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Extented Abstract

1 Introduction

The modeling of traffic propagation in a large city network can be tedious. Thus, there is a need for aggregated
models that can simplify the representation. One approach is the Macroscopic Fundamental Diagram (MFD)
i.e. the idea that there exists a relation between the average flux and the average density over a road network as
it has been observed with real data in [Daganzo and Geroliminis, 2008], [Geroliminis and Daganzo, 2008]. This
relation justifies the creation of models of accumulation which describe dynamically the number of vehicles in
one area (or several [Leclercq et al., 2015]) with an Ordinary Differential Equation. However, these models are
not tuned to capture precisely how traffic flow propagates spatially.

Another type of aggregated models is two dimensional models, see [Aghamohammadi and Laval, 2018] for a liter-
ature review of some of these models. Several models have been proposed. In [Romero Perez and Benitez, 2008],
the 2D model considered does not use the Fundamental Diagram i.e. the dependency between vehicles speed
and density. In [Della Rossa et al., 2010], authors suggest a 2D model that includes a diffusion term. In
[Khoshyaran and Lebacque, 2018], a bi-dimensional model that can consider major arterial in the urban network
is described in a discrete setting. Other models as [Jiang et al., 2011], [Du et al., 2013] describe the direction of
the flow by solving an Eikonal Equation such that vehicles take the path of the lower cost. This approach is
similar to what is done in pedestrian modeling. In [Jiang et al., 2015], authors investigate a second order model
in order to have a more accurate prediction of traffic emissions.

2D models are mathematically identical than models developed for pedestrian [Hughes, 2002]. However, if pedes-
trian evolve in general in the 2D space, traffic flow are in practice constraint on a network. Then, representing
traffic flow as a continuum is an approximation, but this is why information from the physical network can be very
important to use. Thus, in [Mollier et al., 2018b], authors introduce a 2D model that uses the geometry of the
road to estimate the flow direction. In [Mollier et al., 2018a], a model considering space dependent parameters
estimated also from the road network is presented. In [mol, 2019], the authors suggest a method to compare
these 2D models with the results of microsimulation over the network. However, in all the 2D models introduced
previously, the direction of the flow at a given space and time position is unique. Thus, these models are not
able to describe the multiple origin-destination of real traffic scenario. A possible solution is to consider multiple
layers of density such that each layer can represent a main direction of flow. A first and interesting study in this
direction of research is done is [Lin et al., 2017]. Nevertheless, the model suggested, inspired from pedestrian
models, is not based on the road network and thus, for instance, does not assume that traffic flow density has a
maximal value.

The idea of multi layer models come from mixed traffic models that exist in 1D as in [Wong and Wong, 2002],
[Benzoni-Gavage and Colombo, 2003]. These models aim to represent different populations of vehicles/drivers
driving on the same road and in the same direction but with different behaviors that can be for instances different
speed limits. Two other studies for pedestrian [Goatin and Mimault, 2015], [Tory et al., 2011] respectively in 1D
and in 2D investigate the case where the flows go in opposite directions. The authors remark that in these cases,
the systems are not hyperbolic but hyperbolic-elliptic.

The contribution of this article is to introduce a two dimensional and multi-layer traffic model and to point
out that this model is unlikely to be hyperbolic. The article is organized as follows. First, we present the two
dimensional and multi-layer model. Then, we introduce the estimation methods for the parameters and study
the condition for hyperbolicity of the model. Finally, we show some numerical results.

*stephane.mollier@gipsa-lab.fr
Tml.dellemonache@inria.fr
fcarlos.canudas-de-wit@gipsa-lab.fr



2 A 2D multi layer model

2.1 General model description

In the one dimensional case, multipopulation models have mainly been developed in order to describe mixed
traffic with different maximum speeds of vehicles. In our two-dimensional case, we consider multiple layers of
density in order to represent different directions of flow on a network contained in a domain Q C R%. Each

layer £ € [1,..., L], represented by a density p’ can describe a specific direction Jg of flow for a global density
pt,x,y) = (p'(t,z,y),...,p"(t,z,y)). Then, we construct a system of conservation laws in two space dimension
as follows:

op'(t,z,y) =,

0 TV 0t y), ) =0 e RY V(e,y) e QVEEL,. .., L] (1)

p'(0,2,y) = p§(z,y)
By definition, the flux can be split as the product of density time velocity:
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where:

o pf(t,x,y) : Ry x Q — [0, pm] is the density of the layer £. They are two dimensional densities i.e. number
of vehicles per area.

= [ cos(0%(z,y)) . . e
o dy(z,y) = { sin(6(z, y)) is the unit vector of velocity direction for the layer /.

o v (T(p),z,y) : [0, pm] X Q — [0,vy] is the velocity magnitude of the layer £. It expression is given by the

\I,Z
Fundamental Diagram: v*(U¢(p), z,vy) = vm(z,y) (1 - ((m)> with vy, (z,y) and py (2, y) respectively
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the space dependent maximum density and maximum speed that we assume to be equal for the different

layers.

e Uiip = (p'....p) : [0, pm]Y — [0, pu] is & mapping function from the whole density to the considered
density that expresses which layer has an impact on the velocity of the layer £. In this paper, we define

L
this function as the sum of the density of the different layers: Wf(p) = > p, Ve e[l,...,L]. An
=1

important remark is that this choice of interaction ¥ and of velocity involves that, if the two layers of
density belong to [0, pr], the sum of the density also remains between zero and py,. This is guaranteed by
the fact that the velocity of the two layers goes to zero when the sum of the density goes to py,.

3 Parameters estimation

3.1 Presentation of the network

The network considered is an 10 x 10 artificial Manhattan grid of 1km square. This size can easily be extended
but we consider first a small example for study purposes. The concentration of road is lower in the left part of
the network. The speed limits of every road are 30km/h except for two main roads where it is 50km/h. The
roads of the network are bidirectional. In order to describe the different directions of flow, we divide the network
into two oriented sub-networks: one globally oriented in the North-East direction, the second globally oriented
in the North-West direction.

There are three parameters in the models and they are space dependent. First, the direction fields of the two
layers are estimated using each of the sub-network. The general idea is to use only the geometry of the road
because we do not have knowledge of the trajectories of drivers. Thus, the estimation of direction field is done
by interpolation of the road direction. More details on this method can be found in [Mollier et al., 2018b]. The
second parameter is the maximum speed vy, which is also done by spatial interpolation of the speed limits of the
roads. Finally, the estimation of the maximum density is also done using the network such that the area of the
network with a lower density of road have a lower capacity. More details on the estimation of these parameters
can be found in [Mollier et al., 2018a]. The result of estimation is represented in 1.
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Figure 1: Estimation of the parameters of the model: on the top are represented the direction field of the two
layers and on the bottom there is the estimated maximum velocity and maximum density

3.2 Study of the hyperbolicity of the model

Hyperbolic partial differential equations (PDE) correspond to a class of PDE that describes phenomena propa-
gating in finite speed. Models developed in traffic flow, as the LWR model, are hyperbolic and many numerical
methods have been developed for this class of equation. Thus, it can be interesting to study the hyperbolicity
of the presented model. In practice, the investigation of hyperbolicity is done by the analysis of the Jacobian
matrix of the flux see [Chen, 2011], [Toro, 2013].
Definition: We denote by ®, and ®, the flux function for the x and y dimension. Then, the system is hyperbolic
if Vae € [0, .., 27|, the matrix:

A = cos(a)lg, +sin(a)Js, (3)

with Je, and Jg, the Jacobian matrices of the flux, has real eigenvalue i.e. if the discriminant A is positive:

A= (cos(a ) (Ul(‘I’l(p, 0) + plg—\iﬁg—&i) — cos(a — 67) <’02(‘Il2(p, 0)) + 2L 0V ))2
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In practice, A is positive for all possible densities if and only if the direction field are collinear and with same

direction. In the case of arbitrary direction, the system is mixed hyperbolic-elliptic and remains hyperbolic for
low densities.



4 Numerical results

4.1 Numerical method

The numerical method is based on splitting method. First, we apply a splitting to each layer, then we use
dimensional splitting to compute separately each dimension. Finally, the flux at the cell interfaces for each
direction and for each layer is computed by scheme using demand-supply as it is done in [Mollier et al., 2018a].
For more detail about space dependent flux function and the stationary waves that it could create, we refer to
[Holden and Risebro, 2015]. We consider ghost cells at the boundaries.

However, these numerical methods to compute the flow at the interfaces (Godunov, Lax-Friedrich) are valid for
hyperbolic partial differential equations. As it is shown in [Goatin and Mimault, 2015], the use of these methods
in the elliptic case can lead to oscillation observable in simulations. Thus, we are able to simulate some examples
where the densities remain in the free flow state for which the model is hyperbolic.

4.2 Simulation results

The scenario considered is a free flow scenario where a small amount of vehicles start in each layer.
The initial conditions are given by equation (4) and (5):

2 2 7 2 7
T~ MPmax f 7Lx S S 7Lx d 7L S S 7Lx

po(z,y) =4 16Pmex B g == MY g =Y =16 (4)
0 otherwise
2 9 14 2 7
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pR(zy) =4 16Pmex B g =TS MY g =Y =16 (5)
0 otherwise
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Figure 2: Results of simulation for the free flow scenario with density of the first layer on the left, density of the
second layer on the middle and total density on the right. Videos of the simulation with the view from above
https://youtu.be/zo1ScLKI9yk and the lateral view https://youtu.be/F2GD3ZW0OCt4 are available online.

The results of the simulation can be seen in Figure 2 with a lateral view. We can see that the densities inside
the two layers cross in the middle of the network and then interact with each other. However, as the global traffic
state remains in free flow there are no major perturbation.

Conclusions and future works

In this article, we present a two-dimensional model with several layers that describe different directions of traffic
flow in a large network. We give an estimation method of the space-dependent parameters using the road network.
Then, we point out that this model is not hyperbolic due to the interaction between the different directions of the
flow and we show that this can induce some instability in the simulation. In the future, we plan to investigate a
way to transform the model in a fully hyperbolic system or to study a numerical method applicable for a mixed
hyperbolic-elliptic system of partial differential equations. After that, it can be interesting to test the model with
an existing road network and to compare the results with real or synthetic data.
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