsbindings ": [
{ "img": {

"typetypetype": "uri",
"valuevaluevalue":

"https :// farm6.staticflickr.com /5718/31173091626 _88c410c3f2_z.jpg" }
}

] } }

Listing 3. Insertion of RDF triples based on the Schema.org vocabulary.
Version December 3, 2018 submitted to Information 10 of 28

PREFIXPREFIXPREFIX api: <http :// sms.i3s.unice.fr/schema/>

PREFIXPREFIXPREFIX s: <http :// schema.org/>

INSERTINSERTINSERT {

?photoUri a s:Photograph;

s:name ?title;

s:image ?img

s:mainEntityOfPage ?page;

s:author [s:name ?authorName; s:url ?authorUrl].

}

WHEREWHEREWHERE {

?photo api:id ?id; api:secret ?secret;

api:server ?server; api:farm ?farm;

api:title ?title; api:owner ?owner; api:ownername ?authorName.

BINDBINDBIND (IRIIRIIRI(concatconcatconcat ("http :// example.org/ld/flickr/photo/", ?id)) AS ?photoUri)

BINDBINDBIND (IRIIRIIRI(concatconcatconcat ("https :// flickr.com/photos/", ?owner , "/", ?id)) AS ?page)

BINDBINDBIND (IRIIRIIRI(concatconcatconcat ("https :// flickr.com/photos/", ?owner)) AS ?authorUrl)

BINDBINDBIND (IRIIRIIRI(concatconcatconcat ("https :// farm", ?farm , ". staticflickr.com/",

?server , "/", ?id, "_", ?secret , "_z.jpg")) AS ?img)

}

Listing 3: Insertion of RDF triples based on the Schema.org vocabulary.

"bindingsbindingsbindings ": [308

{ "img": {309

"typetypetype": "uri",310

"valuevaluevalue":311

"https :// farm6.staticflickr.com /5718/31173091626 _88c410c3f2_z.jpg" }312

}313

] } }314

4.2. URIs dereferencing315

The URIs dereferencing solution portrayed in section 3.2 relies on the Web server to rewrite a URI316

into an SPARQL micro-service invocation. In particular, this invocation must provide the SPARQL317

micro-service with a SPARQL query. While this can easily be maintained when the query consists of a318

simple “DESCRIBE <uri>”, richer CONSTRUCT queries may be required to accommodate different319

use cases. Maintaining such rewriting rules in the Web server configuarion may become cumbersome320

and error-prone.321

To cope with this issue, our prototype proposes a more flexible alternative: each micro-service322

may provide a CONSTRUCT query that shall be used to answer a URI look-up query. In addition,323

a micro-service checks an optional parameter query_mode whose values may be sparql (the default324

value) or ld. The latter instructs the micro-service to ignore any SPARQL query passed as parameter325

and instead return the result of the CONSTRUCT query.326

For instance, when a client looks up URI “http://example.org/ld/flickr/photo/38427227466”,327

the Web server rewrites this into an invocation to the appropriate micro-service, for instance:328

http :// example.org/flickr/getPhotosById?photo_idphoto_idphoto_id =38427227466&query_modequery_modequery_mode=ld329

4.3. Deployment330

Deploying a new SPARQL micro-service. The deployment of a SPARQL micro-service in our331

prototype simply consists of provisioning two mandatory files and two optional files:332

Information 2018, 9, 310 10 of 26

Listing 4. RDF graph produced from the Web API response in Listing 1 by applying successively a
JSON-LD profile and the INSERT query in Listing 3.

Version December 3, 2018 submitted to Information 11 of 28

PREFIXPREFIXPREFIX apiapiapi: <http ://sms.i3s.unice.fr/schema/>

PREFIXPREFIXPREFIX sss: <http :// schema.org/>

_:b123

apiapiapi:pagepagepage 1; apiapiapi:pagespagespages 15;

apiapiapi:photophotophoto _:b456.

_:b456

apiapiapi:ididid "31173091406"; apiapiapi:titletitletitle "Delphinus delphis 5 (13-7-16 San Diego)";

apiapiapi:ownerownerowner "10770266 @N04"; apiapiapi:ownernameownernameownername "BioDivLibrary ";

apiapiapi:secretsecretsecret "8 c7437e970 "; apiapiapi:serverserverserver "5718"; apiapiapi:farm 6.

<http :// example.org/ld/flickr/photophotophoto /31173091626 >

aaa sss:PhotographPhotographPhotograph;

sss:namenamename "Delphinus delphis 5 (13-7-16 San Diego)";

sss:imageimageimage <https :// farm6.staticflickr.com /5718/31173091626 _88c410c3f2_z.jpg >;

sss:mainEntityOfPagemainEntityOfPagemainEntityOfPage <https :// flickr.com/photos /10770266 @N04 /31173091626 >;

sss:authorauthorauthor [

sss:namenamename "Barbol ";

sss:urlurlurl <https :// flickr.com/photos /10770266 @N04 >

].

Listing 4: RDF graph produced from the Web API response in Listing 1 by applying successively a
JSON-LD profile and the INSERT query in Listing 3.

• config.ini: the micro-service main configuration file declares the arguments expected by the333

micro-service alongside the Web API invocation query string;334

• profile.jsonld: the JSON-LD profile is used to translate a response from the Web API into an RDF335

graph;336

• insert.sparql: this optional file provides an INSERT query meant to yield additional triples337

typically based on common vocabularies and ontologies;338

• construct.sparql: this optional file provides a CONSTRUCT query meant to produce the response339

to URI look-up queries.340

In our experience, deploying a new SPARQL micro-service is a matter of just a few hours. The341

most time-consuming tasks lie in reading the Web API documentation and deciding on the mapping342

towards domain vocabularies. Thence, a developer defines the API query string and the arguments343

passed to the SPARQL micro-service. Lastly, she writes the JSON-LD profile and the optional INSERT344

and CONSTRUCT queries that carry out the mappings.345

In case a Web API requires specific actions to be taken, such as following an authentication346

workflow or issuing an intermediate query, the developer can customize a simple provided script13,347

allowing for more flexibility.348

Caching Strategy. Querying Web APIs typically takes in the order of 0.5 to 1 second, as suggested349

by the measures we report in section 5. Therefore, whenever possible, a caching strategy should be350

defined with respect to the expected performance. There typically exist many syntactical variants351

of the same SPARQL query, hence classic HTTP cache servers set up between SPARQL clients and352

servers fail to reach efficient cache reuse. By contrast, Web API queries allow a lesser syntactical353

variability. Thus, in the context of SPARQL micro-services, enforcing a cache strategy on the Web API354

side should ensure better cache reuse.355

Our prototype enforces a simple cache strategy where each Web API response is stored in a cache356

database, indexed with a hash of the Web API query, and annotated with an expiration period that357

13 https://github.com/frmichel/sparql-micro-service/tree/0.1.0/src/sparqlms/manual_config_example/service.php

4.2. URIs Dereferencing

The URIs dereferencing solution portrayed in Section 3.2 relies on the Web server to rewrite a URI
into an SPARQL micro-service invocation. In particular, this invocation must provide the SPARQL
micro-service with a SPARQL query. While this can easily be maintained when the query consists of a
simple “DESCRIBE <uri>”, richer CONSTRUCT queries may be required to accommodate different
use cases. Maintaining such rewriting rules in the Web server configuarion may become cumbersome
and error-prone.

To cope with this issue, our prototype proposes a more flexible alternative: each micro-service
may provide a CONSTRUCT query that shall be used to answer a URI look-up query. In addition,
a micro-service checks an optional parameter query_mode whose values may be sparql (the default
value) or ld. The latter instructs the micro-service to ignore any SPARQL query passed as parameter
and instead return the result of the CONSTRUCT query.

For instance, when a client looks up URI “http://example.org/ld/flickr/photo/38427227466”,
the Web server rewrites this into an invocation to the appropriate micro-service, for instance:

http :// example.org/flickr/getPhotosById?photo_idphoto_idphoto_id =38427227466&query_modequery_modequery_mode=ld

4.3. Deployment

Deploying a new SPARQL micro-service. The deployment of a SPARQL micro-service in our
prototype simply consists of provisioning two mandatory files and two optional files:

• config.ini: The micro-service main configuration file declares the arguments expected by the
micro-service alongside the Web API invocation query string;

• profile.jsonld: The JSON-LD profile is used to translate a response from the Web API into an
RDF graph;

• insert.sparql: This optional file provides an INSERT query meant to yield additional triples typically
based on common vocabularies and ontologies;

• construct.sparql: This optional file provides a CONSTRUCT query meant to produce the response
to URI look-up queries.

http://example.org/ld/flickr/photo/38427227466

Information 2018, 9, 310 11 of 26

In our experience, deploying a new SPARQL micro-service is a matter of just a few hours. The most
time-consuming tasks lie in reading the Web API documentation and deciding on the mapping towards
domain vocabularies. Thence, a developer defines the API query string and the arguments passed
to the SPARQL micro-service. Lastly, she writes the JSON-LD profile and the optional INSERT and
CONSTRUCT queries that carry out the mappings.

In case a Web API requires specific actions to be taken, such as following an authentication
workflow or issuing an intermediate query, the developer can customize a simple provided
script (https://github.com/frmichel/sparql-micro-service/tree/0.1.0/src/sparqlms/manual_config_
example/service.php), allowing for more flexibility.

Caching Strategy. Querying Web APIs typically takes in the order of 0.5 to 1 s, as suggested
by the measures we report in Section 5. Therefore, whenever possible, a caching strategy should be
defined with respect to the expected performance. There typically exist many syntactical variants of
the same SPARQL query, hence classic HTTP cache servers set up between SPARQL clients and servers
fail to reach efficient cache reuse. By contrast, Web API queries allow a lesser syntactical variability.
Thus, in the context of SPARQL micro-services, enforcing a cache strategy on the Web API side should
ensure better cache reuse.

Our prototype enforces a simple cache strategy where each Web API response is stored in a
cache database, indexed with a hash of the Web API query, and annotated with an expiration period
that can be configured on a per-micro-service basis. Our live deployment utilizes the MongoDB
document store as a cache database, yet using any other database may be achieved with little changes.
Besides, future developments may consist in adapting the caching strategy based on the data expiration
information provided by some Web APIs (such as the Expires, Cache-Control, and/or Last-Modified
HTTP headers).

Docker Deployment. In addition to the code available on GitHub, we have created a Docker
image published on Docker Hub (https://hub.docker.com/u/frmichel/): It provides an Apache Web
server configured with the SPARQL micro-services described in Section 5. Note that, for the sake
of simplicity, we have defined a single image hosting several micro-services. Nevertheless, more in
line with common micro-service practices, it would make sense to define one image per service,
enabling the independent deployment of each service. As instructed in the GitHub README, a single
command is sufficient to deploy this image on a Docker server. The deployment comes along with two
more images: the Corese-KGRAM in-memory triple store [26] used to store temporary RDF graphs,
and the MongoDB database used as a cache for previously executed Web API queries.

4.4. Discussion

A design choice of our implementation is to pass the arguments of Argw to Sµ as parameters of
the HTTP query string. Arguably, other solutions may be adopted, notably to pass the arguments as
RDF terms within the SPARQL graph pattern. Below we discuss the respective benefits and drawbacks
of some alternatives we identified.

A first alternative consists in defining one predicate for each argument, e.g., api:group_id and
api:tags in the example below:

PREFIXPREFIXPREFIX api: <http :// sms.i3s.unice.fr/schema/>
PREFIXPREFIXPREFIX s: <http :// schema.org/>
SELECTSELECTSELECT ?img WHEREWHEREWHERE {

SERVICESERVICESERVICE <http :// example.org/flickr/getPhotosByGroupByTag >
{ ?photo s:image ?img;

api:group_id "806927 @N20";
api:tags "taxonomy:binomial=Delphinus+delphis ".

}
}

 https://github.com/frmichel/sparql-micro-service/tree/0.1.0/src/sparqlms/manual_config_example/service.php
 https://github.com/frmichel/sparql-micro-service/tree/0.1.0/src/sparqlms/manual_config_example/service.php
https://hub.docker.com/u/frmichel/

Information 2018, 9, 310 12 of 26

At a first sight, making the arguments explicit in the graph pattern can seem compelling in several
respects. (i) They can be used in other parts of the graph pattern, for instance to invoke other SPARQL
micro-services; (ii) Reusing terms from well-adopted vocabularies attaches a clearly-defined semantics
to each argument; (iii) A SPARQL micro-service defined this way is a standard SPARQL endpoint since
there is no more variable part in the service endpoint URL.

Several concerns can be pointed out however. (i) We seek a solution wherein only terms of
well-adopted vocabularies would be exposed. Whether such terms exist would be very dependent
on the nature of the arguments. For instance, the tags argument is likely to have equivalent terms
in third-party vocabularies such as https://schema.org/keywords. But the group_id argument is
more tightly related to its use within Flickr, and we may have to coin a new term like api:group_id in
the example above. This approach bears the risk that each SPARQL micro-service would be defined
along with its own bespoke terms, thus missing the vocabulary reuse objective; (ii) Furthermore,
the group_id and tags arguments are meaningful for the end user. But some services may require
more technical arguments that we typically do not want to define as ontological terms; (iii) This
solution also questions the nature of the subject to which the arguments are associated. Again, in this
specific example, declaring the group_id and tags as properties of the photographic resource ?photo
makes sense, but this could be inappropriate with more internal or technical service parameters;
(iv) finally, providing the arguments as terms of the SPARQL graph pattern requires a mechanism to
identify these specific terms as the service inputs.

Some of these issues can be solved by associating the arguments to a separate resource depicting
the service itself. This is exemplified in the second alternative that, furthermore, defines a vocabulary
to pass the arguments in a uniform manner. Note that existing vocabularies may be tapped for
that matter, such as Hydra [27] or the Schema.org actions vocabulary (Schema.org actions: https:
//schema.org/docs/actions.html). In the example below, additional triple patterns define an instance
of the hypothetical api:Service class, that takes arguments declared with the api:param predicate.

SELECTSELECTSELECT ?img WHEREWHEREWHERE {
SERVICESERVICESERVICE <http :// example.org/flickr/getPhotosByGroupByTag >
{ ?photo s:image ?img.

[] a api:Service;
api:param [api:name "group_id "; api:value "806927 @N20"];
api:param [api:name "tags"; api:value ?tag].

}
}

A slight variation could state that the service URL itself is an instance of api:Service;
the arguments would then configure an execution of this service with predicate api:execution, e.g.,:

SELECTSELECTSELECT ?img WHEREWHEREWHERE {
SERVICESERVICESERVICE <http :// example.org/flickr/getPhotosByGroupByTag >
{ ?photo s:image ?img.

<http :// example.org/flickr/getPhotosByGroupByTag > a api:Service;
api:execution [

api:param [api:name "group_id "; api:value "806927 @N20"];
api:param [api:name "tags"; api:value ?tag].

].
}

}

While these alternatives avoid defining new predicates for each micro-service, the additional
triples bear a somewhat artificial semantics: they provide the service with information as to how
to process the other parts of the graph pattern, but they do not actually refer to nor describe the
photographic resources that the graph pattern aims to match.

https://schema.org/keywords
https://schema.org/docs/actions.html
https://schema.org/docs/actions.html

Information 2018, 9, 310 13 of 26

In a third alternative, the service arguments are passed as SPARQL variables with pre-defined
names, e.g., ?group_id and ?tags in the example below:

SELECTSELECTSELECT ?img WHERE {
SERVICESERVICESERVICE <http :// example.org/flickr/getPhotosByGroupByTag >
{ ?photo s:image ?img.

BIND ("806927 @N20" ASASAS ?group_id)
BIND(" taxonomy:binomial=Delphinus+delphis" ASASAS ?tags)

}
}

Similarly to the previous alternative, variables ?group_id and ?tags are somewhat artificial
insofar as they provide the service with information as to how to process the other parts of the
graph pattern.

The solution proposed in this article is a trade-off meant to satisfy certain goals. Above, we have
discussed some alternative solutions, and others may probably be figured out. We believe that further
discussions should be engaged to assess the benefits and concerns of these alternatives with respect to
the contexts and goals.

5. Experimentation

To evaluate the effectiveness and efficiency of our approach, we conducted a series of tests related
to the biodiversity domain. We wrote several SPARQL micro-services to wrap Web APIs providing
various kinds of information about living species (all the services mentioned in this section are available
on the project’s GitHub repository):

1. bhl/getArticlesByTaxon retrieves scientific articles mentioning a given species name from the
Biodiversity Heritage Library (BHL) (http://biodiversitylibrary.org/).

2. flickr/getPhotosByGroupByTag, already described in Section 3, is used to search the Encyclopedia of
Life Images Flickr group (https://www.flickr.com/groups/806927@N20) for photos of a given
species. Photos of this group are tagged with the scientific name of the species they represent,
formatted as “taxonomy:binomial=<scientific name>”.

3. macaulaylibrary/getAudioById retrieves audio recordings for a given species identifier from the
Macaulay Library (https://www.macaulaylibrary.org/), a scientific media archive related to
birds, amphibians, fishes, and mammals.

4. musicbrainz/getSongByName searches the MusicBrainz music information encyclopedia (https:
//musicbrainz.org/) for music tunes whose title match a given name with a minimum confidence
of 90%.

Test Environment. The tests were performed on a CentOS Linux 7.5 server running on a virtual
machine equipped with 4 CPU cores (3.50 GHz) and 32 GB of RAM. The SPARQL micro-services
were served by an Apache 2.4 Web server. The server also hosted two additional services required for
the experimentation: The Corese-KGRAM RDF triple store used to store temporary graphs and the
MongoDB document store used as a cache database.

5.1. Performance of Individual SPARQL Micro-Services

Each SPARQL micro-service was individually invoked using the curl command. The point
was always the same: retrieve information about the common dolphin species (Delphinus delphis).
The SPARQL query passed to the service was simply meant to retrieve all the triples generated
during the execution: CONSTRUCT WHERE {?s ?p ?o}. During each invocation, a metrology service
implemented in the SPARQL micro-service carried out two measures: (i) The time it takes to execute
solely the Web API query; and (ii) the time it takes to complete the SPARQL micro-service invocation
(the latter encompasses the earlier).

http://biodiversitylibrary.org/
https://www.flickr.com/groups/806927@N20
https://www.macaulaylibrary.org/
https://musicbrainz.org/
https://musicbrainz.org/

Information 2018, 9, 310 14 of 26

Table 1 reports the execution time for each SPARQL micro-service with no cache, averaged over
ten runs. Figure 5 depicts the same measures in a more synthetic way. Column “Triples produced” of
Table 1 gives the number of triples generated by applying subsequently the JSON-LD profile to the
API response and the optional INSERT query (to spawn additional triples). It is interesting to notice
that the overhead imposed by the SPARQL micro-service (in orange in Figure 5) always remains low,
ranging from 25 ms to 80 ms. It accounts for 4.11% of the total time for Macaulay library’s API to 25.5%
for MusicBrainz’s API which is by far the fastest of the four APIs.

Table 1. Cache-less query execution time (in seconds) against a SPARQL micro-service. The last column
is the overhead (in %) imposed by the SPARQL micro-service compared to a direct Web API query.

Web API Triples Produced SPARQL µ-service
Exec. Time

Web API
Exec. Time Overhead Overhead

(Percentage)

Biodiversity 1161 0.950 ± 0.049 0.870 ± 0.048 0.080 ± 0.004 9.24% ± 0.44Heritage Lib.
Flickr 336 0.607 ± 0.039 0.564 ± 0.039 0.044 ± 0.008 7.74% ± 1.45

Macaulay Library 87 0.642 ± 0.050 0.617 ± 0.005 0.025 ± 0.004 4.11% ± 0.07
MusicBrainz 1160 0.391 ± 0.011 0.312 ± 0.009 0.079 ± 0.004 25.5% ± 1.22

Figure 5. Overhead imposed by a SPARQL micro-service invocation as compared to a direct Web
API invocation.

We then performed a second run of the same queries using the cache database. The cache
expiration duration was set to several days and a warm-up run was executed to ensure systematic
cache hits. Table 2 reports the execution time for each SPARQL micro-service without and with
cache, and the last column gives the percentage of time reduction obtained when using the cache.
Not surprisingly, the reduction is substantial since there is no more invocation of the Web APIs, only a
document fetch operation from the local MongoDB database. The reduction ranges from 31.7% for
MusicBrainz’ API to 91.5% for Macaulay Library’s API. Figure 6 depicts the same measures where the
orange part represents the SPARQL micro-service execution with a cache database, while the blue part
represents the additional time taken by the cacheless execution.

Table 2. Query execution time (in seconds) against a SPARQL micro-service without/with cache.
The last column is the percentage of time reduction obtained when using the cache.

Web API SPARQL µ-Service Exec.
Time Without Cache

SPARQL µ-Service Exec.
Time With Cache Reduction (Percentage)

Biodiversity Heritage Lib. 0.950 ± 0.048 0.264 ± 0.015 72.3%
Flickr 0.607 ± 0.039 0.080 ± 0.012 86.9%

Macaulay Library 0.642 ± 0.050 0.547 ± 0.010 91.5%
MusicBrainz 0.391 ± 0.011 0.267 ± 0.027 31.7%

Information 2018, 9, 310 15 of 26

Figure 6. Impact of a cache database on the query execution time (in seconds) against a SPARQL
micro-service.

5.2. Performance When Invoking Multiple SPARQL Micro-Services

After comparing the performance of individual SPARQL micro-services with the performance of
the Web APIs they wrap, we designed more realistic tests aimed to gather information simultaneously
from several SPARQL micro-services. In particular, we wrote a SPARQL query that invokes the four
SPARQL micro-services introduced above within dedicated SERVICE clauses. It retrieves 7 articles
from BHL, 15 photos from Flickr, 27 audio recordings from the Macaulay Library, and 1 music tune from
MusicBrainz. We evaluated the query against two SPARQL engines: the standalone Corese-KGRAM
v4.0.1 triple store that embeds a SPARQL client and a SPARQL server (we used a separate instance
from that used to store temporary graphs, installed on a different machine), and the Virtuoso OS
Edition v7.20 server (Virtuoso OS Edition: http://vos.openlinksw.com/owiki/wiki/VOS/).

We tested two versions of the query: in Q1 (Listing 5), the micro-service endpoint URLs are
provided statically, while in Q2 (Listing 6), they are built dynamically and bound to SPARQL variables.
Note that, concerning the Macaulay Library, queries Q1 and Q2 use the macaulaylibrary/getAudioByTaxon
service that is very similar to macaulaylibrary/getAudioById described in Section 5.1, but retrieves audio
recordings by taxon scientific name, not by identifier. The aim is to have all services being invoked
consistently with the same parameter: A taxon name.

Corese-KGRAM could properly evaluate the two queries. Conversely, Virtuoso could evaluate
Q1 (static service URLs) but failed on Q2 due to the variable service endpoints. Note that the support
of this feature is not in the normative part of the SPARQL 1.1 Federated Query recommendation [28].
An implementation is free to support it or not, but the semantics is not formally defined.

Table 3 compares the execution times of query Q1 on Corese-KGRAM and Virtuoso, with or
without cache, averaged over ten runs. Strikingly, it highlights the difference between the two SPARQL
engine strategies: The time it takes for Virtuoso to complete the query execution is bigger than that
of Corese-KGRAM by a factor 53 with cache (1 min 30 s vs. 1.68 s) and a factor 112 without cache (6
min 51 s vs. 3.66 s). A detailed analysis of the query log revealed that Corese-KGRAM performed
4 invocations (one for each SERVICE clause as one would expect) whereas Virtuoso performed 424
invocations. In chronological order the MusicBrainz micro-service was invoked once, Macaulay Library
once, Flickr 27 times and BHL 395 times.We discussed this issue with Virtuoso’s developers (Virtuoso
GitHub issue: https://github.com/openlink/virtuoso-opensource/issues/724) who could not bring
a clear explanation so far. Nevertheless, further tests with two or three SERVICE clauses suggested
that each SERVICE clause is invoked one time for each solution retrieved from previously evaluated
SERVICE clauses. This ends up with a very inefficient multiplication of the invocations. We also tested
another version of Q1 that consists of a union of the four SERVICE clauses rather than the conjunction
thereof. This query should return the same results since all four SERVICE clauses are independent.
This however did not change Virtuoso’s behavior that kept generating a useless multiplication of the
invocations.

http://vos.openlinksw.com/owiki/wiki/VOS/
https://github.com/openlink/virtuoso-opensource/issues/724

Information 2018, 9, 310 16 of 26

Listing 5. Query Q1 uses four SPARQL micro-services to retrieve data related to species Delphinus
delphis from the Biodiversity Heritage Library, Flickr, the Macaulay Library, and MusicBrainz.

Version December 3, 2018 submitted to Information 18 of 28

PREFIXPREFIXPREFIX s: <http :// schema.org/>

CONSTRUCTCONSTRUCTCONSTRUCT {

<#>

s:mainEntityOfPage ?article; # Biodiversity Heritage Library

s:image ?photo; # Flickr

s:audio ?audio; # Macaulay Library

s:subjectOf ?mbzPage. # MusicBrainz

} WHEREWHEREWHERE {

SERVICESERVICESERVICE <http :// example.org/bhl/getArticlesByTaxon?name=Delphinus+delphis >

{ ?article s:name ?articleTitle; s:author ?articleAuthorName. }

SERVICESERVICESERVICE <http :// example.org/flickr/getPhotosByGroupByTag? \

group_id =806927 @N20&tags=taxonomy:binomial=Delphinus+delphis >

{ ?photo s:contentUrl ?img. }

SERVICESERVICESERVICE <http :// example.org/macaulaylibrary/getAudioByTaxon? \

name=Delphinus+delphis >

{ ?audio s:contentUrl ?audioUrl. }

SERVICESERVICESERVICE <http :// example.org/musicbrainz/getSongByName? \

name=Delphinus+delphis >

{ [] s:sameAs ?mbzPage; s:name ?mbzTitle. }

}

Listing 5. Query Q1 uses four SPARQL micro-services to retrieve data related to species Delphinus
delphis from the Biodiversity Heritage Library, Flickr, the Macaulay Library and MusicBrainz.

PREFIXPREFIXPREFIX s: <http :// schema.org/>

CONSTRUCTCONSTRUCTCONSTRUCT {

<#>

s:mainEntityOfPage ?article; # Biodiversity Heritage Library

s:image ?photo; # Flickr

s:audio ?audio; # Macaulay Library

s:subjectOf ?mbzPage. # MusicBrainz

} WHEREWHEREWHERE {

BINDBINDBIND(" Delphinus+delphis" as ?species)

BINDBINDBIND(IRIIRIIRI(concatconcatconcat ("https :// example.org/bhl/getArticlesByTaxon? \

name=", encode_for_uriencode_for_uriencode_for_uri (? species))) as ?bhl)

BINDBINDBIND(IRIIRIIRI(concatconcatconcat ("https :// example.org/flickr/getPhotosByGroupByTag \

?group_id =806927 @N20&tags=taxonomy:binomial=", \

encode_for_uriencode_for_uriencode_for_uri (? species))) as ?flickr)

BINDBINDBIND(IRIIRIIRI(concatconcatconcat ("https :// example.org/macaulaylibrary/getAudioByTaxon? \

name=", encode_for_uriencode_for_uriencode_for_uri (? species))) as ?macaulay)

BINDBINDBIND(IRIIRIIRI(concatconcatconcat ("https :// example.org/musicbrainz/getSongByName? \

name=", encode_for_uriencode_for_uriencode_for_uri (? species))) as ?mzbrnz)

SERVICESERVICESERVICE ?bhl { ?article s:name ?articleTitle; s:author ?author. }

SERVICESERVICESERVICE ?flickr { ?photo s:contentUrl ?img. }

SERVICESERVICESERVICE ?macaulay { ?audio s:contentUrl ?audioUrl. }

SERVICESERVICESERVICE ?mzbrnz { [] s:sameAs ?mbzPage; s:name ?mbzTitle. }

}

Listing 6. Query Q2. Invocation of a SPARQL micro-service using a variable endpoint URL: variables
?bhl, ?flickr, ?macaulay and ?mzbrnz are built dynamically using the species name in variable
?species.

Listing 6. Query Q2. Invocation of a SPARQL micro-service using a variable endpoint URL: Variables
?bhl, ?flickr, ?macaulay, and ?mzbrnz are built dynamically using the species name in variable
?species.

Version December 3, 2018 submitted to Information 18 of 28

PREFIXPREFIXPREFIX s: <http :// schema.org/>

CONSTRUCTCONSTRUCTCONSTRUCT {

<#>

s:mainEntityOfPage ?article; # Biodiversity Heritage Library

s:image ?photo; # Flickr

s:audio ?audio; # Macaulay Library

s:subjectOf ?mbzPage. # MusicBrainz

} WHEREWHEREWHERE {

SERVICESERVICESERVICE <http :// example.org/bhl/getArticlesByTaxon?name=Delphinus+delphis >

{ ?article s:name ?articleTitle; s:author ?articleAuthorName. }

SERVICESERVICESERVICE <http :// example.org/flickr/getPhotosByGroupByTag? \

group_id =806927 @N20&tags=taxonomy:binomial=Delphinus+delphis >

{ ?photo s:contentUrl ?img. }

SERVICESERVICESERVICE <http :// example.org/macaulaylibrary/getAudioByTaxon? \

name=Delphinus+delphis >

{ ?audio s:contentUrl ?audioUrl. }

SERVICESERVICESERVICE <http :// example.org/musicbrainz/getSongByName? \

name=Delphinus+delphis >

{ [] s:sameAs ?mbzPage; s:name ?mbzTitle. }

}

Listing 5. Query Q1 uses four SPARQL micro-services to retrieve data related to species Delphinus
delphis from the Biodiversity Heritage Library, Flickr, the Macaulay Library and MusicBrainz.

PREFIXPREFIXPREFIX s: <http :// schema.org/>

CONSTRUCTCONSTRUCTCONSTRUCT {

<#>

s:mainEntityOfPage ?article; # Biodiversity Heritage Library

s:image ?photo; # Flickr

s:audio ?audio; # Macaulay Library

s:subjectOf ?mbzPage. # MusicBrainz

} WHEREWHEREWHERE {

BINDBINDBIND(" Delphinus+delphis" as ?species)

BINDBINDBIND(IRIIRIIRI(concatconcatconcat ("https :// example.org/bhl/getArticlesByTaxon? \

name=", encode_for_uriencode_for_uriencode_for_uri (? species))) as ?bhl)

BINDBINDBIND(IRIIRIIRI(concatconcatconcat ("https :// example.org/flickr/getPhotosByGroupByTag \

?group_id =806927 @N20&tags=taxonomy:binomial=", \

encode_for_uriencode_for_uriencode_for_uri (? species))) as ?flickr)

BINDBINDBIND(IRIIRIIRI(concatconcatconcat ("https :// example.org/macaulaylibrary/getAudioByTaxon? \

name=", encode_for_uriencode_for_uriencode_for_uri (? species))) as ?macaulay)

BINDBINDBIND(IRIIRIIRI(concatconcatconcat ("https :// example.org/musicbrainz/getSongByName? \

name=", encode_for_uriencode_for_uriencode_for_uri (? species))) as ?mzbrnz)

SERVICESERVICESERVICE ?bhl { ?article s:name ?articleTitle; s:author ?author. }

SERVICESERVICESERVICE ?flickr { ?photo s:contentUrl ?img. }

SERVICESERVICESERVICE ?macaulay { ?audio s:contentUrl ?audioUrl. }

SERVICESERVICESERVICE ?mzbrnz { [] s:sameAs ?mbzPage; s:name ?mbzTitle. }

}

Listing 6. Query Q2. Invocation of a SPARQL micro-service using a variable endpoint URL: variables
?bhl, ?flickr, ?macaulay and ?mzbrnz are built dynamically using the species name in variable
?species.

Information 2018, 9, 310 17 of 26

Table 3. Execution time (in seconds) of query Q1 on Corese-KGRAM and Virtuoso OS Edition, without
or with cache database.

SPARQL Engine Exec. Time without Cache Exec. Time with Cache

Corese-KGRAM 3.66 ± 0.10 1.68 ± 0.04
Virtuoso 411 ± 1 90.3 ± 1

The evaluation of Q1 by Corese-KGRAM took an average 3.66 s without using the cache database,
while the four individual invocations sum up to 2.59 s (2nd column of Table 2). Similarly, the evaluation
took an average 1.68 s when using the cache while the individual invocations sum up to 1.16 s (3rd
column in Table 2). The overhead of 1.07 s and 0.52 s respectively can be attributed to the query
processing by Corese-KGRAM’s SPARQL engine as well as networks overheads. The log also revealed
that the SERVICE clauses are evaluated sequentially, although they could be evaluated in parallel
since they are independent from each other. We discussed this question with the developers who
confirmed that, as of today, Corese-KGRAM does not support parallel evaluation of independent
SERVICE clauses.

6. Biodiversity-Related Use Cases

6.1. Aggregating Various Types of Data Related to Biological Taxa

Many existing data aggregators in the biodiversity domain consolidate data with respect to
a certain perspective (species occurrences, life traits, taxonomy etc.) from multiple sources. Yet,
orthogonal approaches lack that which would allow biologists to aggregate and visualize data spanning
these different perspectives. To address this need, we have designed an application that provides
biologists with a convenient way to get a quick outlook at the various types of data collected by
independent biodiversity programs about a given taxon.

In a joint initiative with the French National Museum of Natural History, we have produced a
dataset called TAXREF-LD [29], a Linked Data representation of TAXREF [30], the French taxonomic
register for fauna, flora, and fungus (https://inpn.mnhn.fr/programme/referentiel-taxonomique-
taxref?lg=en). It models 236.000+ biological taxa along with the 509.000+ scientific names used to
refer to the taxa. TAXREF-LD is accessible through a public SPARQL endpoint (TAXREF-LD public
SPARQL endpoint: http://taxref.mnhn.fr/sparql), and the URIs of all taxa and scientific names are
dereferenceable.

In the application we present here, a SPARQL CONSTRUCT query (the full query is available at
https://github.com/frmichel/sparql-micro-service/tree/0.1.0/demo/query/query.rq) first retrieves
from TAXREF-LD the information available about the taxon that bears a given scientific name.
Then, it enriches TAXREF-LD’s taxon description with data from five SPARQL micro-services:
BHL, Flickr, Macaulay Library, and MusicBrainz already described in Section 5, and the additional
eol/getTraitsByTaxon service that retrieves life traits related to a taxon’s scientific name from the
Encyclopedia of Life trait bank [31].

The RDF graph resulting from this query exhibits URIs identifying each BHL article, each Flickr
photo and each Macaulay audio recording. These URIs are built upon the Web API’s internal identifier.
They are made dereferenceable according to the mechanism we described in Section 4.2: While the
micro-services invoked in the SPARQL query retrieve information by scientific name, complementary
micro-services retrieve information by Web API’s identifier. To do the wiring, the Web server is
configured to rewrite a look up query on one of those URIs into the relevant micro-service invocation.

In a next step, the result RDF graph is transformed into an HTML page using the SPARQL
Template Transformation Language (STTL) [32]. For each resource retrieved by SPARQL micro-services
(e.g., a photo, an article), a SPARQL Template query fetches data from the result graph and passes it on
to an HTML template tailored for the resource type. In turn, the latter produces the piece of HTML
code necessary to properly display the resource (the code of the STTL transformations is available on

https://inpn.mnhn.fr/programme/referentiel-taxonomique-taxref?lg=en
https://inpn.mnhn.fr/programme/referentiel-taxonomique-taxref?lg=en
http://taxref.mnhn.fr/sparql
https://github.com/frmichel/sparql-micro-service/tree/0.1.0/demo/query/query.rq

Information 2018, 9, 310 18 of 26

GitHub under https://github.com/frmichel/sparql-micro-service/tree/0.1.0/demo). For instance, a
photo is rendered as one element of a carousel while an audio recording is rendered using an HTML5
audio player. A global template assembles the partial HTML snippets to form the final HTML page.
Figure 7 depicts a part of the HTML page generated for species Delphinapterus leucas.

Figure 7. Partial HTML rendering of the RDF graph describing the beluga (Delphinapterus leucas),
constructed by querying Linked Data and multiple SPARQL micro-services. Available at http://sms.
i3s.unice.fr/demo-sms?param=Delphinapterus+leucas.

https://github.com/frmichel/sparql-micro-service/tree/0.1.0/demo
http://sms.i3s.unice.fr/demo-sms?param=Delphinapterus+leucas
http://sms.i3s.unice.fr/demo-sms?param=Delphinapterus+leucas

Information 2018, 9, 310 19 of 26

6.2. Assisting Biologists in Editing Taxonomic Information

Taxonomic registers are essential tools to comprehend the diversity of nature and develop
natural heritage conservation strategies. They are used as the backbone of biodiversity programs and
aggregators such as the Global Biodiversity Information Facility (http://gbif.org/) (GBIF) and the
Encyclopedia of Life (http://eol.org/) (EoL) that aggregate over 50 data sources each. Unfortunately,
there does not exist a single register of the taxonomic knowledge that would mark global consensus.
Instead, multiple taxonomic registers cover complementary and often overlapping regions, epochs or
domains, while possibly disagreeing on the circumscription of some taxonomic concepts. It is therefore
of utmost importance for biologists to be able to confront the knowledge they have about a taxon with
related data coming from the manifold data sources available in the biodiversity area.

To tackle this issue, the French Museum of Natural History has developed the TAXREF-Web
application (https://taxref.mnhn.fr/taxref-web/) enabling biologists to edit biological taxa’s
information available in TAXREF. The application offers forms not only to edit TAXREF’s database,
but more importantly to display data collected from other programs, compare it with TAXREF’s
data and provide biologists with the ability to add, remove or amend data accordingly. To do so,
TAXREF-Web’s developers have to write a specific piece of code to query each Web API of interest and
manually align the data elements within its results with the corresponding data elements within the
results of the other Web APIs. For instance, TAXREF’s Web API codes the habitat wherein a species
lives as an integer (e.g., 1 stands for marine environment, 2 for fresh water). By contrast, the World
Register of Marine Species (http://www.marinespecies.org) (WoRMS) codes the same information
as multiple Boolean fields (e.g., isMarine, isFreshwater). Therefore, TAXREF-Web’s code must carry
out a cumbersome alignment to convert from one representation into the other. This approach is
time-consuming in terms of development and maintenance, and hardly scales to many more Web APIs.

In its current status, the TAXREF-Web application queries the following programs: WoRMS,
Fishbase (http://fishbase.org), Index Fungorum (http://www.indexfungorum.org/), Pan-European
Species directories Infrastructure (http://www.eu-nomen.eu/pesi/) (PESI), and World Spider
Catalogue (https://wsc.nmbe.ch/). Depending on the programs, the Web interface may simply
present a link to the program’s corresponding Web page, point out a disagreement, or point out a
disagreement along with the means for a biologist to update TAXREF accordingly. The considered
disagreements pertain to taxonomic information in the following situations:

• Synonymy disagreement: A taxon may be associated with a reference name (the preferred name
used to refer to the taxon) and a set of synonyms. A disagreement may occur when a program
states a reference name that is considered as a synonym in TAXREF, or when they disagree on
the synonyms.

• Taxonomic rank disagreement: A taxon or name has different taxonomic ranks in different
programs. For instance, a taxon is considered as a species in TAXREF but as a sub-species in
WoRMS.

• Author disagreement: Different author names or different spellings and/or abbreviations.
• Habitat disagreement.

We are currently developing a new implementation of TAXREF-Web based on SPARQL
micro-services, covering the set of Web APIs considered so far in TAXREF-Web and extending it
with the Web APIs of GBIF, EoL, Zoobank (http://zoobank.org/), the International Plant Names Index
(http://www.ipni.org/) (IPNI), Flickr and the Macaulay library. Furthermore, we intend to extend the
functional perimeter so as to address the following situations:

• Bibliographic references: Retrieve bibliographic references currently unknown in TAXREF,
or point out and fix inconsistent references.

• Life traits: Query WoRMS, Fishbase, and EoL for life traits not referenced in TAXREF, or point out
and fix inconsistencies.

http://gbif.org/
http://eol.org/
https://taxref.mnhn.fr/taxref-web/
http://www.marinespecies.org
http://fishbase.org
http://www.indexfungorum.org/
http://www.eu-nomen.eu/pesi/
https://wsc.nmbe.ch/
http://zoobank.org/
http://www.ipni.org/

Information 2018, 9, 310 20 of 26

• Multimedia material: Display material available in TAXREF, suggest adding links to photos in
Flickr and audio/video recordings in the Macaulay library.

Our point is to demonstrate that, once the Web APIs are wrapped in SPARQL micro-services
relying on common vocabularies, the integration task is amply simplified: Data aggregation and
comparison essentially consist of writing the appropriate SPARQL queries, thus significantly alleviating
the development and maintenance efforts.

We now illustrate the use case sketched above in the context of a synonymy disagreement,
exemplified in the case of taxon Acetabularia crenulata. Let us assume that we have defined SPARQL
micro-services for TAXREF and WoRMS Web APIs (TAXREF’s Web API allows querying TAXREF’s
database; it is exploited by the TAXREF-Web application), whose invocations produce the graphs
depicted in Listings 7 and 8 respectively. According to TAXREF, Acetabularia crenulata is a reference (or
“accepted”) name, whereas according to WoRMS, it is a synonym name and the reference name should
be Acetabularia (Acicularia) crenulata instead.

Detecting this disagreement can be achieved easily using SPARQL query Q3 in Listing 9. The query
searches solutions where Acetabularia crenulata would have status accepted in TAXREF and a different
status in WoRMS. If Q3 returns a non-empty solution set, then both sources disagree and the solution
provides the reference name according to WoRMS. In turn, the Web application must point out this
disagreement and provide the user with a way to accept or dismiss this change. Figure 8 depicts an
extract of TAXREF-Web’s edition page where this option is denoted by the red button “MAJ REF”
(update reference name). A similar SPARQL query (not shown here) can detect a disagreement with
respect to the author’s name spelling, “J.V.Lamour.” in TAXREF and “J.V.Lamouroux” in WoRMS.
The red button “MAJ AUTEUR” (update author) allows to acknowledge this change in TAXREF.

Let us finally mention that example query Q3 may be invoked on the Web server side, as part of
the HTML page generation process, as well as on the client side using asynchronous queries processed
in JavaScript. An advantage of the latter is to alleviate the load required to generate the page on the
server’s side.

Listing 7. RDF graph produced by invoking the TAXREF micro-service at
http://example.org/taxref/getNameDetails?name=Acetabularia+crenulata.

Version December 3, 2018 submitted to Information 22 of 28

PREFIXPREFIXPREFIX dwc: <http ://rs.tdwg.org/dwc/terms/>

PREFIXPREFIXPREFIX tn: <http ://rs.tdwg.org/ontology/voc/TaxonName#>

<#> dwc:scientificName "Acetabularia crenulata ";

tn:authorship "J.V.Lamour., 1816";

tn:rank <http ://rs.tdwg.org/ontology/voc/TaxonRank#Species >;

dwc:taxonomicStatus "accepted ".

Listing 7: RDF graph produced by invoking the TAXREF micro-service at
http://example.org/taxref/getNameDetails?name=Acetabularia+crenulata.

PREFIXPREFIXPREFIX dwc: <http ://rs.tdwg.org/dwc/terms/>

PREFIXPREFIXPREFIX tn: <http ://rs.tdwg.org/ontology/voc/TaxonName#>

<#> dwc:scientificName "Acetabularia crenulata ";

tn:authorship "J.V. Lamouroux , 1816";

tn:rank <http ://rs.tdwg.org/ontology/voc/TaxonRank#Subspecies >;

dwc:taxonomicStatus "unaccepted ";

dwc:acceptedNameUsage "Acetabularia (Acicularia) crenulata ".

Listing 8: RDF graph produced by invoking the WoRMS micro-service at
http://example.org/worms/getNameDetails?name=Acetabularia+crenulata.

• Multimedia material: display material available in TAXREF, suggest adding links to photos in625

Flickr and audio/video recordings in the Macaulay library.626

Our point is to demonstrate that, once the Web APIs are wrapped in SPARQL micro-services627

relying on common vocabularies, the integration task is amply simplified: data aggregation628

and comparison essentially consist of writing the appropriate SPARQL queries, thus significantly629

alleviating the development and maintenance efforts.630

Example. We now illustrate the use case sketched above in the context of a synonymy631

disagreement, exemplified in the case of taxon Acetabularia crenulata. Let us assume that we have632

defined SPARQL micro-services for TAXREF and WoRMS Web APIs36, whose invocations produce633

the graphs depicted in Listings 7 and 8 respectively. According to TAXREF, Acetabularia crenulata634

is a reference (or “accepted”) name, whereas according to WoRMS, it is a synonym name and the635

reference name should be Acetabularia (Acicularia) crenulata instead.636

637

Detecting this disagreement can be achieved easily using SPARQL query Q3 in Listing 9. The638

query searches solutions where Acetabularia crenulata would have status accepted in TAXREF and a639

different status in WoRMS. If Q3 returns a non-empty solution set, then both sources disagree and the640

solution provides the reference name according to WoRMS. In turn, the Web application must point641

out this disagreement and provide the user with a way to accept or dismiss this change. Figure 8642

depicts an extract of TAXREF-Web’s edition page where this option is denoted by the red button “MAJ643

REF” (update reference name). A similar SPARQL query (not shown here) can detect a disagreement644

with respect to the author’s name spelling, “J.V.Lamour.” in TAXREF and “J.V.Lamouroux” in645

WoRMS. The red button “MAJ AUTEUR” (update author) allows to acknowledge this change in646

TAXREF.647

Let us finally mention that example query Q3 may be invoked on the Web server side, as part of648

the HTML page generation process, as well as on the client side using asynchronous queries processed649

36 TAXREF’s Web API allows qerying TAXREF’s database. It is exploited by the TAXREF-Web application.

Listing 8. RDF graph produced by invoking the WoRMS micro-service at
http://example.org/worms/getNameDetails?name=Acetabularia+crenulata.

Version December 3, 2018 submitted to Information 22 of 28

PREFIXPREFIXPREFIX dwc: <http ://rs.tdwg.org/dwc/terms/>

PREFIXPREFIXPREFIX tn: <http ://rs.tdwg.org/ontology/voc/TaxonName#>

<#> dwc:scientificName "Acetabularia crenulata ";

tn:authorship "J.V.Lamour., 1816";

tn:rank <http ://rs.tdwg.org/ontology/voc/TaxonRank#Species >;

dwc:taxonomicStatus "accepted ".

Listing 7: RDF graph produced by invoking the TAXREF micro-service at
http://example.org/taxref/getNameDetails?name=Acetabularia+crenulata.

PREFIXPREFIXPREFIX dwc: <http ://rs.tdwg.org/dwc/terms/>

PREFIXPREFIXPREFIX tn: <http ://rs.tdwg.org/ontology/voc/TaxonName#>

<#> dwc:scientificName "Acetabularia crenulata ";

tn:authorship "J.V. Lamouroux , 1816";

tn:rank <http ://rs.tdwg.org/ontology/voc/TaxonRank#Subspecies >;

dwc:taxonomicStatus "unaccepted ";

dwc:acceptedNameUsage "Acetabularia (Acicularia) crenulata ".

Listing 8: RDF graph produced by invoking the WoRMS micro-service at
http://example.org/worms/getNameDetails?name=Acetabularia+crenulata.

• Multimedia material: display material available in TAXREF, suggest adding links to photos in625

Flickr and audio/video recordings in the Macaulay library.626

Our point is to demonstrate that, once the Web APIs are wrapped in SPARQL micro-services627

relying on common vocabularies, the integration task is amply simplified: data aggregation628

and comparison essentially consist of writing the appropriate SPARQL queries, thus significantly629

alleviating the development and maintenance efforts.630

Example. We now illustrate the use case sketched above in the context of a synonymy631

disagreement, exemplified in the case of taxon Acetabularia crenulata. Let us assume that we have632

defined SPARQL micro-services for TAXREF and WoRMS Web APIs36, whose invocations produce633

the graphs depicted in Listings 7 and 8 respectively. According to TAXREF, Acetabularia crenulata634

is a reference (or “accepted”) name, whereas according to WoRMS, it is a synonym name and the635

reference name should be Acetabularia (Acicularia) crenulata instead.636

637

Detecting this disagreement can be achieved easily using SPARQL query Q3 in Listing 9. The638

query searches solutions where Acetabularia crenulata would have status accepted in TAXREF and a639

different status in WoRMS. If Q3 returns a non-empty solution set, then both sources disagree and the640

solution provides the reference name according to WoRMS. In turn, the Web application must point641

out this disagreement and provide the user with a way to accept or dismiss this change. Figure 8642

depicts an extract of TAXREF-Web’s edition page where this option is denoted by the red button “MAJ643

REF” (update reference name). A similar SPARQL query (not shown here) can detect a disagreement644

with respect to the author’s name spelling, “J.V.Lamour.” in TAXREF and “J.V.Lamouroux” in645

WoRMS. The red button “MAJ AUTEUR” (update author) allows to acknowledge this change in646

TAXREF.647

Let us finally mention that example query Q3 may be invoked on the Web server side, as part of648

the HTML page generation process, as well as on the client side using asynchronous queries processed649

36 TAXREF’s Web API allows qerying TAXREF’s database. It is exploited by the TAXREF-Web application.

Information 2018, 9, 310 21 of 26

Listing 9. Query Q3 detects the disagreement between TAXREF and WoRMS with respect to the status
(reference vs. synonym) of Acetabularia crenulata.

Version December 3, 2018 submitted to Information 23 of 28

PREFIXPREFIXPREFIX dwc: <http ://rs.tdwg.org/dwc/terms/>

SELECTSELECTSELECT (" Acetabularia crenulata" as ?taxrefRefName) ?wormsRefName WHEREWHEREWHERE {

SERVICESERVICESERVICE <http :// example.org/taxref/getNameDetails?name=Acetabularia+crenulata >

{ [] dwc:taxonomicStatus "accepted ". }

SERVICESERVICESERVICE <http :// example.org/worms/getNameDetails?name=Acetabularia+crenulata >

{ [] dwc:taxonomicStatus ?s2;

dwc:acceptedNameUsage ?wormsRefName.

FILTERFILTERFILTER ?s2 != "accepted"

}

}

Listing 9: Query Q3 detects the disagreement between TAXREF and WoRMS with respect to the status
(reference vs. synonym) of Acetabularia crenulata.

Figure 8. TAXREF-Web suggestions for editing taxon Acetabularia crenulata.

in JavaScript. An advantage of the latter is to alleviate the load required to generate the page on the650

server’s side.651

7. Related Works652

Integrating heterogeneous data sources has been the object of abundant literature since the early653

1990’s [33]. Traditionally, data source wrappers carry out the mediation between multiple specific654

data schemas and a target schema (possibly represented by means of an ontology). To process user655

queries, a query federation engine determines candidate data sources (the ones likely to be relevant656

for the query), establishes a query plan, queries each data source accordingly and recombines the657

partial results. Our approach proposes a lightweight method to wrap Web APIs and equip them658

with a SPARQL interface. Although the federation of such wrappers is out of the scope of this paper,659

existing federated query engines could be adapted to rewrite parts of a client’s SPARQL query into660

SERVICE clauses querying SPARQL micro-services and regular SPARQL endpoints alike.661

Translating heterogeneous data sources into RDF triples has been a preoccupation since the early662

days of the Semantic Web37. Still, approaches specifically concerned with Web APIs are often ad hoc663

solutions. For instance, Flickcurl38 is a hardwired wrapper for Flickr’s Web API services. Twarql [34]664

37 See the list hosted on W3C’s Web site: https://www.w3.org/wiki/ConverterToRdf
38 http://librdf.org/flickcurl/

Figure 8. TAXREF-Web suggestions for editing taxon Acetabularia crenulata.

7. Related Works

Integrating heterogeneous data sources has been the object of abundant literature since the early
1990’s [33]. Traditionally, data source wrappers carry out the mediation between multiple specific
data schemas and a target schema (possibly represented by means of an ontology). To process user
queries, a query federation engine determines candidate data sources (the ones likely to be relevant
for the query), establishes a query plan, queries each data source accordingly, and recombines the
partial results. Our approach proposes a lightweight method to wrap Web APIs and equip them
with a SPARQL interface. Although the federation of such wrappers is out of the scope of this paper,
existing federated query engines could be adapted to rewrite parts of a client’s SPARQL query into
SERVICE clauses querying SPARQL micro-services and regular SPARQL endpoints alike.

Translating heterogeneous data sources into RDF triples has been a preoccupation since the
early days of the Semantic Web (see the list hosted on W3C’s Web site: https://www.w3.org/wiki/
ConverterToRdf). Still, approaches specifically concerned with Web APIs are often ad hoc solutions.
For instance, Flickcurl (http://librdf.org/flickcurl/) is a hardwired wrapper for Flickr’s Web API
services. Twarql [34] wraps Twitter’s Web API to enable filtering and analysis of streaming tweets.
It encodes tweets content in RDF using common vocabularies and enables SPARQL querying. Yet,
this approach is very specific to the Twitter and micropost content in general.

With a similar rationale, Hydra [27] is a vocabulary aimed to describe Web APIs in a
machine-readable format. It puts a specific focus on the generation of hypermedia controls so as
to enable the generation of truly RESTful interfaces. Hydra, used in conjunction with JSON-LD,
forms a basis to build hypermedia-driven Linked Data interfaces [35]. This basis can be harnessed to

https://www.w3.org/wiki/ConverterToRdf
https://www.w3.org/wiki/ConverterToRdf
http://librdf.org/flickcurl/

Information 2018, 9, 310 22 of 26

turn existing Web APIs into RESTful Linked Data interfaces whose documentation can be interpreted
at run time by a generic Hydra client. Our incentive with SPARQL micro-services is to provide client
applications with the whole expressiveness of the SPARQL Query language, which would be more
difficult to achieve using a Hydra-described REST interface.

Closer to our work, Linked REST APIs [36] is a framework dedicated to the semantic annotation
of Web APIs and the automatic specification of SPARQL query execution plans that invoke these
Web APIs. A major difference with our approach is that the framework requires the deployment of
a middleware that stores the Web APIs descriptions and their mapping towards domain ontologies,
and computes and enacts query execution plans. The SPARQL micro-services architecture, on the
other hand, relies on a totally distributed architecture wherein independent service providers may
publish SPARQL micro-services usable by regular SPARQL clients. Yet, a key point for the SPARQL
micro-services architecture to scale up easily will be to address the description of micro-services. In the
last section, we suggest several leads in this respect.

SPARQL-Generate [37] extends SPARQL 1.1 to enable querying RDF graphs along with
non-RDF documents. A SPARQL-Generate query relies on several extension functions to fetch and
parse documents in different data formats, and defines the shape of RDF triples to be produced
thenceforward. As such, it could be used to query a Web API in a way similar to that of a SPARQL
micro-service. Two main differences can be observed though. (i) SPARQL-Generate is an extension
of SPARQL, hence, by definition, it is not supported by engines strictly complying with the SPARQL
Query language. By contrast, our vision is that multiple service providers could publish independent
SPARQL micro-services, thereby building up an ecosystem of services all complying with standard
SPARQL; (ii) SPARQL-Generate offers the advantage that querying remote data sources is performed
within a single language. On the one hand, this only requires skills with Semantic Web technologies.
On the other hand, this entails that a significant part of the whole process is left to the SPARQL
client: Querying the data source while providing necessary arguments, and translating its proprietary
vocabulary into RDF triples aligned on common vocabularies. Consequently, as illustrated by authors’
examples, the additional syntactic sugar required can make queries considerably cumbersome and
difficult to maintain. We take a different option where this complexity is hidden from the client and
handled by the SPARQL micro-service developer.

An approach very similar to SPARQL-Generate is proposed in [38]. It is based on the BIND_API
clause, an extension of the SPARQL BIND clause, that binds a set of variables with values extracted
from a Web API response. It suffers the same pitfalls as SPARQL-Generate with respect to our goals:
The use of non standard SPARQL Query Language and the cumbersome syntactic sugar left to the
SPARQL client.

ODMTP [39], On-Demand Mapping using Triple Patterns, is an attempt to query non-RDF
datasets as Triple Pattern Fragments. The authors have implemented a prototype to query Twitter’s
Web API, that can process triple pattern queries over the whole Twitter’s dataset. Conversely,
SPARQL micro-services support arbitrary SPARQL queries over restricted fragments of the Web API
dataset. Besides, unlike SPARQL micro-services, ODMTP cannot assign dereferenceable URIs to Web
API resources. Nevertheless, ODMTP offers the TPF’s paging mechanism that SPARQL micro-services
should regard as a valuable extension within future works (see the discussion in Section 8).

Our implementation of SPARQL micro-services maps a Web API response to RDF triples in two
steps: The response is first translated to JSON-LD, then a SPARQL INSERT or CONSTRUCT query
complements the process for cases where JSON-LD is not expressive enough. Alternatively, we could
rely on a mapping description language such as RML [40] and xR2RML [41], but they require the
developer to learn the mapping language. By contrast, in our proposition we strove to rely only on
existing standards.

Let us finally mention the Apache Marmotta project (http://marmotta.apache.org/),
a comprehensive Linked Data application framework that implements the Linked Data Platform
W3C recommendation [19]. Among others, it provides client modules that wrap the Web APIs of

http://marmotta.apache.org/

Information 2018, 9, 310 23 of 26

several Web portals such as Vimeo, Youtube, and Facebook. Hence, it should be relatively easy to
implement SPARQL micro-services on top of Marmotta. However, the examples show that the Web
API wrapping and the mapping towards RDF triples are mostly hard-coded within the client libraries.
Our point is to make the deployment of new SPARQL micro-services as simple as writing a SPARQL
query and a configuration file.

8. Conclusions and Perspectives

The SPARQL Micro-Services architecture proposes a lightweight type of Linked Data Fragment
interface that enables combining Linked Data with data from non-RDF Web APIs. SPARQL querying
and URI dereferencing are supported against a virtual graph generated at run-time. This graph is
shaped by the Web API service being wrapped, the arguments passed to the SPARQL micro-service
and the types of RDF triples that the SPARQL micro-service is meant to spawn. In accordance with the
micro-service architecture principles, a SPARQL micro-service should be designed so as to be loosely
coupled (it can be deployed independently of other services, possibly using lightweight container
technologies), fine-grained (its function is to provide access to a small graph centered on a specific
resource such as a photograph, a tweet, or the measure of a sensor). Furthermore, the prototype
implementation that we propose is lightweight and simple (configuration-based provisioning,
alignment with common/domain vocabularies carried out using a simple SPARQL query).

We think that this approach could promote the emergence of an ecosystem of SPARQL services
published by independent service providers, allowing Linked Data-based applications to glean
pieces of data from a wealth of distributed, scalable and reliable services. For such an ecosystem
to arise however, several crucial issues shall be tackled. Firstly, to enable services discovery,
SPARQL micro-services should provide machine-processable self-describing metadata such as the
expected arguments, the way they are passed to the micro-service (e.g., as HTTP query string
parameters), and the typical graph that may be generated. Secondly, writing SPARQL queries invoking
a handful of SPARQL micro-services is easily achieved manually. By contrast, considering a larger
number of services should involve the automatic composition of micro-services. The latter may be
achieved only if micro-services provide a functional description of the operation they carry out. In this
respect, the many works on automatic semantic services composition and multi-agents approaches may
be leveraged. Thirdly, although we envision SPARQL micro-services as a way to access small fragments,
it should be possible to retrieve such fragments by smaller pieces using a paging mechanism.

To tackle those issues, Verborgh et al. advocated that Linked Data Fragments should provide
self-describing, uniform interfaces consisting not only of data triples but also metadata and hypermedia
controls. Hypermedia controls contain the information needed to interact further on with a resource.
In particular, they allow a client to navigate from one fragment (or a page thereof) to another one [23].
Following up on this idea, the interface of SPARQL micro-services could be extended to return regular
SPARQL results alongside additional triples (or quads more generally) representing metadata and
control information. In the case of CONSTRUCT and DESCRIBE queries, metadata and controls would
be provided as additional triples possibly embedded within a dedicated graph, as proposed in the
Triple Pattern Fragments. The case of ASK and SELECT queries may seem less obvious since these
do not return triples nor quads but variable bindings. Yet, the SPARQL Results specifications (in
XML [42] and JSON [25]), mention the optional link header meant to “to refer for further information”.
This header could be used to link the results to the URI of a graph or a document providing metadata
and control triples separately. We can think of this solution as some sort of Graph Pattern Fragment
interface, i.e., a generalized TPF interface that accepts regular graph patterns instead of only triple
patterns, but still complies with the TPF metadata and hypermedia controls specification.

As a final remark, let us underline that this article is focused specifically on consuming Web API
data with SPARQL. In a broader picture however, the micro-service architectural principles could
be applied to other types of APIs, so as to enable Semantic Web applications to reach out to other
data sources, thus participating in the emergence of a more decentralized Web [43]. Furthermore,

Information 2018, 9, 310 24 of 26

many APIs provide read-write access, empowering users to interact with contents, other users, etc.
Hence, an interesting perspective would be to think of SPARQL micro-services as a way to support
distributed SPARQL Update over Web APIs, thus eventually contributing to build an actual read-write
Web of Data.

Author Contributions: Writing—original draft, F.M.; Writing—review & editing, F.M., C.F.Z., O.G. and F.G.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hecht, R.; Jablonski, S. NoSQL Evaluation: A Use Case Oriented Survey. In Proceedings of the International
Conference on Cloud and Service Computing (CSC), Hong Kong, China, 12–14 December 2011; pp. 336–341.

2. Dean, J.; Ghemawat, S. MapReduce: A Flexible Data Processing Tool. Commun. ACM 2010, 53, 72–77.
3. Máchová, R.; Lnenicka, M. Evaluating the Quality of Open Data Portals on the National Level. J. Theor. Appl.

Electron. Commer. Res. 2017, 12, 21–41.
4. Triebel, D.; Hagedorn, G.; Rambold, G. An appraisal of megascience platforms for biodiversity information.

MycoKeys 2012, 5, 45–63.
5. Heath, T.; Bizer, C. Linked Data: Evolving the Web into a Global Data Space, 1st ed.; Morgan & Claypool:

San Rafael, CA, USA, 2011.
6. Cyganiak, R.; Wood, D.; Lanthaler, M. RDF 1.1 Concepts and Abstract Syntax; W3C Recommendation, 2014.

Available online: https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/ (accessed on 5 December
2018).

7. Hyland, B.; Atemezing, G.; Villazón-Terrazas, B. Best Practices for Publishing Linked Data; W3C Consortium,
2014. Available online: https://www.w3.org/TR/2014/NOTE-ld-bp-20140109/ (accessed on 5 December
2018).

8. Harris, S.; Seaborne, A. SPARQL 1.1 Query Language; W3C Recommendation, 2013. Available online:
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/ (accessed on 5 December 2018).

9. Buil-Aranda, C.; Hogan, A.; Umbrich, J.; Vandenbussche, P.Y. SPARQL Web-Querying Infrastructure:
Ready for Action? In Proceedings of the 12th International Semantic Web Conference, Sydney, Australia,
21–25 October 2018; pp. 277–293.

10. Michel, F.; Montagnat, J.; Faron-Zucker, C. A Survey of RDB to RDF Translation Approaches and Tools; Research
report; 2014. Available online: https://hal.archives-ouvertes.fr/hal-00903568v2/ (accessed on 5 December
2018).

11. Spanos, D.E.; Stavrou, P.; Mitrou, N. Bringing Relational Databases into the Semantic Web: A Survey.
Semant. Web J. 2012, 3, 169–209.

12. Michel, F.; Faron-Zucker, C.; Montagnat, J. A Generic Mapping-Based Query Translation from SPARQL
to Various Target Database Query Languages. In Proceeding of the 12th International Conference on
Web Information Systems and Technologies (WebIST), Shanghai, China, 8–10 November 2016; Volume 2,
pp. 147–158.

13. Mugnier, M.L.; Rousset, M.C.; Ulliana, F. Ontology-Mediated Queries for NOSQL Databases. In Proceedings
of the 30th Conference on Artificial Intelligence (AAAI), Rome, Italy, 23–25 April 2016.

14. Newman, S. Building Microservices; O’Reilly Media: Newton, MA, USA, 2015.
15. Fielding, R. Architectural Styles and the Design of Network-based Software Architectures. Ph.D. Thesis,

University of California, Irvine, CA, USA, 2000.
16. Zaveri, A.; Dastgheib, S.; Wu, C.; Whetzel, T.; Verborgh, R.; Avillah, P.; Korodi, P.; Terryn, R.; Jagodnik, K.;

Assis, P.; et al. smartAPI: Towards a More Intelligent Network of Web APIs. In Proceedings of the 14th
Extended Semantic Web Conference (ESWC), Portorož, Slovenia, 28 May 2017.

17. Dragoni, N.; Giallorenzo, S.; Lafuente, A.L.; Mazzara, M.; Montesi, F.; Mustafin, R.; Safina, L. Microservices:
Yesterday, today, and tomorrow. In Present and Ulterior Software Engineering; Springer: New York, NY, USA,
2017; pp. 195–216.

18. Zimmermann, O. Microservices Tenets: Agile Approach to Service Development and Deployment.
Comput. Sci.-Res. Dev. 2016, 32, 301–310.

https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/NOTE-ld-bp-20140109/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://hal.archives-ouvertes.fr/hal-00903568v2/

Information 2018, 9, 310 25 of 26

19. Speicher, S.; Arwe, J.; Malhotra, A. Linked Data Platform 1.0; W3C Recommendation, 2015. Available online:
https://www.w3.org/TR/2015/REC-ldp-20150226/ (accessed on 5 December 2018).

20. Feigenbaum, L.; Todd Williams, G.; Grant Clark, K.; Torres, E. SPARQL 1.1 Protocol; W3C Recommendation,
2013. Available online: https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/ (accessed on 5
December 2018).

21. Fielding, R.; Reschke, J. Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content; Proposed Standard;
IETF: Fremont, CA, USA, 2014.

22. Beckett, D.; Berners-Lee, T.; Prud’hommeaux, E.; Carothers, G. RDF 1.1 Turtle: Terse RDF Triple Language;
W3C Recommendation, 2014. Available online: https://www.w3.org/TR/2014/REC-turtle-20140225/
(accessed on 5 December 2018).

23. Verborgh, R.; Vander Sande, M.; Hartig, O.; Van Herwegen, J.; De Vocht, L.; De Meester, B.; Haesendonck, G.;
Colpaert, P. Triple Pattern Fragments: A Low-cost Knowledge Graph Interface for the Web. Web Semant. Sci.
Serv. Agents World Wide Web 2016, 37–38, 184–206.

24. Minier, T.; Skaf-Molli, H.; Molli, P. SaGe: Preemptive Query Execution for High Data Availability on the
Web. arXiv 2018, arXiv:1806.00227.

25. Seaborne, A. SPARQL 1.1 Query Results JSON Format; W3C Recommendation, 2013. Available online:
https://www.w3.org/TR/2013/REC-sparql11-results-json-20130321/ (accessed on 5 December 2018).

26. Corby, O.; Faron-Zucker, C.F. The KGRAM Abstract Machine for Knowledge Graph Querying.
In Proceedings of the International Conference on Web Intelligence and Intelligent Agent Technology
(WI-IAT), Washington, DC, USA, 31 August–3 September 2010; pp. 338–341.

27. Lanthaler, M.; Gütl, C. Hydra: A Vocabulary for Hypermedia-Driven Web APIs. In Proceedings of the 6th
Workshop on Linked Data on the Web (LDOW2013), Rio de Janeiro, Brazil, 14 May 2013.

28. Prud’hommeaux, E.; Buil-Aranda, C. SPARQL 1.1 Federated Query; W3C Recommendation, 2013. Available
online: https://www.w3.org/TR/2013/REC-sparql11-federated-query-20130321/ (accessed on 5 December
2018).

29. Michel, F.; Gargominy, O.; Tercerie, S.; Faron-Zucker, C. A Model to Represent Nomenclatural and Taxonomic
Information as Linked Data. Application to the French Taxonomic Register, TAXREF. In Proceedings of the
2nd International Workshop on Semantics for Biodiversity (S4BioDiv) co-located with ISWC 2017, Vienna,
Australia, 21–25 October 2017.

30. Gargominy, O.; Tercerie, S.; Régnier, C.; Ramage, T.; Schoelink, C.; Dupont, P.; Vandel, E.; Daszkiewicz, P.;
Poncet, L. TAXREF V10. 0, Référentiel Taxonomique Pour La France: Méthodologie, Mise En Oeuvre et Diffusion.
Muséum national d’Histoire naturelle: Paris, France, 2016.

31. Parr, C.S.; Schulz, K.S.; Hammock, J.; Wilson, N.; Leary, P.; Rice, J.; Corrigan, R.J., Jr. TraitBank: Practical
semantics for organism attribute data. Semant. Web 2016, 7, 577–588.

32. Corby, O.; Faron-Zucker, C. STTL: A SPARQL-based transformation language for RDF. In Proceedings of the
11th International Conference on Web Information Systems and Technologies (WEBIST), Lisbon, Portugal,
20–22 May 2015.

33. Wiederhold, G. Mediators in the Architecture of Future Information Systems. IEEE Comput. 1992, 25, 38–49.
34. Mendes, P.N.; Passant, A.; Kapanipathi, P. Twarql: Tapping into the Wisdom of the Crowd. In Proceedings

of the 6th International Conference on Semantic Systems, Graz, Austria, 1–3 September 2010.
35. Lanthaler, M. Creating 3rd Generation Web APIs with Hydra. In Proceedings of the 22nd International

Conference on World Wide Web, WWW’13 Companion , Rio de Janeiro, Brazil, 13–17 May 2013; pp. 35–38.
36. Serrano, D.; Stroulia, E.; Lau, D.; Ng, T. Linked REST APIs: A Middleware for Semantic REST API

Integration. In Proceedings of the IEEE International Conference on Web Services (ICWS), Honolulu, HI,
USA, 25–30 June 2017; pp. 138–145.

37. Lefrançois, M.; Zimmermann, A.; Bakerally, N. A SPARQL extension for generating RDF from heterogeneous
formats. In Proceedings of the 14th Extended Semantic Web Conference (ESWC), Portorož, Slovenia,
28 May 2017; pp. 35–50.

38. Jünemann, M.; Reutter, J.L.; Soto, A.; Vrgoc, D. Incorporating API Data into SPARQL Query Answers.
In Proceedings of the 15th International Semantic Web Conference (Posters and Demos), Kobe, Japan,
17–21 October 2016.

https://www.w3.org/TR/2015/REC-ldp-20150226/
https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
https://www.w3.org/TR/2014/REC-turtle-20140225/
https://www.w3.org/TR/2013/REC-sparql11-results-json-20130321/
https://www.w3.org/TR/2013/REC-sparql11-federated-query-20130321/

Information 2018, 9, 310 26 of 26

39. Moreau, B.; Serrano-Alvarado, P.; Desmontils, E.; Thoumas, D. Querying non-RDF Datasets using Triple
Patterns. In Proceedings of the 16th International Semantic Web Conference (Posters and Demos), Vienna,
Austria, 21–25 October 2017.

40. Dimou, A.; Sande, M.V.; Slepicka, J.; Szekely, P.; Mannens, E.; Knoblock, C.; Walle, R.V.D.
Mapping Hierarchical Sources into RDF Using the RML Mapping Language. In Proceedings of the
International Conference on Semantic Computing (ICSC), Newport Beach, CA, USA, 16–18 June 2014;
pp. 151–158.

41. Michel, F.; Djimenou, L.; Faron-Zucker, C.; Montagnat, J. Translation of Relational and Non-Relational
Databases into RDF with xR2RML. In Proceedings of the 11th International Conference on Web Information
Systems and Technologies (WEBIST), Lisbon, Portugal, 1 October 2015; pp. 443–454.

42. Beckett, D.; Broekstra, J.; Hawke, S. SPARQL Query Results XML Format, 2nd Ed.; W3C Recommendation,
2013. Available online: https://www.w3.org/TR/2013/REC-rdf-sparql-XMLres-20130321/ (accessed on 5
December 2018).

43. Polleres, A.; Kamdar, M.R.; Fernandez, J.D.; Tudorache, T.; Musen, M.A. A More Decentralized Vision
for Linked Data. In Proceedings of the 2nd Workshop on Decentralizing the Semantic Web (DeSemWeb)
Co-Located with ISWC 2018, Monterey, CA, USA, 8 October 2018; Volume 2165.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.w3.org/TR/2013/REC-rdf-sparql-XMLres-20130321/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Web APIs
	Micro-Service Architectures

	The SPARQL Micro-Service Architecture
	Definition
	Assigning URIs to Web API Resources
	Analysis of SPARQL Micro-Services with the Linked Data Fragments Framework

	Implementation
	Processing SPARQL Queries
	URIs Dereferencing
	Deployment
	Discussion

	Experimentation
	Performance of Individual SPARQL Micro-Services
	Performance When Invoking Multiple SPARQL Micro-Services

	Biodiversity-Related Use Cases
	Aggregating Various Types of Data Related to Biological Taxa
	Assisting Biologists in Editing Taxonomic Information

	Related Works
	Conclusions and Perspectives
	References

