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Abstract

Fixed-length embeddings of words are very useful for a va-
riety of tasks in speech and language processing. Here we sys-
tematically explore two methods of computing fixed-length em-
beddings for variable-length sequences. We evaluate their sus-
ceptibility to phonetic and speaker-specific variability on En-
glish, a high resource language, and Xitsonga, a low resource
language, using two evaluation metrics: ABX word discrimina-
tion and ROC-AUC on same-different phoneme n-grams. We
show that a simple downsampling method supplemented with
length information can be competitive with the variable-length
input feature representation on both evaluations. Recurrent au-
toencoders trained without supervision can yield even better re-
sults at the expense of increased computational complexity.
Index Terms: unsupervised speech processing, audio word
embeddings, ABX discrimination, same-different classification,
representation learning.

1. Introduction

Techniques to efficiently embed words into a vector space [1, 2]
have led to spectacular successes in several Natural Language
Processing (NLP) tasks such as language modeling [3], trans-
lation [4], topic modeling [5] and anaphora resolution [6]. In
speech, similar techniques could be very useful, and are already
used for several applications such as query by example [7], spo-
ken term discovery [8] and unsupervised representation learning
[9, 10]. However, before applications inspired by NLP can be
deployed, a complication specific to speech has to be addressed.
In text, the embedding for two instances of the same word will
be the exact same vector. With audio input, due to phonetic
and speaker variability, they won’t be identical. Instead, we are
dealing with a distribution over vectors, potentially overlapping
with the distribution of another word. Therefore, a prerequisite
for developing useful vector representations for spoken words
is to minimize the impact of this variability.

Here, we propose to systematically explore the phonetic
variability of audio word embeddings using two widely differ-
ent approaches. The first one has been proposed by [11]. It re-
lies on the idea of downsampling the time sequence of acoustic
information using a fixed number of samples. This is a simple
idea, which requires no training, and is worth investigating, at
least as a baseline. The second idea is to use Recurrent Neural
Networks (RNN) as autoencoders, by training them to encode
a sequence of frames into a vector, and to decode it back to the
original sequence of frames. Contrary to downsampling, this
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technique requires training, but no labels are needed, making it
therefore applicable to a variety of speech signals.

We propose to evaluate the phonetic variability of word em-
beddings using two metrics, based on the computation of the
within-word and between-word distance of embeddings. The
first one, ABX, tests the average discriminability between pairs
of words. The second one, AUC, tests for the separation, across
the entire corpus, of the distribution of cosine or Euclidean dis-
tance for pairs of same phoneme n-grams versus the distribution
of that distance for pairs of different phoneme n-grams.

2. Related work

The framework of segmental speech recognition [12] involves
an explicit segmentation of speech utterances and a fixed-size
representation for each acoustic segment. [13] use mean pool-
ing and temporal derivatives over subparts of each segment,
duration and energy, while [14] warp segments into a fixed
length. Recent approaches represent segments with RNNs [15],
or Deep Neural Networks (DNN) together with subsampling,
pooling and duration information [16, 17]. Fixed-size embed-
dings are also used for speaker verification and extracted with
factor analysis [18] or DNNs [19]. DNNs have been used to de-
rive embeddings by training them with a supervised objective,
although not for speech recognition per se: [20, 21] alternate
convolutional and pooling layers, finishing with a fixed length
vector.

In [22], word embeddings are obtained unsupervisedly by
first memorizing a reference set of N words, and calculating
the Dynamic Time Warping [23] (DTW) distance of a new tar-
get word with each of these references. This set of distances
is then projected into a subspace by dimensionality reduction.
This method obtains good quality embeddings with a large ref-
erence set but suffers from a high computational cost. In [11],
this approach is replaced by a simpler procedure, where a fixed-
size embedding is extracted from a sequence of frames by pick-
ing 10 equally-spaced frames from the sequence. In this paper,
we will explore improvements of this technique.

More recently, sequence-to-sequence autoencoders [9, 10]
have been used on speech to learn fixed-length embeddings in
a purely unsupervised fashion. This has the advantage of pro-
viding embeddings in low-resource settings, for datasets where
a transcript is not available. This is the kind of architecture and
training setup we will use in this paper.

3. Proposed approach

Even though both downsampling and recurrent autoencoders
have been used in past work, they have never been directly



compared, nor have the hyperparameters of downsampling been
thoroughly explored. In addition, we compare these models
with a DTW baseline, which aligns raw features to compute
the distance between two sequences.

3.1. Downsampling

The downsampling techniques used in [11] extract a fixed num-
ber of equidistant samples from a time series. Here, we explore
variants of this idea.

Formally, let @1, x2,...,z7, With & € R* be a se-
quence of 40-dimensional log mel features. Equidistant
downsampling samples k£ vectors at interval % with pro-
portional interpolation as needed. Let &4, be the i-th
sample, where 1 <i<kand l=q¢1 < @< ..<q =T,
qj+1 — qj = % forj =1,2,....k — 1. Note |-] and [-] the
floor and ceiling functions, then we have :

g, =@ g - ([ai] — @) +x1g7 - (0 — Lai))

When g; is an integer, we take T4, as the sample; otherwise,
the sample is a weighted sum of its left and right neighbors. The
closer the neighbor, the more weight it contributes. The embed-
ding of &1, T2, ..., 7 is the concatenation of &4, , £q, ..., Lqy -

The acoustic information in a word is not necessarily dis-
tributed uniformly along the time axis; psycholiguistics suggest
that it is mostly located at the boundaries. Thus, we introduce
non-equidistant downsampling: we assume the space between
two samples follows a linear progression and is symmetric with
respect to the center, i.e Aj :=gj41 —q; = k(j — 1) + b and
qi+1 — 45 = qk—j5+1 — qk—j fij = 1,2, ceey [k)/2—| To illus-
trate the degree of non-equidistance, instead of setting k as
h ; o o = DMK/ ;

yperparameter, we introduce the ratio o = —3=. Using
g1 = land g, = T, k and b can be deduced from . « rep-
resents the ratio of the middle space against the first space. For
example if a > 1 then we take more samples at the two ends, if
a < 1 we take more samples in the middle, if « = 1, then we
come back to equidistant downsampling.

We further extend proportional interpolation to Gaussian
weighted interpolation, the idea being to avoid loosing infor-
mation. Formally, consider the sequence of log mel features
as a step function i.e. f(t) = x; for j — 0.5 <t <=j 4 0.5,
7 =1,2,..., T (this amounts to saying that log mel features are
represented at the center of the time stride). Then for ¢, sample
#q,, we introduce g; = N(q;, 07), a Gaussian density function
centered at ¢; with variance 0. We have the following formula
and illustrate it in figure 1:

T+0.5
O O O
qi Zl
where Z; is the normalization term, Z; = 0?; 05 gi(t)dt.

Combining the downsampling methods with Gaussian weight,
we have tested 5 variants with equidistant downsampling:

* (EPI) Proportional interpolation (baseline): no hyperpa-
rameters.

* (EAG) Absolute Gaussian weight: one hyperparameter
o, as described previously.

* (ERG) Relative Gaussian weight: one hyperparameter
B, setting o proportional to the sequence length, i.e.
o= pAT.

* (EALG) Absolute linear Gaussian weight: two hyperpa-
rameters k, o1. Instead of setting o for all samples, we

log mel
features

>

Cd
T-0.5 T+0.5 time (10ms)

Figure 1: lllustration of Gaussian weighted interpolation. Note
that our log mel features are generated with a 10 ms time stride.

set o for j;; sample to be a linear function and symmet-
ric with respect to the center, i.e. o; = k(j — 1) + o1
and 05 = op—j41 forj =1,2, ..., [k/2].

* (ERLG) Relative linear Gaussian weight: two hyper-
parameters k, 5. The only difference from the previ-
ous one is that we set the interception proportional to
the sequence length, ie. o; = k(j — 1) + BT and
0j = Ok—j+1 fOI‘j = 1,2, ceoy |—]€/2.|

and 5 non-equidistant downsampling methods:

* (NPI) Proportional interpolation: one hyperparameter c,
as described previously.

* (NAG) Absolute Gaussian weight: two hyperparameters
a, 0. o for non-equidistant downsampling, o for Gaus-
sian weight.

* (NRG) Relative Gaussian weight: two hyperparameters
a, B. o for non-equidistant downsampling, setting o
proportional to the sequence length, i.e. o = 5T

* (NALG) Absolute linear Gaussian weight:  two
hyperparameters «, 1. « for non-equidistant down-
sampling, setting linear Gaussian to the same slope

calculated by non-equidistant downsampling, i.e.

. Ary
Aji=gqir1—¢ =k({F—-1)+b, a= 7%21,

QG+1 =@ = Qe—j+1 — Qe—j» 05 =k(j —1) + o1,
0j = Ok—j+1 fOI‘j = 1, 2, ceny [k/2—|

* (NRLG) Relative linear Gaussian weight: two hyperpa-
rameters «, 8. The only difference from the previous
one is that we set the interception proportional to the se-
quence length, i.e. o; = k(j — 1) + 8T, 0 = ok—j+1
forj =1,2,...,[k/2]. Note that k is computed by non-
equidistant downsampling hyperparameter c.

Finally, preliminary results suggest that including length in-
formation can further improve the quality of the embeddings.
To this end, we compute the L2 norm (approximate the energy
for each frame) for each log mel feature vector, and cut off the
sequence to 150 frames if larger, pad with 0 if smaller than 150
frames. After scaling the L2 norms with a trade-off hyperpa-
rameter -y, we concatenate them to the downsampled embed-
ding. Our results suggest that with this L2 norm, we achieve an
average gain on ABX error of 6.09% and 1.01% for Xitsonga
and English respectively. Downsampling each sequence of log
mel features to 20 samples (each the output of 40-dimensional
log mel filter banks), then concatenating these samples along
with the L2 norm, leads to a final embedding size of 950.

3.2. Recurrent autoencoders

RNNs, in particular Long-Short Term Memory networks
(LSTM) [24], are the basis of state of the art solutions for nu-
merous speech processing tasks. LSTMs can learn fixed-size
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Figure 2: RNN-based autoencoders used to learn word embed-
dings. For simplicity, the positional embeddings are left out.

representations of variable-length sequences, in text [25, 26]
and speech processing [9, 10]. Our proposed model, shown in
figure 2, follows the encoder-decoder architecture used in [9],
frequently used in machine translation [27], and borrows some
ideas from segmental ASR.

Let o be the t-th 40-dimensional log mel feature vector,
concatenated with 3 context frames on either side, a total of 7
concatenated frames (thus «; € R?%%). The encoder, a multi-
layer bidirectional LSTM [28], reads a sequence 1, ..., T and
encodes it into a sequence of hidden states hi,...hr, where
he = [AP™m R and [a, b] is the concatenation of vec-
tors a and b. We extract 3 representations from the encoder.
The last hidden state of the forward LSTM ho™#d: the Jast
hidden state of the backward LSTM h5**¥*¢; an element-wise
maxpooling along the time axis of the sequence of hidden states,
v = maxpool, hs so that [v]; = max;[h¢];. These are con-
catenated and used as a representation of the full sequence:
c = [hlrad piekvard 4] The vector ¢ is fed to an LSTM
decoder at every time step ¢, along with a learned embedding
e: € R3% of the integer ¢. The decoder’s input at time step ¢
is thus [c, e¢], and its target output is @¢. We train the network

with Mean Squared Error (MSE) loss: Z |2s — @¢||*> where

& is the decoder’s output at time step t. The network is trained
on segments of no more than 150 frames.

The training data has a very large amount of samples (En-
glish: 1.7M, Xitsonga: 653K), making it impractical to evaluate
the neural networks on the timescale of epochs. Instead, we set
aside 10% of the training data as a validation set. During train-
ing, we randomly take 100 samples from the training data and
perform gradient descent using MSE loss and the Adam opti-
mizer [29] with standard settings on this batch. After 100 train-
ing batches (i.e. 10" training samples), we randomly take 1000
samples from the validation set and use them to measure vali-
dation MSE. We use the neural net with the lowest validation
MSE as our final model. The larger the model, the lower the
MSE, so we must use the ABX score to compare architectures.

3.3. Evaluation

Given the broad scope of applications for low-resource speech
technologies, and to develop methods fairly independent of their
final application, we chose to evaluate the quality of embed-
dings intrinsically. We evaluate the learned embeddings with

ABX discrimination tasks [30] across speakers. We sample
triplets of (sequence A, sequence B, sequence X) where each
sequence is a sequence of acoustic features; A and B were said
by speaker 1; X was said by speaker 2, and the label associated
with X (e.g. “cat”, or "ow-k”) is identical to that of either A
or B. In this paper, the label is either a word or an n-gram of
phonemes. Using the method we wish to evaluate, we compute
embeddings a, b and x from sequences A, B and X. Using dis-
tance metric d, we compute pairwise distances between a, b
and x. We report two different metrics for this task.

e In the first setting, denoted ABX, sequences A, B and
X are words. We look at the classification task of predicting
whether X shares its label yx with A or B. We predict

. [ ya ifd(a,z) <d(b,x)

yx = { yp otherwise

and report error on this classification task. Triplets are sam-
pled such that the performance of random guessing is 50%.

e In the second setting, denoted AUC, there is no X;
sequences A and B correspond to phoneme n-grams where
n = 2...12. We are still looking at a classification task, with

.| 7same” ifd(a,b) < 6

Y= ~different” otherwise

We look at the ROC curve obtained by measuring precision
and recall for various values of 6. The score reported is the
area under the ROC curve. Higher is better, and means less
sensitivity with respect to parameter 6 [31].

For DTW, embedding @ is actually X itself, and d is the
DTW cosine distance with or without length normalization. For
downsampling, d is the cosine distance, shown to work best
for log mel features. For neural networks, d is the Euclidean
distance, as the most natural distance metric over a vector space.

3.4. Datasets

We used the English and Xitsonga datasets provided by the Zero
Resource Speech Challenge 2015 [32] to design and evaluate
our models. The English corpus is a subset of the Buckeye
corpus [33] (denoted as “English” in the following), and the
Xitsonga corpus is the NCHLT Xitsonga Speech Corpus [34]
(denoted as ”Xitsonga” in the following). Speech is represented
as a sequence of 40-dimensional log mel feature vectors, com-
puted on a sliding window of 25 ms, offset by 10 ms. The filter
banks were mean and variance normalized per file (excluding
silences), to help remove background noise and reduce across-
speaker variability. Here are, in ms, average and standard devi-
ation for the duration of English words: 236.2 and 153.6; En-
glish 2-to-12-grams: 547.7 and 500.1; Xitsonga words: 450.8
and 290.4; Xitsonga 2-to-12-grams: 617.4 and 327.2.

4. Results and discussion

For each downsampling method, we have conducted several
grid searches. We kept the parameters achieving the best av-
erage ABX error on both corpora, since we would like parame-
ters which can generalize well enough across different corpora.
As shown in Table 1, although the best methods for English
and for Xitsonga are different, the Equidistant downsampling
with Absolute Linear Gaussian weight (EALG) method, which
achieves the best average ABX, performs close enough to the
best method on both corpora.

We investigated varying the depth and the number of hidden
units of the recurrent autoencoders. Note that the size of the
embedding is equal to twice the number of hidden units. Results
from table 1 show, across both languages, that the larger the size
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Figure 3: ABX error (top) and AUC score (bottom) for neural
networks (RNNAE), downsampling and DTW baselines. We re-
port our best model for each task.
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Figure 4: ABX error on words for English and Xitsonga cor-
pora, and MSE loss on the validation set, as a function of the
number of training steps, for a neural net trained on the English
(top) or Xitsonga corpus (bottom). Architecture of the encoder,
mirroring the decoder; is 1000-1000-1000-400.

of the embedding, the higher the ABX score and AUC. Depth
of the network does not correlate with better scores.

On the AUC task, on both corpora, we find that recurrent
autoencoder embeddings perform best, and downsampling out-
performs normalized DTW by a comfortable margin. For the
ABX task, normalized DTW and our methods perform some-
what on par on the Xitsonga corpus, while normalized DTW
still performs best on the English corpus.

We further explored the amount to which the neural nets
specialize to the language of the training data as training pro-
gresses. Figure 4 shows how the ABX score progresses on both
English and Xitsonga datasets, as the MSE loss decreases on
the validation set. Note that ABX error decreases even for mis-
matched tests sets (across a language change). This could be
due to the fact that Xitsonga and English share some of their
phonetic inventory, or that recurrent autoencoders are learning
generally useful speech features, not necessarily tailored to the
training language. Downsampling has a similar behavior, as it

Table 1: ABX error (%) and AUC score. "AE” means RNN
autoencoder, with the architecture of the encoder indicated as
the number of hidden units per layer. The decoder’s architecture
mirrors the encoder’s.

English  Xitsonga
model hyperparameters ABX AUC ABX AUC
DTW baseline, no length normalization 12.2 .621 13.0 .781
DTW  baseline, length normalized 9.2 .621 9.9 .781
AE 300-300-300-300 162 .849 12.1 .883
AE 400 - 400 - 400 - 400 12.3 924 12.0 .947
AE 600 - 600 - 600 - 600 12.8 934 13.0 978
AE 1000 - 1000 - 1000 - 1000 129 901 10.0 .981
AE 1000 - 1000 - 1000 10.3 935 9.8 974
AE 1000 - 1000 146 951 10.0 .981
AE 1000 - 1000 - 1000 - 400 104 955 99 .99
EPI downsampling baseline 13.1 .684 10.6 .945
EAG o0=16,7v=04 13.0 .665 10.4 .943
ERG [=0.03,y=04 13.0 .683 104 914
EALG k=0.2,01 =04,vy=04 12.8 .707 104 .961
ERLG k£ =0.07,8=0.03,y=04 13.0 .739 104 .960
NPI a=09,7v=04 13.2 .657 10.5 .967
NAG a=1.0,01=15,vy=04 13.0 .665 10.4 .958
NRG a=1.1,4=0.02,y=04 13.1 .669 103 912
NALG a=0.8,01 =14,y=04 13.2 709 104 .966
NRLG a=1.1,5=0.02,7v=04 13.0 .696 10.4 .963

works consistently well across languages.

5. Conclusion

In this paper, we propose two parametric methods to ex-
tract fixed-size embeddings from variable-length sequences of
acoustic frames. The geometry of these embeddings captures
linguistic properties, sometimes better than the geometry of the
original acoustic space, as measured by DTW. We have thor-
oughly explored different strategies of downsampling, a method
with few parameters, fast to compute and robust across lan-
guages. RNNs, trained with an unsupervised objective, and
without any gold word-level segmentation of the input, man-
age to capture acoustic regularities, and further improve over
downsampling. Using larger embeddings allows these models
to fit the acoustic regularities even better, with higher ABX and
AUC scores for larger networks. However, these embeddings
come at a higher computational cost than downsampling.

Interestingly, one can find, for each method, hyperparam-
eters which give very good results for two very different lan-
guages. The RNN autoencoders even show some ability to gen-
eralize across languages after training. This suggests a possibil-
ity to precompile language-general spoken word embedders. In
future work, it would be interesting to further improve the RNN
autoencoders by training them as denoising autoencoders, using
data augmentation such as adding reverberation, and encourag-
ing the autoencoder to ignore speaker information, e.g. with a
well-designed loss function.
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