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Abstract

Spectacular progress in the information processing sci-
ences (machine learning, wearable sensors) promises to revo-
lutionize the study of cognitive development. Here, we anal-
yse the conditions under which ’reverse engineering’ lan-
guage development, i.e., building an effective system that
mimics infant’s achievements, can contribute to our scien-
tific understanding of early language development. We argue
that, on the computational side, it is important to move from
toy problems to the full complexity of the learning situation,
and take as input as faithful reconstructions of the sensory
signals available to infants as possible. On the data side,
accessible but privacy-preserving repositories of home data
have to be setup. On the psycholinguistic side, specific tests
have to be constructed to benchmark humans and machines
at different linguistic levels. We discuss the feasibility of this
approach and present an overview of current results.

Keywords

Artificial intelligence, speech, psycholinguistics, compu-
tational modeling, corpus analysis, early language acquisi-
tion, infant development, language bootstrapping, machine
learning.

Highlights

• Key theoretical puzzles of infant language develop-
ment are still unsolved.

• A roadmap for reverse engineering infant language
learning using AI is proposed.

• AI algorithms should use realistic input (little or no
supervision, raw data).

• Realistic input should be obtained by large scale
recording in ecological environments.

* Author’s reprint of Dupoux, E. (2018). Cognitive sci-
ence in the era of artificial intelligence: A roadmap for reverse-
engineering the infant language learner. Cognition, 173, 43-59, doi:
10.1016/j.cognition.2017.11.008.

• Machine/humans comparison should be run on a
benchmark of psycholinguistic tests.

1 Introduction

In recent years, artificial intelligence (AI) has been hit-
ting the headlines with impressive achievements at matching
or even beating humans in complex cognitive tasks (play-
ing go or video games: Mnih et al., 2015; Silver et al.,
2016; processing speech and natural language: Amodei et
al., 2016; Ferrucci, 2012; recognizing objects and faces: He,
Zhang, Ren, & Sun, 2015; Lu & Tang, 2014) and promising
a revolution in manufacturing processes and human society
at large. These successes show that with statistical learning
techniques, powerful computers and large amounts of data,
it is possible to mimic important components of human cog-
nition. Shockingly, some of these achievements have been
reached by throwing out some of the classical theories in lin-
guistics and psychology, and by training relatively unstruc-
tured neural network systems on large amounts of data. What
does it tell us about the underlying psychological and/or neu-
ral processes that are used by humans to solve these tasks?
Can AI provide us with scientific insights about human learn-
ing and processing?

Here, we argue that developmental psychology and in par-
ticular, the study of language acquisition is one area where,
indeed, AI and machine learning advances can be transfor-
mational, provided that the involved fields make significant
adjustments in their practices in order to adopt what we call
the reverse engineering approach. Specifically:

The reverse engineering approach to the study
of infant language acquisition consists in con-
structing scalable computational systems that
can, when fed with realistic input data, mimic
language acquisition as it is observed in infants.

The three italicised terms will be discussed at length in
subsequent sections of the paper. For now, only an intuitive
understanding of these terms will suffice. The idea of us-
ing machine learning or AI techniques as a means to study
child’s language learning is actually not new (to name a few:
Kelley, 1967; Anderson, 1975; Berwick, 1985; Rumelhart
& McClelland, 1987; Langley & Carbonell, 1987) although
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2 E. DUPOUX

relatively few studies have concentrated on the early phases
of language learning (see Brent, 1996b, for a pioneering col-
lection of essays). What is new, however, is that whereas
previous AI approaches were limited to proofs of principle
on toy or miniature languages, modern AI techniques have
scaled up so much that end-to-end language processing sys-
tems working with real inputs are now deployed commer-
cially. This paper examines whether and how such unprece-
dented change in scale could be put to use to address linger-
ing scientific questions in the field of language development.

The structure of the paper is as follows: In Section 2, we
present two deep scientific puzzles that large scale modeling
approaches could in principle address: solving the bootstrap-
ping problem, accounting for developmental trajectories. In
Section 3, we review past theoretical and modeling work,
showing that these puzzles have not, so far, received an ad-
equate answer. In Section 4, we argue that to answer them
with reverse engineering, three requirements have to be ad-
dressed: (1) modeling should be computationally scalable,
(2) it should be done on realistic data, (3) model performance
should be compared with that of humans. In Section 5, re-
cent progress in AI is reviewed in light of these three require-
ments. In Section 6, we assess the feasibility of the reverse
engineering approach and lay out the road map that has to be
followed to reach its objectives

, and we conclude in Section 7.

2 Two deep puzzles of early language development

Language development is a theoretically important sub-
field within the study of human cognitive development for
the following three reasons:

First, the linguistic system is uniquely complex: mastering
a language implies mastering a combinatorial sound system
(phonetics and phonology), an open ended morphologically
structured lexicon, and a compositional syntax and seman-
tics (e.g., Jackendoff, 1997). No other animal communica-
tion system uses such a complex multilayered organization
(Hauser, Chomsky, & Fitch, 2002). On this basis, it has
been claimed that humans have evolved (or acquired through
a mutation) an innately specified computational architecture
to process language (see Chomsky, 1965; Steedman, 2014).

Second, the overt manifestations of this system are ex-
tremely variable across languages and cultures. Language
can be expressed through the oral or manual modality. In
the oral modality, some languages use only 3 vowels, other
more than 20. Consonants inventories vary from 6 to more
than 100. Words can be mostly composed of a single sylla-
ble (as in Chinese) or long strings of stems and affixes (as
in Turkish). Semantic roles can be identified through fixed
positions within constituents, or be identified through func-
tional morphemes, etc. (see Song, 2010, for a typology of
language variation). Evidently, infants acquire the relevant
variant through learning, not genetic transmission.

Third, the human language capacity can be viewed as a
finite computational system with the ability to generate a
(virtual) infinity of utterances. This turns into a learnabil-
ity problem for infants: on the basis of finite evidence, they
have to induce the (virtual) infinity corresponding to their
language. As has been discussed since Aristotle, such induc-
tion problems do not have a generally valid solution. There-
fore, language is simultaneously a human-specific biological
trait, a highly variable cultural production, and an apparently
intractable learning problem.

Despite these complexities, most infants spontaneously
learn their native(s) language(s) in a matter of a few years of
immersion in a linguistic environment. The more we know
about this simple fact, the more puzzling it appears. Specifi-
cally, we outline two deep scientific puzzles that a reverse en-
gineering approach could, in principle help to solve: solving
the bootstrapping problem and accounting for developmental
trajectories. The first puzzle relates to the ultimate outcome
of language learning: the so-called stable state, defined here
as the stabilized language competence in the adult. The sec-
ond puzzle relates to what we know of the intermediate steps
in the acquisition process, and their variations as a function
of language input.1

2.1 Solving the bootstrapping problem

The stable state is the operational knowledge which en-
ables adults to process a virtual infinity of utterances in their
native language. The most articulated description of this
stable state has been offered by theoretical linguistics; it is
viewed as a grammar comprising several components: pho-
netics, phonology, morphology, syntax, semantics, pragmat-
ics.

The bootstrapping problem arises from the fact these dif-
ferent components appear interdependent from a learning
point of view. For instance, the phoneme inventory of a lan-
guage is defined through pairs of words that differ minimally
in sounds (e.g., "light" vs "right"). This would suggest that to
learn phonemes, infants need to first learn words. However,
from a processing viewpoint, words are recognized through
their phonological constituents (e.g., Cutler, 2012), suggest-
ing that infants should learn phonemes before words. Sim-
ilar paradoxical co-dependency issues have been noted be-
tween other linguistic levels (for instance, syntax and seman-
tics: Pinker, 1987, prosody and syntax: Morgan & Demuth,
1996). In other words, in order to learn any one component
of the language competence, many others need to be learned
first, creating apparent circularities.

1The two puzzles are not independent as they are two facets of
the same phenomenon. In practice, proposals for solving the boot-
strapping problem may offer insights about the observed trajecto-
ries. Vice-versa, data on developmental trajectories may provide
more manageable subgoals for the difficult task of solving the boot-
strapping problem.
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The bootstrapping problem is further compounded by the
fact that infants do not have to be taught formal linguistics
or language courses to learn their native language(s). As in
other cases of animal communication, infants spontaneously
acquire the language(s) of their community by merely be-
ing immersed in that community (Pinker, 1994). Experimen-
tal and observational studies have revealed that infants start
acquiring elements of their language (phonetics, phonol-
ogy, lexicon, syntax and semantics) even before they can
talk (Jusczyk, 1997; Hollich et al., 2000; Werker & Curtin,
2005), and therefore before parents can give them much feed-
back about their progress into language learning. This sug-
gests that language learning (at least the initial bootstrapping
steps) occurs largely without supervisory feedback.2

The reverse engineering approach has the potential of
solving this puzzle by providing a computational system that
can demonstrably bootstrap into language when fed with
similar, supervisory poor, inputs3.

2.2 Accounting for developmental trajectories

In the last forty years, a large body of empirical work has
been collected regarding infant’s language achievements dur-
ing their first years of life. This work has only added more
puzzlement.

First, given the multi-layered structure of language, one
could expect a stage-like developmental tableau where ac-
quisition would proceed as a discrete succession of learning
phases organized logically or hierarchically (e.g., building
linguistic structure from the low level to the high levels).
This is not what is observed (see Figure 1). For instance,
infants start differentiating native from foreign consonants
and vowels at 6 months, but continue to fine tune their pho-
netic categories well after the first year of life (e.g., Sun-
dara, Polka, & Genesee, 2006). However, they start learning
about the sequential structure of phonemes (phonotactics, see
Jusczyk, Friederici, Wessels, Svenkerud, & Jusczyk, 1993)
way before they are done acquiring the phoneme inventory
(Werker & Tees, 1984). Even before that, they start acquiring
the meaning of a small set of common words (e.g. Bergelson
& Swingley, 2012). In other words, instead of a stage-like
developmental tableau, the evidence shows that acquisition
takes places at all levels more or less simultaneously, in a
gradual and largely overlapping fashion.

Second, observational studies have revealed considerable
variations in the amount of language input to infants across
cultures (Shneidman & Goldin-Meadow, 2012) and across
socio-economic strata (Hart & Risley, 1995), some of which
can exceed an order of magnitude (Weisleder & Fernald,
2013, p. 2146; Cristia, Dupoux, Gurven, & Stieglitz, 2017;
see also Supplementary Section S1). These variations do im-
pact language achievement as measured by vocabulary size
and syntactic complexity (Hoff, 2003; Huttenlocher, Water-
fall, Vasilyeva, Vevea, & Hedges, 2010; Pan, Rowe, Singer,

& Snow, 2005; Rowe & Goldin-Meadow, 2009, among oth-
ers), but at least for some markers of language achievement,
the differences in outcome are much less extreme than the
variations in input. For canonical babbling, for instance, an
order of magnitude would mean that some children start to
babble at 6 months, and others at 5 years! The observed
range is between 6 and 10 months, less than a 1 to 2 ratio.
Similarly, reduced range of variations are found for the onset
of word production and the onset of word combinations. This
suggests a surprising level of resilience in language learning,
i.e., some minimal amount of input is sufficient to trigger
certain landmarks.

The reverse engineering approach has the potential of
accounting for this otherwise perplexing developmental
tableau, and provide quantitative predictions both across lin-
guistic levels (gradual overlapping pattern), and cultural or
individual variations in input (resilience).

3 Standard approaches to language development

It is impossible in limited space to do justice to the rich
and diverse sets of viewpoints that have been proposed to
account for language development. Instead, the next sec-
tions will present a non exhaustive selection of four research
strands which draw their source of inspiration from a mix-
ture of psycholinguistics, formal linguistics and computer
science, and which share some of the explanatory goals of
the reverse engineering approach. The argument will be that
even though these strands provide important insights into the
acquisition process, they still fall short of accounting for the
two puzzles presented in Section 2.

3.1 Psycholinguistics: Conceptual frameworks

Within developmental psycholinguistics, conceptual
frameworks have been proposed to account for key aspects
of the bootstrapping problem and developmental trajectories
(see Table 1 for a non exhaustive sample).

Specifically adressing the bootstrapping problem, some
frameworks build on systematic correlations between lin-
guistic levels, e.g., between syntactic and semantic cat-
egories (syntactic bootstrapping: L. Gleitman, 1990; se-
mantic bootstrapping: Grimshaw, 1981; Pinker, 1984), or
between prosodic boundaries and syntactic ones (prosodic
bootstrapping: Morgan & Demuth, 1996; Christophe, Mil-
lotte, Bernal, & Lidz, 2008. Others endorse Chomsky’s

2Even in later acquisitions, the nature, universality and effective-
ness of corrective feedback of children’s outputs has been debated
(see Brown, 1973; Pinker, 1989; Marcus, 1993; Chouinard & Clark,
2003; Saxton, 1997; Clark & Lappin, 2011).

3A sucessful system may not necessarily have the same archi-
tecture of components as described by theoretical linguists. It just
needs to behave as humans do, i.e., pass the same behavioral tests.
More on this in section 4.3.
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Figure 1. Sample studies illustrating the time line of infant’s language development. The left edge of each box is aligned to the
earliest age at which the result has been documented. 1 Tincoff & Jusczyk, (1999); Bergelson & Swingley, (2012); 2 Mandel
et al. (1995); 3 Jusczyk & Aslin (1995) 4 Mehler et al. (1988) 5 Jusczyk et al. (1999) 6 Hirsh-Pasek et al. (1987) 7 Jusczyk et
al (1992) 8 Kuhl et al. (1992) 9 Eilers et al. (1979) 10 Jusczyk et al. (1993) 11 Werker & Tees (1984) 12 Mazuka et al. (2011)
13 Stark (1980).

(1965) hypothesis that infants are equipped with an innate
Language Acquisition Device which constrains the hypothe-
sis space of the learner, enabling acquisition in the presence
of scarse or ambiguous input (Crain, 1991; Lidz & Gagliardi,
2015).

Other conceptual frameworks focus on key aspects of de-
velopmental trajectories (patterns across ages, across lan-
guages, across individuals), offering overarching architec-
tures or scenarios that integrate many empirical results.
Among others, the competition model: Bates & MacWhin-
ney, 1987; MacWhinney, 1987 ; WRAPSA: Jusczyk, 1997;
the emergentist coalition model: Hollich et al., 2000;
PRIMIR: Werker & Curtin, 2005; usage-based theory:
Tomasello, 2003. Each of these frameworks propose a col-
lection of mechanisms linked to the linguistic input and/or
the social environment of the infant to account for develop-
mental trajectories.

While these conceptual framework are very useful in sum-
marizing and organizing a vast amount of empirical results,
and offer penetrating insights, they are not specific enough
to address our two scientific puzzles. They tend to refer to
mechanisms using verbal descriptions (statistical learning,
rule learning, abstraction, grammaticalization, analogy) or
boxes and arrows diagrams. This type of presentation may
be intuitive, but also vague. The same description may cor-
respond to many different computational mechanisms which
would yield different predictions. These frameworks are
therefore difficult to distinguish from one another empiri-

cally, or for the most descriptive ones, impossible to dis-
prove. In addition, because they are not formal, one cannot
demonstrate that these models can effectively solve the lan-
guage bootstrapping problem. Nor do they provide quantita-
tive predictions about the observed resilience in developmen-
tal trajectories or their variations as a function of language
input at the individual, linguistic or cultural level.

3.2 Psycholinguistics: Artificial language learning

Psycholinguists sometimes supplement conceptual frame-
works with propositions for specific learning mechanisms
which are tested using an artificial language paradigm. As
an example, a mechanism based on the tracking of statis-
tical modes in phonetic space has been proposed to under-
pin phonetic category learning in infancy. It was tested in
infants through the presentation of a simplified language (a
continuum of syllables between /da/ and /ta/) where the sta-
tistical distribution of acoustic tokens was controlled (Maye,
Werker, & Gerken, 2002). It was also modeled computation-
ally using unsupervised clustering algorithms and tested us-
ing simplified corpora or synthetic data (Vallabha, McClel-
land, Pons, Werker, & Amano, 2007; McMurray, Aslin, &
Toscano, 2009). A similar double-pronged approach (exper-
imental and modeling evidence) has been conducted for other
mechanisms: word segmentation based on transition proba-
bility (Saffran, Aslin, & Newport, 1996; Daland & Pierre-
humbert, 2011), word meaning learning based on cross sit-
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Table 1
Non-exhaustive sample of conceptual frameworks accounting for aspects of early language acquisition. (BP: Bootstrapping
Problem; DT: Developmental Trajectories)

Conceptual framework Reference Puzzle addressed (age range) Proposed mechanism
Semantic Bootstrapping Pinker, 1984 BP: syntax (production, 18 mo-4

y)
inductive biases based on syn-
tax/semantic correlations

Syntactic Bootstrapping L. Gleitman, 1990 BP: verb semantics (perception,
18 mo-4 y)

inductive biases on syntax/semantic
correlations

Prosodic Bootstrapping Morgan & Demuth, 1996 BP: word segmentation, part of
speech, syntax (perception, 9-18
mo)

inductive biases on
prosodic/lexicon/syntax correlations

Knowledge-driven LAD Lidz & Gagliardi, 2015 BP: syntax (perception & produc-
tion, 18 mo -8 y)

perceptual intake; Universal Gram-
mar; inference engine

WRAPSA Jusczyk, 1997 DT: phonetic categories, word
segmentation (perception, 0-12
mo)

auditory processing; syllable seg-
mentation; attentional weighting;
pattern extraction; exemplar theory

PRIMIR Werker & Curtin, 2005 DT: phonetic, speaker, phonolog-
ical and semantic categories (per-
ception, 0-2 y)

examplar theory, statistical cluster-
ing, associative learning, attentional
dynamic filters

Competition Model Bates & MacWhinney,
1987; MacWhinney, 1987

DT: syntax (production, 18 mo -
4 y)

competitive learning (avoidance of
synonymy)

Usage-Based Theory Tomasello, 2003 DT: semantics, syntax (percep-
tion & production, 9 mo - 6 y)

construction grammar; intention
reading; analogy; competitive learn-
ing; distributional analysis

uational statistics (Yu & Smith, 2007; K. Smith, Smith, &
Blythe, 2011; Siskind, 1996), semantic role learning based
on syntactic cues (Connor, Fisher, & Roth, 2013), etc.

Although studies with artificial languages are useful to
discover candidate learning algorithms which could be in-
corporated in a global architecture, the algorithms proposed
have only been tested on toy or artificial languages; there is
therefore no guarantee that they would actually work when
faced with realistic corpora that are both very large and very
noisy (see 4.1).

3.3 Formal linguistics: learnability studies

Even though much of current theoretical linguistics is de-
voted to the study of the language competence in the stable
state, very interesting work has also been conducted in the
area of formal models of grammar induction. These mod-
els propose algorithms that are provably powerful enough to
learn a fragment of grammar given certain assumptions about
the input. For instance, Tesar and Smolensky (1998) pro-
posed an algorithm that provided pairs of surface and under-
lying word forms can learn the phonological grammar (see
also Magri, 2015). Similar learnability assumptions and re-
sults have been obtained for stress systems (Dresher & Kaye,
1990; Tesar & Smolensky, 2000). For learnability results of
syntax, see Clark and Lappin (2011).

These models establish important learnability results, and
in particular, demonstrate that under certain hypotheses, a
particular class of grammar is learnable. What they do not
demonstrate however is that these hypotheses are met for

infants. In particular, most grammar induction studies as-
sume that infants have an error-free, adult-like symbolic rep-
resentation of linguistic entities (e.g., phonemes, phonologi-
cal features, grammatical categories, etc). Yet, perception is
certainly not error-free, and it is not clear that infants have
adult-like symbols, and if they do, how they acquired them.

In other words, even though these models are more ad-
vanced than psycholinguistic models in formally addressing
the effectiveness of the proposed learning algorithms, it is not
clear that they are solving the same bootstrapping problem
than the one faced by infants. In addition, they typically lack
a connection with empirical data on developmental trajecto-
ries.4

3.4 Developmental artificial intelligence

The idea of using computational models to shed light on
language acquisition is as old as the field of cognitive science
itself, and a complete review would be beyond the scope
of this paper. We mention some of the landmarks in this
field which we refer to as developmental AI, separating three
learning subproblems: syntax, lexicon, and speech.

Computational models of syntax learning in infants can
be roughly classified into two strands, one that learns from

4A particular difficulty of formal models which lack a process-
ing component is to account for the observed discrepancies between
the developmental trajectories in perception (e.g. early phonotactic
learning in 8-month-olds) and production (slow phonotactic learn-
ing in one to 3-year-olds).
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strings of words alone, and one that additionally uses a con-
ceptual representation of the utterance meaning. The first
strand is illustrated by Kelley (1967). It views grammar in-
duction as a problem of representing the input corpus with
a grammar in the most compact fashion, using both a pri-
ori constraints on the shape and complexity of the grammars
and a measure of fitness of the grammar to the data (see de
Marcken, 1996 for a probabilistic view). The first systems
used artificial input (generated by a context free grammar)
and part-of-speech tags (nouns, verbs, etc.) were provided
as side-information. Since then, manual tagging has been
replaced by automatic tagging using a variety of approaches
(see Christodoulopoulos, Goldwater, & Steedman, 2010 for a
review), and artificial datasets have been replaced by natural-
istic ones (see D’Ulizia, Ferri, & Grifoni, 2011, for a review).
The second strand can be traced back to Siklossy (1968), and
makes the radically different hypothesis that language learn-
ing is essentially a translation problem: children are provided
with a parallel corpus of speech in an unknown language,
and a conceptual representation of the corresponding mean-
ing. The Language Acquisition System (LAS) of Anderson
(1975) is a good illustration of this approach. It learns
context-free parsers when provided with pairs of representa-
tions of meaning (viewed as logical form trees) and sentences
(viewed as a string of words, whose meaning are known).
Since then, algorithms have been proposed to learn directly
the meaning of words (e.g., cross-situational learning, see
Siskind, 1996), context-free grammars have been replaced by
more powerful ones (e.g. probabilistic Combinatorial Cate-
gorical Grammar), and sentence meaning has been replaced
by sets of candidate meanings with noise (although still gen-
erated from linguistic annotations) (e.g., Kwiatkowski, Gold-
water, Zettlemoyer, & Steedman, 2012). Note that both types
of models take textual input, and therefore make the (incor-
rect) assumption that infants are able to represent their input
in terms of an error-free segmented string of words.

Computational models of word discovery tackle the prob-
lem of segmenting a continuous stream of phonemes into
word-like units. One idea is to use distributional proper-
ties that distinguish within word and between word phoneme
sequences (Harris, 1954; Elman, 1990; Christiansen, Con-
way, & Curtin, 2005). A second idea is to simultaneously
build a lexicon and segment sentences into words (Olivier,
1968; de Marcken, 1996; Goldwater, 2007). These ideas are
now frequently combined (Brent, 1996a; M. Johnson, 2008).
In addition, segmentation models have been augmented by
jointly learning the lexicon and morphological decomposi-
tion (M. Johnson, 2008; Botha & Blunsom, 2013), or tack-
ling phonological variation through the use of a noisy chan-
nel model (Elsner, Goldwater, & Eisenstein, 2012). Note
that all of these studies assume that speech is represented
as an error-free string of adult-like phonemes, an assumption
which cannot apply to early language learners.

Finally, a few computational model have started to ad-
dress language learning from raw speech. These have either
concerned the discovery of phoneme-sized units, the discov-
ery of words, or both. Several ideas have been proposed to
discover phonemes from the speech signal (self organizing
maps: Kohonen, 1988; clustering: Pons, Anguera, & Binefa,
2013; auto-encoders: Badino, Canevari, Fadiga, & Metta,
2014; HMMs: Siu, Gish, Chan, Belfield, & Lowe, 2013;
etc.). Regarding words, D. K. Roy and Pentland (2002) pro-
posed a model that learn both to segment continuous speech
into words and map them to visual categories (through cross
situational learning). This was one of the first models to work
from a real speech corpus (parents interacting with their in-
fants in a semi-directed fashion), although the model used the
output of a supervised phoneme recognizer. The ACORNS
project (Boves, Ten Bosch, & Moore, 2007) used raw speech
as input to discover candidate words (Ten Bosch & Cranen,
2007, see also Park & Glass, 2008; Muscariello, Gravier, &
Bimbot, 2009, etc.), or to learn word-meaning associations
(see a review in Räsänen, 2012, and a comprehensive model
in Räsänen & Rasilo, 2015), although the speech was col-
lected in the laboratory, not in real life situations.

In sum, developmental AI represents the clearest attempt
so far of addressing the full bootstrapping problem. Yet, al-
though one can see a clear progression, from simple models
and toy examples, towards more integrative algorithms and
more realistic datasets, there is still a large gap between mod-
els that learn from speech, which are limited to the discovery
or phonemes and word forms, and models that learn syntax
and semantics, which only work from textual input. Until
this gap is closed, it is not clear how the bootstrapping prob-
lem as faced by infants can be solved. The research itself is
unfortunately scattered in disjoint segments of the literature,
with little sharing in algorithms, evaluation methods and cor-
pora, making it difficult to compare the merits of the differ-
ent ideas and register progress. Finally, even though most of
these studies mention infants as a source of inspiration of the
models, they seldom attempt to account for developmental
trajectories.

3.5 Summing up

Psycholinguistic conceptual frameworks capture impor-
tant insights about language development but are not spec-
ified enough to demonstrably solve the bootstrapping prob-
lem nor can they make quantitative predictions. Artificial
language experiments yield interesting learning mechanisms
aimed at explaining experimental data but not necessarily to
scale up to larger or more noisy data. These limitations call
for the need to develop effective computational models that
work at scale. Both linguistic models and developmental AI
attempt to effectively address the bootstrapping problem, but
make unrealistic assumptions with respect to the input data
(linguistic models take only symbolic input data, and most
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Table 2
Summary of different theoretical approaches to the study of early language acquisition.

Effective Realistic Human/Model
Model Data Comparison

Conceptual Frameworks No (verbal) Yes No (verbal)
Artficial Language Learning Yes (but not scalable) No Yes
Formal Linguistics Existence proof Idealized In the limit
Developmental AI Yes Simplified Qualitative /

In the limit
Reverse Engineering Yes Yes Yes

developmental AI models take either symbolic data or sim-
plified inputs). As a result, these models may address a dif-
ferent bootstrapping problem than the one faced by infants.
This would call for the need to use realistic data as input for
models. Both linguistic models and developmental AI mod-
els take as their gold standard description of the stable state in
adults. This may be fine when the objective is to explain ul-
timate attainment (the bootstrapping problem), but does not
enable to connect with learning trajectory data. This would
call for a direct human-machine comparison, at all ages.

Obiously, the four reviewed research traditions have lim-
its but also address part of the language development puzzles
(Table 2). Before examining how the reverse engineering
approach could combine the best of these traditions, we ex-
amine next with more scrutiny the requirements they have to
meet in order to fully address these puzzles.

4 The three requirements of the reverse engineering
approach

Here, we argue that to be of scientific import, models of
development should (1) go beyond conceptual and box-and-
arrow frameworks and be turned into effective, scalable com-
putational systems, (2) go beyond toy data and be fed with
realistic input, and (3) be evaluated through human/machine
comparisons.

4.1 Why scalable computational models?

Scalable computational systems can provide a proof of
principle that the bootstrappping problem can be solved, and
generate quantitative predictions. But there is an even more
compelling reason to strive for them: verbal resoning and toy
models tend to badly misjudge how a combination of con-
tradictory tendencies will play out in practice, resulting in
sometimes spectacularly incorrect predictions. We illustrate
this with three examples.

’Easy’ problems proving difficult.
How do infant learn phonemes? A popular hypothesis

(’distributional learning’) states that they track the statisti-
cal modes of speech sounds to construct phonetic categories
(Maye et al., 2002). How do we turn such a verbal descrip-
tion into a scalable algorithm?

Vallabha et al. (2007) and McMurray et al. (2009), among
others, have proposed that it can be done with unsupervised
clustering algorithms. As it turns out, these algorithms were
only validated only on toy data (points in formant space gen-
erated from a Gaussian distribution) or on manually obtained
measurments. This is a problem because many if not most
clustering algorithms are sensitive to data size, variability
and dimensionality (Fahad et al., 2014). When tested on
continuous audio representations which are large, variable
and of high dimension, very different result ensue. For in-
stance, Varadarajan, Khudanpur, and Dupoux (2008) have
shown that a clustering algorithm based on Hidden Markov
Models and Gaussian mixtures does not converge on pho-
netic segments, but rather, on much shorter (30 ms), highly
context-sensitive acoustic clusters (see also Antetomaso et
al., 2017). This is not surprising given that phonemes are not
realized as discrete acoustic events but as complicated over-
lapping gestures. For instance, a stop consonant surfaces as
a burst, a closure, and formant transitions into the next seg-
ment.

This shows that contrary to the distributional learning hy-
pothesis, finding phonetic units is not only a problem of clus-
tering, it is also includes continuous speech segmentation and
contextual modeling. These problems are not independent
and have therefore to be addressed jointly by the learning
algorithms. Despite the optimistic conclusions of Vallabha
et al. (2007) and McMurray et al. (2009), the unsupervised
discovery of phonetic categories is still an unsolved prob-
lem in speech technology (see Versteegh, Anguera, Jansen,
& Dupoux, 2016; Dunbar et al., 2017).

’Impossible’ approaches turning out feasible. The
second example relates to the popular hypothesis that acquir-
ing the meaning of words is essentially a problem of associ-
ating word form to referents in the outside world (or to con-
ceptual representations of these referents; see Bloom, 2000
for possible learning mechanisms).

Under such a view, it would seem impossible to learn any
word meaning from language input only. However, research
in natural language processing has shown that it is in fact
possible to derive an approximate representation of the word
meanings using only coocurrence patterns within the verbal
material itself. These distributional techniques (Landauer &
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Dumais, 1997; Mikolov, Chen, Corrado, & Dean, 2013) con-
struct vector representation of word meanings which corre-
late surprisingly well with human semantic similarity judg-
ments (Turney & Pantel, 2010; Baroni, Dinu, & Kruszewski,
2014)5. Fourtassi and Dupoux (2014) found that it is pos-
sible to derive such vectors even without any properly seg-
mented lexicon, and even without adult-like phonetic cate-
gories. It turns out that the approximate meaning representa-
tion so derived can provide top-down feedback helping clus-
tering phonetic information into phonemes. Thus, computa-
tional systems can suggest a priori implausible, but poten-
tially effective, mechanisms. The empirical validity of such
mechanisms in infants remains to be tested.

Statistically significant effects ending up unimportant.
A third example relates to the so-called ’hyperspeech hypoth-
esis’. It has been proposed that parents adapt their pattern of
speech to infants in order to facilitate perception (Fernald,
2000). P. K. Kuhl et al. (1997) observed that parents tend
to increase the separation between point vowels in child di-
rected speech, possibly making them easier to learn. Yet,
Ludusan, Seidl, Dupoux, and Cristia (2015) ran a word dis-
covery algorithm borrowed from developmental AI on raw
speech and failed to find any difference in word learning be-
tween child and adult directed speech; if anything, the for-
mer was slightly more difficult. This paradoxical result can
be explained by the fact that in child directed speech, par-
ents increase phonetic variability even more than they in-
crease the separation between point vowels, the two effects
not only cancel each other out, but even result in a small net
degradation in category discriminability (Martin et al., 2015;
see also McMurray, Kovack-Lesh, Goodwin, & McEchron,
2013; Guevara-Rukoz et al., 2017). The lesson is that it is
only through a completely explicit model that the quantita-
tive effect of linguistic and phonetic variables on learning
can be assessed.

4.2 Why using realistic data?

We turn here to the most controversial of the three require-
ments: the idea that one should address language learning in
its full complexity by running computational models on in-
puts that are as close as infants’ sensory signals as possible.

This may seem an exageration. Simplification is the
hallmark of the scientific method, which usually proceeds
by breaking down complicated problems into smaller, more
manageable ones. Here, we claim that an exception has to be
made for language learnability. Why? In a nutshell: learning
is a process whose outcome is exquisitely sensitive to details
of the input signal. If one makes even slightly incorrect as-
sumptions about the input of the learning process, one ends
up studying a different learning problem altogether. We illus-
trate this with three cases where simplifications is a learnabil-
ity game changer. We conclude that since the learnability-
relevant properties of infant’s input are currently unknown,

the only possibility left is to go with the real thing.
Data selection matters. The entire set of sensory stim-

ulations available to the child is called the input. The sub-
set of this input which is used to learn about the target lan-
guage(s) is called the intake. The difference between input
and intake defines a data selection problem which, we claim,
is an important part of the learning problem itself. Unfortu-
nately, many computational models of language acquisition
short-circuit the selection problem and use human experts to
prepare pre-selected and pre-cleaned data. We illustrate this
with three data selection problems.

The first problem relates to defining what counts as
linguistic versus non-linguistic information. There is no
language-universal answer to this question. For instance,
gestures are typically para- or extra-linguistic in commu-
nities using oral communication (Fowler & Dekle, 1991;
Goldin-Meadow, 2005), but they are the main vehicle for
language in sign language (Poizner, Klima, & Bellugi, 1987)
which is learned by children in deaf or mixed hearing/deaf
communities (Van Cleve, 2004). Within the auditory modal-
ity, some vocal sounds like clicks are considered as non-
linguistic in many languages, but in others they are used
phonologically (Best, McRoberts, & Sithole, 1988); simi-
larly for phonatory characteristics of vowels like breathiness
and creakiness (Silverman, Blankenship, Kirk, & Ladefoged,
1995; Podesva, 2007).

The second problem is that even if linguistic and non-
linguistic signals are defined for a language, the actual un-
mixing of these signals may be difficult. For instance, in-
fants hear a superposition of many audio sources, only some
of which contain linguistic signals. Auditory source sep-
aration is a computationally difficult problem (untractable
in general). In human adults, it is influenced by top-down
word recognition (e.g. Warren, 1970). In pre-verbal infants
such sources of top-down information have themselves to be
learned.

The third problem is that even if non-linguistic signals are
separated from linguistic ones, what to do with non-linguistic
signals? In most instances, they should be considered as
noise and discarded. In other cases, however, they can be
useful for language learning. For instance, non-linguistic
contextually relevant information in the form of visually per-
ceived objects or scenes may help lexical learning (D. K. Roy
& Pentland, 2002) or bootstrap syntactic learning (the se-
mantic bootstrapping hypothesis, see Pinker, 1984). Social
signals (eye gaze, touch, etc), have also been taken as crucial
for language learning (Tomasello, 2003; Werker & Curtin,
2005, among others). Here again, the proper channeling of
these non-linguistic cues is part of the learning problem.

5Interestingly, text-based distributional semantic tend to predict
human semantic similarity judgments better than image-based rep-
resentations (Bruni, Boleda, Baroni, & Tran, 2012; Kiela & Bottou,
2014; Silberer, Ferrari, & Lapata, 2016).
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In brief, data selection is a critical component of a learning
problem. It should not be performed by the modeler, who has
inside information about the target language and culture, but
by the model, whose task is precisely to discover it.

Variability and ambiguity matter. Assuming data
selection is solved, ambiguity and variability are prevalent
properties of language, at all level of structure, from pho-
netics up to semantics and pragmatics. Yet, many modeling
approaches simplify this complexity by replacing real input
with synthetic or idealized data. Although doing so is a use-
ful practice to debug algorithms or prove mathematical re-
sults, generalizing from the simplified to real input is risky
business.

We already discussed how clustering algorithms that dis-
cover phonetic categories when run on synthetic or simpli-
fied phonetic data yield much totally different results when
run on speech signals. One level up, word segmentation al-
gorithms that recover word boundaries when fed with (error-
less) phoneme transcriptions (Goldwater, 2007) utterly fail
when run on speech signals (Jansen et al., 2013; Ludusan et
al., 2014). The problem is pervasive. Learning algorithms
work because they incorporate models of the shape of the
data to be learned. Mismatches between the models and the
data will likely result in a learning failure.

Vice versa, however, oversimplifying the input can make
the learning problem harder than it is in reality. As an ex-
ample, syntax learning models often operate from abstract
transcriptions, and as a result ignore prosodic information
which could prove useful for the purpose of syntactic anal-
ysis, or lexical acquisition (e.g. Morgan & Demuth, 1996;
Christophe et al., 2008; Shukla, White, & Aslin, 2011).

’Presentation’ matters. The notion of ’presentation’
comes from formal learning theory (Gold, 1967). It corre-
sponds to the particular way or order in which a parent selects
his or her language inputs to the child. There are well known
examples where presentation has extreme consequences on
what can be learned or not. For instance, if there are no con-
straints on the order in which environment presents grammat-
ical sentences, then even simple classes of grammars (e.g.,
finite state or context free grammars, Gold, 1967) are un-
learnable. In contrast, if the environment presents sentences
according to a computable process (an apparently innocuous
requirement), then even the most complex classes of gram-
mars (recursive grammars) become learnable.6 This result
extends to a probabilistic scenario where the input sentences
are sampled according to a statistical distribution (see An-
gluin, 1988).

The importance of presentation boils down to the ques-
tion of whether parents are being ’pedagogical’ or not, i.e.,
whether they present language according to a curriculum
which facilitates learning7. Importantly, such curriculum
may also include phonetic aspects (e.g. articulation param-
eters: P. K. Kuhl et al., 1997), para-linguistic aspects (e.g.,

communicative gestures or touch: Csibra & Gergely, 2009;
Seidl, Tincoff, Baker, & Cristia, 2015), as well as the com-
munication context (e.g., availability of a perceptible refer-
ence: Sachs, 1983; Trueswell et al., 2016).

To the extent that presentation matters, it is of crucial im-
portance neither to oversimplify by assuming that parents are
always pedagogical, nor to overcomplexify by assuming that
there is no difference with adult-directed observations.

How realistic does it need to be? We discussed three
ways in which the specifics of the input available to the
learner matter greatly as to which models will succeed or fail.
If one is interested in modeling infant language learning, one
should therefore use inputs that are close to what infants get.
How to proceed in practice?

One possible strategy would be to start simple, i.e., to
work with idealized inputs generated by simple formal gram-
mars or probabilistic models and to incrementally make them
more complex and closer to real data. While this approach,
pursued by formal learning theory has its merits, it faces
the challenge that there is currently no known model of the
variability of linguistic inputs, especially at the level of pho-
netics. Similarly, there is no agreed upon way of charac-
terizing what constitutes a linguistic signal (as opposed to a
non-linguistic one), nor what constitutes noise versus useful
information. The particular presentation of the target lan-
guage and associated contextual information that result from
caretaker’s communicative and pedagogic intentions has not
been formally characterized. Even at the level of the syntax,
the range of possible languages is not completely known, al-
though this is perhaps the area where there are current propo-
sitions (e.g., Jäger & Rogers, 2012). This approach there-
fore runs the risk of locking researchers in a bubble universe
where problems are mathematically tractable but are unre-
lated to that faced by infants in the real world.

A second strategy is more radical: use actual raw data
to reconstruct infant’s sensory experience. This data-driven
solution is what we advocate in the reverse engineering ap-
proach: it forces to confront squarely the problem of data
selection and removes the problems associated with the ide-
alization of variability, ambiguity and mode of presentation.
Importantly, the input data should not be limited to a single
dataset: what we want to reverse engineer is infant’s ability to
learn from any mode of presentation, in any possible human

6The problem of unrestricted presentations is that, for each
learner, there always exists an adversarial environment that will
trick the learner into converging on the wrong grammar. Vice versa,
as computable processes can be enumerated, and hence a stupid
learner can test increasingly many grammars and presentations and
converge.

7Parents may not be conscious of what they are doing: they
could adjust their speech according to what they think infants hear
or understand, imitate their speech, etc. By pedagogical we refer to
the result, not the intent.



10 E. DUPOUX

language, in any modality. One practical way to address this
would be to sample from the finite although ever evolving set
of attested languages, and split them into development set (to
construct the algorithm) and test set (to validate it). It may be
interesting to sample typologies and sociolinguistic groups in
a stratified fashion to avoid overfitting the learning model to
the prevalent types.

How far should sensory reconstruction go? Obviously, it
would make no sense to reconstruct stimuli outside of the
sensory range of infants, or with a precision superior to their
discimination abilities. Hence, input simplifications can be
done according to known properties of the sensory and atten-
tional capacities of infants. If other idealizing assumptions
have to be made, at the very least, they should be explicit,
and their impact on the potential oversimplification or over-
complexification of the learning problem should be discussed
(as an example, see Sections 6 and S3.).

4.3 Why human-machine comparisons?

We now turn to the apparently least controversial require-
ment: everybody agrees that for a modeling enterprise of any
sort, a success criterion should be specified. However, there
is little agreement on which criterion to use.

Which success criterion? To quote a few proposals
within cognitive psychology, MacWhinney (1978) proposed
nine criteria, Berwick (1985), nine other criteria, Pinker
(1987) six criteria, Yang (2002) three criteria, Frank, Gold-
water, Griffiths, and Tenenbaum (2010) two criteria. These
can be sorted into conditions about effective modeling (be-
ing able to generate a prediction), about the input (being as
realistic as possible), about the end product of learning (be-
ing adult-like), about the learning trajectories, and about the
plausibility of the computational mechanisms proposed. For
formal learning theorists, success is usually defined in terms
of learnability in the limit (Gold, 1967): a learner is said to
learn a target grammar in the limit, if after a finite amount
of time, his own grammar becomes equivalent to the target
grammar. This definition may be difficult to apply because
it does not specify an upper bound in amount of time or
quantity of input required for learning (it could take a mil-
lion years, see K. Johnson, 2004), nor does it specify an op-
erational procedure for deciding when and how two gram-
mars are equivalent8 . More pragmatically, researchers in
the AI/machine learning area define success in terms of the
performance of their system as measured against a gold stan-
dard obtained from human adults. This may be an interesting
procedure for testing the end-state of learning but is of little
use for measuring learning trajectories.

We propose to replace all these criteria by a single op-
erational principle, cognitive indistinguishability defined in
terms of cognitive tests:

A human and a machine are cognitively indistin-
guishable with respect to a given set of cognitive

tests when they yield numerically overlapping
results when ran on these tests.

Now, this definition is not sufficient in itself: it shifts the
problem of selecting a good success criterion to the problem
of selecting the tests to be included in the cognitive bench-
mark. At least, it enables to get rid of arbitrary or aesthetic
criteria (I like this model because it seems plausible, or, it
uses neurons) and forces one to define operational tests to
compare models. Yet, it leaves open a number of questions:
should the tests measure behavioral choices, reaction times,
physiological responses, brain responses? Should they in-
clude meta- or paralinguistic tests (like the ability to detect
accent, emotions, etc.)? In addition, given the range of the-
oretical options that have been formulated on language de-
velopment (e.g., Tomasello, 2003; P. K. Kuhl, 2000), and
disagreements on the essential properties of language (e.g.,
Hauser et al., 2002; Evans & Levinson, 2009), one would
think our proposed cognitive benchmark will be difficult to
come about.

How to construct a cognitive benchmark? The
benchmark that we propose to construct within the reverse
engineering approach has a very specific purpose. Its aim
is not to tease apart competing views of language acquisi-
tion, but to target the two developmental puzzles presented
in Section 2: how do infant bootstrap onto an adult language
system? how are gradual, overlapping and resilient patterns
of development possible?

Answering these puzzles requires only to measure the
state of linguistic knowledge present in the learner at any
given point in development, and across the different linguis-
tic structures (phonetic all the way to semantics and pragmat-
ics).

This objective can be expressed in terms of the top level of
Marr’s hierarchy: the computational/informational level. It
abstracts away from considerations about processing or neu-
ral implementation. This means that under such benchmark,
will be considered ’cognitively indistinguishable’, models of
the child that have little similarity to infants psychological or
brain processes (e.g. Bayesian ideal learners, artificial neural
networks), so long as they have acquired the same language-
specific information. Of course, one could enrich the bench-
mark by adding more tests that address lower levels of Marr’s
hierarchy (see Supplementary Section S2. for a discussion of
biological plausibility).

In addition, we propose to guide the construction of the
benchmark by selecting tests that

satisfy three conditions: they should be valid (measure
the construct under study as opposed to something else), re-

8Two grammars are said to be (weakly) equivalent if they gen-
erate the same utterances. In the case of context free grammars,
this is an undecidable problem. More generally, for many learning
algorithms (e.g., neural networks), it is not clear what grammar has
been learned, and therefore the success criterion cannot be applied.
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liable (with a good signal to noise ratio), and administrable
(to adults, children and computers alike).

The first two conditions are standard best practices in psy-
chometrics and psychophysics (e.g., Gregory, 2004). Test
validity refers to whether a test, both theoretically and em-
pirically, is sensitive to the psychological construct (state or
process) it is supposed to measure. As a counterexample,
the famous imitation game Turing (1950) tests whether ma-
chines can ’think’ by measuring how well they can appear to
be humans in an on-line text-based interaction.

This test has dubious theoritical validity, as ’thinking’ is
not a well defined cognitive construct, but rather an under-
specified folk psychology concept, and dubious empirical
validity, as it is easy to fool human observers using simplis-
tic text manipulation rules (see ELIZA, Weizenbaum, 1966).
Section 6.3 presents Turing test replacements.

Test reliability refers to the signal to noise ratio of the
measure. It can be estimated by computing the betwen-
human or test-retest agreement, or by sampling over initial
parameters for the machines.

Test administrability does not belong to standard psycho-
metrics, but very important for comparing the performance
of different systems or organisms.

To test a human adult with most tasks, one simply pro-
vides instructions in his or her native language.

This is not directly to human infants nor to machines. In
infants, a testing apparatus has to be constructed, i.e., a con-
trolled artificial environment whereby responses to test stim-
uli are measured using spontaneous tendencies of the par-
ticipants (preference methods, habituation methods, etc; see
Hoff, 2012, for a review).9 As for machines, the learning
algorithms are not constructed to run linguistic tests, but to
optimize a particular function which may have nothing to do
with the test. Therefore, they need to be supplemented with
particular task interfaces for each of the proposed tests in
order to extract a response that would be equivalent to the
response generated by humans.10 In all cases, administering
the task should not compromise the test’s validity. Biases or
knowledge of the desired response has to be removed from
the instructions (adults), testing apparatus (infants) and inter-
face (machines).

In brief, we motivated the importance of a human-
machine benchmark and presented principles to construct it.
The construction of the benchmark should be viewed as part
of the research program itself. It should seek a common
ground between competing views of language acquisition,
and be periodically revised as understanding of the language
competence progresses, and as new experimental protocols
for language competence are established.

5 Deep learning to the rescue?

The combination of the first two requirements discussed
above, namely, scalable computation and realistic input

would have been, up to a recent period a major stumbling
block for acheiving a reverse engineering approach. Indeed,
for many years, computers were struggling with language
processing. It was customary in psycholinguistic courses to
mock the dismal performance of automatic dictation or trans-
lation systems. All of this started to change with a paper by
Hinton and colleagues on speech recognition (Hinton et al.,
2012): after years in the making, neural networks were start-
ing to perform better than the dominating technology based
on probabilistic models (Gaussian Mixtures, Hidden Markov
Model). A few years later, the entire speech processing
pipeline has been replaced by neural networks trained end-
to-end, with performance claimed to achieve human parity
on a dictation task (Xiong et al., 2016, but see Saon et al.,
2017). In the following, we very briefly review how such
systems are constructed before turning on whether they could
be used to inform infants language acquisition studies.

5.1 The new AI spring

One important characteristics of the new systems is they
get rid of the specialized design features of their predeces-
sors, and replace them with generic neural network architec-
tures trained in large annotated corpora. Continuing with the
example of speech, specialized audio features are replaced by
spectrograms (some systems even work from raw audio in-
put) and phonetic transcriptions and prononciation lexicons
are eliminated: systems are trained to directly map speech to
orthographic transcriptions, in an end-to-end fashion.

We do not need a phoneme dictionary, nor even
the concept of a ’phoneme.’ (Hannun et al.,
2014).

As it turn out, the basic architectures and many core ideas
are not very different from those proposed in the early days
of connectionism. For instance, Figure 2 shows the architec-
ture of Deep Speech 2 (Amodei et al., 2016) a state-of-the-art
speech recognition system composed of rather classical ele-
ments popularized in the late 80’s the (the multi-layer per-
ceptron, backpropagration training, convolutional networks,
recurrent networks: Rumelhart & McClelland, 1986; Elman,
1990).

What has changed, though, is the scale of the networks
and the volume of data on which they are trained, enabled
by tremendous progress in computer hardware and in math-
ematical optimization techniques (Goodfellow, Bengio, &

9In animals, before tests can be run, an extensive period of train-
ing using reinforcement learning is often necessary, in order for the
animal to comply with the protocol. Such procedures are not possi-
ble in human infants.

10A task interface can be viewed as a function which takes as
input the internal states of the algorithm generated by the stimuli
and delivers a binary or real valued response.
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Figure 2. Network architecture for Deep Speech 2 (reprinted
from Amodei et al. 2016). The input is a spectrogram, the
output is a sequence of characters. Each layer incorporate
particular patterns of connectivity. Convolutional layers are
organized in terms of local patches sharing their connections
along the time and/or frequency dimensions. Recurrent lay-
ers accumulate activations through time. Fully connected
layers do not have any particular topology. Batch normal-
ization is a process by which the activations at each layers
are rescaled to be of means 0 and variance 1 over a small set
of examples during training.

Courville, 2016, for an advanced introduction). As a re-
sult, neural networks have grown at a pace slightly faster
than Moore’s law: the speech processing network in Elman
and Zipser (1988) had 8000 parameters; 28 years later, Deep
Speech 2 is twelve thousand times larger.

Speech is not the only area where deep learning have
shaken the AI landscape: object recognition (Krizhevsky,
Sutskever, & Hinton, 2012; He et al., 2015), language trans-
lation (Wu et al., 2016; M. Johnson et al., 2016), and speech
synthesis (Oord et al., 2016), are all areas where neural net-
works have displaced by a large margin the previous state-of-
the-art, while approaching human performance. This explo-
sion of research is faciliated by the large distribution of pro-
gramming frameworks (tensorflow, pytorch, dynet, mxnet,
etc.), the open sourcing of datasets and state-of-the-art sys-
tems which can be downloaded pre-trained and tested on new
inputs.

These successes are generating interest for taking ma-
chine learning systems trained on large corpora as quanti-
tative models of cognitive functions. Indeed, despite their
a-priori lack of neural or biological plausibility11, the perfor-
mance of these systems show surprising convergences with
biological organisms. For instance, a deep neural network
trained to recognize artefacts and natural kind categories
from images turn out to be good predictors of multi-unit re-
sponses of neurons in the Inferior Temporal cortex of pri-
mates (e.g., Cadieu et al., 2014; Yamins et al., 2014). There
are also surprising divergences such as the strange way in

which neural networks can be fooled by adversarial exam-
ples (Nguyen, Yosinski, & Clune, 2014), and limits such as
their inability to perform causal reasoning or display sys-
tematic behavior (Lake, Ullman, Tenenbaum, & Gershman,
2016). This gives rise to an exciting area of research apply-
ing cognitive psychology or cognitive neuroscience methods
to machine learning systems (Kheradpisheh, Ghodrati, Gan-
jtabesh, & Masquelier, 2016; Cichy, Khosla, Pantazis, Tor-
ralba, & Oliva, 2016; Linzen, Dupoux, & Goldberg, 2016;
Tsividis, Pouncy, Xu, Tenenbaum, & Gershman, 2017; Lau,
Clark, & Lappin, 2017, among others).

The crucial question that we raise here is whether any of
these algorithms could be good candidates for modeling lan-
gage acquisition?

5.2 Does machine learning model human learning?

Statistical learning mechanisms have been claimed to be at
the core of language acquisition (Saffran, 2003), so a-priori,
there are reasons to be optimistic (Meltzoff, Kuhl, Movellan,
& Sejnowski, 2009). However, there is a fundamental gap
between what this term means in cognitive studies and how
it is used in machine learning. The big difference is that in
machine learning, statistical techniques are used as a con-
venient way to construct systems, not as models of human
acquisition processes.

Interpreted cognitively, machine learning procedures
would correspond to a caricature of 19th century schooling:
the learner, initially, a kind of tabula rasa, is relentlessly fed
with inputs paired with desired responses, which are annota-
tions of the input provided by a human supervisor. The drill
is repeated until the learner gets it right.

This setup is called supervised learning, because for a
given input there is only one correct answer. As an exam-
ple, in speech recognition, the system is trained to associate
a speech utterance with it’s written transcription. In natu-
ral language processing tasks, the system is presented with
sequences of words (in ortographic format) as input, and
trained to associate each word to a part-of-speech, a semantic
role tag, or a co-reference in the text, and so on. This differs
in how infants learn language in two important ways.

First, children do not learn their first language by being
asked to associate sensory inputs with linguistic tags. Long
before they are even exposed to linguistic tags by going to
school and learn to read and write, they have acquired what
amounts to a fully functional speech recognition and lan-
guage processing system. They have done so on the basis
of sensory input alone, and if there are supervisatory signals
from the adults, these are neither unambiguous nor system-
atic. This moves the problem of language learning in the area

11In fact, from their inception, neural networks have been heav-
ily influenced by research in neuroscience and psychology, see the
review by Hassabis, Kumaran, Summerfield, and Botvinick (2017).
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of unsupervised or weakly supervised machine learning: to
an input, there is no unique desired output, but rather a prob-
abilistic distribution of outcomes (with relatively unfrequent
rewards or punishments)12.

The second difference is in the sheer amount of data re-
quired by artificial systems compared to infants. For in-
stance, the Deep Speech 2 system described above is trained
with over 10000 hours of transcribed speech (plus a few bil-
lion words worth of text to provide top-down language statis-
tics). In comparison, a four-year-old child, who admittedly
has functional speech recognition abilities, is being spoken
to for a total amount varying between 700h and 4000h (cor-
responding to 8 and 44M words, respectively), depending on
the language community (for estimates, see Supplementary
Section S1.). This means that Deep Speech 2 requires around
14 times more speech, and 240 times more words than what
a four-year old Mayan child get. A recent time allocation
study in the Tsimane community (Cristia et al., 2017) shows
that the amount of child directed input may even be lower
than the Maya yet by a factor of 3 (less than one minute of
speech per waking hour). This shows that the human infant
is equipped with a learning algorithm which enables him or
her to learn language with very scarse data.

5.3 Summing up.

Machine learning has made progress to the point that ’cog-
nitive services’ (speech recognition, automatic translation,
object and face recognition, etc.) are incorporated in every-
day life applications. This means that one of the major road
block for the reverse engineering approach, i.e. the feasibility
of building language processing systems that can deal with
realistic input at scale is now lifted. Instead of being locked
with simplified data or toy problems, for the fist time, it be-
comes possible to address the bootstrapping problem in its
full complexity, and derive quantitative developmental pre-
dictions along the way.

Still, there are challenges ahead; current machine learn-
ing systems fail to provide models of infant acquisition, not
because they discard or simplify the input, but because they
use too much of it, both in sheer quantity and in adding ex-
tra inputs that the infant could not possibly get (linguistic
labels). What needs to be done, therefore is to adapt some
of the existing algorithms or construct new ones, so that they
can learn with as few data as infants do. How far are we?

6 The road ahead

We now turn to the feasibility of the reverse engineering
approach as applied to early language development. To do
so, we limit ourselves to the following simplifying assump-
tion:

The total input available to a particular child
provides enough information to acquire the

Figure 3. a. The (simplified) learning scenario: The Child’s
internal state is a grammar Gch(t) that can be updated through
the learning function L based on input I(t). The environ-
ment’s internal state is a constant adult grammar Gad and a
variable context Cen, which produces the input to the child. b.
Method to test the empirical adequacy of the model by com-
paring the outcome of psycholinguistic experiments with that
of children and adults.

grammar of the language present in the environ-
ment.

This may seem reasonable, but it essentially puts us in the
open loop situation described in Figure 3), where the envi-
ronment delivers a fixed curriculum of inputs (utterances and
their sensory contexts) and the learner recovers the grammar
that generated the utterances. In this situation, the output
of the child is not modeled, and the environment does not
modify its inputs according to her behavior or inferred inter-
nal states. This input-driven idealization may overestimate
the difficulty of the task compared to a more realistic close-
loop scenario. We think however, that it is useful to study
the input-driven scenario in its own sake, as it gives an esti-
mate of what can be learned in the worse case scenario where
parents have other priorities than optimizing their children’s
language learning.

We examine how this simplifying assumption can be re-
laxed in Supplementary Section S3.

Within this scenario, we claim that recent advances in AI
and big data now make the reverse engineering roadmap ac-
tionnable. We discuss current avenues of research and the
challenges that need to be met. Following our three re-
quirements, we review, in turn, the feasibility of constructing
systems that can learn without expert labels, the collection
of large realistic dataset, and the establishment of human-
machine benchmarks, and illustrate it with a selection of re-
cent work.

12This raises the issue about what is the internal reward for the
infant which pushes him or her to acquire language. A drive for
learning statistical patterns? A drive to interact with others in his or
her group?
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6.1 Unsupervised / weakly supervised algorithms

Bringing machine learning to bear to language develop-
ment requires to construct systems that discover linguistic
structure with little or no expert supervision. This is obvi-
ously more difficult than learning to associate inputs to lin-
guistic labels. Here, the learner has to discover its own la-
bels given the input. This class of machine learning prob-
lems is unfortunately less well studied and understood than
supervised learning, but is an expanding field of research in
machine learning. Two main, non exclusive, ideas are being
explored to address this challenge.

Inductive biases. The first idea is to build into the
learner prior knowledge about the underlying nature of the
data, so that generalization can be made with few or noisy
datapoints. With strong prior knowledge, some logically im-
possible learning problems become easily solvable.13 Some
models of the acquisition of syntax mentioned in Section
3.1 favor very strong priors, where the only thing to learn
(besides the meaning of words) is a small number of syn-
tactic binary parameters. The learning problem becomes so
constrained that a single sentence (called a trigger) may be
sufficient to decide a parameter’s value (Gibson & Wexler,
1994; Sakas & Fodor, 2012). The notion of inductive biases
can be formulated elegantly using Bayesian graphical models
(J. Pearl, 1997; Koller & Friedman, 2009). In these models,
prior knowledge is specified as probability distributions over
the model’s parameters, which are updated for each new in-
put (see Gershman, Horvitz, & Tenenbaum, 2015 for a gen-
eral presentation).

For the purpose of illustration, let us revisit the discovery
phonetic categories from continuous speech. We have men-
tionned previously that generic clustering algorithms fail to
learn phonemes, because of a mismatch between what clus-
tering algorithms expect (relatively well delimited clusters)
and what the data consists in (a complicated gesture unfold-
ing in time). Lee and Glass (2012) proposed a Bayesian
graphical model, where phonemes are defined as sequences
of three acoustic states (schematically, a state for the begin-
ning, the central part and the end of the phoneme). Each state
is modeled as a mixture of 8 Gaussians in the space of acous-
tic parameters (MFCCs, a representation derived from spec-
trograms). Phoneme durations are also controlled through a
binary boundary variable (modelled with a poisson distribu-
tion), and the number of phonemes is specified by a Dirichlet
prior, which expects the distribution of phonemes to follow a
power law (a few phonemes are used often, many phonemes
are used rarely). Far from being a general purpose cluster-
ing algorithm, the algorihm of Lee & Glass uses language-
universal information about the phonemes, (their shape, their
duration, their frequency) to specify a model that will be
inductively biased to discover this kind of structure in the
data. Bayesian probabilistic models are also used in nat-
ural language processing to infer syntactic structures from

raw data without supervision (Liang, Jordan, & Klein, 2011;
Kwiatkowski et al., 2012). Some of these models have been
recently used on child directed input (CHILDES transcripts)
to account for developmental results (Abend, Kwiatkowski,
Smith, Goldwater, & Steedman, 2017).

The challenge with these types of models is that the opti-
mization of the parameters is very computationally intensive,
which becomes prohibitive for large models and/or large
datasets. For instance, the Lee & Glass model has only been
applied to a relatively small corpus of read speech (TIMIT),
and the Abend et al. (2017) model on textual input. Current
research is devoted to develop efficient approximations of
these algorithms to deploy them in more naturalistic datasets
(see for instance Ondel, Burget, & Černocký, 2016 for a scal-
able reimplementation of Lee & Glass).

Synergies. Here, the idea is that the different com-
ponents of language being interdependant, it may help to
jointly learn these components rather than to learn them sep-
arately. This is actually turning the bootstrapping problem
on its head: instead of being a liability, the codependan-
cies between linguistic components become an asset. Of
course, it is an empirical issue as to whether joint learning
between any two language components is always more suc-
cessful than separate learning. The existence of synergies has
been documented using Bayesian models between phonemes
and words inventories (Feldman, Myers, White, Griffiths, &
Morgan, 2011), syllables and words segmentation (M. John-
son, 2008), referential intentions and word meanings (Frank,
Goodman, & Tenenbaum, 2009).

The existence of synergies can be leveraged in models
other than Bayesian ones, including deep learning or more al-
gorithmic speech engineering systems. For instance, return-
ing to the issue of phonetic learning, several lines of research
indicate that words could help the discovery of subword
units (Swingley, 2009; Thiessen, 2007)), and that even an
imperfect, automatically discovered proto-lexicon can help
(Martin, Peperkamp, & Dupoux, 2013; Fourtassi & Dupoux,
2014). The model described in Figure 5 implements this
idea. It consists in a word discovery system which extracts
similar segments of speech across a large corpus. The dis-
covered segments constitute a proto-lexicon of acoustic word
forms (Jansen et al., 2013), which are then used to train a
neural network in a discriminative fashion. The resulting out-
put of the network is a representation of speech sound which
is much more invariant to a change in talker than the origi-
nal spectral representation on which the system started with
(Thiollière, Dunbar, Synnaeve, Versteegh, & Dupoux, 2015).
In a similar spirit, Harwath, Torralba, and Glass (2016) and

13One good illustration is the following: can you tell the colors
of 1000 balls in an urn by just selecting one ball? The task is impos-
sible without any prior knowledge about the distribution of colors
in the urn, but very easy if you know that all the balls have the same
color.
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Figure 4. Outline of a clustering algorithm with a hierarchi-
cal generative architecture for learning phonemes from raw
speech (reprinted from Lee, & Glass, 2012). The model is
provided with speech described by speech features (3rd line),
and infers all of the other parameters (4th line downwards:
boundary variables, segment identify and duration, states of
the hidden markov model and parameters of the Gaussian
mixtures) from the data according to the hierarchical model
by sampling in the space of possible values for these param-
eters.

Harwath and Glass (2017) showed that by training a neu-
ral network to associate an image with a speech input cor-
responding to a short description of this image, the network
develops phone-like and word-like intermediate representa-
tions for speech.

In brief, even though unsupervised/weakly supervised
learning is difficult, there is a growing interest within ma-
chine learning for the study of such algorithms, as shown
by special sessions on this topic in machine learning confer-
ences, and the organization of challenges involving laborato-
ries in cognitive science and speech technology communities
(e.g. the zero resource speech challenge, Versteegh et al.,
2015; Dunbar et al., 2017).

6.2 Large scale data collection in the wild

A large number of datasets across languages have been
collected and organized into repositories that have proved
immensely useful to the research community. One prominent
example of this is the CHILDES repository (MacWhinney,
2000), which has enabled more than 5000 research papers
(according to a google scholar search as of 2016). These
datasets, however, contain only relatively sparse datapoints
(a few hours per infants). Perhaps the most ambitious large
scale and dense data collection effort to date is the Spee-
chome project (D. Roy, 2009), where video and audio equip-
ment was installed in each room of an apartment, recording 3
years’ worth of data around one infant. This pioneering work
illustrates several key technological, analysis and ethical is-
sues that arise in ’ecological’ data collection.

Figure 5. Architecture illustrating a top-down synergy be-
tween learning phonemes and words. Auditory spectrograms
(speech features) are computed from the raw speech sig-
nal. Then, protowords are extracted using Spoken Term Dis-
covery; these words are then used to learn a more invari-
ant speech representation using discriminative learning in a
siamese Deep Neural Network architecture (from Thiolliere
et al., 2015).

Regarding technological issues, the falling costs in dig-
ital sensors and data storage make it feasible to duplicate
Speechome-like projects across many languages. More chal-
lenging is the fact that to be usable for modeling, the captured
should enable the reconstruction of infant’s sensory experi-
ence from a first person point of view. Already, relatively in-
expensive out-of-the box wearable technology can go some
way in that direction. Miniaturized recorders (see for in-
stance the LENA system, Xu et al., 2008) enable record-
ing the infant’s sound environment for a full day at a time,
even outside home, and will become more and more usable
as microphone array and advanced signal processing enable
source reconstruction even in noisy environment. Proximity
and accelerometor sensors can be used to categorize activ-
ities (Sangwan, Hansen, Irvin, Crutchfield, & Greenwood,
2015); ’life logging’ wearable devices capture images every
few seconds and help to reconstruct the context of speech
interactions (Casillas, 2016). Head-mounted cameras can
help to reconstruct infant’s field of view (L. B. Smith, Yu,
Yoshida, & Fausey, 2015). Upcoming progress in the minia-
turization of 3D sensors would enable to go further in the
reconstruction of infant’s visual experience.

Regarding analysis issues, the challenge it to supple-
ment raw data with reliable linguistic/high level annotations.
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Manual annotations are too costly to scale up to large and
dense datasets. In the Speechome corpus, more than 3000
hours of speech have been transcribed, wich represents only
a fraction of the total 140000 hours of audio recordings
(B. C. Roy, Frank, DeCamp, Miller, & Roy, 2015). The re-
cent breakthroughs in machine learning discussed in Section
5 (speech recognition: Amodei et al., 2016; object recog-
nition: Girshick, Donahue, Darrell, & Malik, 2016; action
recognition: Rahmani, Mian, & Shah, 2016; emotion recog-
nition: Kahou et al., 2015) will enable the semi-automatic
annotations of large amounts of data.

As for ethical issues, the main challenge is to find a point
of equilibrium between the requirement of sharability and
open scientific data, and the need of protecting the privacy
of the familie’s personal data. Up to now, the response
of the scientific community has been dichotomous: either
make everything public (as in the open access repositories
like CHILDES, MacWhinney, 2000), or completely close
off the corpora to anybody outside the institution that has
recorded the data (as in the Riken corpus, Mazuka, Igarashi,
& Nishikawa, 2006, or the Speechome corpus D. Roy, 2009).
Neither solutions are acceptable.

Alternative strategies are being considered by the re-
search community. The Homebank repository con-
tains raw and transcribed audio, with a restricted case
by case access to researchers (VanDam et al., 2016,
http://homebank.talkbank.org). Databrary has a sim-
ilarly organized system for the secure storage of large sets
of video recordings of developemental data (Gilmore &
Adolph, 2017, https://nyu.databrary.org). Progress
in cryptographic techniques would make it possible to envi-
sion preserving privacy while enabling more open exploita-
tion of the data. For instance, the raw data could be locked
on secure servers, thereby remaining accessible and revok-
able by the infants’ families. Researchers’ access would be
restricted to anonymized meta-data or aggregate results ex-
tracted by automatic annotation algorithms. The specifics of
such a new type of linguistic data repository would have to be
worked out before dense speech and video home recordings
can become a mainstream tool for infant research.

In brief, large scale data collection of infant data is within
reach and is under in a number of research projects (see
www.darcle.org), although it’s exploitation in an open
source format requires specific developments in privacy-
preserving storage and computing infrastructures.

6.3 Cognitive benchmarking of language acquisition

Our final requirement, the construction of a cognitive
benchmark for language processing, can draw from work in
linguistics and psycholinguistics.

On can indeed find relatively easy-to-administer, valid and
reliable tests of the main components of linguistic compe-
tence in perception/comprehension (see Table 3). These tests

are easy to administer because they are conceptually sim-
ple and can be administered to naive participants; most of
them are of two kinds: goodness judgments (say whether a
sequence of sound, a sentence, or a piece of discourse, is ’ac-
ceptable’, or ’weird’) and matching judgments (say whether
two words mean the same thing or whether an utterance is
true of a given situation, which can be described in language,
picture or other means). As for validity, (psycho)linguistic
tests often use a minimal set design where one linguistic con-
struct is manipulated while every other variable is kept con-
stant (for instance: ’the dog eats the cat’ and ’the eats dog
the cat’ contain the same words, but one sequence is syntac-
tically correct, the other not). Regarding test reliability, as
it turns out, many linguistic tests are quite reliable, as 97%
of the results of a grammaticality judgment from textbooks
are replicable using on-line experiments (Sprouse, Schütze,
& Almeida, 2013)14.

Given the simplicity of these tasks, it is relatively straight-
forward to apply them to machines. Indeed, matching judg-
ments between stimulus A and stimulus B can be derived by
extracting from the machine the representations triggered by
stimulus A and B, and compute a similarity score between
these two representations. Goodness judgments are perhaps
more tricky; they can easily be done by generative algorithms
that assign a probability score, a reconstruction error, or a
prediction error to individual stimuli. As seen in Table 3,
some of these tests are already being used quite standardly
in the evaluation of unsupervised learning systems, in partic-
ular, in the evaluation of phonetic and semantic levels while
for others they are less widespread.15

The challenge comes from the applicability of these
tests to infants and children. As seen in Table 3, there
are considerable variations on the age at which different
linguistic levels have been tested in children, and gener-
ally, the younger the child, the more difficult it is to con-
struct reliable tests. Addressing this challenge would re-
quire improving substantially the signal-to-noise of some
of these techniques. There is also the possibility to
increase the number of participants through community-
augmented meta-analyses (Tsuji, Bergmann, & Cristia,
2014; see also http://metalab.stanford.edu/), collab-
orative testing (Frank et al., 2017), or remotely run exper-
iments (Shultz, 2014, https://lookit.mit.edu/; Izard,
2016, https://www.mybabylab.fr).

Before the full reverse engineering roadmap has been put

14Of course, even in simple psychophysical tasks, humans can
be affected by many other factors like attention, fatigue, learning or
habituation to stimuli or regularities in stimulus presentations, etc.
Methods try to minimize but never totally suceed in neutralizing
these effects.

15Regarding the evaluation of word discovery systems, see the
proposition by Ludusan et al. (2014) but see L. Pearl and Phillips
(2016) for a counter proposal and a discussion in Dupoux (2016).
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Table 3
Example of tasks that could be used for a Cognitive Benchmark.

Task description in human
adults

Linguistic level Equivalent task in children Equivalent task in machines

Well-formedness judgement
does utterance S sound good?

phonetic,
prosody,
phonology,
morphology,
syntax

preferential looking (9-month-olds: Jusczyk,
1997), acceptability judgment (2-year-olds: de
Villiers and de Villiers, 1972; Gleitman, Gleit-
man, and Shipley, 1972)

reconstruction error (Allen & Seiden-
berg, 1999), probability (Hayes & Wilson,
2008), mean or min log probability (Clark,
Giorgolo, & Lappin, 2013)

Same-Different judgment
is X the same sound / word /

meaning as Y?

phonetic,
phonology,
semantics

habituation / deshabituation (newborns, 4-month-
olds: Eimas, Siqueland, Jusczyk, & Vigorito,
1971; Bertoncini, Bijeljac-Babic, Blumstein, &
Mehler, 1987), oddball (3-month-olds: Dehaene-
Lambertz, Dehaene, et al., 1994)

AX/ABX discrimination (Carlin, Thomas,
Jansen, & Hermansky, 2011; Schatz et al.,
2013), cosine similarity (Landauer & Du-
mais, 1997)

Part-Whole judgment
is word X part of sentence S?

phonology, mor-
phology

Word spotting (8-month-olds: Jusczyk, Houston,
& Newsome, 1999)

spoken web search (Fiscus, Ajot, Garofolo,
& Doddingtion, 2007)

Reference judgment
does word X (in sent S) refer to
meaning M?

semantics, prag-
matics

intermodal preferential looking (16-month-olds:
Golinkoff, Hirsh-Pasek, Cauley, & Gordon,
1987), picture-word matching (11-month-olds:
Thomas, Campos, Shucard, Ramsay, & Shucard,
1981)

picture/video captioning (e.g., Devlin,
Gupta, Girshick, Mitchell, & Zitnick,
2015), Winograd’s schemas (Levesque,
Davis, & Morgenstern, 2011)

Truth/Entailment judgment
is sent S true (in context C)?

semantics Truth Judgment Task (3-year-olds: Abrams,
Chiarello, Cress, Green, & Ellett, 1978; Lidz &
Musolino, 2002)

visual question answering (Antol et al.,
2015)

Felicity judgement
would people say S to mean M
(in context C)?

pragmatics Ternary reward task (5-year-olds: Katsos &
Bishop, 2011), Felicity judgment task (5 years
olds: Foppolo, Guasti, & Chierchia, 2012).

?

into place, it is already possible to test specific predictions
using existing techniques. One can use the patterns of er-
rors made by computational models when run on infant in-
put data to generate new predictions. The reasoning is that
these errors should not be viewed as ’bugs’, but rather signa-
tures of intrinsic computational difficulties that may also be
faced by infants. For instance, even very good word discov-
ery algorithms make systematic segmentation errors: under-
segmentations for frequent pairs of words (like "readit" in-
stead of "read"+"it") or over-segmentations ("butter"+"fly"
instead of "butterfly") (see Peters, 1983).

Ngon et al. (2013) showed that it is possible to use
the preferential listening paradigm in eleven month infants
to probe for signature mis-segmentations. Deriving pre-
dictions from a very simple model of word discovery (an
ngram model) run on a CHILDES corpus, she constructed
a set of otherwise matched frequent versus unfrequent mis-
segmentations. Eleven month olds preferred to listen the
frequent mis-segmentations, and did not distinguish them
from real words of the same frequency. Larsen, Cristia, and
Dupoux (2017) found that it was possible to compare the
outcome of different segmentation algorithms in measuring
their ability to predict vocabulary acquisition as measured by

parental report.
In brief, while a cognitive benchmark can be established,

and it is already possible to test in infants some predictions
of computational models, large scale model comparison will
require progress in developmental experimental methods.

7 Conclusions

During their first years of life, infants learn a vast array
of cognitive competences at an amazing speed; studying this
development is a major scientific challenge for cognitive sci-
ence in that it requires the cooperation of a wide variety of
approaches and methods. Here, we proposed to add to the
existing arsenal of experimental and theoretical methods the
reverse engineering approach, which consists in building an
effective system that mimics infant’s achievements. The idea
of constructing an effective system that mimics an object in
order to gain more knowledge about that object is of course a
very general one, which can be applied beyond language (for
instance, in the modeling of the acquisition of naive physics
or naive psychology) and even beyond development.

We have defined three methodological requirements for
this combined approach to work: constructing a computa-
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tional system at scale (which implies ’de-supervising’ ma-
chine learning systems to turn them into models of infant
learning), using realistic data as input (which implies setting
up sharable and privately safe repositories of dense recon-
structions of the sensory experience of many infants), and
assessing success by running tests derived from linguistics on
both humans and machines (which implies setting up bench-
marks of cognitive and linguistic tests). We’ve showed that
even before these challenges are all met, such an approach
can help challenging verbal theories, help characterize the
learning consequences of different kinds of inputs available
to infant across cultures, and suggesting new empirical tests.

Before closing, let us note that the reverse engineering
approach we propose does not endorse a particular model,
theory or view of language acquisition. For instance, it does
not take a position on the rationalist versus empiricist debate
(e.g., Chomsky, 1965, vs. Harman, 1967). Our proposal is
more of a methodological one: it specifies what needs to be
done such that the machine learning tools can be used to ad-
dress scientific questions that are relevant for such a debate.
It strives at constructing at least one effective model that can
learn language. Any such model will both have an initial ar-
chitecture (nature), and feed on real data (nurture). It is only
through the comparison of several such models that it will
be possible to assess the minimal amount of information that
the initial architecture has to have, in order to perform well.
Such a comparison would give a quantitative estimate of the
number of bits required in the genome to construct this archi-
tecture, and therefore the relative weight of these two sources
of information. In other words, our roadmap does not start
off with a given position on the rationalist/empiricist debate,
rather, a position in this debate will be an outcome of this
enterprise.
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Appendix: Supplementary Materials

S1. Estimate of input to child

In this section, we describe the way in which we estimated
the amount and variability of speech input to infants. We
are mainly interested in the number of hours and number of
words, since these are two common metrics used in automat-
ical speech recognition and natural language processing. We
therefore use these metrics when they were available in the
original data, and estimate them otherwise.

Table S2 lists the sample of four studies that we have in-
cluded in our survey, which incorporate large variations in
languages and cultures. Hart and Risley (1995, H&R) stud-
ied English speaking infants splitted into three groups ac-
cording to the Socio-Economic Status (SES) of the familly.
In our analysis, we only include the two extreme groups
(N=13 and 6, respectively). Shneidman and Goldin-Meadow
(2012, S&G) studied two groups, one rural Mayan speaking
community (N=6), one English speaking urban community
in the USA (N=6). Weisleder and Fernald (2013, W&F)
studied one group of low SES Spanish speaking familly in
the USA (N=29). Finally, van de Weijer (2002, VdW) ex-
tensively measured one Dutch speaking child in the Nether-
lands.

One methodological problem is that the four studies re-
ported different kinds of metrics (H&R: number of words
and utterances, S&G: number of utterances, W&F: number
of words, and VdW: number of hours, words and utterances).
In order to compare them, one has therefore to estimate how
to convert one metric into another, which requires possibly
incorred assumptions about the conversion parameters. They
should therefore be taken with a large grain of salt, and are
subject to revision when more precise data comes along.

Table S1 lists the results and indicate the value of the con-
version factor that we used. To compute the total number of
hours per year, we used a waking time estimate of 9h for all
of the studies except VdW which directly estimated speaking
time per day. To convert number for words into hours, we
used an estimate of word duration of 400ms. This is compat-
ible with the numbers reported by VdW. To convert between
number of utterances and number of words, we used an SES-
dependant estimate of Mean Utterance Length of 4.43 for
high SES and 3.47 for low SES (from H&R). Finally, to es-
timate the total amount of speech heard by infants, we used
a proportion of Child Directed Input of 64% for high SES
(for S&G) and of 62% for low SES (from W&F). To see an
updated version of this analysis including a new population
of forager-farmers, see (Cristia et al., 2017).

S2. A biological plausibility requirement?

In this section, we briefly discuss one issue which often
comes up when computational systems are used as models
of human processing: the issue of biological plausibility. By
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Table S1
Four studies used to estimate infant’s speech input

study reference mode of acquisition;age population
H&R Hart and Risley (1995) observer, 1h every month;

12-36 months
urban high, mid & low SES,
English

S&G Shneidman and
Goldin-Meadow (2012)

observer, 1h every month;
12-36 months

urban high SES, English & ru-
ral low SES, Maya

W&F Weisleder and Fernald (2013) daylong recording; 19 months low SES, Spanish
VdW van de Weijer (2002) daylong recording; 6-9 months high SES, Dutch

Table S2
Estimates of yearly input, in total, and restricted to Child Directed Speech (CDS) , in number of hours and words (millions)
per year in four studies (see the references in Table S1) as a function of sociolinguistic group (SES: Socio Economic Status).
The numbers between brackets provide the range [min, max] of these numbers across families. t uses a wake time estimate
of 9 hours per day. w uses a word duration estimate of 400ms. c uses S&G’s estimate of %CDS for high SES. d uses W&F’s
estimate of %CDS for low SES. m uses H&R’s MLU’s estimates (according to SES).

Yearly total Yearly CDS
Hours Words (M) Hours Words (M)

Urban, high SES
H&R (N=13)t 1221w,c [578,1987] 11.0c [5.20, 17.9] 786w [372, 1279] 7.07 [3.35, 11.5]
S&G (N=6)t 2023w,m [1243, 2858] 18.2m [11.2, 25.7] 1223w,m [853, 1574] 11.0m [7.7, 14.2]
VdW (N=1) 931 9.28 140 1.39

Urban, low SES
H&R (N=6)t 363w,d [136, 558] 3.26d [1.22, 5.02] 225w [84, 346] 2.02 [0.76., 3.11]
W&F (N=29)t 363w [52, 1049] 3.27 [0.46., 9.44] 225w [32, 650] 2.03 [0.29, 5.85]

Rural, low SES
S&G (N=6)t 503w,m [365, 640] 4.53m [3.28, 5.76] 234w,m [132, 322] 2.10m [1.19, 2.90]

this, we mean that the hypothetical algorithm be compatible
with what we know about the biological systems that under-
lie these computations in human infants/adults.

While this constraint is perfectly reasonable, we argue that
it is difficult to apply to the modeling of early language ac-
quisition for the following reasons: First, the computational
power of a human brain is currently unknown. Current super-
computers can simulate at a synapse level only a fraction of
a brain and several orders of magnitude slower than real time
(Kunkel et al., 2014). If this is so, all computational models
run in 2016 are still massively underpowered compared to a
child’s brain. Second, a particular algorithm may appear to
be too complex for the brain, but a different version perform-
ing the same function will not. For instance, some word seg-
mentation algorithms require a procedure called Gibbs sam-
pling, which, in theory, require an infinite number of time
steps to converge. This would seem to discredit the algorithm
alltogether. Yet, it turns out that a truncated version of this
algorithm running in finite time works reasonably well. Sim-
ilarly, algorithms that require a lot of time steps can be rewrit-
ten into algorthms that require less steps and more memory.

This makes a priori claims of biological plausibility difficult
to make.

Still, biological plausibility can place some theoretical
bounds on system complexity at the initial state. Indeed, the
initial state is constructed on the basis of the human genome
plus prenatal interactions with the environment. This al-
lows to rule out, for instance, a 100% nativist acquisition
model that would pre-compile a state-of-the-art language un-
derstanding systems for all of the existing 6000 or more lan-
guages on the planet, plus a mechanism for selecting the most
probable one given the input.16

Apart from this rather extreme case, biological plausibil-
ity may not affect much of the reverse engineering approach

16The reason such system would not be biologically realizable is
that the parameters of a state-of-the-art phoneme recognition system
for a single of these languages already require 10 times more mem-
ory storage than what is available in the fraction of the genome that
differentiate humans from apes. A DNN-based phone recognizer
has typically more than 200M parameters, which barring ways to
compress the information, takes 400Mbytes. The human-specific
genome is 5% of 3.2Gbase, which boils down to only 40Mbytes.
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Figure S1. The learning situation in the interactive scenario,
viewed as two coupled dynamic systems: the Child and the
Environment.

until more is known about the computational capacity of the
brain. Yet, it is compatible with our approach, since as soon
as diagnostic tests of language computation in the brain are
available, they could be added to the cognitive benchmark,
as defined in Section 6.3 (see also Frank, 201417).

S3. Can reverse engineering address the fully
interactive learning scenario?

In this section, we revisit the simplifying assumptions
of the input-driven scenario endorsed in Section 6 and dis-
played in Figure 3a. This scenario does not take into consid-
eration the child’s output, nor the possible feedback loops
from the parents based on this output. Many researchers
would see this as a major, if not fatal, limitation of the ap-
proach. In real learning situations, infants are also agents,
and the environment reacts to their outputs creating feedback
loops (Bruner, 1975, 1983; MacWhinney, 1987; Snow, 1972;
Tamis-LeMonda & Rodriguez, 2008).

The most general description of the learning situation is
therefore as in Figure S1. Here, the child is able to generate
observable actions (some linguistic, some not) that will mod-
ify the internal state of the environment (through the monitor-
ing function). The environment is able to generate the input
to the child as a function of his internal state. In this most
general form, the learning situation consists therefore in two
coupled dynamic systems.18

Could such a complex situation be addressed within the
reverse engineering approach? We would like to answer with
a cautious yes, to the extent that it is possible to adhere to the
same three requirements, i.e., realistic data (as opposed to
simplified ones), explicit criteria of success (based on cogni-
tive indistinguishability), and scalable modeling (as opposed
to verbal theories or toy models). While none of these re-
quirements seem out of reach, we would like to pinpoint
some of the difficulties, which are the source of our caution.

Regarding the data, the interactive scenario would require
accessing the full (linguistic and non linguistic) output of

the infant, not only her input. While this is not intrinsically
harder to collect than the input, and is already been done in
many corpora for older children, the issue of what to cat-
egorize as linguistic and non linguistic output and how to
annotate it is not completely trivial.

Regarding computational modeling, instead of focusing
on only one component (the learner) of one agent (the child),
in the full interactive framework, one has to model two
agents (the child and the adult) for a total of four components
(the learner, the infant generator, the caregiver monitor, and
the caregiver generator). Furthermore, the internal states of
each agent has to be split into linguistic states (grammars)
and non-linguistic (cognitive) states to represent the commu-
nicative aspects of the interaction (e.g., communicative in-
tent, emotional/reinforcement signals). This, in turn, causes
the split of each processing component into linguistic and
cognitive subcomponents.

Although this is clearly a difficult endeavor, many of the
individual ingredients needed for constructing such a system
are already available in the following research areas. First,
within speech technology, there are available components to
build a language generator, as well as the perception and
comprehension components in the adult caregiver. Second,
within linguistics, psycholinguistics and neuroscience, there
are interesting theoretical models of the learning of speech
production and articulation in young children (Tomasello,
2003; W. Johnson & Reimers, 2010; Guenther & Vladu-
sich, 2012). Third, within machine learning, great progress
has been made recently on reinforcement learning, a power-
ful class of learning algorithms which assume that besides
raw sensory data, the environment only provides sporadic
positive or negative feedback (Sutton & Barto, 1998). This
could be adapted to model the effect of the feedback loops
on the learning components of the caregiver and the infant.
Fourth, developmental robotics studies have developed the
notion of intrinsic motivation, where the agent actively seek
new information by being reinforced by its own learning rate
(Oudeyer, Kaplan, & Hafner, 2007). This notion could be
used to model the dynamics of learning in the child, and the
adaptive effects of the caregiver-child feedback loops.

The most difficult part of this enterprise would perhaps
concern the evaluation of the models. Indeed, each of these
new components and subcomponents would have to be eval-
uated on their own in the same spirit as before, i.e., by run-
ning them on scalable data and testing them using human-
validated tasks. For instance, the child language generator
should be tested by comparing its output to age appropriate
children’s outputs, which requires the development of appro-
priate metrics (sentence length, complexity, etc) or human

17http://babieslearninglanguage.blogspot.com/2014/
02/psychological-plausibility-considered.html

18We thank Thomas Schatz, personal communication, for
proposing this general formulation.
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judgments. The cognitive subcomponents would have to be
tested against experiments studying children and adults in ex-
perimentally controlled interactive loops (e.g., N. A. Smith
& Trainor, 2008; Goldstein, 2008). In addition, because a
complex system is more than the sum of its parts, individ-
ual component validation would not sufficient, and the entire
system would have to be evaluated.19

Fully specifying the methodological requirements for the
reverse engineering of the interactive scenario would be a
project of its own. It is not clear at present how much of the
complications introduced by this scenario are necessary, at
least to understand the first steps of language bootstrapping.
To the extent that there are cultures where the direct input to
the child is severely limited and/or the interactive character
of that input circumscribed, it would seem that a fair amount
of bootstrap can take place outside of interactive feedback
loops. This is of course entirely an empirical issue, one that
the reverse engineering approach should help to clarify.
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