
HAL Id: hal-01948462
https://hal.inria.fr/hal-01948462

Submitted on 9 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Limiting the memory footprint when dynamically
scheduling DAGs on shared-memory platforms

Loris Marchal, Bertrand Simon, Frédéric Vivien

To cite this version:
Loris Marchal, Bertrand Simon, Frédéric Vivien. Limiting the memory footprint when dynamically
scheduling DAGs on shared-memory platforms. [Research Report] RR-9231, Inria Grenoble Rhône-
Alpes. 2018, pp.1-41. �hal-01948462�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162952328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01948462
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
92

31
--

FR
+E

N
G

RESEARCH
REPORT
N° 9231
October 2017

Project-Team ROMA

Limiting the memory
footprint when
dynamically scheduling
DAGs on shared-memory
platforms
Loris Marchal, Bertrand Simon, Frédéric Vivien

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Limiting the memory footprint when dynamically
scheduling DAGs on shared-memory platforms

Loris Marchal*, Bertrand Simon†, Frédéric Vivien‡

Project-Team ROMA

Research Report n° 9231 — October 2017 — 41 pages

Abstract: Scientific workflows are frequently modeled as Directed Acyclic Graphs (DAGs) of
tasks, which represent computational modules and their dependences in the form of data pro-
duced by a task and used by another one. This formulation allows the use of runtime systems
which dynamically allocate tasks onto the resources of increasingly complex computing plat-
forms. However, for some workflows, such a dynamic schedule may run out of memory by
processing too many tasks simultaneously. This paper focuses on the problem of transform-
ing such a DAG to prevent memory shortage, and concentrates on shared memory platforms.
We first propose a simple model of DAGs which is expressive enough to emulate complex mem-
ory behaviors. We then exhibit a polynomial-time algorithm that computes the maximum peak
memory of a DAG, that is, the maximum memory needed by any parallel schedule. We consider
the problem of reducing this maximum peak memory to make it smaller than a given bound.
Our solution consists in adding new fictitious edges, while trying to minimize the critical path
of the graph. After proving that this problem is NP-complete, we provide an ILP solution as well
as several heuristic strategies that are thoroughly compared by simulation on synthetic DAGs
modeling actual computational workflows. We show that on most instances we are able to de-
crease the maximum peak memory at the cost of a small increase in the critical path, thus with
little impact on the quality of the final parallel schedule.

Key-words: Scheduling, Task graph, Bounded Memory

* Loris Marchal is with CNRS, France.
† Bertrand Simon is with ENS de Lyon, France.
‡ Frédéric Vivien is with Inria, France.

Limitation de la mémoire pour l’ordonnancement
dynamique de graphes de tâches sur plates-formes de

calcul à mémoire partagée

Résumé : Les applications de calcul scientifique sont souvent modélisées par
des graphes de tâches orientés acycliques (DAG), qui représentent les tâches
de calcul et leurs dépendances, sous la forme de données produites par une
tâche et utilisées par une autre. Cette formulation permet l’utilisation d’API
qui allouent dynamiquement les tâches sur les ressources de plateformes de
calcul hétérogènes de plus en plus complexes. Cependant, pour certaines ap-
plications, un tel ordonnancement dynamique peut manquer de mémoire en
exploitant trop de parallélisme. Cet article porte sur le problème consistant à
transformer un tel DAG pour empêcher toute pénurie de mémoire, en se con-
centrant sur les plateformes à mémoire partagée. On propose tout d’abord un
modèle simple de graphe qui est assez expressif pour émuler des comporte-
ments mémoires complexes. On expose ensuite un algorithme polynomial qui
calcule le pic mémoire maximum d’un DAG, qui représente la mémoire maxi-
male requise par tout ordonnancement parallèle. On considère ensuite le prob-
lème consistant à réduire ce pic mémoire maximal pour qu’il devienne plus pe-
tit qu’une borne donnée en rajoutant des arêtes fictives, tout en essayant de
minimiser le chemin critique du graphe. Après avoir prouvé ce problème NP-
complet, on fournit un programme linéaire en nombres entiers le résolvant,
ainsi que plusieurs stratégies heuristiques qui sont minitieusement comparées-
sur des graphes synthétiques modélisant des applications de calcul réelles. On
montre que sur la plupart des instances, on arrive à diminuer le pic mémoire
maximal, au prix d’une légère augmentation du chemin critique, et donc avec
peu d’impact sur la qualité de l’ordonnancement parallèle final.

Mots-clés : Ordonnancement, Graphe de tâches, Mémoire limitée

Limiting DAG memory footprint 3

1 Introduction

Parallel workloads are often described by Directed Acyclic task Graphs, where
nodes represent tasks and edges represent dependences between tasks. The
interest of this formalism is twofold: it has been widely studied in theoreti-
cal scheduling literature [1] and dynamic runtime schedulers (e.g., StarPU [2],
XKAAPI [3], StarSs [4], and PaRSEC [5]) are increasingly popular to schedule
them on modern computing platforms, as they alleviate the difficulty of using
heterogeneous computing platforms. Concerning task graph scheduling, one of
the main objectives that have been considered in the literature consists in min-
imizing the makespan, or total completion time. However, with the increase of
the size of the data to be processed, the memory footprint of the application can
have a dramatic impact on the algorithm execution time, and thus needs to be
optimized [6, 7]. This is best exemplified with an application which, depending
on the way it is scheduled, will either fit in the memory, or will require the use of
swap mechanisms or out-of-core execution. There are few existing studies that
take into account memory footprint when scheduling task graphs, as detailed
below in the related work section.

Our focus here concerns the execution of highly-parallel applications on a
shared-memory platform. Depending on the scheduling choices, the computa-
tion of a given task graph may or may not fit into the available memory. The
goal is then to find the most suitable schedule (e.g., one that minimizes the
makespan) among the schedules that fit into the available memory. A possible
strategy is to design a static schedule before the computation starts, based on
the predicted task durations and data sizes involved in the computation. How-
ever, there is little chance that such a static strategy would reach high perfor-
mance: task duration estimates are known to be inaccurate, data transfers on
the platform are hard to correctly model, and the resulting small estimation er-
rors are likely to accumulate and to cause large delays. Thus, most practical
schedulers such as the runtime systems cited above rely on dynamic scheduling,
where task allocations and their execution order are decided at runtime, based
on the system state.

The risk with dynamic scheduling, however, is the simultaneous scheduling
of a set of tasks whose total memory requirement exceeds the available mem-
ory, a situation that could induce a severe performance degradation. Our aim is
both to enable dynamic scheduling of task graphs with memory requirements
and to guarantee that the available memory is never exceeded during the exe-
cution. We achieve this goal by modifying the input graph in a way that pre-
vents dynamic schedulers from exceeding the memory. Specifically, we add fic-
titious dependences in the graph: these additional edges will restrict the set of
valid schedules and in particular forbid the concurrent execution of too many
memory-intensive tasks. This idea is inspired by [8], which applies a similar
technique to graphs of smaller-grain tasks. The main difference with the present
study is that they focus on homogeneous data sizes: all the data have size 1,

RR n° 9231

Limiting DAG memory footprint 4

which is also a classical assumption in instruction graphs produced by the com-
pilation of programs. On the contrary, our approach is designed for larger-grain
tasks appearing in scientific workflows whose sizes are highly irregular.

The rest of the paper is organized as follows. We first briefly review the ex-
isting work on memory-aware task graph scheduling (Section 2). We propose a
very simple task graph model which both accurately describes complex mem-
ory behaviors and is amenable to memory optimization (Section 3). We intro-
duce the notion of the maximum peak memory of a workflow: this is the maxi-
mum peak memory of any (sequential or) parallel execution of the workflow. We
then show that the maximum peak memory of a workflow is exactly the weight
of a special cut in this workflow, called the maximum topological cut. Finally,
we propose a polynomial-time algorithm to compute this cut (Section 4). In
order to cope with limited memory, we formally state the problem of adding
edges to a graph to decrease its maximum peak memory, with the objective of
not harming too much the makespan of any parallel execution of the resulting
graph. We prove this problem NP-hard and propose both an ILP formulation
and several heuristics to solve it on practical cases (Section 5). Finally we eval-
uate the heuristics through simulations on synthetic task graphs produced by
classical random workflow generators (Section 6). The simulations show that
the two best heuristics have a limited impact on the makespan in most cases,
and one of them is able to handle all studied workflows.

Note that a preliminary version of this work was presented at the IPDPS’18
conference [9].

2 Related work

Memory and storage have always been limiting parameters for large computa-
tions, as outlined by the pioneering work of Sethi and Ullman [10] on register al-
location for task trees, modeled as a pebble game. The problem of determining
whether a directed acyclic graph can be pebbled with a given number of pebbles
(i.e., executed with a given number of registers) has been shown NP-complete by
Sethi [11] if no vertex is pebbled more than once (the general problem allowing
recomputation, that is, re-pebbling a vertex which have been pebbled before,
has been proven PSPACE complete [12]).

This model was later translated to the problem of scheduling a task graph
under memory or storage constraints for scientific workflows whose tasks re-
quire large I/O data. Such workflows arise in many scientific fields, such as
image processing, genomics, and geophysical simulations. In several cases,
the underlying task graph is a tree, with all dependences oriented towards the
root, which notably simplifies the problem: this is the case for sparse direct
solvers [13] but also in quantum chemistry computations [14]. For such trees,
memory-aware parallel schedulers have been proposed [15] and the effect of
processor mapping on memory consumption have recently been studied [7].

RR n° 9231

Limiting DAG memory footprint 5

The problem of general task graphs handling large data has been identified
by Ramakrishnan et al. [6] who introduced clean-up jobs to reduce the mem-
ory footprint and propose some simple heuristics. Their work was continued
by Bharathi et al. [16] who developed genetic algorithms to schedule such work-
flows. More recently, runtime schedulers have also been confronted to the prob-
lem: in StarPU, attempts have been made to reduce memory consumption by
throttling the task submission rate [17].

As explained in the introduction, our study extends the work of Sbîrlea at
al. [8]. This study focuses on a different model, in which all data have the same
size (as for register allocation). They target smaller-grain tasks in the Concurrent
Collections (CnC) programming model [18], a stream/dataflow programming
language. Their objective is, as ours, to schedule a DAG of tasks using a limited
memory. For this, they associate a color to each memory slot and then build a
coloring of the data, in which two data items with the same color cannot coex-
ist. If the number of colors is not sufficient, additional dependence edges are
introduced to prevent too many data items to coexist. These additional edges
respect a pre-computed sequential schedule to ensure acyclicity. An extension
to support data of different sizes is proposed, which conceptually allocates sev-
eral colors to a single data, but is only suitable for a few distinct sizes. Note that
the idea of restricting the memory need of a computation by adding edges to a
graph has also been used in [19, Chapter 4] to limit register usage with Instruc-
tion Level Parallelism.

Compared to the existing work, the present work studies graphs with arbi-
trary data sizes, and it formally defines the problem of transforming a graph
to cope with a strong memory bound: this allows the use of efficient dynamic
scheduling heuristics at runtime with the guarantee to never exceed the mem-
ory bound.

3 Problem modeling

3.1 Formal description

As stated before, we consider that the targeted application is described by a
workflow of tasks whose precedence constraints form a DAG G = (V ,E). Its
nodes i ∈V represent tasks and its edges e ∈ E represent precedence relations, in
the form of input and output data. The processing time necessary to complete a
task i ∈V is denoted by wi . In our model, the memory usage of the computation
is modeled only by the size of the data produced by the tasks and represented
by the edges. Therefore, for each edge e = (i , j), we denote by me or mi , j the
size of the data produced by task i for task j . We assume that G contains a sin-
gle source node s and a single sink node t ; otherwise, one can add such nodes
along with the appropriate edges, all of null weight. An example of such a graph
is illustrated in Figure 1. For the sake of simplicity, we define the following sizes

RR n° 9231

Limiting DAG memory footprint 6

of inputs and outputs of a node i :

Inputs (i) =
∑

j |(j ,i)∈E
m j ,i Outputs (i) =

∑
j |(i , j)∈E

mi , j

s10

a

20

b

20

c

40

d

25
t 15

1

2

5

6

3

4

Figure 1: Example of a workflow, (red) edge labels represent the size mi , j of
associated data, while (blue) node labels represent their computation weight

wi .

We propose here to use a very simple memory model, which might first seem
unrealistic, but it will indeed prove itself very powerful both to model complex
memory behaviors and to express the peak memory usage. In the proposed
model, at the beginning of the execution of a task i , all input data of i are im-
mediately deleted from the memory, while all its output data are allocated to the
memory. That is, the total amount of memory Mused needed to store all neces-
sary data is transformed as follows:

Mused ← Mused − Inputs (i)+Outputs (i) .

This model, called the SIMPLEDATAFLOWMODEL, is extremely simple, and in
particular does not allow a task to have both its inputs and outputs simultane-
ously in memory. However, we will see right below that it is expressive enough
to emulate other complex and more realistic behaviors.

Before considering other memory models, we start by defining some terms
and by comparing sequential schedules and parallel executions of the graph. We
say that the data associated to the edge (i , j) is active at a given time if the exe-
cution of i has started but not the one of j . This means that this data is present
in memory. A sequential schedule S of a DAG G is defined by an order σ of its
tasks. The memory used by a sequential schedule at a given time is the sum of
the sizes of the active data. The peak memory of such a schedule is the maxi-
mum memory used during its execution, which is given by:

Mpeak(σ) = max
i

∑
j s.t. σ(j)≤σ(i)

Outputs
(

j
)− Inputs

(
j
)

where the set { j s.t. σ(j) ≤ σ(i)} represents the set of tasks started before task i ,
including itself.

A parallel execution of a graph on p processors is defined by:

• An allocation µ of the tasks onto the processors (task i is computed on
processor µ(i));

RR n° 9231

Limiting DAG memory footprint 7

• The starting times σ of the tasks (task i starts at time σ(i)).

As usual, a valid schedule ensures that data dependences are satisfied (σ(j) ≥
σ(i)+wi whenever (i , j) ∈ E) and that processors compute a single task at each
time step (if µ(i) = µ(j), then σ(j) ≥ σ(i)+ wi or σ(i) ≥ σ(j)+ w j). Note that
when considering parallel executions, we assume that all processors use the
same shared memory, whose size is limited.

A very important feature of the proposed SIMPLEDATAFLOWMODEL is that
there is no difference between sequential schedules and parallel executions as
far as memory is concerned, which is formally stated in the following theorem.

Theorem 1. For each parallel execution (µ,σ) of a DAG G, there exists a sequential
schedule with equal peak memory.

Proof. We consider such a parallel execution, and we build the corresponding
sequential schedule by ordering tasks in non decreasing starting time. Since in
the SIMPLEDATAFLOWMODEL, there is no difference in memory between a task
being processed and a completed task, the sequential schedule has the same
amount of used memory as the parallel execution after the beginning of each
task. Thus, they have the same peak memory.

This feature will be very helpful when computing the maximum memory of
any parallell execution, in Section 4: thanks to the previous result, it is equivalent
to computing the peak memory of a sequential schedule.

3.2 Emulation of other memory models

3.2.1 Classical workflow model

As we explained above, our model does not allow inputs and outputs of a
given task to be in memory simultaneously. However, this is a common be-
havior, and some studies, such as [20], even consider that in addition to inputs
and outputs, some temporary data mtemp

i has to be in memory when process-

ing task i . The memory needed for its processing is then Inputs (i)+mtemp
i +

Outputs (i). Although this is very different to what happens in the proposed SIM-
PLEDATAFLOWMODEL, such a behavior can be simply emulated, as illustrated
on Figure 2. For each task i , we split it into two nodes i1 and i2. We transform
all edges (i , j) in edges (i2, j), and edges (k, i) in edges (k, i1). We also add an
edge (i1, i2) with an associated data of size Inputs (i)+mtemp

i +Outputs (i). Task
i1 represents the allocation of the data needed for the computation, as well as
the computation itself, and its work is thus wii = wi . Task i2 stands for the deal-
location of the input and temporary data and has work wi2 = 0.

3.2.2 Shared output data

Our model considers that each task produces a separate data for each of its suc-
cessors. However, it may well happen that a task i produces an output data d , of

RR n° 9231

Limiting DAG memory footprint 8

i

wi = 10, mtemp
i = 1

2 3
i1

10

i2

0
2 6 3

Figure 2: Transformation of a task as in [20] (left) to the
SIMPLEDATAFLOWMODEL (right).

size mshared
i ,d , which is then used by several of its successors, and is freed after the

completion of its last successor. The output data is then shared among succes-
sors, contrarily to what is considered in the SIMPLEDATAFLOWMODEL. Any task
can then produce several output data, some of which can be shared among sev-
eral successors. Again, such a behavior can be emulated in the proposed model,
as illustrated on Figure 3.

i

j

k

mshared
i ,d i

j

k

id

mshared
i ,d

Figure 3: Transformation of a task i with a single shared output data into
SIMPLEDATAFLOWMODEL. The plain (red) edge carries the shared data size,

while dashed (black) edges have null size.

Such a task i with a shared output data will first be transformed as follows.
For each shared output data d of size mshared

i ,d , we add a task id which repre-
sents the deallocation of the shared data d (and thus has null computation time
wid). An edge of size mshared

i ,d is added between i and the deallocation task id :

mi ,id = mshared
i ,d . Data dependence to a successor j sharing the output data d is

represented by an edge (i , j) with null data size (mi , j = 0) (if it does not already
exist, due to an other data produced by i and consumed by j). Finally, for each
such successor j , we add an edge of null size (j , id) to ensure that the shared data
will be freed only when it has been used by all the successors sharing it. The fol-
lowing result states that after this transformation, the resulting graph exhibits a
similar memory behavior.

Theorem 2. Let G be a DAG with shared output data, and G ′ its transformation
into SIMPLEDATAFLOWMODEL. If there exists a schedule S of G with peak mem-
ory M, then there exists a schedule S ′ of G ′ with peak memory M. Conversely, if
there exists a schedule S ′ of G ′ with peak memory M ′, then there exists a schedule
S of G with peak memory M ≤ M ′.

Proof. We consider a schedule S which executes the graph G with a memory of
size M . We transform S into a schedule S ′ of G . When S schedules a node i
of G , S ′ schedules the same node i of G ′. When S frees a shared data d output
by node i , S ′ schedules node id . We now show by induction on S that S ′ is a

RR n° 9231

Limiting DAG memory footprint 9

valid schedule on G ′ and that both schedules use the same amount of memory
at any time. Suppose S ′ valid for the first k operations of S , and consider the
following one. When S schedules a node i of G , S ′ schedules the same node
of G ′. Its predecessors are then completed. The sum of the sizes of the output
data of i in G and G ′ are equal, as when the transformation removes a shared
output data, it adds a single edge of the same size, along with null-weight edges.
If a shared data d output by a task j is freed in S , then task jd is executed in S ′,
which reduces the memory consumption by the size of the data d . Therefore,
S and S ′ have the same memory consumption for a deallocation node. By
induction, we get the result.

Now, suppose that there exists a schedule S ′ of G ′ with a peak memory
equal to M ′. We first transform S ′ in order to schedule all deallocation nodes
id as soon as possible, that is, right after the processing of their last predeces-
sor. The obtained schedule S ′′ has a memory peak M not larger than M ′ as we
only free memory earlier. We then transform S ′′ into a schedule S of G . When
S ′′ schedules a node i of G ′ which is not a deallocation node, S schedules the
same node i of G . When S ′′ schedules a deallocation node id of G ′, S frees the
shared data d output by node i . As in the previous case, we now show by in-
duction on S ′′ that S is a valid schedule on G and that both schedules use the
same amount of memory at any time. Suppose S valid for the first k operations
of S ′′, and consider the following one. If S ′′ schedules a node i of G ′ which
is not a deallocation node, S schedules the same node of G . As previously, the
precedence is respected, and the memory consumed is the same in both sched-
ules. If S ′′ schedules a deallocation node id of G ′, S frees the shared data d
output by task i . The nodes consuming this data are completed, so this opera-
tion is authorized, and the memory consumption is reduced by the size of data
d in both cases. By induction, we get the result.

Note that there may exist a schedule S ′ of the transformed graph G ′ with
peak larger than M , the largest memory peak of any schedule S of the original
graph G , as it is possible to schedule all deallocation vertices id at the very end
of the schedule. Then, all shared data stays in memory until the very end of the
computation, which is not realistic. Hence, the computation of the maximum
memory peak has a different complexity when using shared data, as highlighted
in Section 4.3. However, when considering memory minimization, which is the
main goal in this paper, deallocation vertices id must be processed as soon as
possible, which corresponds to what happens with shared data.

3.2.3 Pebble game

One of the pioneer work dealing with the memory footprint of a DAG execution
has been conducted by Sethi [21]. He considered what is now recognized as a
variant of the PEBBLEGAME model. We now show that the proposed SIMPLE-
DATAFLOWMODEL is an extension of PEBBLEGAME. The pebble game is defined

RR n° 9231

Limiting DAG memory footprint 10

on a DAG as follows:

• A pebble can be placed at any time on a node with no predecessor;

• A pebble can be placed on a node if all its predecessors have a pebble;

• A pebble can be removed from a node at any time;

• A pebble cannot be placed on a node that has been previously pebbled.

The objective is to pebble all the nodes of a given graph, using a minimum num-
ber of pebbles. Note that the pebble of a node should be removed only when all
its successors are pebbled. This is the main difference with our model, where
a node produces a different output data for each of its successors. Thus, the
PEBBLEGAME model ressembles the model with shared output data presented
above, with all data of size one. We thus apply the same transformation and
consider that a pebble is a shared output data used for all the successors of a
node. In addition, we add a fictitious successor to all nodes without successors.
Hence, the pebble placed on such a node can be considered as the data con-
sumed by this successor. Then, we are able to prove that the memory behavior
of the transformed graph under SIMPLEDATAFLOWMODEL corresponds to the
pebbling of the original graph, as outlined by the following theorem.

Theorem 3. Let P be a DAG representing an instance of a PEBBLEGAME problem,
and G its transformation into SIMPLEDATAFLOWMODEL. There exists a pebbling
scheme P of P using at most B pebbles if and only if there exists a schedule S ′ of
G ′ with peak memory at most B.

Proof. In the PEBBLEGAME model, we can consider that every node outputs a
single data of size one consumed by all its successors. Recall that for a node
with no successor, the transformation acts as if a fictitious successor existed for
this node. Therefore, the transformation adds one node for each node u in the
graph P . In order to clarify whether we consider graph P or graph G , we call u1

the node of G that corresponds to the node u of P and u2 the node of G that
corresponds to the data output by node u of P . If u has no successor in P , we
denote fu the fictitious node added in G , successor of u1 and predecessor of u2.
See Figure 4 for an illustration.

First, we consider a traversal P which traverses P with B pebbles. We trans-
form P into a schedule S of G : when P pebbles a node u of P , S executes the
node u1 of G , when P removes a pebble from a node u of P , S executes the
node u2 of G . If u has no successor in P , S first executes fu then u2. We now
show by induction on P that S is a valid schedule on G . Suppose S valid for
the first k operations of P , and consider the following one. If P pebbles a new
node u, this means that u1 was not executed before by S , as recomputations are
forbidden, and that all the predecessors v i of u have been pebbled by P , so that
the nodes v i

1 have been executed by S in G . These nodes v i
1 correspond to the

RR n° 9231

Limiting DAG memory footprint 11

u

v

w

u1

v1

fv

v2

w1

fw

w2

u2
1

1

1

Figure 4: Transformation of an instance of the PEBBLEGAME problem into an
instance of SIMPLEDATAFLOWMODEL.

predecessors of u1 in G , so the execution of u1 is valid. If P unpebbles a node u,
this means that its successors v i have already been pebbled. Indeed, otherwise,
as recomputations are not allowed, P would not be a valid schedule. Therefore,
as the predecessors of u2 in G are u1 and the v i

1, these nodes have been executed
by S , so the execution of u2 is valid. If u has no successor in P , then the execu-
tions of fu and then of u2 are valid. Finally, S is a valid schedule. At any time,
the memory used by S is equal to the numbers of nodes u of P such that u1 is
executed but not u2. This is equal to the number of pebbles required by P , so
S is a valid schedule of G using a memory of size B .

Second, we consider a schedule S of G with a peak memory equal to B . We
transform S into a traversal P of P : when S executes a node u1, P pebbles
the node u, and when S executes a node u2, P removes the pebble of node u.
Nothing is done when S executes a node fu . We now show by induction on S

that P is a valid traversal of P . Suppose P valid for the first k operations of S ,
and consider the following one. Suppose first that S executes a node u1. Let
v i be the predecessors of u in P . By the precedence constraints, we know that
the nodes v i

1 have already been executed by S , and that the nodes v i
2 have not.

Therefore, P has pebbled the nodes v i , but have not unpebbled them. So P is
allowed to pebble u. Now, suppose that S executes a node u2. The node u1 has
already been pebbled by the precedence constraints, so removing this pebble
is a valid move. Therefore, P is a valid traversal of P . As above, at any time,
the memory used by S is equal to the numbers of nodes u of P such that u1 is
executed but not u2. This is equal to the numbers of pebbles used by P .

3.3 Peak memory minimization in the proposed model

The emulation of the PEBBLEGAME problem, as proposed above, allows us to
formally state the complexity of minimizing the memory of a DAG, as expressed
by the following theorem.

Theorem 4. Deciding whether an instance of SIMPLEDATAFLOWMODEL can be
scheduled with a memory of limited size is NP-complete.

RR n° 9231

Limiting DAG memory footprint 12

Proof. The problem of deciding whether an instance of PEBBLEGAME can be
traversed with a given number of pebbles is NP-complete [21]. Then, thanks
to Theorem 3, we know that an instance of PEBBLEGAME can be transformed
into an instance of SIMPLEDATAFLOWMODEL (with twice as many nodes), which
then inherits of this complexity result.

4 Computing the maximal peak memory

In this section, we are interested in computing the maximal peak memory of a
given DAG G = (V ,E), that is, the largest peak memory that can be reached by
a sequential schedule of G . Our objective is to check whether a graph can be
safely executed by a dynamic scheduler without exceeding the memory bound.
We first focus on the model presented in Section 3.1. Then, in Section 4.3, we
study the case of shared data.

We first define the notion of topological cut. We recall that G contains a
single source node s and a single sink node t .

Definition 1. A topological cut (S,T) of a DAG G is a partition of G in two sets of
nodes S and T such that s ∈ S, t ∈ T , and no edge is directed from a node of T to
a node of S. An edge (i , j) belongs to the cut if i ∈ S and j ∈ T . The weight of a
topological cut is the sum of the weights of the edges belonging to the cut.

For instance, in the graph of Figure 1, the cut ({s, a,b}, {c,d , t }) is a topological
cut of weight 11. Note that this cut would not be a topological cut if the edge
(d , a) was present in the graph. In the SIMPLEDATAFLOWMODEL, the memory
used at a given time is equal to the sum of the sizes of the active output data,
which depends solely on the set of nodes that have been executed or initiated.
Therefore, the maximal peak memory of a DAG is equal to the maximum weight
of a topological cut.

Definition 2. The MAXTOPCUT problem consists in computing a topological cut
of maximum weight for a given DAG.

We first prove that this problem is polynomial, by providing a linear program
over the rationals solving it, and then propose an explicit algorithm which does
not rely on linear programming.

4.1 Complexity of the problem

The MAXTOPCUT problem belongs to the family of problems in which we are
interested in computing a weighted cut in a graph that optimizes some quantity.

The problem of finding a cut of minimum weight (when edge weights
are nonnegative) has been thoroughly studied in the literature, and many
polynomial-time algorithms have been proposed to solve it, both for undirected
and directed graphs [22]. On the opposite, computing a maximal cut is in gen-
eral much more difficult. It is well-known that this problem is NP-complete on

RR n° 9231

Limiting DAG memory footprint 13

general graphs, either undirected or directed [23], and with unit weights [24].
In 2011, Lampis et al. even extended this result to DAGs [25], which are our
scope of interest. However, our problem is more restrictive, as we are only in-
terested in maximal topological cuts on DAGs, which means that all the edges of
the cut have the same direction. As illustrated above on Figure 1, this constraint
heavily reduces the set of possible cuts. There are 2n possible cuts for any DAG
with n nodes: the number of ways to partition the nodes in two sets. However,
the number of topological cuts can be much lower: only n − 1 possibilities for
a chain graph on n nodes. The problem of finding a maximal topological cut is
then intuitively easier than finding a maximal cut in a DAG.

We show that MAXTOPCUT is actually polynomial by exhibiting a Linear Pro-
gram solving it. This proof is adapted from [26].

Theorem 5. The problem of finding a maximal topological cut in a DAG is poly-
nomial.

Proof. We consider a DAG G , where each edge (i , j) has a weight mi , j .
We now consider the following linear program P .

max
∑

(i , j)∈E
mi , j di , j (1)

∀(i , j) ∈ E , di , j = pi −p j (2)

∀(i , j) ∈ E , di , j ≥ 0 (3)

ps = 1 (4)

pt = 0. (5)

Intuitively, an integer solution of P corresponds to a valid topological cut
(S,T). The variable pi represents the potential of vertex i : if it is equal to 1 then
i ∈ S and if it is equal to 0 then i ∈ T . Then, di , j is equal to 1 if the edge (i , j)
belongs to the cut (S,T) and 0 otherwise. Finally, the objective function repre-
sents the weight of the cut. However, a general solution of P consists of rational
numbers and not integers, so does not correspond directly to a topological cut.
Nevertheless, we show that for this particular program, a naive rounding algo-
rithm exhibits a topological cut, which can then be computed in polynomial
time.

Note that P is similar to the classic linear program computing the minimal
s − t cut [22]. The only differences are Equation (2) being an equality instead of
an inequality, and the direction of the objective function.

We begin by proving that if G admits a topological cut of weight M , there is
a solution of the linear program for which the objective function equals M . Let
(S,T) be a topological cut of G . For every node i , we define pi = 1 if i ∈ S and
pi = 0 if i ∈ T . Then, for each edge (i , j) belonging to the cut, we have pi −p j = 1
and for the remaining edges (i , j), we have pi −p j = 0. Indeed, no edge can be
directed from T to S by definition. Therefore, we have for all (i , j) ∈ E , di , j =

RR n° 9231

Limiting DAG memory footprint 14

pi −p j ≥ 0 so the proposed valuation satisfies P , and the objective function is
equal to the weight of (S,T).

Now, suppose that P admits a valid rational solution of objective function
M∗. We prove that there exists a topological cut (S∗,T ∗) of G of weight at least
M∗. Note that for any edge (i , j), we have di , j ≥ 0 so pi ≥ p j . Then, every node of
G belongs to a directed path from s to t by definition of s and t . Therefore, every
pi belongs to [0,1]. Indeed, for a given i ∈ V , let v1, v2, . . . , vk be the vertices
of a directed path from i to t , with i = v1 and t = vk . Then, we deduce that
pi = pv1 ≥ pv2 ≥ ·· · ≥ pvk = pt = 0. A similar proof with a path from s to i shows
that pi is not larger than 1.

In order to prove the existence of (S∗,T ∗), we consider a random topological
cut (S,T) defined as follows: draw r uniformly in]0,1[, and let (S,T) be the cut
(Sr ,Tr), with Sr = {i | pi > r } and Tr = { j | p j ≤ r }. This partition is valid as, for
any i ∈ Sr and j ∈ Tr , we have pi > p j , so the edge (j , i) cannot belong to E : this
would imply d j ,i < 0 which violates a constraint of P . Now, let us compute the
expected weight M(S,T) of the cut (S,T). The probability for a given edge (i , j)
to belong to (S,T) is exactly di , j = pi −p j , as r is drawn uniformly in]0,1[and
all pi belong to [0,1]. Therefore, the expected cost of (S,T) is given by

E (M(S,T)) =
∑

(i , j)∈E
mi , j Pr

(
(i , j) belongs to (S,T)

)
=

∑
(i , j)∈E

mi , j di , j = M∗.

Therefore, there exists r ∈]0,1[such that M(Sr ,Tr) ≥ M∗, which proves the exis-
tence of a topological cut (S∗,T ∗) of weight at least M∗. Note that an algorithm
could then find such a topological cut by computing M(Spi ,Tpi) for every i ∈V .

We now show that it is not necessary, as, if M∗ is the optimal objective value,
then the weight of any cut (Sr ,Tr) is equal to M∗. Note that no cut (Sr ,Tr) can
have a weight larger than M∗ by definition. So, for all r , we have M(Sr ,Tr) ≤ M∗.
As E (M(S,T)) = M∗, we conclude that Pr(M(S,T) < M∗)) = 0. It remains to show
that no single value of r can lead to a suboptimal cut. Assume by contradiction
that there exists r0 ∈]0,1[such that M(Sr0 ,Tr0) < M∗. Let r1 = min

{
pi | pi > r0

}
,

which is defined as pt = 1 > r0, and consider any r ∈ [r0,r1[. For every i ∈ V , if
pi > r0 then pi ≥ r1 > r , and if pi ≤ r0 then pi ≤ r , so, by definition of Sr and Tr ,
we have (Sr ,Tr) = (Sr0 ,Tr0). Therefore, we get

Pr
(
M(S,T) < M∗)

)≥ Pr
(
(S,T) = (Sr0 ,Tr0)

)≥ r1 − r0 > 0.

This inequality contradicts the fact that Pr(M(S,T) < M∗)) = 0.
To conclude, a maximal topological cut can be computed by first solving the

linear program P in rationals, then selecting any cut (Sr ,Tr), for instance by
taking r = 1/2.

RR n° 9231

Limiting DAG memory footprint 15

4.2 Explicit algorithm

In the previous section, we have exhibited a linear program solving the MAX-
TOPCUT problem. We are now interested in an explicit polynomial algorithm,
which allows us to have a different approach on the problem, and to solve it
without relying on a linear program solver. We first consider a problem related
to the dual version of MAXTOPCUT, which we call MINFLOW:

Definition 3. The MINFLOW problem consists in computing a flow of minimum
value where the amount of flow that passes through an edge is not smaller than
the edge weight.

We recall that the value of a flow f is defined as
∑

j , (s, j)∈E
fs, j . In this problem

the edge weights do not represent capacities as in a traditional flow, but rather
demands: the minimum flow must be at least as large as these demands on all
edges1. We recall that the MAXFLOW problem consists in finding a flow of maxi-
mum value where the amount of flow that passes through each edge is not larger
than the edge weight. Its dual version, the MINCUT problem, consists in com-
puting the st-cut (S,T) of minimum weight, where s ∈ S and t ∈ T . Note that this
cut may not be topological. See [27, Chapter 26] for more details. The MINFLOW

problem is described by the following linear program.

min
∑

j | (s, j)∈E
fs, j

∀ j ∈V \ {s, t },

(∑
i | (i , j)∈E

fi , j

)
−

(∑
k | (j ,k)∈E

f j ,k

)
= 0

∀(i , j) ∈ E , fi , j ≥ mi , j .

We propose in Algorithm 1 an explicit algorithm to resolve the MAXTOPCUT

problem. A similar algorithm for a very close problem has been proposed in [28].
We first need an upper bound fmax on the value of the optimal flow solving the
dual MINFLOW problem on G . We can take for instance fmax = 1+∑

(i , j)∈E mi , j .
The algorithm builds a flow f with a value at least fmax on all edges. Intuitively,
the flow f can be seen as an optimal flow f ∗ solving the MINFLOW problem, on
which has been added an arbitrary flow f +. In order to compute f ∗ from f , the
algorithm explicitly computes f +, by solving a MAXFLOW instance on a graph
G+. Intuitively, this step consists in maximizing the flow that can be subtracted
from f ∗. Finally, the maximum topological cut associated to the flow f ∗ is ac-
tually equal to the minimum st-cut of G+ that can be deduced from the residual
network induced by f +. We recall that the residual network of G+ induced by f +

contains each edge (i , j) such that either (i , j) ∈ E and f +
i , j < m+

i , j or (j , i) ∈ E and

f +
j ,i > 0, as defined for instance in [28].

1This must not be mistaken with the demands of vertices (i.e., the value of the consumed flow)
as in the Minimum Cost Flow problem.

RR n° 9231

Limiting DAG memory footprint 16

The complexity of Algorithm 1 depends on two implementations: how we
compute the first flow f and how we solve the MAXFLOW problem. The rest
is linear in the number of edges. Computing the starting flow f can be done
by looping over all edges, finding a simple path from s to t containing a given
edge, and adding a flow going through that path of value fmax. Note that this
method succeeds because the graph is acyclic, so every edge is part of a sim-
ple path (without cycle) from s to t . This can be done in O(|V ||E |). Solving
the MAXFLOW problem can de done in O

(|V ||E | log
(|V |2/|E |)) using Goldberg

and Tarjan’s algorithm [29]. Therefore, Algorithm 1 can be executed in time
O

(|V ||E | log
(|V |2/|E |)).

Algorithm 1: Resolving MAXTOPCUT on a DAG G

1 Construct a flow f for which ∀(i , j) ∈ E , fi , j ≥ fmax, where
fmax = 1+∑

(i , j)∈E mi , j

2 Define the graph G+ equal to G except that m+
i , j = fi , j −mi , j

3 Compute an optimal solution f + to the MAXFLOW problem on G+

4 S ← set of vertices reachable from s in the residual network induced by
f + ; T ← V \ S

5 return the cut (S,T)

Theorem 6. Algorithm 1 solves the MAXTOPCUT problem.

Proof. We start by showing that the cut (S,T) is a topological cut. We have s ∈ S
and t ∈ T by definition. We now show that no edge exist from T to S in G . By
definition of S, no edge exist from S to T in the residual network, so if there
exists an edge (j , i) from T to S in G , it verifies f +

j ,i = 0. We then show that every

edge of G has a positive flow going through it in f +, which proves that there is
no edge from T to S.

Assume by contradiction that there exists an edge (k,`) such that f +
k,` is null.

Let Sk ⊂V be the set of ancestors of k, including k. Then, Sk contains s but not
t nor ` as G is acyclic. Denoting Tk = V \ Sk , we get that (Sk ,Tk) is a topological
cut as no edge goes from Tk to Sk by definition. The weight of the cut (Sk ,Tk) is
at most the value of the flow f , which is | f |. As f +

k,` = 0, the amount of flow f +

that goes through this cut is at most | f |− fk,` ≤ | f |− fmax. Therefore, the value of
f + verifies | f +| ≤ | f |− fmax.

Now, we exhibit a contradiction by computing the amount of flow f + pass-
ing through the cut (S,T). By definition of (S,T), all the edges from S to T are
saturated in the flow f +: for each edge (i , j) ∈ E with i ∈ S and j ∈ T , we have
f +

i , j = m+
i , j = fi , j −mi , j . The value of the flow f + is equal to the amount of flow

going from S to T minus the amount going from T to S. Let ES,T (resp. ET,S)
be the set of edges between S and T (resp. T and S). We have the following

RR n° 9231

Limiting DAG memory footprint 17

(in)equalities:

| f +| =
(∑

(i , j)∈ES,T

f +
i , j

)
−

(∑
(j ,i)∈ET,S

f +
j ,i

)

≥
(∑

(i , j)∈ES,T

(
fi , j −mi , j

)) −
(∑

(j ,i)∈ET,S

f j ,i

)

≥ | f | −
(∑

(i , j)∈ES,T

mi , j

)
> | f | − fmax.

Therefore, we have a contradiction on the value of | f +|, so no edge exists from T
to S and (S,T) is a topological cut.

Now, we define the flow f ∗ on G , defined by f ∗
i , j = fi , j − f +

i , j ≥ mi , j . We show
that f ∗ is an optimal solution to the MINFLOW problem on G . It is by definition a
valid solution as f +

i , j ≤ m+
i , j = fi , j −mi , j so f ∗

i , j = fi , j − f +
i , j ≥ fi , j +mi , j − fi , j = mi , j .

Let g∗ be an optimal solution to the MINFLOW problem on G and g+ be the
flow defined by g+

i , j = fi , j − g∗
i , j . By definition, g∗

i , j ≥ mi , j so g+
i , j ≤ fi , j −mi , j =

m+
i , j . Furthermore, we know that g∗

i , j ≤ fmax because there exists a flow, valid
solution of the MINFLOW problem, of value

∑
(i , j)∈E mi , j ≤ fmax : simply add for

each edge (i , j) a flow of value mi , j passing through a path from s to t containing
the edge (i , j). Then, we have g∗

i , j ≤ fmax ≤ fi , j so g+
i , j ≥ 0 and g+ is therefore a

valid solution of the MAXFLOW problem on G+, but not necessarily optimal.
So the value of g+ is not larger than the value of f + by optimality of f +, and

therefore, the value of f ∗ is not larger than the value of g∗. Finally, f ∗ is an
optimal solution to the MINFLOW problem on G .

Now, we show that (S,T) is a topological cut of maximum weight in G . Let
(S0,T0) be any topological cut of G . The total amount of flow of f ∗ passing
through the edges belonging to (S0,T0) is equal to the value of f ∗. As for all
(i , j) ∈ E we have f ∗

i , j ≥ mi , j , the weight of the cut (S0,T0) is not larger than the
value of f ∗. It remains to show that this upper bound is reached for the cut (S,T).
By the definition of (S,T), we know that for (i , j) ∈ (S,T), we have f +

i , j = m+
i , j =

fi , j −mi , j . Therefore, on all these edges, we have f ∗
i , j = fi , j − f +

i , j = mi , j , so the
value of the flow f ∗ is equal to the weight of (S,T).

Therefore, (S,T) is an optimal topological cut.

4.3 Maximal peak memory with shared data

In this section, we focus on the model allowing shared data, as proposed in Sec-
tion 3.2.2: a task i may produce a data which is used by multiple successors
j1, . . . , jk . This data is kept in memory until all successors are completed, and
deleted when the last successor is completely processed. Surprisingly, using
such shared data largely complexifies the problem. Note that, as stated in Sec-
tion 3.2.2, the transformation to the SIMPLEDATAFLOWMODEL overestimates the

RR n° 9231

Limiting DAG memory footprint 18

maximal peak memory. This intuitively explains why the complexity of comput-
ing maximal peak memory with shared data is different from the complexity of
the same problem in SIMPLEDATAFLOWMODEL. Nevertheless, as the main ob-
jective of the paper is to lower the maximum peak memory when processing a
task graph, having an upper bound on this peak memory is sufficient: we will
aim at limiting the maximum peak memory of the transformed graph without
shared data, which guarantees that the maximum peak memory of the original
graph is also below the prescribed bound.

The following result is inspired and adapted from the work of Touati [19, 30]
which studies the maximum number of registers that may be needed by the exe-
cution of a DAG of instructions on a superscalar processor. The model (and thus
the proof) is quite different, but the conclusion is the same.

Theorem 7. Given a DAG G with shared data and a memory bound M, it is NP-
complete to decide if there exists a sequential schedule of G which uses a memory
larger than, or equal to M.

Proof. Given a sequential schedule, it is easy to simulate it and to check whether
the maximum peak memory is greater than or equal to M ; hence, the problem
belongs to NP.

To prove the completeness, we consider the NP-complete set cover problem
(or minimum cover problem, SP5 in [31]). It consists of a set S and a collection
C = {C1,C2, . . .} of subsets of S, and a positive integer k ≤ |C |. The problem con-
sists in finding in C a cover of size k or less, that is, a subset C ′ ⊆C with |C ′| ≤ k
such that every element of S belongs to at least a member of C ′. C is assumed
to be a cover of size |C |. For readability, we note n = |S| and m = |C |.

We consider an instance of the set cover problem. We first assume that n ≥
m. Otherwise, we add m −n +1 elements in S and a single subset in C which
covers exactly all new elements. We build an instance of the maximum peak
memory problem with shared data. Its graph G contains the following vertices:

• A1, . . . , An , which do not have any predecessors, and produce each a single
output of size 1;

• B1, . . . ,Bm , the predecessors of Bi are the A j ’s such that s j ∈ Ci , and each
Bi produces a single output data of size 1;

• A target vertex T , whose predecessors are all the Bi ’s vertices.

Thus, the output of A j is shared by all the Bi vertices such that s j is covered by
Ci . The proof relies on the following lemma.

Lemma 1. There exists in C a cover of size at most k if and only if there exists a
schedule of G with peak memory at least n +m −k.

If this lemma is true, the NP-completeness of the maximum peak memory
with shared data naturally stems from the NP-completeness of the set cover
problem. We now prove the lemma.

RR n° 9231

Limiting DAG memory footprint 19

First, we consider a solution C ′ of the cover problem with |C ′| ≤ k. We build
a schedule of G as follows:

1. We first schedule all A j vertices, in any order.

2. We then schedule all Bi vertices with i ∉C ′, in any order.

3. We then schedule all remaining Bi vertices, and finally vertex T .

Note that after Step 2, the output of all A j vertices must still reside in memory,
as each of them is used by some Bi for i ∈ C ′, since C ′ covers all elements of S.
Hence, the memory used after Step 2 is n + (m − |C ′|) ≥ n + (m −k). The peak
memory of this schedule is thus not smaller than n +m −k.

Second, we consider a schedule with maximum peak memory M ≥ n+m−k.
We first show how to transform the schedule so that the outputs of all the A j ’s are
in memory when the peak M is reached. Let A (respectively B) be the set of the
A j ’s (resp. the Bi ’s) whose output are in memory when the peak is (first) reached.
Assume that some A j is not in A . Then, there exists at least one Bi ∈ B which
is a successor of A j (otherwise the output of A j would still be in memory). We
build A ′ by adding A j in A as well as all other predecessors of Bi that are not in
A . We also build B′ by removing Bi from B. We consider the schedule that first
processes all the A j ’s, then the nodes of B′. At this moment, the outputs of all
the nodes of A ′ are in memory, including A j , and the memory used is |A ′|+|B′|
which is at least M as |A ′| ≥ |A | + 1 and |B′| = |B| − 1 and |A | + |B| = M . By
repeating this process, we obtain a schedule with peak memory at least n+m−k
which reaches the peak with the outputs of all the A j ’s in memory. Thus, at
least m −k of the Bi outputs are in memory during the peak. The remaining Bi

vertices, whose number is at most k, correspond to a cover of S.

5 Lowering the maximal peak memory

We now move back to the case where no shared data is used. In Section 4, we
have proposed a method to determine the maximal topological cut of a DAG,
which is equal to the maximal peak memory of any (sequential or parallel)
traversal. We now move to the problem of scheduling such a graph within a
bounded memory M . If the maximal topological cut is at most M , then any
schedule of the graph can be executed without exceeding the memory bound.
Otherwise, it is possible that we fail to schedule the graph within the available
memory. One solution would be to provide a complete schedule of the graph
onto a number p of computing resources, which never exceeds the memory.
However, using a static schedule can lead to very poor performance if the task
duration are even slightly inaccurate, or if communication times are difficult to
predict, which is common on modern computing platforms. Hence, our objec-
tive is to let the runtime system dynamically choose the allocation and the pre-
cise schedule of the tasks, but to restrict its choices to avoid memory overflow.

RR n° 9231

Limiting DAG memory footprint 20

In this section, we solve this problem by transforming a graph so that its
maximal peak memory becomes at most M . Specifically, we aim at adding some
new edges to G to limit the maximal topological cut. Consider for example the
toy example of Figure 1. Its maximal topological cut has weight 11 and corre-
sponds to the output data of tasks a and b being in memory. If the available
memory is only M = 10, one may for example add an edge (d , a) of null weight
to the graph, which would result in a maximal topological cut of weight 9 (out-
put data of a and d). Note that on this toy example, adding this edge completely
serializes the graph: the only possible schedule of the modified graph is sequen-
tial. However, this is not the case of realistic, wider graphs. We formally define
the problem as follows.

Definition 4. A partial serialization of a DAG G = (V ,E) for a memory bound
M is a DAG G ′ = (V ,E ′) containing all the edges of G (i.e., E ⊂ E ′), on which the
maximal peak memory is bounded by M.

In general, there exist many possible partial serializations to solve the prob-
lem. In particular, one might add so many edges that the resulting graph can
only be processed sequentially. In order to limit the impact on parallel perfor-
mance of the partial serialization, we use the critical path length as the metric.
The critical path is defined as the path from the source to the sink of the DAG
who has the largest total processing time. By minimizing the increase in criti-
cal path when adding edges to the graph, we expect that we limit the impact on
performance, that is, the increase in makespan when scheduling the modified
graph.

We first show that finding a partial serialization of G for memory M is equiv-
alent to finding a sequential schedule executing G using a memory of size at
most M . On the one hand, given a partial serialization, any topological order is
a valid schedule using a memory of size at most M . On the other hand, given
such a sequential schedule, we can build a partial serialization allowing only
this schedule (by adding edge (i , j) if i is executed before j). Therefore, as find-
ing a sequential schedule executing G using a memory of size at most M is NP-
complete by Theorem 4, finding a partial serialization of G for a memory bound
of M is also NP-complete.

However, in practical cases, we know that the minimum memory needed
to process G is smaller than M . Therefore, the need to find such a minimum
memory traversal adds an artificial complexity to our problem, as it is usually
easy to compute a sequential schedule not exceeding M on actual workflows.
We thus propose the following definition of the problem, which includes a valid
sequential traversal to the inputs.

Definition 5. The MINPARTIALSERIALIZATION problem, given a DAG G = (V ,E),
a memory bound M, and a sequential schedule S of G not exceeding the memory
bound, consists in computing a partial serialization of G for the memory bound
M that has a minimal critical path length.

RR n° 9231

Limiting DAG memory footprint 21

5.1 Complexity analysis

We now show that the MINPARTIALSERIALIZATION problem is NP-complete. As
explained above, this complexity does not come from the search of a sequential
traversal with minimum peak memory. To prove this result, we first propose the
following lower bound on the makespan.

Lemma 2. Let G = (V ,E) be a DAG. Any schedule S of peak memory MS and
makespan TS verifies:

TS MS ≥
∑
i∈V

Outputs (i) wi .

As a corollary, if G has a maximal peak memory of Mmax, then the length T∞ of
its critical path satisfies:

T∞Mmax ≥
∑
i∈V

Outputs (i) wi .

Proof. To prove this result, we consider the function which associates to each
time step the memory usage using schedule S at this time. Its maximum is MS

and it is defined between t = 0 and t = TS , so the area under the curve is upper
bounded by TS MS . Now, for each task, its output data must be in memory
for at least the execution time of this task; hence,

∑
i∈V Outputs (i) wi is a lower

bound of the area under the curve, which proves the result.

We now consider the decision version of the MINPARTIALSERIALIZATION

problem, which amounts to finding a partial serialization of a graph G for a
memory M with critical path smaller than C P , and prove that it is NP-complete.

Theorem 8. The decision version of the MINPARTIALSERIALIZATION problem is
NP-complete, even for independent paths of length two.

Proof. This problem is in NP as given a partial serialization of a graph G for a
memory bound M , one can check in polynomial time that it is valid: simply
compute its maximum peak memory (using Algorithm 1) and the length of its
critical path.

To prove the problem NP-hard, we perform a reduction from 3-PARTITION,
which is known to be NP-complete in the strong sense [31]. We consider the
following instance I1 of the 3-PARTITION problem: let ai be 3m integers and B
an integer such that

∑
ai = mB . We consider the variant of the problem, also

NP-complete, where ∀i ,B/4 < ai < B/2. To solve I1, we need to solve the fol-
lowing question: does there exist a partition of the ai ’s in m subsets A1, . . . , Am ,
each containing exactly 3 elements, such that, for each Ak ,

∑
i∈Ak

ai = B . We
build the following instance I2 of our problem. We define a DAG G with 6m
vertices denoted by ui and vi for 1 ≤ i ≤ 3m. G contains 3m edges, each pair
(ui , vi), which have weights equal to ai . Each vertex ui has a unit work and vi

has a null work. The memory bound is equal to B and the problem asks whether

RR n° 9231

Limiting DAG memory footprint 22

there exists a partial serialization of G for B with critical path length at most m.
A schedule S executing sequentially the pairs ui , vi does not exceed the mem-
ory bound B (not even B/2), so the instance (G ,B ,S) is a valid instance of the
MINPARTIALSERIALIZATION problem.

Assume first that I1 is solvable, let A1, . . . , Am be a solution. We build a solu-
tion to I2. Define the graph G ′ from the graph G with the following additional
edges. For i ∈ [1,m −1], add edges of null weight between every v j for a j ∈ Ai

and every uk for ak ∈ Ai+1. The critical path of G ′ is then equal to m. Let S, S̄ be
a topological partition of the graph G ′, with no edge from S̄ to S, and C be the
set of edges between S and S̄. Assume that C contains an edge (u j , v j): u j ∈ S
and v j ∈ S̄. Then let k be such that a j and ak do not belong to the same set Ai .
There is a directed path connecting either v j to uk or vk to u j , so (uk , vk) ∉ C .
Therefore, as A1, . . . , Am is a solution to I1, the weight of the cut C is equal to B ,
so G ′ solves I2.

Now, assume that I2 is solvable, let G ′ be a partial serialization of G for B
whose critical path has length T∞ at most m. Note that the following bound due
to Lemma 2 is tight on G ′:

T∞Mmax ≥
∑
i∈V

Outputs (i) wi .

Indeed, the length of the critical path verifies T∞ ≤ m, the maximal peak mem-
ory Mmax verifies Mmax ≤ B , for any i ∈ [1,m] ui has a unit weight and vi a null
one and Outputs (ui) = ai . Therefore,

∑
i∈V Outputs (i) wi = mB so T∞ = m and

Mmax = B .
Let U1 be the set of nodes ui without predecessors in G ′. There cannot be

more than three nodes in U1 because the cut (U1,Ū1) would have a weight larger
than B . Assume by contradiction that its weight is less than B . Consider the
graph G ′

1 equal to G ′ except that the nodes in U1 have a null work. The critical
path of G ′

1 is equal to m −1 and in G ′
1, we have

∑
i∈V Outputs (i) wi > mB −B =

(m −1)B , so the bound of Lemma 2 is violated. Therefore, the weight of the cut
(U1,Ū1) is equal to B , so U1 is composed of three vertices that we will denote by
ui1 ,u j1 ,uk1 , and we have ai1 +a j1 +ak1 = B .

Suppose by contradiction that there exists a node ui not in U1 such that there
is no path from vi1 , v j1 or vk1 to ui . Then, (U1 ∪ {ui },V \ (U1 ∪ {ui })) is a topolog-
ical cut of G ′

1 of weight strictly larger than B , which is impossible by definition
of I2. Therefore, in G ′

1, the nodes that have no ancestors are U1 = {ui1 ,u j1 ,uk1 },
and the nodes whose ancestors belong in U1 are {vi1 , v j1 , vk1 }.

We can then apply recursively the same method to determine the second set
U2 of three vertices ui2 ,u j2 ,uk2 without ancestors of positive work in G ′

1. We now
define G ′

2 as equal to G ′
1 except that nodes of U2 have a null work, and continue

the induction.
At the end of the process, we have exhibited m disjoint sets of three elements

ai that each sum to B , so I1 is solvable.

RR n° 9231

Limiting DAG memory footprint 23

5.2 Finding an optimal partial serialization through ILP

We present in this section an Integer Linear Program solving the MINPARTIALSE-
RIALIZATION problem. This formulation combines the linear program determin-
ing the maximum topological cut and the one computing the critical path of a
given graph.

We consider an instance of the MINPARTIALSERIALIZATION problem, given
by a DAG G = (V ,E) with weights on the edges, and a memory limit M . The
sequential schedule S respecting the memory limit is not required. By conven-
tion, for any (i , j) 6∈ E , we set mi , j = 0.

We first consider the ei , j variables, which are equal to 1 if edge (i , j) exists in
the associated partial serialization, and to 0 otherwise.

∀(i , j) ∈V 2, ei , j ∈ {0,1} (6)

∀(i , j) ∈ E , ei , j = 1. (7)

We need to ensure that no cycle has been created by the addition of edges.
For this, we compute the transitive closure of the graph: we enforce that the
graph contains edge (i , j) if there is a path from node i to node j . Then, we
know that the graph is acyclic if and only if it does not contain any self-loop.
This corresponds to the following constraints:

∀(i , j ,k) ∈V 3, ei ,k ≥ ei , j +e j ,k −1 (8)

∀i ∈V , ei ,i = 0. (9)

Then, we use the flow variables fi , j , in a way similar to the formulation of the
MINFLOW problem. If ei , j = 1, then fi , j ≥ mi , j , and fi , j is null otherwise. Now,
the flow going out of s is equal to the maximal cut of the partial serialization,
see the proof of Theorem 6, so we ensure that it is not larger than M . Now, note
that each fi , j can be upper bounded by M without changing the solution space.
Therefore, Equation (11) ensures that fi , j is null if ei , j is null, without adding
constraints on the others fi , j . This leads to the following inequalities:

∀(i , j) ∈V 2, fi , j ≥ ei , j mi , j (10)

∀(i , j) ∈V 2, fi , j ≤ ei , j M (11)

∀ j ∈V \ {s, t },
∑
i∈V

fi , j −
∑

k∈V
f j ,k = 0 (12)∑

j∈V
fs, j ≤ M . (13)

This set of constraints defines the set of partial serializations of G with a max-
imal cut at most M . It remains to compute the length of the critical path of the
modified graph, in order to formalize the objective. We use the variables pi to
represent the top-level of each task, that is, their earliest completion time in a
parallel schedule with infinitely many processors. The completion time of task

RR n° 9231

Limiting DAG memory footprint 24

s is ws , and the completion time of another task is equal to its processing time
plus the maximal completion time of its predecessors:

ps ≥ ws

∀(i , j) ∈V 2, p j ≥ w j +pi ei , j .

The previous equation is not linear, so we transform it by using W , the sum of
the processing times of all the tasks and the following constraints.

∀i ∈V , pi ≥ wi (14)

∀(i , j) ∈V 2, p j ≥ w j +pi −W (1−ei , j). (15)

If ei , j is null, then Equation (15) is less restrictive than Equation (14) as pi < W ,
which is expected as there is no edge (i , j) in the graph. Otherwise, we have
ei , j = 1 and the constraints on p j are the same as above.

Finally, we define the objective as minimizing the top-level of t , which is the
critical path of the graph.

Minimize pt under Equations (6) to (15). (16)

We denote P the resulting ILP. We now prove that there exists a solution to
P of objective at most L if and only if there exists a partial serialization PS of G
with memory bound M of critical path length at most L.

Consider a solution of P of objective cost at most L. Let PS be the directed
graph composed of the edges (i , j) for every i , j ∈ V 2 such that ei , j = 1. The
weight of such edges is mi , j . We can show by induction on the size of a potential
cycle that PS is acyclic. No self-loop can exist as all ei ,i are null. If a cycle con-
tains more than one edge, Equation (8) ensures the existence of a strictly smaller
cycle, while Equation (9) forbids self-loops. Then, the equations concerning fi , j

model the MINFLOW problem already studied, and ensure that the minimum
flow is smaller than M . The only difference being that each fi , j is bounded by
M , which is already the case in any solution. Finally, consider a critical path
(s, i1, i2, . . . , ik , t) of PS. The equations concerning the variables pi ensure that
pt ≥ ws +wi1 + ·· ·+wik +wt . Therefore, L is not smaller than the critical path
length. Therefore, PS is a partial serialization for M of critical path length at
most L.

Now, consider a partial serialization PS of G for M , of critical path length
at most L. We set ei , j = 1 if and only if there exists a path from i to j in PS.
This respects the acyclicity constraints as PS is a DAG by definition. The maxi-
mum peak memory of PS is at most M , therefore the maximum cut of the graph
induced by the variables ei , j is at most M , so there exists a valuation of the vari-
ables fi , j satisfying the flow constraints. Finally, we set the variables pi equal to
the top-level of task i in PS:

∀i ∈V , pi = wi +max
j∈V

{
e j ,i p j

}
.

This valuation satisfies the last constraints and the objective function is then
equal to L.

RR n° 9231

Limiting DAG memory footprint 25

5.3 Heuristic strategies to compute a partial serialization

We now propose several heuristics to solve the MINPARTIALSERIALIZATION

problem. These heuristics are based on a same framework, detailed in Algo-
rithm 2. The idea of the algorithm, inspired by [8], is to iteratively build a par-
tial serialization G ′ from G . At each iteration, the topological cut of maximum
weight is computed via Algorithm 1. If its weight is at most M , then the algo-
rithm terminates, as the obtained partial serialization is valid. Otherwise, an-
other edge has to be added in order to reduce the maximum peak memory. We
rely on a subroutine in order to choose which edge to add. In the following, we
propose four possible subroutines. If the subroutine succeeds to find an edge
that does not create a cycle in the graph, we add the chosen edge to the current
graph. Otherwise, the heuristic fails. Such a failure may happen if the previous
choices of edges have led to a graph which is impossible to schedule without
exceeding the memory.

Algorithm 2: Heuristic for MINPARTIALSERIALIZATION

Input: DAG G , memory bound M , subroutine A

Output: Partial serialization of G for memory M
1 while G has a topological cut of weight strictly larger than M do
2 Compute a topological cut C = (S,T) of maximum weight using

Algorithm 1
3 if the call A (G , M ,C) returns (uT ,uS) then
4 Add edge (uT ,uS) of weight 0 to G
5 else
6 return Failure

7 return the modified DAG G

We propose four possibilities for the subroutine A (G , M ,C), which selects an
edge to be added to G . They all follow the same structure: two vertices uS and
uT are selected from the maximum cut C = (S,T), where uS ∈ S and uT ∈ T and
no path exists from uS to uT . The returned edge is then (uT ,uS). For instance, in
the toy example of Figure 1, only two such edges can be added: (c,b) and (d , a).
Note that adding such an edge prevents C from remaining a valid topological
cut, thus it is likely that the weight of the new maximum topological cut will be
reduced. Note also that adding such an edge cannot create a cycle.

We first recall some classical attributes of a graph:
• The length of a path is the sum of the work of all the nodes in the path,

including its extremities;
• The bottom-level of an edge (i , j) or a node i is the length of the longest

path from i to t (the sink of the graph);
• The top-level of an edge (i , j) or of a node j is the length of the longest

path from s (the source of the graph) to j , excluding the work of j .

RR n° 9231

Limiting DAG memory footprint 26

We now present the four subroutines. The MINLEVELS heuristic, as well as
the two following ones, considers the set P of vertex couples (j , i) ∈ T ×S such
that no path from i to j exist. Note that P corresponds to the set of candidate
edges that might be added to G . Then, it returns the couple (uT ,uS) ∈ P that
optimizes a given metric. If P is empty, then the subroutine fails. MINLEVELS

tries to minimize the critical path of the graph obtained when adding the new
edge, by preventing the creation of a long path from s to t . Thus, it returns the
couple (j , i) ∈ P that minimizes top_level(j)+bottom_level(i).

The MAXSIZE heuristic aims at minimizing the weight of the next topolog-
ical cut. Thus, it selects a couple (j , i) such that outgoing edges of i and in-
coming edges of j contribute a lot to the weight of the current cut. Formally, it
returns the couple (j , i) ∈ P that maximizes

∑
k∈T mi ,k +

∑
k ′∈S mk ′, j (considering

that mi , j = 0 if there is no edge from i to j).
The MAXMINSIZE heuristic is a variant of the previous heuristic and pur-

sues the same objective. However, it selects a couple of vertices which both
contribute a lot to the weight of the cut, by returning the couple (j , i) ∈ P that
maximizes min

(∑
k∈T mi ,k ,

∑
k ′∈S mk ′, j

)
.

Finally, the last heuristic is the only one that is guaranteed to never fail. To
achieve this, it relies on a sequential schedule S of the graph that does not ex-
ceed the memory M . S is defined by a functionσ, whereσ(i) equals the starting
time of task i in S . Such a sequential schedule needs to be precomputed, and
we propose a possible algorithm below.

Given such a sequential schedule S , this heuristic, named RESPECTORDER,
always adds an edge (j , i) which is compatible with S (i.e., such that σ(j) ≤
σ(i)), and which is likely to have the smallest impact on the set of valid schedules
for the new graph, by maximizing the distance σ(i)−σ(j) from j to i in S . Let
uT be the node of T which is the first to be executed in S , and uS be the node of
S which is the last to be executed in S . Note that uS must be executed after uT

in S , because otherwise, the peak memory of S will be at least the weight of C
which is a contradiction. The returned couple is then (uT ,uS). Note that no path
from uS to uT can exist in the graph if all the new edges have been added by this
method. Indeed, all the added edges respect the order S by definition. Then,
no failure is possible, but the quality of the solution highly depends on the input
schedule S .

5.4 Computing a sequential schedule for MINLEVELS

In this section we discuss the generation of the schedule S , which is used as an
input for heuristic RESPECTORDER. By definition, this sequential schedule exe-
cutes the DAG G using a memory at most M . As proven in Theorem 4, deciding if
such a schedule exists is NP-complete. However, most graphs describing actual
workflows exhibit a high level of parallelism, and the difficulty is not in finding
a sequential schedule fitting in memory. As a consequence, we assume that a
Depth First Search (DFS) schedule, which always completes a parallel branch

RR n° 9231

Limiting DAG memory footprint 27

before starting a new one, never exceeds the memory bound.
The problem with a DFS schedule is that applying RESPECTORDER using

such a schedule is likely to produce a graph with a large critical path. For this
objective, a Breadth First Search (BFS) schedule is more appropriate, but it is
not likely to respect the memory bound.

As proposed in [8], a way to solve this problem is to “mix” DFS and BFS
schedules, and tune the proportion of each one to get a schedule respecting the
memory bound but still offering good opportunities for parallelism. Formally,
we define the α-BFSDFS schedule, which depends on the parameter α ∈ [0,1]
and two schedules, a DFS and a BFS. A 0-BFSDFS schedule is equal to the BFS
and a 1-BFSDFS schedule is equal to the DFS. For a given task i , we note DFS(i)
and BFS(i) the rank of task i according to each schedule (i.e., the number of
tasks executed before task i). Then, the α-BFSDFS schedules the tasks of G in
non-decreasing order of

αDFS(i)+ (1−α)BFS(i).

The α-BFSDFS schedule respects the precedence constraints: indeed, if task
i has a successor j , then i is scheduled before j in both BFS and DFS. Then, as
α and 1−α are non-negative, α-BFSDFS schedules i before j .

The idea consists in starting from the 0-BFSDFS schedule, and then to in-
crease the α parameter until the memory of the resulting schedule is not larger
than M . As we assumed that DFS (1-BFSDFS) does not exceed M , this process is
guaranteed to success. In practice, we chose in the experiments to increment α
by step of 0.05 until we find an appropriate schedule.

6 Simulation results

We now compare the performance of the proposed heuristics through simula-
tions on synthetic DAGs. All heuristics are implemented in C++ using the igraph
library [32].

DAGGEN LIGO MONTAGE GENOME

dense sparse

Nb. of test cases 572 572 220 220 220

MINLEVELS 1 12 20 1 0
RESPECTORDER 0 0 0 0 0

MAXMINSIZE 2 5 3 0 0
MAXSIZE 6 12 13 0 17

ILP 26 102

Table 1: Number of failures for each dataset.

RR n° 9231

Limiting DAG memory footprint 28

We generated the first dataset, named DAGGEN, using the DAGGEN soft-
ware [33]. Five parameters influence the generation of these DAGs. The number
of nodes belongs to {25,50,100}. The width, which controls how many tasks may
run in parallel, belongs to {0.2,0.5,0.8}. The regularity, which controls the distri-
bution of the tasks between the levels, belongs to {0.2,0.8}. The density, which
controls how many edges connect two consecutive levels, belongs to {0.2,0.8}.
The jump, which controls how many levels an edge may span, belongs to {1,2,4}.
Combining all these parameters, we obtain a dataset of 108 DAGs. This dataset
has already been used to model workflows in the scheduling literature [34, 35].
We split it in two parts in the representations: the sparse DAGGEN dataset con-
tains the DAGs with a density of 0.2 and the dense DAGGEN dataset contains the
DAGs with a density of 0.8. Indeed, this parameter leads to significant differ-
ences in the results; hence, the distinction.

The three other datasets represent actual applications and have been gen-
erated with the Pegasus Workflow Generator [36]. We consider three different
datasets, named LIGO, MONTAGE, and GENOME, each containing 20 graphs of
100 nodes. We assumed that the memory needed during the execution of a node
is negligible compared to the size of the input and output data, which must be
kept in memory during this process. As some produced data may be shared be-
tween several tasks, we apply the transformation presented in Section 3.

The heuristics have been simulated for eleven memory bounds per DAG,
evenly spread between two bounds. Only half of them are represented in the
plots for space reasons. The smallest bound corresponds to the memory re-
quired for a DFS schedule, while the largest bound corresponds to the maximal
peak memory of the DAG. In the results, a normalized memory of 0 corresponds
to the smallest bound, while 1 corresponds to the largest bound.

One may argue that the range of memory considered can be small for some
graphs, and will then be of little interest. We therefore computed the ratio of
the largest memory considered divided by the smallest for each graph, and we
present the statistic summary in Table 2. We can see that this ratio is very
high for the LIGO and GENOME dataset: finding a partial serialization achiev-
ing the smallest memory bound means that the maximal memory consump-
tion is divided by more than 20 for most of these graphs. This ratio has a me-
dian of 6 for the MONTAGE, which is also a high potential improvement. It is
lower for the sparse DAGGEN dataset, with a median of 2, and especially for the
sparse DAGGEN dataset, with a median of 1.3. Note that 4 DAGs of the DAGGEN

dataset have been discarded because the minimum memory equals the maxi-
mum memory.

In order to assess the performance of the heuristics, we first examine the crit-
ical path length of the obtained partial serialization. We normalize each critical
path by the critical path of the original graph. Therefore, for the largest mem-
ory bounds, the original graph being itself a valid partial serialization, all the
normalized critical paths equal 1. When a method fails to find a solution, we
say that the critical path achieved is infinite. As we focus on the statistical sum-

RR n° 9231

Limiting DAG memory footprint 29

DAGGEN LIGO MONTAGE GENOME

dense sparse

First quartile 1.2 1.7 21.2 5.5 20.1
Median 1.3 2 21.7 6.2 21.5

Third quartile 1.4 2.5 22.1 6.8 22

Table 2: Statistic summary of the ratio maxmem/minmem for each dataset.

mary of the results (rather than on the average), this allows to fairly compare two
heuristics with different success rate, as only the outlier points are not displayed.
Failure rates are reported in Table 1.

We plot the results obtained for the sparse and dense DAGGEN dataset in Fig-
ures 5 and 6 respectively. For each heuristic and memory bound, we display the
108 results as a Tukey boxplot. The box presents the median, the first and third
quartiles. The whiskers extend to up to 1.5 times the box height, and points
outside are plotted individually. The first trend that can be observed, is that, as
expected, the lower the memory bound, the larger the critical path. The differ-
ence between the minimal and the maximal memory bound is smaller for dense
graphs. Therefore, it is logical that the heuristics lead to a larger increase of the
critical path in sparse graphs. Comparing the heuristics, we can see that MIN-
LEVELS clearly outperforms the other ones for any value of the memory bound.
Then, RESPECTORDER obtains better performance than MAXMINSIZE and MAX-
SIZE. Note that no significant difference appears when restricting the dataset to
specific values of the generation parameters. The results are widely spread as
the graphs differ in several parameters. We remark therefore that MINLEVELS is
highly robust considering the variety of the graphs. On this dataset, we have also
computed the optimal solution by using the Integer Linear Program presented
in Section 5. We implemented the ILP using CPLEX with a time limit of one hour
of computation on a standard laptop computer (8 cores Intel i7). When it was
unable to provide a solution within the time limit, we assume a failure. This
happens on sparse graphs, especially for low memory bounds, which is why it is
omitted on Figure 5. The exact failure rates are reported in Table 1.

The second criterion we use to compare the heuristics consists in evaluating
the makespan achieved by a simple scheduling heuristic on the partial serializa-
tion returned by each heuristic on a simulated platform. The chosen scheduling
heuristic is the traditional list-scheduling algorithm, in which whenever a task
terminates, the available task with the highest bottom level is executed. This
corresponds to the well-known HEFT scheduler [37] when adapted to dynamic
schedulers, as for example done in the dmda scheduler of StarPU [2].

We simulated a platform of 2 processors for the dataset DAGGEN, and the
results are presented in Figures 7 and 8. We can notice that the differences be-
tween the heuristics are smaller than previously, while the hierarchy is not mod-

RR n° 9231

Limiting DAG memory footprint 30

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
or
m
al
iz
ed

cr
it
ic
al

p
at
h

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

Figure 5: Critical path length obtained by each method for the sparse DAGGEN

dataset. The critical path plotted is divided by the original critical path. A
memory bound value of 0 corresponds to the memory used by a DFS schedule,
and a memory bound value of 1 corresponds to the maximum peak memory of

the original graph.

1.0

1.5

2.0

2.5

3.0

3.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
or
m
a
li
ze
d
cr
it
ic
al

p
at
h

Heuristic MinLevels RespectOrder MaxMinSize MaxSize ILP

Figure 6: Critical path length obtained by each method for the dense DAGGEN

dataset. The critical path plotted is divided by the original critical path. A
memory bound value of 0 corresponds to the memory used by a DFS schedule,
and a memory bound value of 1 corresponds to the maximum peak memory of

the original graph.

RR n° 9231

Limiting DAG memory footprint 31

ified. On Figure 9, we plotted for each DAG of the DAGGEN dataset and for each
memory bound, the makespan obtained by each heuristic in function of the crit-
ical path obtained.

0.9

1.2

1.5

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
or
m
al
iz
ed

m
ak

es
p
an

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

Figure 7: Makespan obtained by each method for the sparse DAGGEN dataset.
The makespan plotted is divided by the original makespan. A memory bound
value of 0 corresponds to the memory used by a DFS schedule, and a memory
bound value of 1 corresponds to the maximum peak memory of the original

graph.

We plot the results obtained for the LIGO dataset on Figure 10, showing the
critical path length achieved by each heuristic for each memory bound. The
similar structure of all graphs for each of these datasets explains that the results
lie in a smaller interval. The hierarchy of the heuristics is the same as in the
DAGGEN dataset: MINLEVELS presents the best performance, RESPECTORDER

leads to slightly longer critical paths, and MAXSIZE and MAXMINSIZE achieve
similar results, several times higher than the first two heuristics. Note that for
the smallest memory bound, MINLEVELS never succeeds in the LIGO dataset
(hence, it does not appear in the plot), MAXSIZE also presents a high failure rate,
whereas RESPECTORDER and MAXMINSIZE have comparable results.

Figure 11 presents the simulation on 5 processors. Except the slightly more
scattered results, the ranking of the heuristics is very similar than the ones ob-
tained with the critical path. Therefore, even if the final objective is to obtain a
graph that we can schedule within a small makespan, our objective of minimiz-
ing the critical path is completely relevant.

On Figure 12, we plotted for each DAG of the LIGO dataset and for each mem-
ory bound, the makespan obtained by each heuristic in function of the critical
path obtained. We can see that when the critical path achieved is large, the
makespan obtained is very close to the critical path length. On the opposite,
for smaller values of the critical path length, we can obtain a makespan sev-
eral times higher, because the partial serialization kept more parallelism in the
graph.

RR n° 9231

Limiting DAG memory footprint 32

1.00

1.25

1.50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
or
m
al
iz
ed

m
ak

es
p
an

Heuristic MinLevels RespectOrder MaxMinSize MaxSize ILP

Figure 8: Makespan obtained by each method for the dense DAGGEN dataset.
The makespan plotted is divided by the original makespan. A memory bound
value of 0 corresponds to the memory used by a DFS schedule, and a memory
bound value of 1 corresponds to the maximum peak memory of the original

graph.

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07

CriticalPath

M
a
ke
sp
a
n

Heuristic MinLevels RespectOrder MaxMinSize MaxSize ILP

Figure 9: Makespan in function of the critical path length obtained by each
method for the DAGGEN dataset.

RR n° 9231

Limiting DAG memory footprint 33

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
or
m
al
iz
ed

cr
it
ic
al

p
at
h

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

Figure 10: Critical path length obtained by each method for the LIGO dataset.
The critical path plotted is divided by the original critical path. A memory

bound value of 0 corresponds to the memory used by a DFS schedule, and a
memory bound value of 1 corresponds to the maximum peak memory of the

original graph.

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
o
rm

al
iz
ed

m
a
k
es
p
an

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

Figure 11: Makespan obtained by each method for the LIGO dataset. The
makespan plotted is divided by the original makespan. A memory bound value
of 0 corresponds to the memory used by a DFS schedule, and a memory bound

value of 1 corresponds to the maximum peak memory of the original graph.

RR n° 9231

Limiting DAG memory footprint 34

5000

10000

15000

20000

5000 10000 15000 20000

CriticalPath

M
ak
es
p
an

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

Figure 12: Makespan in function of the critical path length obtained by each
method for the LIGO dataset.

In Figures 13 to 15, we present the same results for the GENOME dataset.
We observe a trend similar to the results on the LIGO dataset, except that MIN-
LEVELS never fails, even for the smallest memory bound.

4

8

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
or
m
al
iz
ed

cr
it
ic
al

p
at
h

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

Figure 13: Critical path length obtained by each method for the GENOME

dataset. The critical path plotted is divided by the original critical path. A
memory bound value of 0 corresponds to the memory used by a DFS schedule,
and a memory bound value of 1 corresponds to the maximum peak memory of

the original graph.

In Figures 16 to 18, we present the same results for the MONTAGE dataset.
We observe a trend similar to the results on the LIGO dataset, except that MIN-
LEVELS and RESPECTORDER always present better results than the other heuris-
tics, even for the smallest memory bound.

RR n° 9231

Limiting DAG memory footprint 35

4

8

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
or
m
al
iz
ed

m
ak

es
p
an

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

Figure 14: Makespan obtained by each method for the GENOME dataset. The
makespan plotted is divided by the original makespan. A memory bound value
of 0 corresponds to the memory used by a DFS schedule, and a memory bound

value of 1 corresponds to the maximum peak memory of the original graph.

0e+00

1e+05

2e+05

3e+05

0e+00 1e+05 2e+05 3e+05

CriticalPath

M
ak
es
p
an

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

Figure 15: Makespan in function of the critical path length obtained by each
method for the GENOME dataset.

RR n° 9231

Limiting DAG memory footprint 36

4

8

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
or
m
al
iz
ed

cr
it
ic
al

p
at
h

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

Figure 16: Critical path length obtained by each method for the MONTAGE

dataset. The critical path plotted is divided by the original critical path. A
memory bound value of 0 corresponds to the memory used by a DFS schedule,
and a memory bound value of 1 corresponds to the maximum peak memory of

the original graph.

4

8

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
o
rm

al
iz
ed

m
a
k
es
p
an

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

Figure 17: Makespan obtained by each method for the MONTAGE dataset. The
makespan plotted is divided by the original makespan. A memory bound value
of 0 corresponds to the memory used by a DFS schedule, and a memory bound

value of 1 corresponds to the maximum peak memory of the original graph.

RR n° 9231

Limiting DAG memory footprint 37

250

500

750

250 500 750

CriticalPath

M
ak
es
p
an

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

Figure 18: Makespan in function of the critical path length obtained by each
method for the MONTAGE dataset.

We have shown in these experiments that we can partially serialize realistic
graphs so that any schedule fits a given memory bound, for a reasonable cost
in terms of the critical path and makespan augmentation. One may argue that
the maximal peak memory considered does not reflect the actual memory con-
sumption of a traditional algorithm. In order to address this problem, we mea-
sured the peak memory achieved by the Earliest Finish Time (EFT) scheduling
heuristic which, whenever a task terminates, schedules the available task with
the highest bottom level. Then, we normalized it in the same way as in the plots
above: a value of 1 means that the maximal peak memory is actually achieved,
and a value of 0 means that the peak memory reached is the same as the Depth
First Search considered. Note that we can obtain negative values, which hap-
pened only for some graphs of the DAGGEN datasets, if the DFS requires a larger
memory than EFT. The statistical summary is presented in Table 3. We note
that EFT uses the maximal peak memory for most of the graphs of the LIGO and
GENOME datasets, and a normalized memory larger than 0.88 for most of the
graphs of the MONTAGE dataset. We recall that from Table 2, the ratio between
maximum memory and the DFS memory is around 21.5 for LIGO and GENOME

and 6.2 for MONTAGE. Therefore, on these graphs, lowering the maximum mem-
ory peak can lead to a dramatic reduction of the memory consumption when
using scheduling heuristics such as EFT.

On the DAGGEN dataset, the partial serialization is not as beneficial, as we
obtain a median of 0.53 for the normalized memory of EFT. Besides, the ratio
between DFS and BFS memory is also smaller. Thus, the gain in memory of
using partial serialization is less impressive, although noticeable.

RR n° 9231

Limiting DAG memory footprint 38

DAGGEN LIGO MONTAGE GENOME

dense sparse

First quartile −0.03 0.39 0.99 0.88 1

Median 0.31 0.6 1 0.9 1

Third quartile 0.71 0.75 1 0.93 1

Table 3: Normalized memory used by EFT. Memory normalized as in Figure 5.

7 Conclusion

In this paper, we have focused on lowering the memory footprint of compu-
tational workflows modeled as task graphs. As we recognized the need for dy-
namic schedules (such as in runtime systems), we have focused on the transfor-
mation of the graphs prior to the scheduling phase. Adding fictitious edges that
represent “memory dependences” prevents the scheduler from running out of
memory. After formally modeling the problem, we have shown how to compute
the maximal peak memory of a graph (the MAXTOPCUT problem) in polynomial
time. We have proven the problem of adding edges to cope with limited memory
while minimizing the critical path (the MINPARTIALSERIALIZATION problem) to
be NP-hard, and proposed both an ILP formulation of the problem and several
heuristics. Our simulations show that our best heuristics, RESPECTORDER and
MINLEVELS, either never fail, or are able to limit the memory footprint with lim-
ited impact on the parallel makespan for most task graphs. Our future work con-
sists in implementing the proposed heuristics in a runtime system and evaluate
them on actual graphs.

References

[1] M. Drozdowski, Scheduling parallel tasks – algorithms and complexity, in:
J. Leung (Ed.), Handbook of Scheduling, Chapman and Hall/CRC, 2004.

[2] C. Augonnet, S. Thibault, R. Namyst, P.-A. Wacrenier, StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures, Con-
currency and Computation: Practice and Experience 23 (2) (2011) 187–198.

[3] T. Gautier, X. Besseron, L. Pigeon, KAAPI: A thread scheduling runtime
system for data flow computations on cluster of multi-processors, in: In-
ternational Workshop on Parallel Symbolic Computation, 2007, pp. 15–23.
doi:10.1145/1278177.1278182.

[4] J. Planas, R. M. Badia, E. Ayguadé, J. Labarta, Hierarchical task-
based programming with StarSs, IJHPCA 23 (3) (2009) 284–299.
doi:10.1177/1094342009106195.

RR n° 9231

Limiting DAG memory footprint 39

[5] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, J. J. Dongarra,
PaRSEC: Exploiting heterogeneity for enhancing scalability, Computing in
Science & Engineering 15 (6) (2013) 36–45.

[6] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R. Sakellariou, K. Vahi,
K. Blackburn, D. Meyers, M. Samidi, Scheduling data-intensiveworkflows
onto storage-constrained distributed resources, in: CCGrid’07, 2007, pp.
401–409.

[7] E. Agullo, P. R. Amestoy, A. Buttari, A. Guermouche, J. L’Excellent, F. Rouet,
Robust memory-aware mappings for parallel multifrontal factorizations,
SIAM J. Scientific Computing 38 (3).

[8] D. Sbîrlea, Z. Budimlić, V. Sarkar, Bounded memory scheduling of dynamic
task graphs, in: Proc. of PACT, ACM, 2014, pp. 343–356.

[9] L. Marchal, H. Nagy, B. Simon, F. Vivien, Parallel scheduling of
dags under memory constraints, in: 2018 IEEE International Paral-
lel and Distributed Processing Symposium (IPDPS), 2018, pp. 204–213.
doi:10.1109/IPDPS.2018.00030.

[10] R. Sethi, J. Ullman, The generation of optimal code for arithmetic expres-
sions, Journal of the ACM 17 (4) (1970) 715–728.

[11] R. Sethi, Complete register allocation problems, in: STOC’73, ACM Press,
1973, pp. 182–195.

[12] J. R. Gilbert, T. Lengauer, R. E. Tarjan, The pebbling problem is complete in
polynomial space, SIAM J. Comput. 9 (3).

[13] J. W. H. Liu, An application of generalized tree pebbling to sparse matrix
factorization, SIAM J. Alg. Discrete Methods 8 (3) (1987) 375–395.

[14] C.-C. Lam, T. Rauber, G. Baumgartner, D. Cociorva, P. Sadayappan,
Memory-optimal evaluation of expression trees involving large objects,
Computer Languages, Systems & Structures 37 (2) (2011) 63–75.

[15] L. Eyraud-Dubois, L. Marchal, O. Sinnen, F. Vivien, Parallel scheduling of
task trees with limited memory, ACM Transactions on Parallel Computing
2 (2) (2015) 13.

[16] S. Bharathi, A. Chervenak, Scheduling data-intensive workflows on storage
constrained resources, in: Proc. of the 4th Workshop on Workflows in Sup-
port of Large-Scale Science (WORKS’09), ACM, 2009.

[17] M. Sergent, D. Goudin, S. Thibault, O. Aumage, Controlling the memory
subscription of distributed applications with a task-based runtime system,
in: Proc. of IPDPS Workshops, IEEE, 2016, pp. 318–327.

RR n° 9231

Limiting DAG memory footprint 40

[18] Z. Budimlić, M. Burke, V. Cavé, K. Knobe, G. Lowney, R. Newton, J. Pals-
berg, D. Peixotto, V. Sarkar, F. Schlimbach, et al., Concurrent collections,
Scientific Programming 18 (3-4) (2010) 203–217.

[19] S. Touati, Register Pressure in Instruction Level Parallelism, Theses, Uni-
versité de Versailles-Saint Quentin en Yvelines (Jun. 2002).

[20] M. Jacquelin, L. Marchal, Y. Robert, B. Uçar, On optimal tree traversals for
sparse matrix factorization, in: Proc. of the Int. Par. & Dist. Processing Sym-
posium (IPDPS), IEEE, 2011, pp. 556–567.

[21] R. Sethi, Complete register allocation problems, SIAM journal on Comput-
ing 4 (3) (1975) 226–248.

[22] E. L. Lawler, Combinatorial optimization: networks and matroids, Courier
Corporation, 2001.

[23] R. M. Karp, Reducibility among combinatorial problems, in: Complexity of
computer computations, Springer, 1972, pp. 85–103.

[24] M. Garey, D. Johnson, L. Stockmeyer, Some simplified np-complete
graph problems, Theoretical Computer Science 1 (3) (1976) 237 – 267.
doi:http://dx.doi.org/10.1016/0304-3975(76)90059-1.
URL http://www.sciencedirect.com/science/article/pii/
0304397576900591

[25] M. Lampis, G. Kaouri, V. Mitsou, On the algorithmic effectiveness of di-
graph decompositions and complexity measures, Discrete Optimization
8 (1) (2011) 129–138.

[26] Peter Shor (http://cs.stackexchange.com/users/198/peter-shor),
Minimum s-t cut in weighted directed acyclic graphs with
possibly negative weights, Computer Science Stack Exchange.
arXiv:http://cs.stackexchange.com/q/6498.
URL http://cs.stackexchange.com/q/6498

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algo-
rithms, Third Edition, 3rd Edition, The MIT Press, 2009.

[28] E. Ciurea, L. Ciupalâ, Sequential and parallel algorithms for minimum
flows, Journal of Applied Mathematics and Computing 15 (1) (2004) 53–75.

[29] A. V. Goldberg, R. E. Tarjan, A new approach to the maximum flow problem,
in: Proceedings of ACM STOC, 1986, pp. 136–146.

[30] S.-A.-A. Touati, Register saturation in instruction level parallelism, In-
ternational Journal of Parallel Programming 33 (4) (2005) 393–449.
doi:10.1007/s10766-005-6466-x.

RR n° 9231

Limiting DAG memory footprint 41

[31] M. R. Garey, D. S. Johnson, Computers and Intractability, a Guide to the
Theory of NP-Completeness, W. H. Freeman and Company, 1979.

[32] G. Csardi, T. Nepusz, The igraph software package for complex network re-
search, InterJournal Complex Systems (2006) 1695.
URL http://igraph.org

[33] F. Suter, Daggen: A synthetic task graph generator, https://github.com/
frs69wq/daggen.

[34] S. Hunold, One step toward bridging the gap between theory and prac-
tice in moldable task scheduling with precedence constraints, Concur-
rency and Computation: Practice and Experience 27 (4) (2015) 1010–1026.
doi:10.1002/cpe.3372.

[35] F. Desprez, F. Suter, A bi-criteria algorithm for scheduling parallel task
graphs on clusters, in: CCGrid, IEEE, 2010, pp. 243–252.

[36] R. F. Da Silva, W. Chen, G. Juve, K. Vahi, E. Deelman, Community resources
for enabling research in distributed scientific workflows, in: 10th Int. Conf.
on e-Science, Vol. 1, IEEE, 2014, pp. 177–184.

[37] H. Topcuoglu, S. Hariri, M. Y. Wu, Performance-effective and low-
complexity task scheduling for heterogeneous computing, IEEE Trans. Par-
allel Distributed Systems 13 (3) (2002) 260–274.

RR n° 9231

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

