
HAL Id: hal-01947855
https://hal.archives-ouvertes.fr/hal-01947855

Submitted on 7 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Completeness of Verifying Message Passing
Programs Under Bounded Asynchrony

Ahmed Bouajjani, Constantin Enea, Kailiang Ji, Shaz Qadeer

To cite this version:
Ahmed Bouajjani, Constantin Enea, Kailiang Ji, Shaz Qadeer. On the Completeness of Verifying
Message Passing Programs Under Bounded Asynchrony. International Conference on Computer Aided
Verification, CAV 2018: Computer Aided Verification, Springer International Publishing, pp.372-391,
2018. �hal-01947855�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162952842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01947855
https://hal.archives-ouvertes.fr

On the Completeness of Verifying Message
Passing Programs under Bounded Asynchrony?

Ahmed Bouajjani1, Constantin Enea1, Kailiang Ji1, and Shaz Qadeer2

1 IRIF, University Paris Diderot & CNRS, {abou,cenea,jkl}@irif.fr,
2 Microsoft Research, qadeer@microsoft.com

Abstract. We address the problem of verifying message passing pro-
grams, defined as a set of processes communicating through unbounded
FIFO buffers. We introduce a bounded analysis that explores a special
type of computations, called k-synchronous. These computations can
be viewed as (unbounded) sequences of interaction phases, each phase
allowing at most k send actions (by different processes), followed by a
sequence of receives corresponding to sends in the same phase. We give
a procedure for deciding k-synchronizability of a program, i.e., whether
every computation is equivalent (has the same happens-before relation)
to one of its k-synchronous computations. We show that reachability over
k-synchronous computations and checking k-synchronizability are both
PSPACE-complete.

1 Introduction

Communication with asynchronous message passing is widely used in concurrent
and distributed programs implementing various types of systems such as cache
coherence protocols, communication protocols, protocols for distributed agree-
ment, device drivers, etc. An asynchronous message passing program is built as
a collection of processes running in parallel, communicating asynchronously by
sending messages to each other via channels or message buffers. Messages sent to
a given process are stored in its entry buffer, waiting for the moment they will be
received by the process. Sending messages is not blocking for the sender process,
which means that the message buffers are supposed to be of unbounded size.

Such programs are hard to get right. Asynchrony introduces a tremendous
amount of new possible interleavings between actions of parallel processes, and
makes it very hard to apprehend the effect of all of their computations. Due to this
complexity, verifying properties (invariants) of such systems is hard. In particular,
when buffers are ordered (FIFO buffers), the verification of invariants (or dually
of reachability queries) is undecidable even when each process is finite-state [10].

Therefore, an important issue is the design of verification approaches that
avoid considering the full set of computations to draw useful conclusions about

? This work is supported in part by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement
No 678177).

2

the correctness of the considered programs. Several such approaches have been
proposed including partial-order techniques, bounded analysis techniques, etc.,
e.g., [4,13,6,23,16]. Due to the hardness of the problem and its undecidability,
these techniques have different limitations: either applicable only when buffers
are bounded (e.g., partial-order techniques), or limited in scope, or do not provide
any guarantees of termination or insight about the completeness of the analysis.

In this paper, we propose a new approach for the analysis and verification of
asynchronous message-passing programs with unbounded FIFO buffers, which
provides a decision procedure for checking state reachability for a wide class of
programs, and which is also applicable for bounded-analysis in the general case.

We first define a bounding concept for prioritizing the enumeration of program
behaviors. This concept is guided by our conviction that the behaviors of well
designed programs can be seen as successions of bounded interaction phases, each
of them being a sequence of send actions (by different processes), followed by a
sequence of receive actions (again by different processes) corresponding to send
actions belonging to the same interaction phase. For instance, interaction phases
corresponding to rendezvous communications are formed of a single send action
followed immediately by its corresponding receive. More complex interactions are
the result of exchanges of messages between processes. For instance two processes
can send messages to each other, and therefore their interaction starts with two
send actions (in any order), followed by the two corresponding receive actions
(again in any order). This exchange schema can be generalized to any number of
processes. We say that an interaction phase is k-bounded, for a given k > 0, if
its number of send actions is less than or equal to k. For instance rendezvous
interactions are precisely 1-bounded phases. In general, we call k-exchange any
k-bounded interaction phase. Given k > 0, we consider that a computation is
k-synchronous if it is a succession of k-exchanges. It can be seen that, in k-
synchronous computations the sum of the sizes of all messages buffers is bounded
by k. However, as it will be explained later, boundedness of the messages buffers
does not guarantee that there is a k such that all computations are k-synchronous.

Then, we introduce a new bounded analysis which for a given k, considers only
computations that are equivalent to k-synchronous computations. The equivalence
relation on computations is based on a notion of trace corresponding to a happens-
before relation capturing the program order (the order of actions in the code of a
process) and the precedence order between sends and their corresponding receives.
Two computations are equivalent if they have the same trace, i.e., they differ
only in the order of causally independent actions. We show that this analysis is
PSPACE-complete when processes have a finite number of states.

An important feature of our bounding concept is that it is possible to decide
its completeness for systems composed of finite-state processes, but with un-
bounded message buffers: For any given k, it is possible to decide whether every
computation of the program (under the asynchronous semantics) is equivalent
to (i.e., has the same trace as) a k-synchronous computation of that program.
When this holds, we say that the program is k-synchronizable 3. Knowing that a

3 A different notion of synchronizability has been defined in [4] (see Section 8).

3

program is k-synchronizable allows to conclude that an invariant holds for all
computations of the program if no invariant violations have been found by its
k-bounded exchange analysis. Notice that k-synchronizability of a program does
not imply that all its behaviours use bounded buffers. Consider for instance a
program with two processes, a producer that consists of a loop of sends, and a
consumer that consists of a loop of receives. Although there are computations
where the entry buffer of the consumer is arbitrarily large, the program is 1-
synchronizable because all its computations are equivalent to computations where
each message sent by the producer is immediately received by the consumer.

Importantly, we show that checking k-synchronizability of a program, with
possibly infinite-state processes, can be reduced in linear time to checking state
reachability under the k-synchronous semantics (i.e., without considering all
the program computations). Therefore, for finite-state processes, checking k-
synchronizability is PSPACE and it is possible to decide invariant properties
without dealing with unbounded message buffers when the programs are k-
synchronizable (the overall complexity being PSPACE).

Then, a method for verifying asynchronous message passing programs can
be defined, based on iterating k-bounded analyses with increasing value of k,
starting from k = 1. If for some k, a violation (i.e., reachability of an error state)
is detected, then the iteration stops and the conclusion is that the program
is not correct. On the other hand, if for some k, the program is shown to be
k-synchronizable and no violations have been found, then again the iteration
terminates and the conclusion is that the program is correct.

However, it is possible that the program is not k-synchronizable for any k. In
this case, if the program is correct then the iteration above will not terminate.
Thus, an important issue is to determine whether a program is synchronizable,
i.e., there exists a k such that the program is k-synchronizable. This problem is
hard, and we believe that it is undecidable, but we do not have a formal proof.

We have applied our theory to a set of nontrivial examples, two of them being
presented in Section 2. All the examples are synchronizable, which confirms our
conviction that non-synchronizability should correspond to an ill-designed system
(and therefore it should be reported as an anomaly).

An extended version of this paper with missing proofs can be found at [9].

2 Motivating Examples

We provide in this section examples illustrating the relevance and the applicability
of our approach. Figure 1 shows a commit protocol allowing a client to update
a memory that is replicated in two processes, called nodes. The access to the
nodes is controlled by a manager. Figure 2 shows an execution of this protocol.
This system is 1-synchronizable, i.e., every execution is equivalent to one where
only rendezvous communication is used. Intuitively, this holds because mutually
interacting components are never in the situation where messages sent from one
to the other are crossing messages sent in the other direction (i.e., the components
are ”talking” to each other at the same time). For instance, the execution in
Figure 2 is 1-synchronizable because its conflict graph (shown in the same figure)

4

Send

send(n1,m,OK)

Node n1:

rec(n1,update)
Ack

Init
rec(m,update)

Send1
send(m,n1,update)

Send2
send(m,n2,update)

Rec1

Rec1

rec(m,OK)

Rec1
rec(m,OK)send(m,c,OK)

Manager m:

Send

send(c,m,update)

Client c:

rec(c,OK)
Ack Send

send(n2,m,OK)

Node n2:

rec(n2,update)
Ack

Fig. 1: A distributed commit protocol. Each process is defined as a labeled
transition system. Transitions are labeled by send and receive actions, e.g.,
send(c,m, update) is a send from the client c to the manager m with payload
update. Similarly, rec(c,OK) denotes process c receiving a message OK.

Client Manager Node n1 Node n2

update

update
update

OK

OK

OK

1

32

4

5

6

1

2

3

4

5

6

Conflict Graph:

RS

SS

RS,SR

RR

RS

SR

SR

RS

RR

RS,SR

RR

SS

SS

Fig. 2: An execution of the distributed commit protocol and its conflict graph.

is acyclic. Nodes in the conflict graph are matching send-receive pairs (numbered
from 1 to 6 in the figure), and edges correspond to the program order between
actions in these pairs. The label of an edge records whether the actions related
by program order are sends or receives, e.g., the edge from 1 to 2 labeled by RS
represents the fact that the receive of the send-receive pair 1 is before the send of
the send-receive pair 2, in program order. For the moment, these labels should be
ignored, their relevance will be discussed in Section 5. The conflict graph being
acyclic means that matching pairs of send-receive actions are “serializable”, which
implies that this execution is equivalent to one where every send is immediately
followed by the matching receive (as in rendezvous communication).

Although the message buffers are bounded in all the computations of the
commit protocol, this is not true for every 1-synchronizable system. There are
asynchronous computations where buffers have an arbitrarily big size, which
are equivalent to synchronous computations. This is illustrated by a (family of)
computations shown in Figure 4a of the system modeling an elevator described
in Figure 3 (a simplified version of the system described in [14]). This system
consists of three processes: User models the user of the elevator, Elevator models
the elevator’s controller, and Door models the elevator’s door which reacts to
commands received from the controller. The execution in Figure 4a models an

5

interaction where the user sends an unbounded number of requests for closing
the door, which generates an unbounded number of messages in the entry buffer
of Elevator. These computations are 1-synchronizable since they are equivalent to
a 1-synchronous computation where Elevator receives immediately every message
sent by User. This is witnessed by the acyclicity of the conflict graph of this
computation (shown on the right of the same figure). It can be checked that the
elevator system without the dashed edge is a 1-synchronous system.

Consider now a slightly different version of the elevator system where the
transition from Stopping2 to Opening2 is moved to target Opening1 instead (see
the dashed transition in Figure 3). It can be seen that this version reaches exactly
the same set of configurations (tuples of process local states) as the previous one.
Indeed, modifying that transition enables Elevator to send a message open to
Door, but the latter can only be at StopDoor, OpenDoor, or ResetDoor at this
point, and therefore it can (maybe after sending doorStopped and doorOpened)
receive at state ResetDoor the message open. However, receiving this message
doesn’t change Door’s state, and the set of reachable configurations of the system
remains the same. This version of the system is not 1-synchronizable as it is
shown in Figure 4b: once the doorStopped message sent by Door is received by
Elevator 4, these two processes can send messages to each other at the same time
(the two send actions happen before the corresponding receives). This mutual
interaction consisting of 2 parallel send actions is called a 2-exchange and it
is witnessed by the cycle of size 2 in the execution’s conflict graph (shown on
the right of Figure 4b). In general, it can be shown that every execution of this
version of the elevator system has a conflict graph with cycles of size at most 2,
which implies that it is 2-synchronizable (by the results in Section 5).

3 Message passing systems

We define a message passing system as the composition of a set of processes that
exchange messages, which can be stored in FIFO buffers before being received
(we assume one buffer per process, storing incoming messages from all the other
processes). Each process is described as a state machine that evolves by executing
send or receive actions. An execution of such a system can be represented
abstractly using a partially-ordered set of events, called a trace. The partial order
in a trace represents the causal relation between events. We show that these
systems satisfy causal delivery, i.e., the order in which messages are received by a
process is consistent with the causal relation between the corresponding sendings.

We fix sets P and V of process ids and message payloads, and sets S =
{send(p, q, v) : p, q ∈ P, v ∈ V} and R = {rec(q, v) : q ∈ P, v ∈ V} of send actions
and receive actions. Each send send(p, q, v) combines two process ids p, q denoting
the sender and the receiver of the message, respectively, and a message payload
v. Receive actions specify the process q receiving the message, and the message
payload v. The process executing an action a ∈ S ∪ R is denoted proc(a), i.e.,

4 Door sends the message from state StopDoor, and Elevator is at state Stopping2 before
receiving the message.

6

Loop

send(u,e,openDoor)

send(u,e,closeDoor)

Init
rec(d,open)

rec(d,reset)

rec(d,stop)

OpenDoor

Closing

rec(d,close)

send(d,e,doorOpened)
ResetDoor

rec(d,reset) rec(d,open)

rec(d,close)

send(d,e,doorClosed)

StopDoor

rec(d,stop)

send(d,e,doorStopped)

User u: Door d:

Closed1 Closed2
send(e,d,reset)

rec(e,closeDoor)

Opening1
rec(e,openDoor)

Opening2
send(e,d,open) rec(e,doorOpened)

Opened
send(e,d,reset)

Closing1

Closing2

send(e,d,close)

Stopping1
send(e,d,stop)

rec(e,openDoor)

Stopping2

rec(e,openDoor)

rec(e,doorClosed)
rec(e,doorOpened)rec(e,doorStopped)

rec(e,doorClosed)

Elevator e:

Fig. 3: A system modeling an elevator.

proc(a) = p for all a = send(p, q, v) or a = rec(p, v), and the destination q of
a send s = send(p, q, v) ∈ S is denoted dest(s). The set of send, resp., receive,
actions a of process p, i.e., with proc(a) = p, is denoted by Sp, resp., Rp.

A message passing system is a tuple S = ((Lp, δp, l
0
p) | p ∈ P) where Lp is the

set of local states of process p, δp ⊆ L × (Sp ∪ Rp) × L is a transition relation
describing the evolution of process p, and l0p is the initial state of process p.
Examples of message passing systems can be found in Figure 1 and Figure 3.

We fix a set M of message identifiers, and the sets Sid = {si : s ∈ S, i ∈M}
and Rid = {ri : r ∈ R, i ∈M} of indexed actions. Message identifiers are used to
pair send and receive actions. We denote the message id of an indexed send/receive
action a by msg(a). Indexed send and receive actions s ∈ Sid and r ∈ Rid are
matching, written s 7− [r, when msg(s) = msg(r).

A configuration c = 〈l, b〉 is a vector l of local states along with a vector b of
message buffers (sequences of message payloads tagged with message identifiers).

The transition relation
a−→ (with label a ∈ Sid ∪Rid) between configurations is

defined as expected. Every send action enqueues the message into the destination’s
buffer, and every receive dequeues a message from the buffer. An execution of a
system S under the asynchronous semantics is a sequence of indexed actions which
corresponds to applying a sequence of transitions from the initial configuration
(where processes are in their initial states and the buffers are empty). Let asEx(S)
denote the set of these executions. Given an execution e, a send action s in e is
called an unmatched send when e contains no receive action r such that s 7− [r.
An execution e is called matched when it contains no unmatched send.
Traces. Executions are represented using traces which are sets of indexed actions
together with a program order relating every two actions of the same process and
a source relation relating a send with the matching receive (if any).

7

User Elevator Door

closeDoor

1 reset

openDoor

open

doorOpened

n

n+2

n+1

n+3

n+4

1

2

n

n+1

n+3

n+4

Conflict Graph:

SS, RR

SR

SS, RR

RS

RS, SR

n+2

SR

SS,RR

RS,SR

SR

SR

(a) A 1-synchronizable execution.

Elevator Door

doorStopped

doorOpened

1 2

3

Conflict Graph:

SR

RS,SR

1

open
2

3

SR

SS,RR

(b) A computation with a 2-exchange.

Fig. 4: Executions of the Elevator.

Formally, a trace is a tuple t = (A, po, src) where A ⊆ Sid ∪ Rid, po ⊆ A2

defines a total order between actions of the same process, and src ⊆ Sid ×Rid is
a relation s.t. src(a, a′) iff a 7− [a′. The trace tr(e) of an execution e is (A, po, src)
where A is the set of all actions in e, po(a, a′) iff proc(a) = proc(a′) and a
occurs before a′ in e, and src(a, a′) iff a 7− [a′. Examples of traces can be found
in Figure 2 and Figure 4. The union of po and src is acyclic. Let asTr(S) =
{tr(e) : e ∈ asEx(S)} be the set of traces of S under the asynchronous semantics.

Traces abstract away the order of non-causally related actions, e.g., two sends
of different processes that could be executed in any order. Two executions have the
same trace when they only differ in the order between such actions. Formally, given
an execution e = e1 ·a ·a′ ·e2 with tr(e) = (A, po, src), where e1, e2 ∈ (Sid∪Rid)∗
and a, a′ ∈ Sid ∪Rid, we say that e′ = e1 · a′ · a · e2 is derived from e by a valid
swap iff (a, a′) 6∈ po∪src. A permutation e′ of an execution e is conflict-preserving
when e′ can be derived from e through a sequence of valid swaps. For simplicity,
whenever we use the term permutation we mean conflict-preserving permutation.
For instance, a permutation of send1(p1, q,) send2(p2, q,) rec1(q,) rec2(q,)
is send1(p1, q,) rec1(q,) send2(p2, q,) rec2(q,) and a permutation of the ex-
ecution send1(p1, q1,) send2(p2, q2,) rec2(q2,) rec1(q1,) is send1(p1, q1,)
rec1(q1,) send2(p2, q2,) rec2(q2,).

Note that the set of executions having the same trace are permutations of one
another. Also, a system S cannot distinguish between permutations of executions
or equivalently, executions having the same trace.

Causal Delivery. The asynchronous semantics ensures a property known as
causal delivery, which intuitively, says that the order in which messages are
received by a process q is consistent with the “causal” relation between them.
Two messages are causally related if for instance, they were sent by the same
process p or one of the messages was sent by a process p after the other one was
received by the same process p. This property is ensured by the fact that the
message buffers have a FIFO semantics and a sent message is instantaneously
enqueued in the destination’s buffer. For instance, the trace (execution) on the

8

Process p Process q1

send(p,q2,v1)

send(p,q1,v2)

send(q1,q2,v3)

rec(q1,v2)

rec(q2,v1)

rec(q2,v3)

Process q2 Process p Process q1

send(p,q2,v1)

send(p,q1,v2)

send(q1,q2,v3)

rec(q1,v2)

rec(q2,v1)

rec(q2,v3)

Process q2

Fig. 5: A trace satisfying causal delivery (on the left) and a trace violating causal
delivery (on the right).

Process p Process q1

send(p,q2,v1)

send(p,q1,v2)

send(q1,q2,v3)

rec(q1,v2)

rec(q2,v3)

Process q2

B(q2) = { p }

B(q2) = { p, q1 }

Fig. 6: An execution of the 1-synchronous semantics.

left of Figure 5 satisfies causal delivery. In particular, the messages v1 and v3
are causally related, and they are received in the same order by q2. On the right
of Figure 5, we give a trace where the messages v1 and v3 are causally related,
but received in a different order by q2, thus violating causal delivery. This trace
is not valid because the message v1 would be enqueued in the buffer of q2 before
send(p, q1, v2) is executed and thus, before send(q1, q2, v3) as well.

Formally, for a trace t = (A, po, src), the transitive closure of po∪src, denoted
by ;t, is called the causal relation of t. For instance, for the trace t on the left
of Figure 5, we have that send(p, q2, v1) ;t send(q1, q2, v3). A trace t satisfies
causal delivery if for every two send actions s1 and s2 in A,

(s1 ;t s2 ∧ dest(s1) = dest(s2)) =⇒ (6 ∃r2 ∈ A. s2 7− [r2)∨
(∃r1, r2 ∈ A. s1 7− [r1 ∧ s2 7− [r2 ∧ (r2, r1) 6∈ po)

It can be easily proved that every trace t ∈ asTr(S) satisfies causal delivery.

4 Synchronizability

We define a property of message passing systems called k-synchronizability as
the equality between the set of traces generated by the asynchronous semantics
and the set of traces generated by a particular semantics called k-synchronous.

The k-synchronous semantics uses an extended version of the standard rendez-
vous primitive where more than one process is allowed to send a message
and a process can send multiple messages, but all these messages must be
received before being allowed to send more messages. This primitive is called
k-exchange if the number of sent messages is at most k. For instance, the ex-
ecution send1(p1, p2,) send2(p2, p1,) rec1(p2,) rec2(p1,) is an instance of a

9

k-exchange
e ∈ S∗id ·R∗id |e| ≤ 2 · k

(l, ε)
e−→ (l′, b), for some b ∀s, r ∈ e. s 7− [r =⇒ proc(s) 6∈ B(dest(s))

B′(q) = B(q) ∪ {p : ∃s ∈ e ∩ Sid. ((6 ∃r ∈ e. s 7− [r) ∧ p = proc(s) ∧ q = dest(s))
∨(proc(s) ∈ B(q) ∧ dest(s) = p)}

(l, B)
e
=⇒ k(l′, B′)

Fig. 7: The synchronous semantics. Above, ε is a vector where all the components
are ε, and

e−→ is the transition relation of the asynchronous semantics.

2-exchange. To ensure that the k-synchronous semantics is prefix-closed (if it
admits an execution, then it admits all its prefixes), we allow messages to be
dropped during a k-exchange transition. For instance, the prefix of the previous
execution without the last receive (rec2(p1,)) is also an instance of a 2-exchange.
The presence of unmatched send actions must be constrained in order to ensure
that the set of executions admitted by the k-synchronous semantics satisfies
causal delivery. Consider for instance, the sequence of 1-exchanges in Figure 6, a
1-exchange with one unmatched send, followed by two 1-exchanges with matching
pairs of send/receives. The receive action (rec(q2, v3)) pictured as an empty box
needs to be disabled in order to exclude violations of causal delivery. To this,
the semantics tracks for each process p a set of processes B(p) from which it
is forbidden to receive messages. For the sequence of 1-exchanges in Figure 6,
the unmatched send(p, q2, v1) disables any receive by q2 of a message sent by
p (otherwise, it will be even a violation of the FIFO semantics of q2’s buffer).
Therefore, the first 1-exchange results in B(q2) = {p}. The second 1-exchange
(the message from p to q1) forbids q2 to receive any message from q1. Otherwise,
this message will be necessarily causally related to v1, and receiving it will lead
to a violation of causal delivery. Therefore, when reaching send(q1, q2, v3) the
receive rec(q2, v3) is disabled because q1 ∈ B(q2).

Formally, a configuration c′ = (l, B) in the synchronous semantics is a vector
l of local states together with a function B : P→ 2P. The transition relation
⇒k is defined in Figure 7. A k-exchange transition corresponds to a sequence
of transitions of the asynchronous semantics starting from a configuration with
empty buffers. The sequence of transitions is constrained to be a sequence of
at most k sends followed by a sequence of receives. The receives are enabled
depending on previous unmatched sends as explained above, using the function
B. The semantics defined by ⇒k is called the k-synchronous semantics.

Executions and traces are defined as in the case of the asynchronous semantics,
using ⇒k for some fixed k instead of →. The set of executions, resp., traces, of
S under the k-synchronous semantics is denoted by sExk(S), resp., sTrk(S). The
executions in sExk(S) and the traces in sTrk(S) are called k-synchronous.

An execution e such that tr(e) is k-synchronous is called k-synchronizable.
We omit k when it is not important. The set of executions generated by a system
S under the k-synchronous semantics is prefix-closed. Therefore, the set of its
k-synchronizable executions is prefix-closed as well. Also, k-synchronizable and
k-synchronous executions are undistinguishable up to permutations.

10

Definition 1. A message passing system S is called k-synchronizable when
asTr(S) = sTrk(S).

It can be easily proved that k-synchronizable systems reach exactly the
same set of local state vectors under the asynchronous and the k-synchronous
semantics. Therefore, any assertion checking or invariant checking problem for
a k-synchronizable system S can be solved by considering the k-synchronous
semantics instead of the asynchronous one. This holds even for the problem of
detecting deadlocks. Therefore, all these problems become decidable for finite-
state k-synchronizable systems, whereas they are undecidable in the general case
(because of the FIFO message buffers).

5 Characterizing Synchronous Traces

1

2

3 4

1

2 3

4SR

RR

RS

SS

Conflict Graph:

Fig. 8

We give a characterization of the traces generated by the k-
synchronous semantics that uses a notion of conflict-graph
similar to the one used in conflict serializability [27]. The
nodes of the conflict graph correspond to pairs of matching
actions (a send and a receive) or to unmatched sends, and
the edges represent the program order relation between the
actions represented by these nodes.

For instance, an execution with an acyclic conflict graph,
e.g., the execution in Figure 2, is “equivalent” to an execu-
tion where every receive immediately follows the matching
send. Therefore, it is an execution of the 1-synchronous
semantics. For arbitrary values of k, the conflict graph may
contain cycles, but of a particular form. For instance, traces

of the 2-synchronous semantics may contain a cycle of size 2 like the one in
Figure 4(b). More generally, we show that the conflict graph of a k-synchronous
trace cannot contain cycles of size strictly bigger than k. However, this class of
cycles is not sufficient to precisely characterize the k-synchronous traces. Consider
for instance the trace on top of Figure 8. Its conflict-graph contains a cycle of
size 4 (shown on the bottom), but the trace is not 4-synchronous. The reason
is that the messages tagged by 1 and 4 must be sent during the same exchange
transition, but receiving message 4 needs that the message 3 is sent after 2 is
received. Therefore, it is not possible to schedule all the send actions before all
the receives. Such scenarios correspond to cycles in the conflict graph where at
least one receive is before a send in the program order (witnessed by the edge
labeled by RS). We show that excluding such cycles, in addition to cycles of size
strictly bigger than k, is a precise characterization of k-synchronous traces.

The conflict-graph of a trace t = (A, po, src) is the labeled directed graph
CGt = 〈V,E, `E〉 where: (1) the set of nodes V includes one node for each pair of
matching send and receive actions, and each unmatched send action in t, and (2)
the set of edges E is defined by: (v, v′) ∈ E′ iff there exist actions a ∈ act(v) and
a′ ∈ act(v′) such that (a, a′) ∈ po (where act(v) is the set of actions of trace t
corresponding to the graph node v). The label of the edge (v, v′) records whether

11

a and a′ are send or receive actions, i.e., for all X,Y ∈ {S,R}, XY ∈ `(v, v′) iff
a ∈ Xid and a′ ∈ Yid.

A direct consequence of previous results on conflict serializability [27] is that a
trace is 1-synchronous whenever its conflict-graph is acyclic. A cycle of a conflict
graph CGt is called bad when it contains an edge labeled by RS. Otherwise, it is
called good. The following result is a characterization of k-synchronous traces.

Theorem 1. A trace t satisfying causal delivery is k-synchronous iff every cycle
in its conflict-graph is good and of size at most k.

Theorem 1 can be used to define a runtime monitoring algorithm for k-
synchronizability checking. The monitor records the conflict-graph of the trace
produced by the system and checks whether it contains some bad cycle, or a cycle
of size bigger than k. While this approach requires dealing with unbounded mes-
sage buffers, the next section shows that this is not necessary. Synchronizability
violations, if any, can be exposed by executing the system under the synchronous
semantics.

6 Checking Synchronizability

We show that checking k-synchronizability can be reduced to a reachability
problem under the k-synchronous semantics (where message buffers are bounded).
This reduction holds for arbitrary, possibly infinite-state, systems. More precisely,
since the set of (asynchronous) executions of a system is prefix-closed, if a system
S admits a synchronizability violation, then it also admits a borderline violation,
for which every strict prefix is synchronizable. We show that every borderline
violation can be “simulated” 5 by the synchronous semantics of an instrumentation
of S where the receipt of exactly one message is delayed (during every execution).
We describe a monitor that observes executions of the instrumentation (under the
synchronous semantics) and identifies synchronizability violations (there exists a
run of this monitor that goes to an error state whenever such a violation exists).

6.1 Borderline Synchronizability Violations

For a system S, a violation e to k-synchronizability is called borderline when every
strict prefix of e is k-synchronizable. Figure 9(a) gives an example of a borderline
violation to 1-synchronizability (it is the same execution as in Figure 4(b)).

We show that every borderline violation e ends with a receive action and this
action is included in every cycle of CGtr(e) that is bad or exceeds the bound k.
Given a cycle c = v, v1, . . . , vn, v of a conflict graph CGt, the node v is called a
critical node of c when (v, v1) is an SX edge with X ∈ {S,R} and (vn, v) is an
Y R edge with Y ∈ {S,R}.
5 We refer to the standard notion of (stuttering) simulation where one system mimics

the transitions of the other system.

12

Elevator Door

send1(d,e,doorStopped)

send3(d,e,doorOpened)

rec2(d,open)

rec2(e,doorStopped)

send2(e,d,open)

rec3(e,doorOpened)

synchronizable

Elevator Door

send1(d,e,doorStopped)

rec2(d,open)

rec2(e,doorStopped)

send2(e,d,open)

rec4(e,doorOpened)

send3(d, , (e,doorOpened))⇡

Process ⇡

⇡rec3(, (e, doorOpened))

send4(,e,doorOpened)⇡

(a) (b)

Fig. 9: A borderline violation to 1-synchronizability.

Lemma 1. Let e be a borderline violation to k-synchronizability of a system S.
Then, e = e′ · r for some e′ ∈ (Sid ∪Rid)∗ and r ∈ Rid. Moreover, the node v of
CGtr(e) representing r (and the corresponding send) is a critical node of every
cycle of CGtr(e) which is bad or of size bigger than k.

6.2 Simulating Borderline Violations on the Synchronous Semantics

Let S ′ be a system obtained from S by “delaying” the reception of exactly one
nondeterministically chosen message: S ′ contains an additional process π and
exactly one message sent by a process in S is non-deterministically redirected to
π 6, which sends it to the original destination at a later time 7. We show that
the synchronous semantics of S ′ “simulates” a permutation of every borderline
violation of S. Figure 9(b) shows the synchronous execution of S ′ that corresponds
to the borderline violation in Figure 9(a). It is essentially the same except for
delaying the reception of doorOpened by sending it to π who relays it to the
elevator at a later time.

The following result shows that the k-synchronous semantics of S ′ “simulates”
all the borderline violations of S, modulo permutations.

Lemma 2. Let e = e1 · sendi(p, q, v) · e2 · reci(q, v) be a borderline violation to
k-synchronizability of S. Then, sExk(S ′) contains an execution e′ of the form:

e′ = e′1 · sendi(p, π, (q, v)) · reci(π, (q, v)) · e′2 · sendj(π, q, v) · recj(q, v)

such that e′1 · sendi(p, q, v) · e′2 is a permutation of e1 · sendi(p, q, v) · e2.

Checking k-synchronizability for S on the system S ′ would require that
every (synchronous) execution of S ′ can be transformed to an execution of S by
applying an homomorphism σ where the send/receive pair with destination π is
replaced with the original send action and the send/receive pair initiated by π is
replaced with the original receive action (all the other actions are left unchanged).

6 Meaning that every transition labeled by a send action send(p, q, v) is doubled by
a transition labeled by send(p, π, (q, v)), and such a send to π is enabled only once
throughout the entire execution.

7 The process π stores the message (q, v) it receives in its state and has one transition
where it can send v to the original destination q.

13

However, this is not true in general. For instance, S ′ may admit an execution
sendi(p, π, (q, v))·reci(π, (q, v))·sendj(p, q, v

′)·recj(q, v
′)·sendi′(π, q, v)·reci′(q, v)

where a message sent after the one redirected to π is received earlier, and the
two messages were sent by the same process p. This execution is possible under
the 1-synchronous semantics of S ′. Applying the homomorphism σ, we get the
execution sendi(p, q, v) · sendj(p, q, v

′) · recj(q, v
′) · reci(q, v) which violates causal

delivery and therefore, it is not admitted by the asynchronous semantics of S.
Our solution to this problem is to define a monitorMcausal , i.e., a process which
reads every transition label in the execution and advances its local state, which
excludes such executions of S ′ when run under the synchronous semantics, i.e.,
it blocks the system S ′ whenever applying some transition would lead to an
execution which, modulo the homomorphism σ, is a violation of causal delivery.
This monitor is based on the same principles that we used to exclude violations
of causal delivery in the synchronous semantics in the presence of unmatched
sends (the component B from a synchronous configuration).

6.3 Detecting Synchronizability Violations

We complete the reduction of checking k-synchronizability to a reachability
problem under the k-synchronous semantics by describing a monitor Mviol(k),
which observes executions in the k-synchronous semantics of S ′ ||Mcausal and
checks whether they represent violations to k-synchronizability; Mviol(k) goes
to an error state whenever such a violation exists.

Essentially,Mviol (k) observes the sequence of k-exchanges in an execution and
tracks a conflict graph cycle, if any, interpreting sendi(p, π, (q, v)) · reci(π, (q, v))
as in the original system S, i.e., as sendi(p, q, v), and sendi(π, q, v) · reci(q, v) as
reci(q, v). By Lemma 2, every cycle that is a witness for non k-synchronizability
includes the node representing the pair sendi(p, q, v), reci(q, v). Moreover, the
successor of this node in the cycle represents an action that is executed by p and
the predecessor an action executed by q. Therefore, the monitor searches for a
conflict-graph path from a node representing an action of p to a node representing
an action of q. Whenever it finds such a path it goes to an error state.

Figure 10 lists the definition ofMviol (k) as an abstract state machine. By the
construction of S ′, we assume w.l.o.g., that both the send to π and the send from
π are executed in isolation as an instance of 1-exchange. When observing the send
to π, the monitor updates the variable conflict, which in general stores the
process executing the last action in the cycle, to p. Also, a variable count, which
becomes 0 when the cycle has strictly more than k nodes, is initialized to k. Then,
for every k-exchange transition in the execution, Mviol(k) non-deterministically
picks pairs of matching send/receive or unmatched sends to continue the conflict-
graph path, knowing that the last node represents an action of the process
stored in conflict. The rules for choosing pairs of matching send/receive to
advance the conflict-graph path are pictured on the right of Figure 10 (advancing
the conflict-graph path with an unmatched send doesn’t modify the value of
conflict, it just decrements the value of count). There are two cases depending
on whether the last node in the path conflicts with the send or the receive of the

14

function conflict: P ∪ {⊥}
function lastIsRec: B
function sawRS: B
function count: N

rule sendi(p, π, (q, v)) · reci(π, (q, v)):
conflict := p
count := k

// for every i, dest(si) 6= π and proc(si) 6= π
rule s1 · . . . · sn · r1 · . . . · rm:

for i = 1 to n
if (*∧∃j. si 7− [rj ∧ conflict ∈ {proc(si), dest(si)})

if (*)
conflict := proc(si)
if (lastIsRec) sawRS := true
lastIsRec := false

else
conflict := dest(si)
lastIsRec := true

count --
if (* ∧ proc(si) = conflict ∧ ∀j. ¬si 7− [rj)

count --
lastIsRec := false

rule sendi(π, q, v) · reci(q, v):
assert conflict = q =⇒ (count > 0 ∧ ¬sawRS)

Process p Process q

conflict = p

the current

k-exchange conflict := p /\ lastIsRec := false

or

conflict := q /\ lastIsRec := true

Process p Process q

conflict = q

the current

k-exchange conflict := p /\ lastIsRec := false

or

conflict := q /\ lastIsRec := true

Fig. 10: The monitorMviol (k). B is the set of Booleans and N is the set of natural
numbers. Initially, conflict is ⊥, while lastIsRec and sawRS are false.

considered pair. One of the two processes involved in this pair of send/receive
equals the current value of conflict. Therefore, conflict can either remain
unchanged or change to the value of the other process. The variable lastIsRec

records whether the current conflict-graph path ends in a conflict due to a receive
action. If it is the case, and the next conflict is between this receive and a send,
then sawRS is set to true to record the fact that the path contains an RS labeled
edge (leading to a potential bad cycle).

When π sends its message to q, the monitor checks whether the conflict-graph
path it discovered ends in a node representing an action of q. If this is the case,
this path together with the node representing the delayed send forms a cycle.
Then, if sawRS is true, then the cycle is bad and if count reached the value 0,
then the cycle contains more than k nodes. In both cases, the current execution
is a violation to k-synchronizability.

The set of executions in the k-synchronous semantics of S ′ composed with
Mcausal and Mviol(k), in which the latter goes to an error state, is denoted by
S ′k ||Mcausal || ¬Mviol(k).

Theorem 2. For a given k, a system S is k-synchronizable iff the set of execu-
tions S ′k ||Mcausal || ¬Mviol(k) is empty

Given a system S, an integer k, and a local state l, the reachability problem
under the k-synchronous semantics asks whether there exists a k-synchronous
execution of S reaching a configuration (l, B) with l = lp for some p ∈ P. Theo-
rem 2 shows that checking k-synchronizability can be reduced to a reachability
problem under the k-synchronous semantics. This reduction holds for arbitrary
(infinite-state) systems, which implies that k-synchronizability can be checked us-
ing the existing assertion checking technology. Moreover, for finite-state systems,

15

where each process has a finite number of local states (message buffers can still
be unbounded), it implies that checking this property is PSPACE-complete.

Theorem 3. For a finite-state system S, the reachability problem under the
k-synchronous semantics and the problem of checking k-synchronizability of S
are decidable and PSPACE-complete.

7 Experimental Evaluation

Name Proc Loc k Time
Elevator 3 90 2 64.3s
OSR 4 63 1 1.28s

German 5 335 2 38m
Two-phase commit 4 57 1 1.43s
Replication storage 6 100 4 92.8s

Fig. 11: Experimental results.

As a proof of concept, we have applied our
procedure for checking k-synchronizability to a
set of examples extracted from the distribution
of the P language 8. Two-phase commit and
Elevator are presented in Section 2, German is a
model of the cache-coherence protocol with the
same name, OSR is a model of a device driver,

and Replication Storage is a model of a protocol ensuring eventual consistency
of a replicated register. These examples cover common message communication
patterns that occur in different domains: distributed systems (Two-phase commit,
Replication storage), device drivers (Elevator, OSR), cache-coherence protocols
(German). We have rewritten these examples in the Promela language and used
the Spin model checker 9 for discharging the reachability queries. For a given
program, its k-synchronous semantics and the monitors defined in Section 6 are
implemented as ghost code. Finding a conflict-graph cycle which witnesses non
k-synchronizability corresponds to violating an assertion.

The experimental data is listed in Figure 11: Proc, resp., Loc, is the number
of processes, resp., the number of lines of code (loc) of the original program, k is
the minimal integer for which the program is k-synchronizable, and Time gives
the number of minutes needed for this check. The ghost code required to check
k-synchronizability takes 250 lines of code in average.

8 Related Work

Automatic verification of asynchronous message passing systems is undecidable
in general [10]. A number of decidable subclasses has been proposed. The class
of systems, called synchronizable as well, in [4], requires that a system generates
the same sequence of send actions when executed under the asynchronous se-
mantics as when executed under a synchronous semantics based on rendezvous
communication. These systems are all 1-synchronizable, but the inclusion is
strict (the 1-synchronous semantics allows unmatched sends). The techniques
proposed in [4] to check that a system is synchronizable according to their defini-
tion cannot be extended to k-synchronizable systems. Other classes of systems
that are 1-synchronizable have been proposed in the context of session types,

8 Available at https://github.com/p-org.
9 Available at http://spinroot.com

https://github.com/p-org
http://spinroot.com

16

e.g., [12,21,20,26]. A sound but incomplete proof method for distributed algo-
rithms that is based on a similar idea of avoiding reasoning about all program
computations is introduced in [3]. Our class of synchronizable systems differs also
from classes of communicating systems that restrict the type of communication,
e.g., lossy-communication [2], half-duplex communication [11], or the topology of
the interaction, e.g., tree-based communication in concurrent pushdowns [23,19].

The question of deciding if all computations of a communicating system are
equivalent (in the language theoretic sense) to computations with bounded buffers
has been studied in, e.g., [17], where this problem is proved to be undecidable.
The link between that problem and our synchronizability problem is not (yet)
clear, mainly because non synchronizable computations may use bounded buffers.

Our work proposes a solution to the question of defining adequate (in terms
of coverage and complexity) parametrized bounded analyses for message passing
programs, providing the analogous of concepts such as context-bounding or delay-
bounding defined for shared-memory concurrent programs. Bounded analyses
for concurrent systems was initiated by the work on bounded-context switch
analysis [29,28,25]. For shared-memory programs, this work has been extended to
unbounded threads or larger classes of behaviors, e.g., [8,15,22,24]. Few bounded
analyses incomparable to ours have been proposed for message passing systems,
e.g., [23,6]. Contrary to our work, these works on bounded analyses in general do
not propose decision procedures for checking if the analysis is complete (covers
all reachable states). The only exception is [24], which concerns shared-memory.

Partial-order reduction techniques, e.g., [1,16], allow to define equivalence
classes on behaviors, based on notions of action independence and explore (ideally)
only one representative of each class. This has lead to efficient algorithmic
techniques for enhanced model-checking of concurrent shared-memory programs
that consider only a subset of relevant action interleavings. In the worst case,
these techniques will still need to explore all of the interleavings. Moreover, these
techniques are not guaranteed to terminate when the buffers are unbounded.

The work in [13] defines a particular class of schedulers, that roughly, prioritize
receive actions over send actions, which is complete in the sense that it allows to
construct the whole set of reachable states. Defining an analysis based on this
class of schedulers has the same drawback as partial-order reductions, in the worst
case, it needs to explore all interleavings, and termination is not guaranteed.

The approach in this work is related to robustness checking [5,7]. The general
paradigm is to decide that a program has the same behaviors under two semantics,
one being weaker than the other, by showing a polynomial reduction to a state
reachability problem under the stronger semantics. For instance, in our case,
the class of message passing programs with unbounded FIFO channels is Turing
powerful, but still, surprisingly, k-synchronizability of these programs is decidable
and PSPACE-complete. The results in [5,7] cannot be applied in our context:
the class of programs and their semantics are different, and the corresponding
robustness checking algorithms are based on distinct concepts and techniques.

17

References

1. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.F.: Optimal dynamic partial
order reduction. In: Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’14, San Diego, CA, USA, January 20-21, 2014. pp. 373–384. ACM (2014), http:
//doi.acm.org/10.1145/2535838.2535845

2. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inf. Com-
put. 127(2), 91–101 (1996), https://doi.org/10.1006/inco.1996.0053

3. Bakst, A., von Gleissenthall, K., Kici, R.G., Jhala, R.: Verifying distributed programs
via canonical sequentialization. PACMPL 1(OOPSLA), 110:1–110:27 (2017), http:
//doi.acm.org/10.1145/3133934

4. Basu, S., Bultan, T.: On deciding synchronizability for asynchronously communicat-
ing systems. Theor. Comput. Sci. 656, 60–75 (2016), https://doi.org/10.1016/j.
tcs.2016.09.023

5. Bouajjani, A., Derevenetc, E., Meyer, R.: Robustness against relaxed memory
models. In: Hasselbring, W., Ehmke, N.C. (eds.) Software Engineering 2014, Kiel,
Deutschland. LNI, vol. 227, pp. 85–86. GI (2014), http://eprints.uni-kiel.de/
23752/

6. Bouajjani, A., Emmi, M.: Bounded phase analysis of message-passing programs.
In: Flanagan, C., König, B. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems - 18th International Conference, TACAS 2012, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings. Lecture Notes in
Computer Science, vol. 7214, pp. 451–465. Springer (2012), https://doi.org/10.
1007/978-3-642-28756-5_31

7. Bouajjani, A., Emmi, M., Enea, C., Ozkan, B.K., Tasiran, S.: Verifying robustness
of event-driven asynchronous programs against concurrency. In: Yang, H. (ed.)
Programming Languages and Systems - 26th European Symposium on Programming,
ESOP 2017, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings.
Lecture Notes in Computer Science, vol. 10201, pp. 170–200. Springer (2017),
https://doi.org/10.1007/978-3-662-54434-1_7

8. Bouajjani, A., Emmi, M., Parlato, G.: On sequentializing concurrent programs.
In: Yahav, E. (ed.) Static Analysis - 18th International Symposium, SAS 2011,
Venice, Italy, September 14-16, 2011. Proceedings. Lecture Notes in Computer
Science, vol. 6887, pp. 129–145. Springer (2011), https://doi.org/10.1007/

978-3-642-23702-7_13

9. Bouajjani, A., Enea, C., Ji, K., Qadeer, S.: On the completeness of verifying message
passing programs under bounded asynchrony. arXiv:1804.06612 [cs.PL]

10. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983), http://doi.acm.org/10.1145/322374.322380

11. Cécé, G., Finkel, A.: Verification of programs with half-duplex communication. Inf.
Comput. 202(2), 166–190 (2005), https://doi.org/10.1016/j.ic.2005.05.006

12. Deniélou, P., Yoshida, N.: Multiparty session types meet communicating automata.
In: Seidl, H. (ed.) Programming Languages and Systems - 21st European Symposium
on Programming, ESOP 2012, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April
1, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7211, pp. 194–213.
Springer (2012), https://doi.org/10.1007/978-3-642-28869-2_10

http://doi.acm.org/10.1145/2535838.2535845
http://doi.acm.org/10.1145/2535838.2535845
https://doi.org/10.1006/inco.1996.0053
http://doi.acm.org/10.1145/3133934
http://doi.acm.org/10.1145/3133934
https://doi.org/10.1016/j.tcs.2016.09.023
https://doi.org/10.1016/j.tcs.2016.09.023
http://eprints.uni-kiel.de/23752/
http://eprints.uni-kiel.de/23752/
https://doi.org/10.1007/978-3-642-28756-5_31
https://doi.org/10.1007/978-3-642-28756-5_31
https://doi.org/10.1007/978-3-662-54434-1_7
https://doi.org/10.1007/978-3-642-23702-7_13
https://doi.org/10.1007/978-3-642-23702-7_13
http://doi.acm.org/10.1145/322374.322380
https://doi.org/10.1016/j.ic.2005.05.006
https://doi.org/10.1007/978-3-642-28869-2_10

18

13. Desai, A., Garg, P., Madhusudan, P.: Natural proofs for asynchronous programs
using almost-synchronous reductions. In: Black, A.P., Millstein, T.D. (eds.) Pro-
ceedings of the 2014 ACM International Conference on Object Oriented Pro-
gramming Systems Languages & Applications, OOPSLA 2014, part of SPLASH
2014, Portland, OR, USA, October 20-24, 2014. pp. 709–725. ACM (2014),
http://doi.acm.org/10.1145/2660193.2660211

14. Desai, A., Gupta, V., Jackson, E.K., Qadeer, S., Rajamani, S.K., Zufferey, D.: P:
safe asynchronous event-driven programming. In: Boehm, H., Flanagan, C. (eds.)
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’13, Seattle, WA, USA, June 16-19, 2013. pp. 321–332. ACM (2013), http:
//doi.acm.org/10.1145/2462156.2462184

15. Emmi, M., Qadeer, S., Rakamaric, Z.: Delay-bounded scheduling. In: Ball, T.,
Sagiv, M. (eds.) Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, January
26-28, 2011. pp. 411–422. ACM (2011), http://doi.acm.org/10.1145/1926385.
1926432

16. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Palsberg, J., Abadi, M. (eds.) Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2005, Long
Beach, California, USA, January 12-14, 2005. pp. 110–121. ACM (2005), http:
//doi.acm.org/10.1145/1040305.1040315

17. Genest, B., Kuske, D., Muscholl, A.: On communicating automata with bounded
channels. Fundam. Inform. 80(1-3), 147–167 (2007), http://content.iospress.
com/articles/fundamenta-informaticae/fi80-1-3-09

18. Gupta, A., Malik, S. (eds.): Computer Aided Verification, 20th International Con-
ference, CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings, Lecture
Notes in Computer Science, vol. 5123. Springer (2008), https://doi.org/10.1007/
978-3-540-70545-1

19. Heußner, A., Leroux, J., Muscholl, A., Sutre, G.: Reachability analysis of commu-
nicating pushdown systems. Logical Methods in Computer Science 8(3) (2012),
https://doi.org/10.2168/LMCS-8(3:23)2012

20. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline for
structured communication-based programming. In: Hankin, C. (ed.) Programming
Languages and Systems - ESOP’98, 7th European Symposium on Programming,
Held as Part of the European Joint Conferences on the Theory and Practice of
Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings.
Lecture Notes in Computer Science, vol. 1381, pp. 122–138. Springer (1998), https:
//doi.org/10.1007/BFb0053567

21. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016), http://doi.acm.org/10.1145/2827695

22. Kidd, N., Jagannathan, S., Vitek, J.: One stack to run them all - reducing
concurrent analysis to sequential analysis under priority scheduling. In: van de
Pol, J., Weber, M. (eds.) Model Checking Software - 17th International SPIN
Workshop, Enschede, The Netherlands, September 27-29, 2010. Proceedings.
Lecture Notes in Computer Science, vol. 6349, pp. 245–261. Springer (2010),
https://doi.org/10.1007/978-3-642-16164-3_18

23. La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent
queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems, 14th International Conference,
TACAS 2008, Held as Part of the Joint European Conferences on Theory and

http://doi.acm.org/10.1145/2660193.2660211
http://doi.acm.org/10.1145/2462156.2462184
http://doi.acm.org/10.1145/2462156.2462184
http://doi.acm.org/10.1145/1926385.1926432
http://doi.acm.org/10.1145/1926385.1926432
http://doi.acm.org/10.1145/1040305.1040315
http://doi.acm.org/10.1145/1040305.1040315
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
https://doi.org/10.1007/978-3-540-70545-1
https://doi.org/10.1007/978-3-540-70545-1
https://doi.org/10.2168/LMCS-8(3:23)2012
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
http://doi.acm.org/10.1145/2827695
https://doi.org/10.1007/978-3-642-16164-3_18

19

Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.
Proceedings. Lecture Notes in Computer Science, vol. 4963, pp. 299–314. Springer
(2008), https://doi.org/10.1007/978-3-540-78800-3_21

24. La Torre, S., Madhusudan, P., Parlato, G.: Model-checking parameterized concurrent
programs using linear interfaces. In: Touili, T., Cook, B., Jackson, P.B. (eds.)
Computer Aided Verification, 22nd International Conference, CAV 2010, Edinburgh,
UK, July 15-19, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6174,
pp. 629–644. Springer (2010), https://doi.org/10.1007/978-3-642-14295-6_54

25. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to
sequential analysis. In: Gupta and Malik [18], pp. 37–51, https://doi.org/10.
1007/978-3-540-70545-1_7

26. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: Rajamani, S.K., Walker, D. (eds.) Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2015, Mumbai, India, January 15-17, 2015. pp. 221–232. ACM (2015),
http://doi.acm.org/10.1145/2676726.2676964

27. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM
26(4), 631–653 (1979)

28. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems, 11th International Conference, TACAS 2005, Held as
Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings. Lecture Notes in
Computer Science, vol. 3440, pp. 93–107. Springer (2005), https://doi.org/10.
1007/978-3-540-31980-1_7

29. Qadeer, S., Wu, D.: KISS: keep it simple and sequential. In: Pugh, W., Chambers,
C. (eds.) Proceedings of the ACM SIGPLAN 2004 Conference on Programming
Language Design and Implementation 2004, Washington, DC, USA, June 9-11,
2004. pp. 14–24. ACM (2004), http://doi.acm.org/10.1145/996841.996845

https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1007/978-3-642-14295-6_54
https://doi.org/10.1007/978-3-540-70545-1_7
https://doi.org/10.1007/978-3-540-70545-1_7
http://doi.acm.org/10.1145/2676726.2676964
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1007/978-3-540-31980-1_7
http://doi.acm.org/10.1145/996841.996845

	On the Completeness of Verifying Message Passing Programs under Bounded Asynchrony

