
HAL Id: tel-01948548
https://hal.archives-ouvertes.fr/tel-01948548

Submitted on 7 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decoding perceptual vowel epenthesis: Experiments &
Modelling

Adriana Guevara-Rukoz

To cite this version:
Adriana Guevara-Rukoz. Decoding perceptual vowel epenthesis: Experiments & Modelling. Linguis-
tics. Ecole Normale Supérieure (ENS), 2018. English. �tel-01948548�

https://hal.archives-ouvertes.fr/tel-01948548
https://hal.archives-ouvertes.fr
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ÉCOLE DOCTORALE CERVEAU-COGNITION-COMPORTEMENT (ED3C)
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Université Grenoble Alpes,
Rapporteur

Mme Sophie DUFOUR
Aix-Marseille Université,
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Abstract

Why do people of different linguistic background sometimes perceive the same acous-
tic signal differently? For instance, when hearing nonnative speech that does not
conform to sound structures allowed in their native language, listeners may report
hearing vowels that are not acoustically present. This phenomenon, known as per-
ceptual vowel epenthesis, has been attested in various languages such as Japanese,
Brazilian Portuguese, Korean, and English. The quality of the epenthesized vowel
varies between languages, but also within languages, given certain phonemic envi-
ronments. How much of this process is guided by information directly accessible
in the acoustic signal? What is the contribution of the native phonology? How
are these two elements combined when computing the native percept? Two main
families of theories have been proposed as explanations: two-step and one-step the-
ories. The former advocate an initial parsing of the phonetic categories, followed
by repairs by an abstract grammar (e.g., epenthesis), while one-step proposals posit
that all acoustic, phonetic, and phonological factors are integrated simultaneously
in a probabilistic manner, in order to find the optimal percept.

In this dissertation, we use a combination of experimental and modelling ap-
proaches in order to evaluate whether perceptual vowel epenthesis is a two-step or
one-step process. In particular, we investigate this by assessing the role of acoustic
details in modulations of epenthetic vowel quality.

In a first part, results from two behavioural experiments show that these mod-
ulations are influenced by acoustic cues as well as phonology; however, the former
explain most of the variation in epenthetic vowel responses. Additionally, we present
a one-step exemplar-based model of perception that is able to reproduce coarticula-
tion effects observed in human data. These results constitute evidence for one-step
models of nonnative speech perception.

In a second part, we present an implementation of the one-step proposal in [Wil-
son and Davidson, 2013], using HMM-GMM (hidden Markov models with Gaus-
sian mixture models) from the field of automatic speech recognition. These models
present two separate components determining the acoustic and phonotactic matches
between speech and possible transcriptions. We can thus tweak them independently
in order to evaluate the relative influence of acoustic/phonetic and phonological fac-
tors in perceptual vowel epenthesis. We propose a novel way to simulate with these
models the forced choice paradigm used to probe vowel epenthesis in human partic-
ipants, using constrained language models during the speech decoding process. In a
first set of studies, we use this method to test whether various ASR systems with n-
gram phonotactics as their language model better approximate human results than
an ASR system with a null (i.e., no phonotactics) language model. Surprisingly, we
find that this null model was the best predictor of human performance. In a sec-
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ond set of studies, we evaluate whether effects traditionally attributed to phonology
may be predictable solely from acoustic match. We find that, while promising, our
models are only able to partially reproduce some effects observed in results from
human experiments. Before attributing the source of these effects to phonology, it is
necessary to test ASR systems with more performant acoustic models. We discuss
future avenues for using enhanced models, and highlight the advantages of using
a hybrid approach with behavioural experiments and computational modelling in
order to elucidate the mechanisms underlying nonnative speech perception.
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Résumé

Pourquoi des personnes ayant grandi dans des milieux linguistiques différents ne
perçoivent-elles pas toujours un même signal acoustique de la même manière? Par
exemple, il arrive que des auditeurs rapportent avoir entendu des voyelles qui n’étaient
pas présentes dans l’acoustique de mots non-natifs, lorsque ceux-ci ne se conforment
pas aux structures sonores permises dans leur langue. Ce phénomène, connu sous le
nom d’épenthèse vocalique perceptive, a été observée dans plusieurs langues telles
que le japonais, le portuguais brésilien, le coréen, et l’anglais. L’identité de la voyelle
épenthétique varie en fonction des langues, mais aussi parmi les langues elles-mêmes,
en fonction des environnements phonémiques. A quel point ce processus est-il dirigé
par des informations directement accessibles dans le signal acoustique ? Quelle est
la part de contribution de la phonologie native ? Comment sont combinés ces deux
éléments lors du calcul de ce qui est perçu par l’auditeur ? Deux familles prin-
cipales de théories ont été proposées en tant qu’explications : les théories à deux
étapes, et les théories à une étape. Les premières proposent une analyse initiale
des catégories phonétiques, suivie de réparations faites par une grammaire abstraite
(e.g., cas d’épenthèse). De leur côté, les théories à une étape proposent que tous les
facteurs acoustiques, phonétiques, et phonologiques sont intégrés simultanément de
manière probabiliste lors du calcul du percept optimal.

Dans cette thèse, nous combinons des approches expérimentales et de modélisation,
afin d’évaluer si l’épenthèse vocalique perceptive est un processus à une ou deux
étapes. En particulier, nous examinons ceci en mesurant le rôle des détails acous-
tiques dans les modulations de l’identité de la voyelle épenthétique.

Dans un premier temps, des résultats d’expériences comportementales nous mon-
trent que ces modulations sont influencées aussi bien par les détails acoustiques que
par des processus phonologiques. Cependant, la plupart de la variation de l’identité
de la voyelle épenthétique est expliquée par l’acoustique. De plus, nous présentons
un modèle de perception à une étape qui utilise des exemplaires; celui-ci est capa-
ble de reproduire les effets de la coarticulation qui ont été relevés dans les données
expérimentales. Ces résultats constituent de l’évidence en faveur des modèles de
perception étrangère à une étape.

Dans un deuxième temps, nous présentons une implémentation du modèle à une
étape proposé par [Wilson and Davidson, 2013], en utilisant des modèles HMM-
GMM (automates de Markov à états cachés en mélanges gaussiens), issus du milieu
de la reconnaissance automatique de la parole (RAP). Ces modèles se composent
d’un modèle acoustique et d’un modèle de langage, qui déterminent la correspon-
dence acoustique et phonotactique entre la parole et des transcriptions possibles, re-
spectivement. Il nous est alors possible de les ajuster indépendamment afin d’évaluer
leur influence relative dans l’épenthèse vocalique perceptuelle. Nous proposons une
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nouvelle manière d’utiliser ces modèles pour simuler des paradigmes de choix forcés
utilisés pour étudier l’épenthèse vocalique chez des participants humains, en utilisant
des modèles de language contraints lors du processus de décodage de la parole.

Dans un premier ensemble d’études, nous utilisons cette nouvelle méthode afin
de tester si des systèmes de RAP avec des modèles de langage à phonotactique à
n-grammes donnent des résultats plus proches des résultats humains qu’un système
de RAP avec un modèle de langage nul (i.e., sans phonotactique). De manière
étonnante, les résultats montrent que le système à modèle de langage nul prédit le
mieux la performance des participants. Dans un deuxième ensemble d’études, nous
évaluons si certains effets traditionnellement attribués à des processus phonologiques
peuvent être expliqués qu’à partir de la correspondance acoustique. Bien que les
résultats soient prometteurs, nos modèles ne sont capables de reproduire qu’une
sous-partie des effets observés chez l’humain. Avant de pouvoir attribuer l’origine
de ces effets à des processus phonologiques, il est nécessaire de tester des systèmes
de RAP avec des modèles acoustiques plus performants. Nous énumérons des fu-
tures pistes de recherche d’utilisation de modèles améliorés, et nous soulignons les
avantages de l’utilisation conjointe d’expériences comportementales et modélisations
computationnelles afin d’élucider les mécanismes sous-jacents la perception de la pa-
role étrangère.
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In general, we look for a new law by the following process:
First we guess it. Then we – now don’t laugh, that’s really true. Then we
compute the consequences of the guess to see what, if this is right, if this law
that we guessed is right, to see what it would imply. And then we compare the
computation results to nature, or we say compare to experiment or experience,
compare it directly with observations to see if it works. If it disagrees with
experiment, it’s wrong. In that simple statement is the key to science. It doesn’t
make any difference how beautiful your guess is, it doesn’t make any difference
how smart you are, who made the guess, or what his name is. If it disagrees with
experiment, it’s wrong. That’s all there is to it.

Richard Feynman

Los niños han ido con Platero al arroyo de los chopos, y ahora lo traen trotando,
entre juegos sin razón y risas desproporcionadas, todo cargado de flores amarillas.
Allá abajo les ha llovido —aquella nube fugaz que veló el prado verde con sus
hilos de oro y plata, en los que tembló, como en una lira de llanto, el arco iris—.
Y sobre la empapada lana del asnucho, las campanillas mojadas gotean todav́ıa.
¡Idilio fresco, alegre, sentimental! ¡Hasta el rebuzno de Platero se hace tierno
bajo la dulce carga llovida! De cuando en cuando, vuelve la cabeza y arranca las
flores a que su bocota alcanza. Las campanillas, ńıveas y gualdas, le cuelgan, un
momento, entre el blanco babear verdoso y luego se le van a la barrigota cinchada.
¡Quién, como tú, Platero, pudiera comer flores..., y que no le hicieran daño!
¡Tarde eqúıvoca de abril!... Los ojos brillantes y vivos de Platero copian toda la
hora de sol y lluvia, en cuyo ocaso, sobre el campo de San Juan, se ve llover,
deshilachada, otra nube rosa.

Idilio de Abril. Platero y yo.
Juan Ramón Jiménez
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jumea (mi vecino come-chigüire), Julien Karadayi (l’artiste fan de Virginia Woolf),
et Mathieu Bernard (la source d’insultes en breton) pour leur patience lors de mes
mésaventures avec ABXpy et Abkhazia. Good luck to fellow students Milicaドラゴ
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Chapter 1

Introduction

Luke: Every time you say ‘Luke’, I think you’re saying ‘look’.
Gloria: I don’t hear the difference.
Luke: It’s not that hard; one is my name.
Gloria: Juan is not your name!

Modern Family

Even after spending years learning a foreign language and becoming proficient at
speaking it, very often, a dead giveaway that we are indeed not communicating in our
own native language is the presence of a foreign accent (e.g., [Flege et al., 1995a,
Munro et al., 1996]). For instance, Japanese speakers have difficulties producing
the American English consonants /ô/ and /l/, since their native language does not
have such a contras of liquid consonant [Flege et al., 1995b]. This results in their
productions of the words “right” and “light” being phonetically similar. This merger
can also be attested in Japanese loanwords of English origin: the source word “lion”
has been borrowed as /raion/, while “sale” became /se:ru/. In this second loanword
there is also evidence of an extra /u/ vowel that was not present in the source
word. This phenomenon of inserting a vowel to a borrowed loanword is known as
vowel epenthesis. It often occurs when the borrowed word does not respect the
phonotactics (i.e., legal sound combinations) of the borrowing language (e.g., illegal
consonant clusters, illegal syllabification), as in the following examples:

• English “strike” /stôaIk/ → Japanese /sutoraiku/

• French “baguette” /bagEt/ → Japanese /baget:o/

• English “snob” /sn6b/ → Spanish /esnob/

Nonnative word are imported to the borrowing language in a diachronic process
involving word transmission amongst multiple individuals and possibly using vari-
ous methods of transmission (e.g., through written materials, orally, etc). Addition-
ally, adaptations can be influenced by orthography, when this is available [Daland
et al., 2015, Vendelin and Peperkamp, 2006]. However, it is hypothesized that the
modifications that we observe in loanwords are not exclusively due to incorrect pro-
ductions of the nonnative words; both the modifications observed in loanwords and
those observed in production are hypothesized to be at least in part due to incor-
rect perception of the nonnative speech [Peperkamp and Dupoux, 2003, Peperkamp,
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2005, Peperkamp et al., 2008, Wilson and Davidson, 2013, Wilson et al., 2014]. How
could individuals with different language experiences interpret the same acoustic sig-
nal differently?

1.1 Nonnative speech misperceptions

We can study nonnative misperceptions by using several types of experimental
paradigms: transcription tasks, classification tasks, discrimination tasks.

In transcription tasks, participants are presented with an auditory stimulus and
they are asked to provide a written transcription of what they perceived, either
using their native language orthography, or by using a task-specific learned phonetic
alphabet (e.g., transcription of items with /ô/ and /l/ by Japanese participants in
[Best and Strange, 1992]). The output of these tasks is difficult to analyse due to
the high variability in the responses.

A way to limit these is by turning to classification tasks, where participants
are presented with an auditory stimulus and they are asked to assign it to one of
multiple given category, therefore limiting the number of possible transcriptions. A
particularly popular variation of this subset of paradigms is the identification task,
where participants are asked to identify a specific segment within the stimulus. This
task is also known as the n-forced choice task (where n is the number of possible
choices available to the participant. An example of use is [Dupoux et al., 1999],
where Japanese listeners were asked to say whether they heard a /u/ vowel between
two consonants in items such as /ebzo/.

Finally, in discrimination tasks participants hear two or more stimuli. They are
asked to judge which items belong to the same category. An example is the ABX
discrimination task, where two items of different categories (A and B) are presented,
followed by a third item that belongs to either A or B. Contrasts that are difficult
to perceive result in high error rates. An example is how [Durvasula and Kahng,
2015] tested epenthesis by Korean listeners in an ABX task where A was an item
with no medial vowel (e.g., /ethma/, B an item with a medial vowel /eth1ma/, and
X an item of either category.

Nonnative misperceptions can be classified in three main categories:

• Segmental misperceptions: Difficulties perceiving the difference between two
nonnative contrasting phonemes. E.g., Japanese listeners’ difficulty perceiving
the difference between American English /ô/ and /l/ [Goto, 1971, Miyawaki
et al., 1975].

• Suprasegmental misperceptions: Difficulties perceiving the difference between
two nonnative contrasting suprasegments such as lexical stress, lexical tone,
pitch accent. E.g., French listeners’ difficulty perceiving the difference between
Spanish words such as “ĺıquido” /’likido/ (liquid), “liquido” /li’kido/ (I liq-
uidate), “liquidó” /liki’do/ (s/he liquidated) [Dupoux et al., 1997, Dupoux
et al., 2008].

• Phonotactic repairs: Addition (i.e., epenthesis), modification (i.e., adapta-
tion), or deletion (i.e., elipsis) of segments as a strategy to “fix” nonnative
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input which does not conform to native phonotactics. E.g., Word-initial /e/-
epenthesis by Spanish speakers in words beginning with an /s/ as part of a
complex cluster as in “special” [Hallé et al., 2014]. Also: Perception of illegal
/tl/ clusters as /kl/ by French listeners [Hallé and Best, 2007].

Interestingly, while they can be minimised with training [Logan et al., 1991,
Lively et al., 1993, Wang and Munro, 2004, Iverson et al., 2005, Ylinen et al.,
2010, Wong, 2012], the effects of native phonology on nonnative speech perception
are long-lasting [Takagi and Mann, 1995, Dupoux et al., 2008] and may even be
apparent in highly proficient bilinguals [Dupoux et al., 2010].

1.2 Perceptual vowel epenthesis

In this thesis we will focus on a subset of misperceptions resulting from phonotactic
repair: perceptual vowel epenthesis. As previously mentioned, we say that listeners
experience this phenomenon when they report hearing vowels that are not initially
present in the nonnative speech. In cases that will be studied in this work, this
seemingly happens as a way to break phonotactically illegal clusters. For instance,
in Japanese most consonant clusters, such as /bz/, are phonotactically illegal. When
hearing nonwords containing these clusters, such as /ebzo/, Japanese listeners may
reporting hearing an epenthetic /u/1 within the cluster, yielding /ebuzo/ as the
percept [Dupoux et al., 1999]. Epenthesis of /u/ by Japanese listeners is not only
evident in their behaviour but also in their brain responses; they have difficulties
differentiating the clusters produced by a French speaker from their epenthesized
counterparts (e.g., /ebzo/ vs. /ebuzo/) while also showing different event-related
potentials compared to native French speakers. The fact that Japanese listeners
fail to show sign of MMN (mismatch negativity) in the EEG signal attests that the
process of epenthesis occurs early in the process of perception [Dehaene-Lambertz
et al., 2000]. Importantly, experimental data also suggests that epenthesis is a
pre-lexical process happening early in speech perception [Dupoux et al., 2001].

Perceptual vowel epenthesis has also been attested in languages other than
Japanese [Dupoux et al., 1999, Dehaene-Lambertz et al., 2000, Dupoux et al.,
2001, Monahan et al., 2009, Dupoux et al., 2011, Mattingley et al., 2015]; indeed,
it has also been studied in Korean [Kabak and Idsardi, 2007, Shin and Iverson,
2011, de Jong and Park, 2012, Durvasula and Kahng, 2015, Durvasula and Kahng,
2016], Brazilian Portuguese [Dupoux et al., 2011], Spanish [Hallé et al., 2014], En-
glish [Berent et al., 2007, Zhao and Berent, 2018], and Mandarin Chinese [Durvasula
et al., 2018]. The quality of the epenthetic vowel depends not only in the language
(e.g., [W] in Japanese, [i] in Brazilian Portuguese [Dupoux et al., 2011]), but also in
the phonemic environment (e.g., /i/ may be more readily epenthesized in clusters
with palatalised consonants).

In order to estimate phonemic environments in which a listener might experience
epenthesis, as well as eventual variations of epenthetic vowel quality, we may turn
to loanwords. Since patterns of epenthesis observed in loanword adaptations are, at
least in part, due to how the native perceptual system processes the nonnative source

1A more accurate phonetic transcription of the unrounded high back vowel used in Japanese is
[W] but, following previous work, the phonological notation /u/ will be used in the remainder of
the thesis.
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word, loanwords can be thought of as fossils from which we can extract hypotheses
about online misperceptions. Of course, as we mentioned above loanwords are pro-
cessed through more than one individual perceptual filter, and can be influenced by
orthography, for instance. So, continuing with the fossil metaphore, the online per-
cept is akin to the mosquito trapped in amber after accidentally landing on tree sap;
preserved in time but possibly not in mint condition. Large corpora of loanwords
exist, which allows us to examine epenthetic vowel patterns: Which phonemic com-
bination trigger vowel epenthesis? Is there a vowel that is predominantly inserted?
If so, are other vowels epenthesized in other phonemic environments? Similar to
how the paleontologist posits theories about the fauna in ancient times by analysing
fossils, the psycholinguist is able to posit theories about perceptual vowel epenthesis
from epenthesis in loanwords, and test them empirically.

1.3 Processing steps in perceptual vowel epenthe-

sis

Concerning the process of vowel epenthesis in perception, we can identify two types
of proposed pipelines that differ in the amount of processing steps that the nonnative
input is subjected to during perception: these are two-step and one-step theories
of nonnative speech perception, illustrated in Figure 1.1. While their names are
somewhat transparent, we will now explain in more detail the differences between
the two types of proposals.

Two-step theories of nonnative speech perception divide the perception process
in two stages. According to these proposals, the quality of the epenthetic vowel is
determined by a language-specific grammar after an initial parsing of the nonnative
input. For [Berent et al., 2007], the identity of the segments present in the nonnative
input is retrieved in an initial step, yielding a phonetic form. The native grammar
then assesses the phonotactic legality of this phonetic form in a second step. If a
phonotactic violation is found, the grammar, which combines both language-specific
and universal components, repairs the phonetic form by inserting a vowel. The
output of this final step is the phonological representation. Another proposal, that of
[Monahan et al., 2009], also consists in two steps, but with some differences. During
the first step the identity of the segments in the input is retrieved and segments are
grouped into syllables, following native phonotactics. Some syllables will contain
indeterminate segments (e.g., /ebzo/ will have been parsed as /e.bV.zo/). In a
second step, the quality of the indeterminate segments, in this case the epenthetic
vowel, is chosen amongst vowels that are of low sonority2 and can undergo devoicing3.
The quality of the vowel might not be determined if an optimal match is not found.
The two proposals that we have summarised share the fact that the categorisation
of the segments that are not the epenthetic vowel occurs in a first step and it is
not modified during the second step, where the identity of the epenthetic vowel is
determined.

2Phonemes that are lower in the sonority scale are less audible than higher ranked phonemes.
Due to how the tongue is positioned close to the mouth roof during their articulation, high vowels
(and glides) are the least sonorous vowels in a vowel inventory.

3In Japanese, high vowels /i/ and /u/ can be devoiced in certain contexts, such as between two
voiceless segments [Han, 1962, Vance, 1987, Tsuchida, 2001].
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Figure 1.1: Processing of the nonnative stimulus /ebzo/ by Japanese listeners, ac-
cording to two-step and one-step proposals for perceptual vowel epenthesis. From
left to right: two-step proposal from [Berent et al., 2007], two-step proposal from
[Monahan et al., 2009], one-step proposal from [Dupoux et al., 2011, de Jong and
Park, 2012, Wilson and Davidson, 2013]

In contrast, by advancing one-step proposals, authors such as [Dupoux et al.,
2011, de Jong and Park, 2012] and [Wilson and Davidson, 2013] argue that the
identity of the epenthetic vowel is determined in the process of parsing the input,
simultaneously to the categorisation of all other segments. The phonotactic legality
of the input is therefore assessed at the same time as the categorisation happens.
Notably, the input is not processed as a linear sequence of sounds; syllabic structure
is taken into account during the parsing process [Kabak and Idsardi, 2007].

[Wilson and Davidson, 2013] qualify the process as a process of “reverse infer-
ence” within a Bayesian framework, where the perceptual system computes P (w|X)
the posterior probability of candidate percepts w given the auditory input X. These
are estimated, for each candidate percept, from the product of P (X|w) the likelihood
of the acoustics given the percept and P (w) the prior probability of the percept,
defined as its phonotactic acceptability. Mathematically, this can be formulated as
in equation 3.1. Then, in a maximum a posteriori (MAP) estimation scenario, the
final percept ŵ corresponds to the percept with the highest posterior probability,
as shown in equation 3.2. Alternatively, the final percept may be estimated by
weighted sampling, where weights are defined by the posterior probabilities.

P (w|X) ∝ P (X|w) · P (w) (1.1)

ŵ = arg max
w

{P (X|w) · P (w)} (1.2)

In other words, for one-step models, parsing becomes an optimisation problem
where the optimal output is the one maximising the acoustic match to the input
and the likelihood of the phonemic sequence in the native language. [Durvasula and
Kahng, 2015] add to the aforementioned proposals by suggesting that listeners are
decoding nonnative speech through a process of reverse inference that not only op-
timises the output according to phonetic representations and surface phonotactics,
but also according to native phonological alternations (i.e., mappings between un-
derlying and surface representations). What this means is that listeners will also try
to infer an underlying phoneme based on the possible surface realisations attached
to this phoneme in their native language. For instance, in Korean, /s/ surfaces as
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[S] when in front of the vowel /i/. When hearing a cluster such as [Sm], listeners
may epenthesize [i] after interpreting [S] as the allophone of /s/ in front of that
vowel. Thus, the extended proposal by [Durvasula and Kahng, 2015] integrates the
involvement of deeper phonological rules/constraints during the perception process.

1.4 Modelling approach: An example

... But why make models?

Derek Zoolander, probably.

In this thesis we will evaluate computational implementations of one-step theories
of nonnative speech perception. Notably, we will investigate models from the field
of automatic speech recognition (ASR) which are a direct implementation of the
Bayesian model shown in equation 3.14. While only the one-step family of theories
will be evaluated in this work, we encourage further research to be done with similar
methodologies in order to investigate all of the various co-existing proposals.

Indeed, using computational models in order to investigate competing theories
is beneficial in several ways. Firstly, the need to translate the theories into model
implementations forces model ideators to provide a mathematically and/or algo-
rithmically well-defined model. This is in contrast with more vague and ambiguous
verbally defined theories that leave more space to reader interpretations. Having
more rigorous model definitions also allows us to better understand competing the-
ories (what is the exact nature of the input? which grammar constraints are applied
and how? ...), meaning that it is easier to compare proposals and see where they
differ significantly or not.

Secondly, obtaining a computational implementation of a theory means that it is
then possible to derive predictions from the models in question. It is then possible
to qualitatively and quantitatively examine these predictions, and compare them to
what is observed in behavioural data.

For the skeptical reader, possibly left frowning after reading the above state-
ments, we will briefly develop an example of how modelling can allow us to test
theories in ways that may be unfeasible otherwise. The specific example, the details
of which can be found in Appendix A, is from the literature of developmental psy-
cholinguistics, concerning how acoustic differences in Infant-Directed Speech might
or might not promote language learning for infants, compared to Adult-Directed
Speech (ADS). Indeed, IDS presents very salient prosodic, lexical, syntactic, and
temporal properties (see [Soderstrom, 2007, Golinkoff et al., 2015] for a review).

The hypothesis (which we refer to as the Hyper Learnability Hypothesis; HLH)
was advanced by [Kuhl et al., 1997]. The authors in this study analysed the acoustics
of the vowels located at the extremities of the vowel triangle (i.e., /i, a, u/). Analyses
showed an increase of the vowel triangle area (in formant space) for IDS compared
to ADS. The authors interpreted this as an enhancement of phonemic contrasts,
which might help infants identify and acquire phonemic categories more easily. The
expansion of the vowel triangle in IDS was also attested in other studies [Andruski

4The equivalent of a weighted sampling procedure was preferred over MAP estimation for
percept selection, since participant responses in previous experimental work on epenthesis tended
to show variation and were not deterministic.
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et al., 1999, Bernstein Ratner, 1984, Burnham et al., 2002, Cristia and Seidl, 2014,
Liu et al., 2003, McMurray et al., 2013, Uther et al., 2007], but not systematically
across the vowel inventory [Cristia and Seidl, 2014] and, importantly, IDS presented
increased within-category acoustic variability [McMurray et al., 2013, Cristia and
Seidl, 2014, Kirchhoff and Schimmel, 2005]. With increased vowel separation and
increased within-category variability being opposite effects, we wondered whether
the discriminability of IDS phonemes was higher than for ADS vowels or not.

Using a computational model of the ABX discrimination task5, [Martin et al.,
2015] assessed the discriminability of Japanese phonemes in a large corpus of Japanese
IDS and ADS. Against expectations, phonemes in IDS were on average less discrim-
inable that in ADS. In the Appendix A, we investigated whether the acoustic and
phonological advantage of IDS may surface at level of words. However, we found
that words in IDS were also less discriminable than in ADS on average.

In this set of studies, the modelling approach allowed us to quantitatively and
qualitatively test the HLH, in a large scale (several millions of ABX experimental tri-
als simulated), with systematic comparisons of all phonemes/words in the language,
without assuming a specific learning algorithm, and using a richer representation of
the acoustics based on a model of how speech is processed by the auditory system (as
opposed to formant values in other studies). Importantly, modelling allowed us to
evaluate the interaction between effects advancing opposing hypotheses, and showed
us the resulting predictions in a computationally understandable format. A study
of this magnitude would have not been possible with traditional experimental tech-
niques, which makes modelling a welcomed addition to the experimental evidence
gathered for and against the HLH.

In an analogous manner, we will be using computational models of nonnative
speech perception in this thesis, in order to investigate the underlying mecanisms
of perceptual vowel epenthesis in ways that may not be possible when only using
behavioural experiments.

1.5 Outline

Why do people of different linguistic background sometimes perceive the same acous-
tic signal differently? In particular, how is this nonnative acoustic signal processed
to become what the listener ends up perceiving?. How much of this process is
guided by the information directly accessible in the acoustic signal? What is the
contribution of the native phonology? How are these two elements combined when
computing the native percept?

In order to answer these questions, various mechanisms underlying nonnative
speech perception have been put forward; however, many lack formal definition
that allows them to be tested empirically. In this dissertation, we select one of
the proposals advanced by the psycholinguistics literature. Namely, we investigate
one-step models of nonnative speech perception [Dupoux et al., 2011, de Jong and
Park, 2012, Wilson and Davidson, 2013, Durvasula and Kahng, 2015], which postu-

5In this task, the discriminability of two categories A and B is assessed by setting triplets of
tokens a, b, and x. The first two belong to categories A, B, respectively; the third token belongs
to one of the two categories. The algorithm computes the acoustic distance between a and x, and
b and x, and classifies x to the category of the closest token. The more discriminable the two
categories in question, the higher the classification accuracy of the algorithm.
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late that acoustic match and sequence match between the nonnative input and the
native percept are optimised, simultaneously. To do so, we test a proof-of-concept
computational implementation of the model as defined by [Wilson and Davidson,
2013].

We present various methodologies for qualitatively and quantitatively evaluating
the reverse inference proposal. We do this by focusing on the phenomenon of percep-
tual vowel epenthesis, namely the phenomenon by which listeners may hallucinate
vowels when hearing nonnative speech that does not conform to the structural con-
straints of their native language. Of interest are both the rates of vowel epenthesis
(i.e., how often do participants experience this?) and variations of epenthetic vowel
quality (i.e., which vowel is epenthesized?).

Following on the experimental approach recommended by [Vendelin and Peperkamp,
2006], the data arising from the computational models is compared to data from
psycholinguistics experiments. In these, nonnative speech perception is evaluated
using psycholinguistics paradigms which tap onto online (i.e., real-time, individual)
perception of nonwords, in order to reduce the influence of confounds such as or-
thography and semantics. In other words, we subject the proposed computational
models to tasks analogous to those completed by human participants and analyse
their behaviour both quantitatively and qualitatively. Do we find acoustics-based
mechanisms to be necessary to predict perceptual vowel epenthesis in human listen-
ers? If so, do they suffice?

This dissertation is divided in two main sections. First, in Chapter 2, we use an
identification paradigm to investigate the influence of acoustic details on modula-
tions of epenthetic vowel quality. We discuss the implications of our results in the
context of the opposition between the two-step and one-step theories of nonnative
speech perception. We find that acoustic details modulate epenthetic vowel quality,
results that are in agreement with one-step theories. Building on these results, we
present a basic model of speech perception exclusively reliant on acoustic matching
betwen minimal pairs of nonnative and native speech exemplars. Namely, we build
non-parametric exemplar-based models of perception. Relative to human results,
we find the models to be able to reproduce some qualitative effects linked to the
role of coarticulation on epenthetic vowel quality; however, the models are limited
by their inability to output responses other than those derived from their specific
inventory of exemplars.

In Chapter 3 we turn to a parametric implementation of a one-step proposal,
using tools from the field of automatic speech recognition (ASR). We present an
HMM-GMM speech recognizer composed of independent acoustic and language
(i.e., phonotactic) models. These can be tweaked as necessary to test hypothe-
ses about the underlying mechanisms of nonnative speech perception. We propose
a novel methodology to test ASR systems which use language models represented
by Weighted Finite State Transducers (W-FST) in identification tasks analogous to
those used to test human participants. Using this method, we test the predictive
power of the acoustic model on patterns of vowel epenthesis. We find that the acous-
tic model alone better predicts human results than when accompanied by language
models, at least when the latter are n-gram based phonotactic models with phones
as the unit n. We further test whether some effects traditionally attributed to
phonology may actually be predicted from acoustics alone. Following promising but
not perfect results, we propose future research paths for enhancing the methodology
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and to further investigate the mechanisms underlying nonnative speech perception.
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2.1 Introduction

As presented in the Introduction, work on loanword adaptation and online speech
perception shows that listeners epenthesize or delete vowels from nonnative input
when it does not conform to native non-native phonotactics. While this statement
seems to be generally accepted, the mechanisms underlying these phenomena are
subject to more debate. In this chapter we will investigate the mechanisms under-
lying variations of epenthetic vowel quality.

2.1.1 One-step vs two-step theories

We saw that theories such as those by [Berent et al., 2007, Monahan et al., 2009] view
perceptual vowel epenthesis as a two-step process. According to these proposals, the
quality of the epenthetic vowel is determined by a language-specific grammar after
an initial parsing of the nonnative input. In contrast, one-step theories such as those
proposed by [Dupoux et al., 2011, de Jong and Park, 2012, Wilson and Davidson,
2013, Durvasula and Kahng, 2015] argue that parsing is an optimisation problem
where the optimal output maximises the acoustic/phonetic match to the input and
the likelihood of the phonemic sequence in the native language.

How can we confront and test these one-step and two-step proposals? For this,
we can dissect the phenomenon of perceptual vowel epenthesis and split it into two
subproblems:

1. When does epenthesis occur?

2. What vowel is epenthesized?

Concerning the first subproblem, neither one-step theories nor two-step theories
give explicit predictions concerning the rate of epenthesis. It is even unclear if the
two-step theories exposed above allow for epenthesis to not happen. In the case of
[Berent et al., 2007], not epenthesizing a vowel would require directly yielding the
phonetic form, without repairs being performed by the grammar. While [Berent
et al., 2007] hypothesizes that this may happen in tasks requiring participants to
pay more attention to phonetics, it is unclear in which cases listeners would directly
retrieve the phonetic form within a same task, for similar stimuli. In the case of
[Monahan et al., 2009], lack of epenthesis would involve a different syllabification
of the input than when epenthesis happens. Therefore, a priori, epenthesis should
always happen if the input is syllabified according to native phonotactics. In the
case of reverse inference one-step theories [Dupoux et al., 2011, de Jong and Park,
2012, Wilson and Davidson, 2013, Durvasula and Kahng, 2015], lack of epenthesis
might occur if the optimal match between the nonnative input and the native output
is more strongly driven by acoustic/phonetic match than by sequence acceptability.

We now turn to the second subproblem, epenthetic vowel quality. For a given
phonemic sequence containing a phonotactic violation, two-step theories would pre-
dict that epenthetic vowel quality is determined after an initial categorisation step.
As such, we do not expect different tokens of a same type to yield epenthetic vowels
of different quality. On the other hand, this would be possible for one-step accounts,
since the acoustic details are included in the computation of the optimal output.
Examining modulations in epenthetic vowel quality, therefore, allows to empirically
tease apart one-step and two-step theories summarised above.
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2.1.2 Role of acoustics

Results by [Dupoux et al., 2011] support one-step theories, since the authors were
able to modulate the identity of the epenthetic vowel perceived by Japanese and
Brazilian Portuguese listeners from stimuli that had the exact same segmental struc-
ture. For instance, Japanese listeners could be let to epenthesize /i/ more often
instead of their default /u/ within consonant clusters (and vice versa for Brazilian
Portuguese listeners). What are the factors determining whether participants more
readily epenthesized /i/ or /u/?

The modulations in epenthetic vowel quality observed in [Dupoux et al., 2011]
were due to acoustic cues present in the stimuli. Stimuli with the same segmental
sequence were constructed by excising the medial vowel from /ebuzo/ and /ebizo/,
yielding /eb(u)zo/ and /eb(i)zo/. These items differ in the coarticulation cues re-
maining in the consonants, but they have identical segmental structure (/ebzo/).
Participants epenthesized /i/ more often from /eb(i)zo/ than from /eb(u)zo/, and
similarly for /u/.

Remember that, for the two-step proposals above, the quality of the epenthetic
vowel is determined in a second step, after the identity of the segments has been
blocked. Both /eb(u)zo/ and /eb(i)zo/ would have /ebzo/ as a phonetic form (fol-
lowing [Berent et al., 2007]) or they would be parsed as /e.bV.zo/ (following [Mon-
ahan et al., 2009]). We cannot predict the modulations in epenthetic vowel from
these initial parsings. However, in a one-step processing the acoustic details (in
this case, coarticulation) could be taken into account when computing the acoustic
match between the input and possible output phoneme sequences.

In this view, the representation used as input for the computation is acoustic
in nature. This is in contrast to proposals of input as featural representation (e.g.,
binary, geometric). For instance, it has been hypothesized that the phenomena of
epenthetic vowel copy (i.e., when the epenthetic vowel shares quality with neighbour-
ing vowels) is due to a transfer of phonological features from neighbouring vowels
and/or consonants towards an undeterminate epenthetic vowel [Rose and Demuth,
2006, Uffmann, 2006]. These phonological explanations of epenthetic vowel quality
would therefore predict that, in auditory stimuli where the quality of the coartic-
ulation and the quality of neighbouring vowels would be in conflict, the quality of
the epenthetic vowel would mostly be determined by the neighbouring vowels.

2.1.3 Chapter preview

In this chapter we will investigate perceptual vowel epenthesis in order to tackle
three main questions:

• How does the influence of acoustic details on epenthetic vowel quality compare
to other influences such as those of an abstract grammar?

• Stimuli in [Dupoux et al., 2011] were made by excising vowels. Can we re-
produce the modulations of epenthetic vowel quality caused by coarticulation
using naturally produced stimuli?

• And finally, if acoustic factors are essential when choosing epenthetic vowel
quality, does this mean that they are sufficient to do so?

12



2.1. Introduction

In section 2.2 a perceptual experiment aims at disentangling the contributions
of phonetic categories and acoustic details on epenthetic vowel quality. Participants
are asked to report their choice of epenthetic vowel (if any) within consonant clus-
ters in stimuli where the acoustic information contained in the cluster may be in
disagreement with the identity of neighbouring vowels. Information theoretic mea-
sures allow us to quantify the influence of both neighbouring phonetic categories
and acoustic details.

In section 2.3 we explore the possibility of predicting epenthetic vowel quality
in Brazilian Portuguese (BP) and Japanese (JP) using a production-based exemplar
model of perception. This type of model predicts the quality of a vowel epenthesized
within the cluster of a stimulus based solely on the acoustic similarity of said /CC/
cluster to /CVC/ exemplars produced by native speakers of BP or JP. From this
modelling approach we can evaluate the influence of pure acoustics on effects such as
default epenthetic vowel quality and modulations induced by neighbouring vowels,
with naturally produced stimuli that have not been manipulated.

In section 2.4 we modify the production-based exemplar models from section
2.3. Several modifications are applied, mostly based on increased performance dur-
ing the parameter optimisation phase. However, a notable modification is the nor-
malisation of features by speaker (our input is still acoustic in nature, but it is closer
to phonetics than previously). Also, we include in our models the possibility to add
a duration-mismatch penalty, based on the finding that default epenthetic vowels are
also those that are shorter. We examine the effect of the presence or absence of the
duration penalty on default epenthetic vowel choice and modulations of epenthetic
vowel quality by neighbouring vowels.

13



Chapter 2. Role of acoustic details in the choice of epenthetic vowel quality

2.2 Which epenthetic vowel? Phonetic categories

versus acoustic detail in perceptual vowel epenthe-

sis

The following section is a modified version of the following journal article:
Guevara-Rukoz, A., Lin, I., Morii, M., Minagawa, Y., Dupoux, E., & Peperkamp, S.
(2017). Which epenthetic vowel? Phonetic categories versus acoustic detail in perceptual
vowel epenthesis. Journal of the Acoustical Society of America, 142(2), EL211-EL217.
Stimuli were designed and recorded by I. Lin. Experimental data for the identification
task were collected by M. Morii and Y. Minagawa, using scripts by A. Guevara-Rukoz.
The ABX experiment was designed and run by I. Lin. Statistical analyses, phonetic
transcriptions, and acoustical analyses were performed by A. Guevara-Rukoz. The ini-
tial manuscript draft was prepared by E. Dupoux, S. Peperkamp, and A. Guevara-Rukoz.
E. Dupoux and S. Peperkamp supervised the entirety of the study.
Modifications with respect to the original paper: additional figures, annexes.
We thank Alexander Martin and Alejandrina Cristià, our American English and Argen-
tinian Spanish speakers, respectively.

Abstract This study aims to quantify the relative contributions of phonetic categories
and acoustic detail on phonotactically-induced perceptual vowel epenthesis in Japanese
listeners. A vowel identification task tested whether a vowel was perceived within illegal
consonant clusters and, if so, which vowel was heard. Cross-spliced stimuli were used in
which vowel coarticulation present in the cluster did not match the quality of the flanking
vowel. Two clusters were used, /hp/ and /kp/, the former containing larger amounts of
resonances of the preceding vowel. While both flanking vowel and coarticulation influenced
vowel quality, the influence of coarticulation was larger, especially for /hp/.

2.2.1 Introduction

Our auditory perceptual system is tuned to the sound system of our native language,
resulting in impoverished perception of nonnative sounds and sound sequences [Sebastián-
Gallés, 2005]. For instance, in Japanese, a vowel can only be followed by a moraic nasal
consonant or by a geminate consonant. As a consequence, Japanese listeners tend to
perceive an illusory, epenthetic, /u/ within illegal consonant clusters [Dupoux et al., 1999,
Dehaene-Lambertz et al., 2000, Dupoux et al., 2001, Monahan et al., 2009, Dupoux et al.,
2011, Guevara-Rukoz et al., 2017b] and it is evident in loanword adaptation as well (e.g.
the word ’sphynx’ is borrowed in Japanese as /sufiNkusu/). Similar effects have been
documented in other languages, with different epenthetic vowels (/1/ in Korean [Kabak
and Idsardi, 2007, Berent et al., 2008, de Jong and Park, 2012]; schwa in English [Berent
et al., 2007, Davidson and Shaw, 2012]; /i/ in Brazilian Portuguese [Dupoux et al., 2011,
Guevara-Rukoz et al., 2017b]; and /e/ in Spanish [Hallé et al., 2014]). Even within
languages, there sometimes is variation in the quality of the epenthetic vowel; for instance,
in Japanese, the epenthetic vowel can in certain contexts be /i/ or /o/ [Mattingley et al.,
2015, Guevara-Rukoz et al., 2017b].

The factors that determine the quality of the epenthetic vowel are still unclear.
There is evidence that local acoustic cues in the form of vowel coarticulation play a role.
Specifically, using artificial consonant clusters obtained by completely removing an inter-
consonantal vowel, [Dupoux et al., 2011] found that the quality of the removed vowel –
traces of which are present in the neighboring consonants – influences the quality of the
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epenthetic vowel. Other studies, however, have argued for an influence of phonological
factors, such as the legality of the resulting repair at the phonotactic level [Mattingley
et al., 2015] or the presence of phonological alternations in the language [Durvasula and
Kahng, 2015]. Determining the source of epenthetic vowel quality is important at a the-
oretical level, because it can shed light on the computational mechanisms underlying the
perception of speech sounds. For instance, [Dupoux et al., 2011] argued that coarticulation
effects cannot be accounted for by two-step models, in which the repair of illegal sequences
follows that of phoneme categorization, while they are in accordance with one-step models,
in which phoneme categorization takes phonotactic probabilities into account. 1 However,
[Dupoux et al., 2011] only assessed the presence of acoustic effects, without investigating
a possible role of categorical effects. Here, our aim is to quantify the relative contributions
of categorical and acoustic effects on epenthetic vowel quality by directly comparing these
two types of effect.

We focus on perceptual vowel epenthesis following /h/. This case is ideally suited for
our objective as in Japanese loanwords these fricatives are typically adapted by adding a
‘copy’ of the preceding vowel when they occur in a syllable coda. For instance, ‘Bach’,
‘(van) Gogh’, and ‘Ich-Roman’ are adapted as /bah:a/, /goh:o/, and /ih:iroman/. In work
on loanword adaptations, cases of vowel copy in epenthesis have been explained as a result
of the spreading of phonological features from the preceding vowel onto the epenthetic
vowel (i.e., vowel harmony), for instance in Shona, Sranan, and Samoan [Uffmann, 2006],
and Sesotho [Rose and Demuth, 2006]. In speech perception, however, this pattern could
be based either on phonetic categories, i.e. the preceding vowel itself, or on acoustic detail,
i.e. traces of this vowel that are present in /h/, as laryngeal fricatives such as /h/ contain
acoustic information relative to formants of surrounding vowels [Keating, 1988]. Using an
identification task, we tease apart these two explanations by independently manipulating
the categorical context in which /h/ occurs and the acoustic realization of this segment,
using cross-splicing. As a control, we also use stimuli with /k/, which are expected to give
rise to more default /u/-epenthesis because they contain less coarticulation.

2.2.2 Methods

2.2.2.1 Participants

Twenty-five native Japanese speakers were tested in Tokyo, Japan (mean age 24± 3.5; 13
female). All were students at Keio University, and none had lived abroad.

2.2.2.2 Stimuli

We constructed a set of 20 base items, 10 disyllabic ones of the form V1C1C2V1 and 10
matched trisyllabic ones of the form V1C1V1C2V1, with V1 a vowel in the set /a, e, i,
o, u/ (henceforth: flanking vowel), C1 /h/ or /k/, and C2 a fixed consonant, /p/, e.g.
/ahpa/, /ekpe/, /ohopo/, /ikipi/. Three trained phoneticians, native speakers of Dutch,
American English and Argentinian Spanish, respectively, recorded all items with stress
on the first syllable. All /kp/ stimuli presented release bursts. For each disyllabic item,
we used one token per speaker as a natural control stimulus. By systematically replacing
the /C1C2/-cluster in these items by the same cluster out of the other disyllabic items
produced by the same speaker but with a different vowel, we created spliced test stimuli
such as /ahopa/, and /ekipe/, where the small vowel denotes vowel coarticulation present
in the consonant cluster. Similarly, by replacing the /C1C2/-cluster in the disyllabic
items by the same cluster out of the second token of the same items, we created spliced

1Note that due to a typo the summary in the first-to-last paragraph of this article erroneously
states the opposite.
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control stimuli in which the vowel coarticulation matched the flanking vowel, e.g. /ahapa/,
/ekepe/. We also created trisyllabic fillers in which the middle vowel either matched or
mismatched the flanking vowel, e.g. /ahapa/, /ekepe/, /ahopa/, /ekipe/ (these were also
created by splicing, as they served as test stimuli in an experiment not reported in this
article). Overall, each speaker thus contributed 40 test stimuli (5 flanking vowels x 4 vowel
coarticulations x 2 consonant clusters), 20 control stimuli (5 flanking vowels x 2 consonant
clusters, all both in a natural and a spliced form), and 50 fillers. Ten additional training
items were recorded by a fourth speaker. Their structure was similar, but included only
phonotactically legal nasal + stop sequences with or without an intervening copy vowel
(e.g., /ampa/, /enepe/).

2.2.2.3 Procedure

Participants were tested individually in a soundproof room. At each trial, they heard a
stimulus over headphones and were asked to identify the vowel between the two consonants,
if any. They were provided with a transcription of the item on screen, containing a question
mark between the two consonants (e.g. “ah?pa”) in latin characters (as non-CV syllables
cannot be transcribed using Japanese characters), as well as the list of possible responses:
“none, a, i, u, e, o”. Participants responded by pressing labelled keys on a keyboard.
Participants were familiarised with the procedure with 10 training trials in which they
received on-screen feedback.

The 330 stimuli were presented in a pseudo-randomised order: Consecutive stimuli
were produced by different speakers, and a stimulus could not be followed by a stimulus
with the same combination of vowel coarticulation and consonant. Trials were presented
in two blocks, with each stimulus appearing once per block, for a total of 660 trials. The
experiment lasted approximately 40 minutes.

2.2.3 Results

Test and control trials with responses that were either too fast (before the medial portion
of the stimulus could be perceived and processed, <400 ms) or too slow (> 3 SD: 3238
ms) were excluded from the analyses. This concerned 736 trials (4.5%).

2.2.3.1 Control items

Participants experienced perceptual epenthesis in 57% of control items in which the flank-
ing vowel and coarticulation are of the same quality (/hp/: 52%, /kp/: 61%). Recall that
in loanwords, the default epenthetic vowel is /u/, while after voiceless laryngeal fricatives
it is a copy of the preceding vowel. Focusing on trials with an epenthetic response, we
examined whether the choice of epenthetic vowel reflected this pattern.

First, a generalised mixed-effects model with a declared binomial distribution [Bates
et al., 2015] was used to examine a possible effect of consonant cluster on default /u/-
epenthesis. Thus, we analyzed the proportion of default /u/, using participant, speaker,
experimental block, and trial as random effects, and consonant cluster (/kp/ vs. /hp/;
contrast coded) as fixed effect. This model was compared to a reduced model with no
fixed effect. The full model was found to explain significantly more variance than the
reduced model (β = −4.2, SE = 1.2, χ2(1) = 9.9, p < 0.01), showing that participants
experienced significantly less default /u/-epenthesis in /hp/- than /kp/-items (39% vs.
86% of all trials with epenthesis, respectively).

Next, we examined whether epenthesized vowels shared the quality of the flanking
vowel more often in /hp/- than in /kp/-clusters. Given that for items with flanking
vowel /u/ it is impossible to know if /u/-epenthesis is due to vowel copy or to default
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Figure 2.1: Percentage of default /u/-epenthesis (left) and vowel copy epenthesis
(right) for control items. Box plots display the distribution of the scores across
speakers (median, quartiles and extrema), with gray lines connecting data points
corresponding to a single participant.

epenthesis, these items were excluded. As before, a generalised mixed-effects model with
a declared binomial distribution was used. We analyzed the proportion of vowel copy
(i.e., whether the flanking vowel and epenthetic vowel shared quality), using participant,
speaker, experimental block, and trial as random effects, and consonant cluster (/kp/
vs. /hp/; contrast coded) as fixed effect. Comparing this full model to a reduced model
with no fixed effects revealed a significant effect of consonant cluster (β = 3.7, SE = 1.2,
χ2(1) = 7.4, p < 0.01). Therefore, participants epenthesized a vowel that matched the
flanking vowel more often in /hp/-clusters (53%) than in /kp/-clusters (13%).

Thus, analysis of control items revealed that, similarly to the loanword pattern,
participants perceived the vowel /u/ more often in /kp/- than in /hp/-clusters, and they
perceived a vowel copy more often in /hp/- than in /kp/-clusters.

2.2.3.2 Test items

Figure 2.2 shows trial counts, separated according to response category, consonant cluster,
flanking vowel, and vowel coarticulation for test and control trials. Within the individual
rectangles, vertical lines are indicative of a larger influence of flanking vowels compared
to vowel coarticulation. Horizontal lines, by contrast, are indicative of a larger influence
of vowel coarticulation. Finally, uniform colouring indicates that neither flanking vowels
nor vowel coarticulation have the upper hand in influencing the quality of the epenthetic
vowel. Note that except for the rectangles with “none” and “u” responses where colouring
is more uniform, horizontal lines are more visually prominent than vertical lines. Thus,
the epenthetic vowel’s quality generally depends mostly on acoustic details present in the
consonant cluster.

Focusing on the test trials eliciting epenthesis (/hp/: 62%, /kp/: 66%), we quantify
the respective influence of flanking vowel and vowel coarticulation (explanatory variables,
EV) on the epenthetic vowel (response variable, RV), using two measures from information
theory, mutual information (MI) and information gain (IG) (for a comprehensive
description of these measures, see [Daland et al., 2015]). MI and IG are derived from
entropy, which is the ‘uncertainty’ in the value of a RV at a given trial. The lower the
entropy H[X] of a variable X, the easier it is to predict the outcome of a trial. The MI
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Figure 2.2: Counts of responses for the test items and spliced control items. Top:
/hp/-items; bottom: /kp/-items. Within each rectangle, flanking vowels and vowel
coarticulation are given in the horizontal and vertical axes, respectively. Darker
colours indicate higher counts.

I[X;Y ] of variables X and Y represents the reduction in ‘uncertainty’ of the trial outcome
for RV X, given that the value of EV Y is known (and vice versa). This corresponds to the
maximum amount of influence that Y can have over X, without removing contributions
from other variables. IG H[X|Z]−H[X|Y,Z] represents the minimum amount of influence
of variable Y on X. This corresponds to the reduction in uncertainty as to the value of
X that arises from knowing the value of Y , after removing all uncertainty explained by
variable Z.

As in [Daland et al., 2015], we compute accidental information introduced to MI
and IG, which corresponds to inaccuracies introduced to our measurements by the process
of inferring underlying probability distributions from samples, i.e., sampling error (as when
one does not obtain 50 tails and 50 heads when flipping a fair coin 100 times). We can
estimate the accidental information by recomputing MI and IG after having removed the
dependencies between the EV and the RV. We can do so by shuffling the values of the
EV within each participant. For instance, in order to compute the accidental information
introduced to MI and IG for the EV “vowel coarticulation”, we randomly shuffle the vowel
coarticulation labels of all of our trials, per participant, while leaving the EV “flanking
vowel” untouched. We then compute MI and IG as for the real data. In order to obtain
a better estimate of accidental information from an average value, we do this 1000 times
(i.e., Monte Carlo shuffling process).

To recapitulate, for both coarticulation vowel and flanking vowel, we compute ‘sam-
ple’ and ‘accidental’ MI and IG. The ‘true’ values of these measures are obtained by
removing mean accidental information from sample information. Following [Daland et al.,
2015], we consider the set of shuffled datasets (i.e., ‘accidental’ MI and IG) as probabil-
ity distributions given by the null hypotheses that neither coarticulation nor the flanking
vowel influence the responses.

As shown in Table 2.1, all sample lower bounds are greater than their respective
accidental information gains on all 1000 shufflings, for which the ranges are given in
parentheses. Therefore, the ‘true’ lower bounds for both coarticulation and flanking vowel
influence on epenthesis are greater than 0 with p < 0.001, showing that both coarticula-
tion and flanking vowel quality influence participant responses. However, the amount of
influence differs greatly: a larger information gain is yielded by considering vowel coartic-
ulation than by considering the flanking vowel. This is true both for /hp/-items, which
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Table 2.1: Quantified influence of vowel coarticulation and flanking vowel
on vowel epenthesis measured with information gain (IG) and mutual in-
formation (MI). Ranges for Monte Carlo simulations of the null hypothesis
(i.e. accidental information) are given in square brackets. Values are given
in bits.

Vowel coarticulation Flanking vowel

IG MI IG MI

data null data null data null data null

/hp/ .90 .04 [.02, .05] .93 .01 [0, .02] .07 .03 [.02, .05] .09 .01 [0, .02]
/kp/ .47 .03 [.02, .05] .53 .01 [0, .02] .07 .03 [.02, .04] .13 .01 [0, .02]

are heavily coarticulated, and for /kp/-items, where coarticulation is mainly only present
in the burst, even though the influence of coarticulation on epenthetic vowel quality is
higher for the former (/hp/: [0.86, 0.92] vs. /kp/: [0.44, 0.52]). (The range of variation
within shuffles of accidental information was about .03; thus any difference of .06 or bigger
is significant, including differences between MI and IG values, respectively). In summary,
both vowel coarticulation and the flanking vowel influence epenthetic vowel quality, but
this influence is greater for vowel coarticulation; response patterns are more predictable
when the value of this variable is known than when the value of the flanking vowel variable
is known.

2.2.4 Discussion and conclusion

We used an identification task to assess the quality of epenthetic vowels perceived by
Japanese listeners in illegal consonant clusters with varying amounts of coarticulation.
Our findings can be summarized as follows: First, we were able to replicate the perception
of illusory vowels within phonotactically illegal clusters by Japanese listeners (64% of all
test trials).23 Second, when the flanking vowel and coarticulation match, the quality of
the perceived vowel patterned in the same way as in loanword adaptation data. That is,
for /kp/-clusters, the predominant epenthetic vowel was the standard default vowel for
Japanese (/u/), while for /hp/-clusters, it was a copy of the flanking vowel. Finally, and
most importantly, in items where the coarticulation and flanking vowel differed, the quality
of the epenthetic vowel was significantly influenced by both variables, but the influence of
the former was much larger than that of the latter, especially in the case of /hp/. Our
discussion focuses on this last finding.

Before discussing its theoretical relevance, let us comment on the numerically small
– yet significant – influence of flanking vowel on epenthesis for /hp/-clusters, where vowel
coarticulation is maximal. This result suggests a contribution of categorical variables on
epenthetic vowel quality (i.e., copy effect). A similar effect, though, was also found for
/kp/-clusters, for which loanword adaptation patterns provide no particular reason to
propose the existence of a categorical copy phenomenon; indeed, in loanwords, coda-/k/

2Note that whereas previous studies examined perceptual epenthesis within clusters with at
least one voiced consonant, we presently focused on completely voiceless clusters, a context in
which the high vowels /i/ and /u/ may be devoiced in Japanese [Han, 1962, Vance, 1987]

3As pointed out by an anonymous reviewer, the differences in rates of epenthesis by speaker
(Dutch: 68%, Am. English: 58%, Arg. Spanish: 66%) are consistent with an important role for
acoustic factors in epenthesis, suggesting that participants interpret speakers’ acoustic cues instead
of responding based on abstract phonological categories (also cf [Wilson et al., 2014]). This can
also be seen in more detail when decomposing Figure 2.2 by speaker, as in the annex Figure 2.3
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generally triggers default /u/-epenthesis. Therefore, it is possible that this effect results
from a response bias due to task demands: given a perceptually uncertain stimulus, the
flanking vowel could prime a ‘copy’ response, for instance, because it was visually available
on-screen at each trial (e.g. “ah?pa”). Further work using different tasks is necessary to
examine the perceptual reality of this ‘vowel copy’ effect.

Keeping in mind that this work focuses on the choice of epenthetic vowel, while not
directly addressing questions related to why phonologically-illegal clusters are repaired, or
what the role of phonotactics in epenthesis is, the finding that the quality of the epenthetic
vowel is influenced more by coarticulation than by the flanking vowel calls for a perceptual
repair mechanism in which acoustic details are taken into consideration. Two-step models
in which epenthetic repair is performed after the consonant cluster in the acoustic input has
been represented in terms of discrete phonetic categories are therefore ruled out. Rather,
like [Dupoux et al., 2011], we argue in favor of one-step models, in which epenthetic vowel
quality is based on the similarity between local acoustic cues and prototypical properties
of each vowel in the language, such that the closest matching vowel gets selected for
insertion. This mechanism can account both for the coarticulation-induced vowel copy
effect in items with a /hp/-cluster, as the voiceless glottal fricative /h/ contains strong
coarticulation from the adjacent vowels [Keating, 1988] also see Annex Figure 2.4, and
for the default /u/-epenthesis effect in items with a /kp/-cluster – which exhibit a lower
degree of coarticulation – as /u/ is the phonetically shortest vowel in the language [Han,
1962] and is prone to be devoiced in certain contexts (see footnote).

Focusing on cases where the quality of the epenthetic vowel varies within language
as a function of the type of cluster, previous studies have investigated whether language-
specific phonotactic or phonological properties play a role for the quality of the epenthetic
vowel. In Japanese, for instance, dental stops cannot be followed by /u/, and in loan-
words this phonotactic constraint gives rise to adaptation by means of /o/-epenthesis (e.g.
′batman′ →′ batoman′). Using identification tasks, both [Mattingley et al., 2015] and
[Guevara-Rukoz et al., 2017b] report that the perceptual equivalent of this effect is only
marginally present in Japanese listeners (10-12% of /o/-epenthesis in /d/-initial clusters;
see also see also [Monahan et al., 2009] for the absence of such an effect in a discrimination
task). Thus, so far there is only weak evidence that the mechanism of phonotactic repair
takes into account the legality of the resulting CVC-sequence. A stronger effect of cluster-
dependent perceptual epenthesis has been reported in Korean listeners, who repair /eSma/
and – to a lesser extent – /echma/ with an epenthetic /i/ instead of the default epenthetic
vowel /1/ [Durvasula and Kahng, 2015]. This is argued to be due to the existence of an
allophonic rule that palatalizes /s/ and /th/ before /i/, yielding [Si] and [chi], respectively.
It is also possible, however, that this effect is (partly) due to coarticulation; for instance,
acoustic cues in /S/ and /ch/ might be more suggestive of /i/ than of /1/.

To conclude, we directly compared the relative contributions of acoustic and categor-
ical effects on epenthetic vowel quality, and found that the former override the latter. This
result thus strengthens those of [Dupoux et al., 2011], who also established the presence
of acoustic effects but without investigating possible categorical effects. More research is
needed to investigate whether our findings generalize to other cases of perceptual epenthe-
sis. This question can be addressed by two complementary approaches. One would be to
run additional experiments with cross-spliced stimuli, as in the present study. Another
one would be to measure the effective amount of coarticulation in experimental stimuli of
previous studies, using a computational implementation of a one-step repair mechanism
(see [Dupoux et al., 2011] and [Wilson and Davidson, 2013] for propositions, and [Schatz,
2016] and later chapters of this thesis for implementations using Hidden Markov Models).
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2.2.5 Annexes

Here we provide additional results for (a) differences in patterns of epenthesis for items
recorded by different speakers, (b) acoustic analyses of coarticulation, and (x) an ABX
discrimination task.

2.2.5.1 Identification results separated by speaker
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Figure 2.3: Counts of responses for the test items and spliced control items, separated
by speaker. For each speaker: top: /hp/-items; bottom: /kp/-items. Within each
individual rectangle, flanking vowels and vowel coarticulation are given in the hor-
izontal and vertical axes, respectively. Darker colours indicate higher counts, with
colours normalized within each speaker.

Our three recorded speakers did not share the same native language, causing their
recorded items to differ in their acoustic details. A consequence of this is that response
patterns of Japanese participants had subtle differences according to the speaker produc-
ing the stimuli, as seen in Figure 2.3. For instance, most “o” responses were prompted by
stimuli recorded by the Dutch speaker, while most “e” responses arose from stimuli by the
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Chapter 2. Role of acoustic details in the choice of epenthetic vowel quality

American English speaker. Importantly, as mentioned in the discussion, rates of epenthe-
sis and choice of epenthetic vowel varied according to speaker, which further supports
our hypothesis that Japanese participants attended to acoustic details when experiencing
perceptual epenthesis. It would be interesting to see whether these differences are due
to phonetics specific to the native language of the speakers or to personal idiosyncracies,
since here we only recorded one speaker per native language.

2.2.5.2 Acoustic analyses
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Figure 2.4: Visualisation in F1×F2 space of vowels (left panels), and coarticulation
found in the first consonant of CVC clusters (right panels), of items used in the
experiment. Dimmer dots and lines respectively show median formant values and
median formant bandwidths within the vowel or consonant. Dots circled in black
and thicker lines show global means.

In order to examine the acoustic properties of our stimuli, we annotated them using
Praat [Boersma et al., 2002] and we automatically extracted the first three formants from
all vowels in the stimuli (V1a and V1b from V1aCpV1b items, and V2 from CV2p items used to
construct V1CV2pV1 items), and also from /h/ and /k/ in /Cp/ clusters (coarticulation).
Their distribution in F1 x F2 space can be seen in Figure 2.4. As might be expected,
the vowel triangle formed by vowels /i, a, u/ is discernible when plotting full vowels in
F1 x F2 space. This is not the case, however, when plotting coarticulation contained by
consonants /h/ and /k/. Visually, it appears that the distinction between front vowels
/i, e/ and the rest (/a, o, u/ is better maintained in /h/ than in /k/. We used Linear
Discriminant Analysis (LDA) to perform classification of the points plotted in Figure 2.4,
using as input features a vector containing the first three formants F1, F2, and F3 of each
datapoint. We trained the LDA classifier first using data from full vowels as training data,
in order to classify coarticulation from the consonants. The classifier accuracy is 38.0% for
coarticulation in /h/ and 33.3% for coarticulation in /k/. The corresponding classification
patterns can be found in the top part of Figure 2.5. As we can see, classification patterns
are similar; /i, e/ coarticulation is classified as /e/, while /a, o, u/ are mostly classified
as /a/. Furthermore, we used LDA with cross-validation (i.e., from a set of n items, an
item is classified based on LDA performed on all other n − 1 items). When the set of
interest was that of coarticulation in /h/, the accuracy was of 51.7%, while it was 36.7%
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for coarticulation in /k/. The resulting classifications can be seen in the lower section
of Figure 2.5; for /h/ the classification patterns are more similar within members of a
taxonomic group (e.g., /i, e/) than for /k/. Thus, while coarticulation from both types of
clusters can be mapped onto the original vowel space similarly well (or badly, depending
on the perspective), it would be easier to deduce the quality of neighbouring vowels from
the coarticulation cues contained within an /hp/ rather than a /kp/ cluster, especially
with regards to the separation of the front vowels /i, e/ from /a, o, u/, as can be seen in
the lower part of Figure 2.5 and the right panels of Figure 2.4.
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Figure 2.5: Classification of consonants /h/ and /k/ based on formant values of
their coarticulation cues. Classification was performed based on category descrip-
tions dictated by formant values of full vowels (top) or in a cross-validation manner
(bottom). Consonants are labeled according to the quality of coarticulation cues,
therefore of neighbouring vowels (“Actual Group”, rows). Classification labels are
shown in columns (“Predicted Group”), with darker colours indicating higher counts.
Dendrograms on the left-hand side of each heatmap show the grouping of consonants
according to their similarity in the classification patterns. Diagonals show identity.
Please note that the order of the vowels differs between the four panels, since it is
set by the dendrograms.

2.2.5.3 Supplementary experiment: ABX task

In this additional experiment we assessed the perception of illegal consonantal clusters in
Japanese using an ABX discrimination task, which, contrary to the vowel identification
task used in Experiment 1, does not require an explicit categorization of the item’s seg-
ments. As in previous work [Dupoux et al., 1999, Dupoux et al., 2011], we used different
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speakers for stimuli A, B, and X, such that the task could not be performed on the basis
of low-level acoustic information.

Participants Twenty-six native Japanese listeners were recruited in Paris, France.
While testing for this experiment was done outside of Japan, we recruited only partic-
ipants with little experience with French or other languages in which consonant clusters
are allowed. For instance, many participants were recently arrived exchange students or
family members of professionals that had been transferred to Paris.

Stimuli From the stimuli used for the identification task, we extracted items relevant
for pairs shown in Table 2.2. We defined four types of AB pairs with constant flanking
vowels, based on the nature of the items in the pair:

• Natural cluster items (N) correspond to natural control stimuli from the identifica-
tion task, disyllabic V1C1C2V1 items which have not been spliced.

• Spliced cluster items (Sp) correspond to the identification task test stimuli, disyl-
labic V1C1(V2)C2V1 items for which the C1(V2)C2 cluster has been spliced from a
V2C1C2V2 item.

• Full vowel items (FV) correspond to trisyllabic fillers from the identification task,
V1C1V2C2V1 items for which the C1V2C2 cluster has been spliced from a V2C1V2C2V2
item

Table 2.2 also shows how well participants are predicted to discriminate items in the
AB pairs depending on how phonotactically illegal stimuli might be repaired. Participants
might break the illegal consonant cluster by adding a vowel identical to flanking vowels
(Flank.), by adding a vowel of the same quality as the coarticulation (Coart.), or they
might simply add /u/ by default (Default). Participants might also not experience
epenthesis at all (No Epenth.).

Table 2.2: Types of AB pairs for Experiment 2. The discrimination accuracy is
predicted according to the following hypotheses about epenthetic vowel quality: (1)
it is determined by flanking vowel quality (Flank.); (2) it is determined by coartic-
ulation cues (Coart.); (3) participants experience default /u/ epenthesis (Default)
epenthesis; (4) participants do not experience epenthesis (No Epenth.). Cases of
good discrimination are marked with plus signs.

Type A B # pairs Example Flank. Coart. Default No Epenth.

N-Sp natural spliced 40 /ahpa/− /ahipa/ − + − −
Sp-Sp spliced spliced 100 /ahipa/− /ahepa/ − + − −
N-FV natural full V 10 /ahpa/− /ahapa/ − − + +
Sp-FV spliced full V 50 /ahipa/− /ahipa/ + − + +

Procedure Participants were tested in a soundproof room wearing headphones. On
each trial, participants heard two different stimuli of categories A and B, followed by a
third stimulus X, belonging to either category A or B. Within each trial, all three stimuli
had a V1C(V2)pV1 structure, with V1 and C remaining constant. The three tokens were
produced by different speakers and were presented with an ISI of 500 ms. An ITI of 1 s
separated a participant’s response from the following trial.
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Within each triplet, A always contained either a natural or a spliced cluster, while
B always contained either a full vowel or a spliced cluster. Table 2.2 shows the four
different types of AB pairs that were thus tested, together with the expected discrimination
accuracy based on different hypotheses about how epenthetic vowel quality is determined.

In total, there were 200 AB pairs. Since there are four possible presentation orders
for each pair and its corresponding third item X (i.e., ABXA, BAXA, ABXB, BAXB),
there are 800 possible unique trials. In order to reduce the duration of the experiments,
participants were divided into two groups exposed to counterbalanced halfs of the total
set of trials.
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Figure 2.6: Discrimination accuracy at the ABX task on /hp/ (left) and /kp/ (right)
items. Dot plots show the distribution of average scores (one dot per participant).
Horizontal grey lines show mean accuracy for each AB pair type.

Results Trials in which the response was given before all items in the ABX triplet had
been played were excluded (1063 trials representing 11% of all trials). The remaining
data were analysed using a generalised linear mixed-effects model in R (lme4 ; [Bates
et al., 2015]) with a declared binary distribution. The binomial response variable of
interest for each trial was Accuracy (correct vs. incorrect); were included as fixed effects
Consonant (/h/ vs. /k/), Type A (natural vs. spliced), Type B (full vowel vs. spliced),
as well as the interactions between every pair of fixed effects. All fixed effects were contrast-
coded. Participant, Item A, Item B, and Test Group were included as random
effects. Significance testing was done through model comparison: the full model including
all fixed and random effects was compared to reduced models, in which one of the fixed
effects was absent.

The full model did not explain significantly more data variance than a model exclud-
ing the fixed effect Consonant, suggesting that participant accuracy was not significantly
different for /hp/ and /kp/ trials (β = 0.17, SE = 0.16, χ2(1) = 1.1, p > 0.05).

We did not find evidence of accuracy being lower or higher when an ABX trial
contained a natural cluster item instead of a spliced cluster item (Type A; β = 0.20,
SE = 0.12, χ2(1) = 2.52, p > 0.05). Moreover, there was no significant interaction
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between Consonant and Type A (β = −0.10, SE = 0.17, χ2(1) = 0.37, p > 0.05), nor
between Type A and Type B (β = 0.08, SE = 0.15, χ2(1) = 0.26, p > 0.05).

By contrast, accuracy was significantly enhanced by the presence of an item with a full
vowel cluster (i.e., Sp-FV and N-FV pairs) (Type B, β = 0.93, SE = 0.16, χ2(1) = 29.8,
p < 0.0001). This increase in accuracy appears to be exacerbated in pairs with /kp/-
containing items relative to pairs with /hp/-containing items, as the interaction between
Consonant and Type B was also significant (β = −0.7, SE = 0.15, χ2(1) = 19.0,
p < 0.0001).

These results are compatible with predictions given by the Default and No Epenth.
hypotheses in Table 2.2, i.e., better discrimination for N-FV and Sp-FV pairs. After look-
ing at response patterns from the identification task, this should come as no surprise.
Indeed, most of participant responses were “none” (36% of test trials) and “u” (32% of
test trials). This ABX task is therefore not sensitive enough to detect differences between
the more subtle modulations in epenthetic vowel quality caused by flanking vowels and
coarticulation cues. However, we can examine the correlation between ABX discriminabil-
ity and response patterns for the identification task, in order to verify that results from the
latter experiment are not solely due to task-specific demands (e.g., participants focusing
on phoneme identity).

Correlation with identification results In order to assess the role of perceptual
assimilation on stimulus discrimination, we derived a measure of perceptual distance from
response patterns given in the identification task, and examined if this distance predicted
the outcome in the ABX discrimination task. To do so, we computed for each item a
six-dimensional numerical vector of the shape x = [x1, ..., x6], with values corresponding
to the percent responses to categories a, e, i, o, u, and none, respectively. The distance
d(x, y) between two items x and y was computed as the normalized Euclidian distance
between their associated vectors:

d(x, y) =

√∑
i(xi − yi)2√

2

One data point was obtained per AB pair, giving a total of 200 datapoints (cf. Table
2.2).

Multiple regression analysis was used to test if assimilation patterns from the iden-
tification task significantly predicted participants’ accuracy during the ABX task. A
scatterplot summarizes the results in Figure 2.7. The model included as independent
variables the normalized perceptual distance between two items (range = [0;1]), and the
consonant cluster (/hp/ or /kp/). These two predictor variables explained 52% of the
variance (R2 = 0.52, F (3, 196) = 73.63, p < 0.0001). Consonant cluster (t < 1) and the
interaction of the two independent variables (t < 1) were not significant. On the other
hand, perceptual distance significantly predicted accuracy during the ABX task (t = 13.8,
p < 0.0001); the less similar the response patterns to both items in the AB pair, the eas-
ier their discrimination in the ABX task. These results suggest that adaptation patterns
attested in the identification task are not task-dependent.
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Figure 2.7: Correlation between the perceptual distance derived from the identifica-
tion task responses and the accuracy at the ABX discrimination task.

2.3 Predicting epenthetic vowel quality from acous-

tics

The following section is a modified version of the following article:
Guevara-Rukoz, A., Parlato-Oliveira, E., Yu, S., Hirose, Y., Peperkamp, S., and Dupoux,
E. (2017). Predicting epenthetic vowel quality from acoustics. Proceedings of Interspeech,
596-600.
Stimuli were designed and recorded by E. Parlato-Oliveira and E. Dupoux. Experimental
and production data were collected by E. Parlato-Oliveira and Y. Hirose. Phonetic tran-
scriptions were provided by S. Yu. Statistical analyses and exemplar-based models were
run by A. Guevara-Rukoz. The initial manuscript draft was prepared by E. Dupoux, S.
Peperkamp, and A. Guevara-Rukoz. E. Dupoux supervised the entirety of the study.
Modifications with respect to the original paper: additional figures.

Abstract Past research has shown that sound sequences not permitted in our native
language may be distorted by our perceptual system. A well-documented example is vowel
epenthesis, a phenomenon by which listeners hallucinate non-existent vowels within illegal
consonantal sequences. As reported in previous work, this occurs for instance in Japanese
(JP) and Brazilian Portuguese (BP), languages for which the ‘default’ epenthetic vowels
are /u/ and /i/, respectively. In a perceptual experiment, we corroborate the finding that
the quality of this illusory vowel is language-dependent, but also that this default choice can
be overridden by coarticulatory information present on the consonant cluster. In a second
step, we analyse recordings of JP and BP speakers producing ‘epenthesized’ versions of
stimuli from the perceptual task. Results reveal that the default vowel corresponds to the
vowel with the most reduced acoustic characteristics and whose formants are acoustically
closest to formant transitions present in consonantal clusters. Lastly, we model behavioural
responses from the perceptual experiment with an exemplar model using dynamic time
warping (DTW)-based similarity measures on MFCCs.
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2.3.1 Introduction

When languages borrow words from one another, the borrowed words tend to be adapted
to the local phonology. For instance, Brazilian Portuguese phonotactic constraints disallow
most obstruent-obstruent and obstruent-nasal sequences, while those of Japanese disallow
consonant clusters and consonants in coda position (with the exception of geminates and
nasal consonants). Foreign words containing these illegal sequences may be broken up by
the insertion of so-called ‘epenthetic’ vowels (e.g., BP: ”football” → /futibol/, JP: ”ice
cream”→ /aisukuri:mu/). This phenomenon has been shown to also happen during on-line
perception: listeners perceive vowels within illegal consonantal sequences [Dupoux et al.,
1999, Dehaene-Lambertz et al., 2000, Dupoux et al., 2001, Berent et al., 2007, Kabak and
Idsardi, 2007, Monahan et al., 2009, Dupoux et al., 2011, Mattingley et al., 2015, Durvasula
and Kahng, 2015]. This suggests that phonotactic constraints of the native language play
an active role during speech perception and induce repair of illegal forms such that they are
recoded into the nearest legal one. The specific mechanisms of this repair process are still
largely unknown. In particular, what determines the quality of the epenthesized vowel?
Past work has shown that perceptual epenthesis is language-dependent (e.g., /i/ in BP, /u/
in JP), but also that it may be influenced by local acoustic properties, i.e., by coarticulation
[Dupoux et al., 2011]. Here, we study these two effects together, and report, firstly, on a
perception experiment with BP and JP listeners. Next, we conduct acoustic analyses of
the production of possible epenthetic vowels in a subset of the same participants. Lastly,
we present an exemplar-based computational model of speech perception which attempts
to model phonotactic repairs based on acoustics.

2.3.2 Perception experiment

We assess patterns of perceptual epenthesis by BP and JP native listeners on stimuli
containing an illegal cluster. We investigate (1) the preferred epenthetic vowel in the two
languages (/i/ vs. /u/), and (2) the influence of flanking vowels on responses.

2.3.2.1 Methods

Fifty-four items with the structure V1C1C2V2, with V1 and V2 vowels from the set {/a/,
/i/, /u/}, and C1C2 a cluster from the set {/bg/, /bn/, /db/, /dg/, /gb/, /gn/}, e.g.
/abgi/, were recorded by a native speaker of French. Twenty-two native BP listeners
and 17 native JP listeners were tested in São Paulo and Tokyo, respectively. None had
extensive exposure to languages that allow complex consonantal clusters. At each trial,
participants heard a stimulus and had to indicate within 3 seconds which vowel from the
set {/a/, /e/, /i/, /o/, /u/ and none} they perceived within the consonant cluster.

2.3.2.2 Results

Statistical analyses were performed with the R statistical software [R Core Team, 2016],
using MCMC glmm [Hadfield, 2010, Plummer et al., 2006]. Effects were considered sta-
tistically significant if the 95% highest posterior density (HPD) interval estimated for the
variable of interest did not include zero. Please note that we only report effects relevant
to hypotheses tested in this work. A full report of all analyses conducted in this section
(as well as additional information) can be found in: https://osf.io/zr88w/.

In order to assess the influence of V1 and V2 (henceforth: flanking vowels) on epenthetic
vowel quality (/i/ or /u/), we fitted models with fixed effects Language (BP vs. JP), Num-
ber of Same Flanking Vowels (NSFV) (none vs. 1; none and 1 vs. 2) and their interaction,
with Participants as random effect. We also included the fixed effect Coronal C1 (non-
coronal vs. coronal) and the resulting interactions when analysing /u/ responses, as the
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insertion of default /u/ after coronal consonants yields phonotactically illegal sequences in
Japanese. Fixed effects were contrast coded with deviance coding and, in the case of the
trinomial variable NSFVs, comparisons were achieved by creating dummy variables ”none
vs 1” with weights [-0.5, 0.5, 0] for levels none, 1 and 2, respectively, and ”Less than 2 vs.
2” with weights [-0.25, -0.25, 0.5] for levels none, 1 and 2.
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Figure 2.8: Responses for all trials from the perception experiment for both BP (top)
and JP (bottom), including trials with responses not given by the exemplar model
(“none”, “a”, “e”). Numbers indicate trial counts, with darker cell backgrounds
representing higher values. Within each of the two 3 x 3 grid, trials are separated
according to V1 (columns) and V2 (rows). Within each individual rectangle, the
horizontal axis shows the first consonant of the consonant cluster, while the vertical
axis corresponds to possible responses.

Response patterns are shown on Figure 2.8. Overall, BP and JP participants experi-
enced vowel epenthesis in 81% and 87% of the trials, respectively. We focus our analysis
on these trials and, in order to allow for comparisons with the model from Section 4 below,

29



Chapter 2. Role of acoustic details in the choice of epenthetic vowel quality

we exclude trials for which the reported epenthetic vowel was /a/ (1%) or /e/ (BP: 1%,
JP: 3%). Percentages for the remaining responses of interest (/i/, /o/, and /u/) can be
seen in the lefthand part of Table 2.3.

Table 2.3: Percentage of responses.

Human data Model

i o u i o u

BP 80.39 0.64 18.97 52.73 6.22 41.05
JP 18.37 5.64 75.98 49.34 0.13 50.52

/i/-epenthesis Figure 2.9 shows the proportion of /i/-epenthesis. A main effect of
Language shows that BP participants perceived an epenthetic /i/ more often than JP
participants (posterior mode: −277.1, HPD interval: [−389.2,−167.1]). Moreover, the
propensity to respond /i/ was influenced by flanking vowels, as indicated by a main ef-
fect of NSFV: Participants gave more /i/ responses when one flanking vowel was /i/
(204.1, [80.8, 283.7]), and even more so when both flanking vowels were /i/ (368.9, [208.4, 443.4]).
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Figure 2.9: Proportion of /i/-epenthesis (left) and /u/-epenthesis (right) exhibited
by BP and JP participants in the perception experiment. Big dots show mean values,
while smaller dots show individual values for human participants.

/u/-epenthesis Figure 2.9 shows the proportion of /u/-epenthesis. We found a main
effect of Language; BP participants epenthesized /u/ less often than JP participants
(265.2, [191.0, 347.2]). The significant main effect of NSFV shows that participants were
overall more prone to perceiving an epenthetic /u/ if one (137.0, [90.6, 185.4]) or both
(300.3, [230.4, 387.7]) flanking vowels were /u/. Lastly, there was also a main effect of Coro-
nal C1 (−43.0, [−75.8,−9.8]): participants perceived /u/ less often after coronal than after
labial and velar consonants. However, neither the interaction between Coronal C1 and Lan-
guage (−63.9, [−132.1, 3.0]), nor the triple interactions with NSFV (−17.8, [−124.9, 84.1],
−14.8, [−238.4, 304.3) were significant; thus, JP participants were not more prone to avoid-
ing /u/-epenthesis after coronal consonants than BP participants.

2.3.3 Acoustic analyses

In both BP and JP, the shortest vowel corresponds to the default epenthetic vowel, i.e.
/i/ in BP [Escudero et al., 2009] and /u/ in JP [Han, 1962]. Here, we compare epenthetic
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2.3. Predicting epenthetic vowel quality from acoustics

vowels /i/, /u/, and /o/ on three acoustic parameters: (1) vowel duration, (2) vowel
intensity, and (3) Euclidean distance between vowel formants and formant transitions in
consonant clusters. We hypothesize that, for both languages, the default vowel is the one
(1) that is shortest, (2) that has the lowest intensity, and (3) whose formants are closest
to the formant transitions present in consonantal clusters.

2.3.3.1 Methods

Seventeen BP and 17 JP participants from the perception experiment were also recorded
producing 162 stimuli obtained by crossing the 54 V1C1 C2V2 frames of the experimental
items with the three vowels /i/, /o/, and /u/ (e.g. /ab gi/ → /abigi/, /abogi/, /abugi/).
Items were read aloud in carrier sentences, with stress and pitch accent on the first syllable
for BP and JP speakers, respectively. The recordings were manually segmented and tran-
scribed by a trained phonetician. Recordings with errors or unwanted noise were excluded
from the analyses. Acoustic measurements were automatically extracted from the speech
signal using the R package wrassp [Bombien et al., 2016].

2.3.3.2 Results

For each of the continuous response variables examined in this section, we fitted an MCMC
glmm with fixed effects Language (BP vs. JP), Medial Vowel (/i/ vs. /u/; /i/ and /u/
vs. /o/) and their interaction, with Participant and Item as random effects. Fixed effects
were contrast coded with deviance coding and, in the case of the trinomial variable Medial
Vowel, the comparisons were achieved by creating a dummy variable ”/i/ vs /u/” with
weights [-0.5, 0, 0.5] for levels /i/, /o/ and /u/, respectively, and one for ”High Vowels vs.
/o/” with weights [-0.25, 0.5, -0.25]. Multiple pairwise comparisons, using Least Squares
Means (LSMEANS) and Tukey’s adjustment, were performed using the R package lsmeans
[Lenth, 2016].
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Figure 2.10: Distribution of log’d vowel duration (in s) of medial vowels /i, o, u/
produced by BP and JP participants. Dashed lines show mean values.

Vowel duration The measured duration of each medial vowel V3 (in seconds) was log-
transformed to account for distribution skewness. The resulting distributions can be seen
in Figure 2.10. We found a main effect of Medial Vowel (”/i/ vs /u/”: 0.04, [0.02, 0.06];
”High Vowels vs. /o/”: 0.32, [0.30, 0.34]), showing that, overall, /o/ is longer than /u/,
which is longer than /i/. The interaction of Language and Medial Vowel was also significant
(”/i/ vs /u/”: −0.15, [−0.18,−0.10]), reflecting the fact that in BP, /i/ is shorter than
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/u/ (mean /i/: 57.2 ms; mean /u/: 64.5 ms; adjusted p < 0.05) while in JP, /u/ is shorter
than /i/ (mean /u/: 69.6 ms; mean /i/: 72.0 ms; adjusted p < 0.05).
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Figure 2.11: Distribution of median intensity (in dB) of medial vowels /i, o, u/
produced by BP and JP participants. Dashed lines show mean values.

Vowel intensity We compared the mean intensity of the medial vowels V3 in decibels
(dB). The associated distributions can be seen in Figure 2.11. There was a main effect
of Medial Vowel, with /i/ having on average lower intensity than /u/ (0.8, [0.7, 1.1]), and
high vowels having lower intensity than /o/ (2.1, [1.9, 2.4]). Of interest is the fact that
the former effect is larger for JP than for BP (Language x ”/i/ vs /u/”: 0.38, [0.09, 0.90]),
meaning that while /i/ is the vowel with least intensity in BP (mean: 72.8 dB vs. 73.2
for /u/; adjusted p < 0.05), the reverse is not true for JP (mean: 69.7 dB for /u/ vs.
68.7 for /i/, adjusted p < 0.05). This might be due to an overall higher degree of vocal
constriction during the production of /i/ compared to /u/.
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Figure 2.12: Distribution of square root Euclidean distance to template in F1 x F2
x F3 space (frequencies in Bark) of medial vowels /i, o, u/ produced by BP and JP
participants. Dashed lines show mean values.

Vowel formants We extracted median formant values (F1, F2, and F3, in Bark) from
medial vowels V3 and computed their Euclidean distance to the transitions found within
their respective clusters (e.g. the /i/ in /abiga/ was compared to transitions in /bg/ from
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the French recording of /abga/). The resulting distributions can be seen in Figure 2.12.
These Euclidean distances were square-root transformed to account for skewness. There
was a main effect of Medial Vowel, as on average distance was shorter for /u/ than for
/i/ (−0.06, [−0.08,−0.04]), while it was longer for /o/ relative to both /i/ and /u/ (0.28,
[0.25, 0.30]). Of interest is the significant interaction between Language and Medial Vowel
”/i/ vs /u/” (−0.31, [−0.36,−0.28]), reflecting the fact that in BP /i/ formants were closer
to cluster transitions than /u/ formants (mean: /i/ 2.8 vs. /u/ 3.1, adjusted p < 0.05),
while the reverse held in JP (mean: /i/ 2.9 vs. /u/ 2.2, adjusted p < 0.05).

2.3.4 Production-based exemplar model

We built an exemplar model of the perception of phonotactically illegal consonant clus-
ters by BP and JP listeners, exclusively based on acoustics. We used all participants’
productions from Section 3 as the inventory of exemplars available to our model. This is
a simple way of representing the acoustics that a BP/JP native listener may have been
exposed to during language development. As an analogy to the perception experiment
from Section 2, the model classified each V1C1C2V2 template as V1C1iC2V2, V1C1oC2V2,
or V1C1uC2V2, based on the similarity of the template to exemplars of these three cat-
egories available in the inventory. We examined whether the model was able to predict
participants’ epenthetic patterns, in particular, whether it was able to mimic preferences
for default vowels and capture the modulation of these preferences induced by flanking
vowels.

2.3.4.1 Methods

Recordings from Section 3 were converted into sequences of 39-dimensional feature vectors
consisting of 12 Mel-frequency cepstral coefficients (MFCCs) and energy features4, with
delta and delta-delta coefficients. Coefficient values were standardised. We computed the
optimal alignment between all V1C1C2V2 templates (e.g. /abgi/) and their corresponding
V1C1V3C2V2 epenthesized versions (e.g. /abigi/, /abogi/, /abugi/) using Dynamic Time
Warping (DTW) [Sakoe and Chiba, 1978, Giorgino, 2009]. In order to ensure that the
resulting distances were not mainly influenced by spectral differences of flanking vowels
V1 and V3, we only compared C1C2 clusters to C1V3C2 sections. Note, however, that
coarticulation cues from flanking vowels are expected to be present within the clusters.

For the simulation, we built a classifier that assigns any given template to one category
in the set {V1C1iC2V2, V1C1oC2V2, V1C1uC2V2}, based on acoustic similarity. Similarity
s between templates and epenthesized versions was defined as

s = e−cd (2.1)

where d is the DTW distance, and c is a parameter determining the weight of the DTW
distance on classification [Nosofsky, 1992]. When c = 0, DTW is disregarded and all
possible classification categories are equally probable. Higher values of c result in higher
probabilities being given to items with smaller d. In order to control for unequal number
of tokens in each category, classification was performed by computing the mean similarity
within each category. From there we sampled a classification label weighting category
probabilities by the resulting mean similarity weights. Parameter c was individually opti-
mised for each language by performing leave-one-out cross-validation (maximum accuracy:
0.50 with c = 0.5 for BP, and 0.63 with c = 2.2 for JP; chance level at 0.33).

4Due to a mistake in the feature computation pipeline, this meant that the log energy and the
12 first MFC coefficients were concatenated, not that the first coefficient of 13 coefficients was
replaced by the log energy, as was originally intended.
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2.3.4.2 Results

The same statistical models from Section 2, but without a random effect for Participant,
were used.

The perception model was able to accurately predict participant responses for 59.1%
(BP) and 58.4% (JP) of trials. Figure 2.14 shows a detailed distribution of the responses.
As shown in the righthand part of Table 2.3, the model rarely predicted /o/ responses,
as expected based on acoustic analyses; however, it is surprising that most /o/ responses
were predicted for BP rather than for JP. This might be due to overlap of /u/ and /o/ in
the formant space of BP, which is visible in Figure 2.13.
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Figure 2.13: Medial vowels and clusters in F1 x F2 space.

Concerning /i/ and /u/, numerically the model predicted more /i/ responses than
/u/ responses for BP, and the opposite for JP. However, these differences are not as clear
as they are for our human data, where in both languages the default vowel is chosen four
times more often than the non-default high vowel.

/i/-epenthesis The left panel of Figure 2.15 shows the proportion of /i/-epenthesis for
human participants and the corresponding exemplar models. We found a main effect of
Language (−52.0, [−86.9,−23.8) and a main effect of NSFV (none vs. 1: 93.3, [53.0, 125.0];
Less than 2 vs. 2: 245.7, [150.8, 328.2]). Thus, our model is able to reflect the higher
frequency of /i/ as epenthetic vowel in BP compared to JP participants, as well as the
influence of flanking vowels on /i/-epenthesis in both BP and JP.

/u/-epenthesis The right panel of Figure 2.15 shows the proportion of /u/-epenthesis
for human participants and the corresponding exemplar models. We found a main effect
of NSFV (none vs. 1: 37.8, [16.0, 62.3]; Less than 2 vs. 2: 190.7, [131.0, 240.6]) but
not of Language (−15.9, [−50.2, 10.1]). Thus, while our model was able to qualitatively
reproduce the influence of flanking vowels on epenthetic vowel quality for /u/, it was
unable to reflect the fact that JP listeners perceive /u/ more often than BP listeners.

There was also a main effect for Coronal C1 (−66.7, [−95.6,−39.5]) but no inter-
action of this effect with Language (40.2, [−28.0, 91.8]); similarly to the perception data,
this reflects an overall lower propensity for the model to ‘epenthesize’ /u/ after coronal
consonants. The triple interaction NSFV x Coronal C1 x Language was significant for
both ”levels” of NSFV (94.1, [19.9, 210.6], 525.8, [275.5, 666.1]). Closer inspection suggests
that this reflected the model’s inability to predict higher percentages of /u/-responses by
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Figure 2.14: Responses from the perception experiment (left) and model predictions
(right), for both BP (top) and JP (bottom), on trials common to the human and
model experiments. Numbers indicate trial counts, with darker cell backgrounds rep-
resenting higher values. Within each 3 x 3 grid, trials are separated according to
V1 (columns) and V2 (rows). Within each individual rectangle, the horizontal axis
relates to whether C1 is coronal (/d/) or not, while the vertical axis corresponds to
possible responses. For instance, BP participants experienced /i/-epenthesis in all
78 trials involving /iC1C2a/ stimuli for which C1 was not the coronal consonant
/d/.
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35



Chapter 2. Role of acoustic details in the choice of epenthetic vowel quality

both BP and JP participants after coronal consonants when both flanking vowels were
/u/.

2.3.5 Discussion

Examining epenthetic vowel quality preferences by BP and JP speakers in a perception
task, we corroborated previous findings ([Dupoux et al., 1999, Dupoux et al., 2011]) that,
like in loanword adaptations, the default epenthetic vowel during speech perception is /i/
for BP and /u/ for JP. Our acoustic analyses suggest that the choice of epenthetic vowel
is acoustically driven. That is, in BP, /i/ is shorter and spectrally closer to the formant
transitions in our stimuli than /u/ (and /o/), while the reverse holds in Japanese. As such,
it may not be necessary to rely on phonological explanations of epenthetic vowel quality
as in [Rose and Demuth, 2006, Uffmann, 2006], were we to find that these are shared
characteristics of default epenthetic vowels in a variety of languages. We also found an
influence of flanking vowels on epenthetic vowel quality, similar to what was reported in
[Dupoux et al., 2011]. Indeed, participants gave fewer default responses when the quality
of the flanking vowels was in disagreement with the default choice, resulting in more “vowel
copy” epenthesis (i.e. perceiving a vowel of the same quality as that of a flanking vowel).
Furthermore, we found that this effect of flanking vowels is additive, as it is even more
prominent when both flanking vowels are of the same quality.

Interestingly, phonotactics did not influence JP participants’ responses as may have
been expected; while /o/ was almost exclusively perceived after coronal consonants, this
was almost always the case for stimuli with V1 = /a/ (cf Figure 2.8). In fact, for all com-
binations of flanking vowels, participants responded /i/ and/or /u/ more often than /o/
in coronal contexts, even though both /du/ and /di/ are phonotactically illegal sequences
in JP. These results, which are reminiscent of previous work [Monahan et al., 2009, Mat-
tingley et al., 2015], suggest that constraints on perception given by surface phonotactics
can be overruled by constraints relative to matching input acoustics [Dupoux et al., 2011].
In fact, if this were not the case, novel sound sequences would have never arisen in JP
loanwords (e.g. party is adapted as /pa:ti/, not /pa:tCi/).

Finally, we presented results from one exemplar model per language, based on pro-
ductions by BP and JP participants, respectively. These models reproduced some effects
found in the perception experiment — mainly the influence of flanking vowels — although
with a high level of noise. This noise level may be due to the relatively low number of
tokens that were available as exemplars, the fact that the DTW procedure removes tem-
poral cues (recall that we found that default vowels tend to be of shorter duration), and/or
the fact that MFCC features do not appropriately capture speaker invariance. We inter-
pret the results as providing a proof of principle that some of the salient effects regarding
perceptual epenthesis can be accounted for on purely acoustic grounds. Future research
is needed to improve on the model, whose predictions deviated from the perceptual data
on several counts (e.g., 6% /o/-epenthesis for BP, but less than 1% for JP; failure to
produce more /u/-epenthesis for JP than BP). These improvements could involve more
phonetically and/or temporally informed features (e.g., spectrotemporal representations
[Chi et al., 2005]), state-of-the art large-scale approaches with HMM or DNN systems,
or physiologically-inspired models of speech perception (e.g., based on cortical oscillations
[Hyafil et al., 2015]).

To conclude, a triple approach combining perception experiments, acoustic analy-
ses, and modeling allows us to gain insight into the mechanisms underlying perceptual
epenthesis, and, more generally, repairs of illegal phonological structure during speech
perception.
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2.4 Predicting epenthetic vowel quality from acous-

tics II: It’s about time!

2.4.1 Introduction

In the previous section we introduced a production-based exemplar model of perception for
which input representations were solely acoustic. We used this relatively primitive model
to simulate a perceptual experiment probing perceptual vowel epenthesis by BP and JP
listeners. We showed that results from the model shared some qualitative similarities
with those from the perceptual experiment, the most notable being the models’ ability to
reproduce modulations of flanking vowels on the quality of the epenthetic vowel. Putting
these results together with the main results from section 2.2 (i.e., higher influence of
coarticulation than flanking vowel quality on epenthetic vowel quality), we concluded that
modulations of epenthetic vowel quality such as those observed in our perceptual task and
in [Dupoux et al., 2011] were due to acoustic details. On the other hand, the production-
based exemplar models were not able to adequately reproduce effects related to default
epenthetic vowels. Recall that for human participants we saw a majority of /i/- and /u/-
epenthesis for BP and JP, respectively.

However, acoustic analyses of recordings made by native BP and JP speakers showed
that default epenthetic vowels were not only the closest in formant space to acoustic cues
contained in cluster transitions, but they were also the shortest vowels in the inventory
/i, o, u/. As such, we can hypothesize that what is particular about default epenthetic
vowels is not limited to their spectral characteristics; vowel duration may be as important,
if not more, when computing the less costly vowel insertion. Viewing nonnative speech
misperceptions as an optimisation problem, where the output is obtained by applying the
phonetically minimal modification to the nonnative input [Peperkamp and Dupoux, 2003,
Dupoux et al., 2011, Steriade, 2001], we can posit the importance of duration match. In the
case of perceptual vowel epenthesis, where the output presents additional segments relative
to the input, it would seem logical that, for hypothetically equal spectral properties, shorter
segments would be preferred compared to longer segments. For instance, we wouldn’t
expect JP listeners to epenthesize long vowels instead of short vowels.

We would therefore want our models to take duration mismatches into consideration
when computing the similarity between the nonnative input and stored exemplars. This
was not the case for models in section 2.3, because the distance between two items was
computed using Dynamic Time Warping (DTW), which by design disregards duration
mismatch. The goal of the following section was to introduce a duration-mismatch score
that could be combined with the original distance score provided by DTW, in order to
produce a distance metric that reflects both the spectral and durational proximity of two
items.

Additionally, we performed various changes (highlighted throughout the methods sec-
tion). Most notably, feature standardisation was performed by speaker in the version of
the model described below, which in a way equates to the model being aware of speaker
identity when computing item similarity. As a consequence, this newer version of the
model is not purely acoustic, as it is a step towards speaker invariant auditory represen-
tations. Considering these changes, we will address the following questions: First, before
even introducing a duration-mismatch penalty, can our newer models reproduce default
epenthetic vowels and flanking vowel-related modulations of epenthetic vowel quality?
Secondly, what about models with a duration-mismatch penalty?
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2.4.2 Methods

2.4.2.1 Features

In order to ensure feature compatibility with future experiments (due to differences in
file formats), features were recalculated using the Kaldi speech recognition toolkit [Povey
et al., 2011], introducing slight changes regarding the parameters used in section 2.3. As
in section 2.3, audio recordings of items used as stimuli in the perceptual experiment
and those used for the acoustic analyses were converted into sequences of 39-dimensional
feature vectors consisting of 13 Mel-frequency cepstral coefficients (MFCCs), with delta
and delta-delta coefficients. In contrast to our previously used features, here our first
coefficient did not correspond to the log of the total frame energy, but to the zeroth
cepstral coefficient. Since the zeroth coefficient corresponds to the sum of the log of the 40
mel values, it is roughly equivalent to the log energy. We applied this change purely due to
the change in the tools used for computing features.5 Additionally, we added 3 coefficients
(and their corresponding delta and delta-delta coefficients) adding pitch information to
our features: normalized-pitch, delta-pitch, voicing-feature. The final 48 coefficient values
were standardised to have zero-mean and unit-variance within coefficient and within each
speaker.6 While pitch features and delta and delta-delta coefficients were computed, their
use in the model was evaluated according to whether performance was better or not during
parameter optimisation (see below).

2.4.2.2 Classification

For the simulation, we built a classifier that assigns any given template to one category in
the set {V1C1iC2V2, V1C1oC2V2, V1C1uC2V2}, based on acoustic similarity to the exem-
plars recorded by native speakers of BP and JP. We simulated the perception experiment
by classifying each template n times, n being the number of total valid trials for that
template in the perceptual experiment. Details of the classifier are given below.

Dynamic Time Warping As in section 2.3, we computed the optimal alignment be-
tween all V1C1C2V2 templates (e.g. /abgi/) and their corresponding V1C1V3C2V2 epenthe-
sized versions (e.g. /abigi/, /abogi/, /abugi/) using Dynamic Time Warping (DTW)
[Sakoe and Chiba, 1978] with the R package dtw [Giorgino, 2009]. In order to ensure that
the resulting distances were not mainly influenced by spectral differences of flanking vowels
V1 and V3, we only compared feature frames corresponding to C1C2 clusters and C1V3C2

sections. Note, however, that coarticulation cues from flanking vowels are expected to be
present within the clusters.

As input for the DTW distance computation at each speech frame, we used either
the entire 48-dimensional feature vectors (MFCCs + pitch features + delta + delta-delta),
or we omitted pitch features and/or delta + delta-delta coefficients. The final selection of
the features to be used for our models was determined during parameter optimisation.

Concerning DTW specifics, in section 2.3 we used the commonly used step pattern
for which, at position xi;j , the only possible steps are towards positions xi+1;j (horizontal
step), xi;j+j (vertical step), or xi+1;j+1 (diagonal step). In this default setting (named
“symmetric2” in the R package dtw), a diagonal step is twice as costly as a horizontal or
a vertical step, which favours template-query matches with compressions/stretching over

5As a reminder, however, due to a mistake when computing features in section 2.3, those
unconventional features consisted of the log energy, the first 12 MFCCs (including the zeroth
coefficient) and the corresponding deltas and delta-deltas.

6Normalisation had not been done within speakers in the previous version of the model, as we
aimed to have acoustics-based models with the least amount of abstraction.
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more direct matches. Therefore, in this section we chose to opt for a step pattern with
the same three possible steps as before (i.e., horizontal, vertical, diagonal), but for which
diagonal steps cost as much as horizontal/vertical steps on the final DTW distance. Since
distances obtained with this step pattern (“symmetric1”) cannot be normalised by being
divided by the sum of the lengths of the template and query, we normalise by dividing the
cummulative distance by the length of the optimal path.

From the DTW we extract two values per template-query combination: (1) DTWdist,
the normalised DTW distance between the template and the query, and (2) DTWtime, the
proportion of non-diagonal steps taken in the optimal path. This latter value, which was
not present in the previous version of the model, is an indicator of the proportion of time
dilation and time compression that was required to match the template and the query.

Similarity function We use the same similarity function as in section 2.3, inspired by
the exemplar-based generalized context model (GCM) detailed by [Nosofsky, 1992], and
make modifications to accommodate for the inclusion of the duration mismatch penalty
DTWtime. Our goal is to classify the V1C1C2V2 template into a category from the set
of vowels /i, o, u/, through the similarity of the template to exemplars V1C1iC2V2,
V1C1oC2V2, and V1C1uC2V2, respectively. We obtain P (RJ |Si), the evidence favouring
category J given stimulus i, by averaging the similarity of said stimulus i to all recorded
exemplars of category J . Since we do not aim to introduce a language model to the ex-
emplar model, as we want it to be based entirely on acoustics, we do not introduce a term
for response bias for category J. All exemplars are weighted equally.

P (RJ |Si) =

1
nJ

∑
jεCJ

ηij∑
K

1
nK

∑
kεCK

ηik
(2.2)

where nJ is the number of exemplars of category J and with η defined as in equation 2.3,

ηij = e−c·dij (2.3)

where c is a parameter determining the weight of ηij on classification. When c = 0,
DTW is disregarded and all possible classification categories are equally probable. Higher
values of c result in higher sampling probabilities being given to items with smaller distance
ηij .

ηij is defined as in equation 2.4

ηij = DTWdist + α ·DTWtime (2.4)

where α is a scaling factor for DTWtime. Setting α = 0, gives an equation equivalent
to the one used in section 2.3.

2.4.2.3 Parameter estimation

We used grid search in order to optimise parameter c for each language, as well as the
format of our acoustic features. We classified all V1C1V3C2V3 exemplars from the BP and
JP recordings in section 2.3 to a category within /i, o, u/ in a leave-one-out cross-validation
method. Namely, we assessed the accuracy in the classification of these tokens with known
labels, using the classification procedure described above:using DT, we measured their
respective similarity to all other exemplars with the same V1C1 − C2V3 skeleton, then for
each we sampled the classification label from the three possible categories, weighting the
sampling probability by the average distance to exemplars of the three categories.

We assessed the optimality of parameter values based not only on mean classifica-
tion accuracy, but also by inspecting median classification accuracy. Indeed, while these
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two measures are positively correlated, an improvement in median accuracy might not be
obvious when inspecting mean accuracy alone. In other words, combinations of parame-
ters with similar mean classification accuracy could differ greatly in median classification
accuracy. As a curious side note, while we aimed to optimise parameters when setting
α = 0 (baseline models with no duration penalty), increasing the value of α during cross-
validation with BP and JP recordings decreased classification accuracy. However, the
resulting degradation in accuracy tended towards zero when increasing values of parame-
ter c such as those chosen for this work.

We found that classification accuracy was worse when including pitch features, delta
+ delta-delta coefficients, and both, than when only using 13 MFCCs. Therefore, for
all experiments in this section, the acoustic input given to our models consisted of 13-
dimensional vectors. Concerning parameter c, we chose optimal values c = 60 (mean
accuracy: 64.6%; median accuracy: 1) for BP models, and c = 40 (mean accuracy: 90.1%;
median accuracy: 1) for JP models. This constitutes an improvement compared to the
previous version of the model in section 2.3 (50% and 63% mean accuracy for BP and JP,
respectively).

2.4.2.4 Data analysis

Statistical analyses were performed with the R statistical software [R Core Team, 2016],
using Markov chain Monte Carlo generalised linear mixed-models [Hadfield, 2010, Plum-
mer et al., 2006]. These Bayesian models sample coefficients from the posterior probability
distribution conditioned on the data and given priors. We used priors that are standard
for mixed-effects multinomial models. Model convergence was assessed by visual inspec-
tion of trace plots and the Gelman–Rubin convergence diagnostic [Gelman and Rubin,
1992], using four chains with different initialisations. Effects were considered statistically
significant if the 95% highest posterior density (HPD) interval estimated for the coefficient
of interest did not include zero. We report both the posterior mode and the 95% HPD
interval.

In order to assess the influence of V1 and V2 (henceforth: flanking vowels) on epenthetic
vowel quality (/i/ or /u/), we chose as fixed effects for our models Language (BP vs.
JP, sum contrast coded) and Number of Same Flanking Vowels (NSFV; consid-
ered as a continuous variable with values 0, 1, or 2 instead of a factor with 3 levels, in
order to reduce the number of model parameters and promote convergence), as well as
their interaction. As random intercepts we included Cluster and Participant when
analysing data from the perceptual experiment, and Cluster when analysing data from
the exemplar models. We also added random slopes for Language on Cluster, and
NSFV on Participant. The change in statistical models with respect to the previous
section was motivated by a will to avoid coefficient inflation due to the sparsity of our
data.7 Because of these changes, we reanalysed the behavioural results using the same
statistical model before analysing results from the exemplar models. This allowed a fairer
comparison between effects observed in real and simulated datasets. However, we did not
expect these results to be qualitatively different from those in section 2.3.

7Statistical models in section 2.3 had as fixed factors Language, NSFV, Coronal, all inter-
actions, and random intercepts for Participant (for the perceptual experiment only).
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2.4.3 Results

2.4.3.1 Re-analysing results from the perception experiment

/i/-epenthesis The left panel of Figure 2.16 shows the proportion of /i/-epenthesis for
human participants, with data collapsed by C1C2 cluster8. We report the results from our
statistical analyses below, even though they are qualitatively equivalent to those presented
in section 2.3. We found a significant main effect of Language (mode: −6.33, HPD:
[−7.94,−4.40]), which reflects the fact that BP participants perceived an epenthetic /i/
more often than JP participants. The main effect of NSFV was also significant (mode:
3.72, HPD: [3.30, 4.27]); participants epenthesized /i/ more often when more flanking
vowels were /i/. The interaction between the fixed effects Language x NSFV was not
significant (mode: −0.24, HPD: [−1.15, 0.76]).
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Figure 2.16: Proportion of /i/-epenthesis (left) and /u/-epenthesis (right) exhibited
by BP and JP participants in the perception experiment. The box and whiskers plots
display the distribution of proportions across C1C2 clusters (median, quartiles and
extrema). Dashed lines connect mean values. This representation was preferred over
showing distributions across participants, in order to have a direct visual represen-
tation of what our statistical models are evaluating, as well as to have the same
amount of plotted datapoints for participants and models. Data plotted collapsed by
participant can be seen in Figure 2.9

/u/-epenthesis The proportion of /u/-epenthesis for human participants can be seen
on the right panel of Figure 2.16. As for /i/-epenthesis, we report our results but they are
qualitatively equivalent to results from section 2.3. We found a significant main effect of
Language (mode: 5.06, HPD: [3.47, 6.41]), reflecting the higher rates of /u/-epenthesis
for JP participants compared to BP participants. The main effect of NSFV was also
significant (mode: 2.35, HPD: [2.02, 2.74]); more /u/ flanking vowels yielded higher rates
of /u/-epenthesis. The interaction between the fixed effects Language x NSFV was not
significant (mode: −0.57, HPD: [−1.30, 0.18]).

2.4.3.2 Exemplar models without duration penalty

We used our new exemplar models to simulate the perceptual experiment, setting α = 0,
effectively setting up models with no duration-mismatch penalty. The resulting classifica-

8Please note that, while based on the same data as Figure 2.8, here the datapoints correspond
to clusters, not participants.
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tion patterns can be seen in Figure 2.17.
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Figure 2.17: Responses given by exemplar models with no duration-mismatch penalty
(α = 0) for BP (left) and JP (right). Numbers indicate trial counts, with darker cell
backgrounds representing higher values. Within each 3 x 3 grid, trials are separated
according to V1 (columns) and V2 (rows). Within each individual rectangle, the
cluster C1 is given by the horizontal axis, while the vertical axis corresponds to
response categories. For instance, the BP model yielded /u/-epenthesis on 37 trials
involving /adC2i/ items.

/i/-epenthesis The proportion of /i/-epenthesis given by these models is shown in
Figure 2.18. The main effect of Language was not significant (mode: 2.85, HPD:
[−1.48, 8.70]); the models do not appear to reproduce the higher rates of /i/-epenthesis for
BP than JP. We did, however, find a main effect of NSFV (mode: 2.04, HPD: [1.78, 2.35]);
as for human participants, more /i/ flanking vowels result in higher rates of /i/-epenthesis
by exemplar models with no duration penalty. The interaction between the fixed effects
Language x NSFV was not significant (mode: −0.26, HPD: [−0.91, 0.25]).
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Figure 2.18: Proportion of /i/-epenthesis (left) and /u/-epenthesis (right) exhibited
by BP and JP exemplar models with no duration penalty. The box and whiskers
plots display the distribution of proportions across C1C2 clusters (median, quartiles
and extrema). Dashed lines connect mean values.
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/u/-epenthesis The right panel of Figure 2.18 shows the proportion of /u/-epenthesis
for exemplar models with no duration penalty. Neither the main effect of Language
(mode: −1.60, HPD: [−4.36, 1.16]) nor the main efect of NSFV (mode: 0.15, HPD:
[−0.05, 0.34]) were significant; the models do not appear to reproduce the higher rates of
/u/-epenthesis for JP than BP, and they do not show significantly higher rates of /u/-
epenthesis with more /u/ flanking vowels in general. However, the interaction Language
x NSFV was significant (mode: 0.96, HPD: [0.57, 1.34]). We therefore performed supple-
mentary analyses to examine the effect of NSFV for each language independently. Using
the R package lme4 [Bates et al., 2015], for each language we fitted a generalised linear
mixed model (GLMM) with a declared binomial dependent variable (/u/-epenthesis) with
NSFV as the sole fixed effect and Cluster as a random effect. We assessed significance
through model comparison with a null model without the main effect NSFV. For both
the BP and the JP models, we found NSFV to be significant but with opposing effects;
while the JP model yielded more /u/-epenthesis with more /u/ flanking vowels (β = 0.52,
SE = 0.12, z = 4.48, p < 0.001), the BP model yielded less /u/-epenthesis with increasing
numbers of /u/ flanking vowels (β = −0.44, SE = 0.12, z = −3.75, p < 0.05).

2.4.3.3 Exemplar models with duration penalty

Adding the duration-mismatch penalty In this experiment our aim was to ex-
amine, first of all, the effect of an increased duration-mismatch penalty on our models’
ability to mirror human performance at the perceptual task. Remember that, when per-
forming parameter estimation with BP and JP items, increasing the weight of the duration-
mismatch penalty DTWtime resulted in a decrease in classification performance. For our
optimal values of parameter c, when changing from α = 0 to α = 5, this difference was of
0.9% and 7.8% in mean classification accuracy, and 0 and 0.1% in median classification,
for BP and JP, respectively. Apart from α, all model parameters (c, feature coefficient
selection) are set as for models without a duration-mismatch penalty.

In order to assess the effect of varying α when simulating our non-native speech
perception experiment, we computed the distance between response patterns given by
human participants and models, for each item used in the experiment, while varying the
value of α. We did this by computing the Euclidean distance between [hi, ho, hu] and
[mi,mo,mu], vectors containing the proportion of /i, o, u/ responses given by humans and
models, respectively, within each experimental item. We normalised distances in order to
constrain their values to the interval [0, 1] (0 corresponding to identical response patterns).
The variation of the distance between patterns as a function of α can be seen in Figure
2.19.

Contrary to what we observed when classifying BP and JP items during parameter
optimisation, we observe that increasing the weight of DTWtime increases the similarity
between model and human responses until a certain value, after which the average simi-
larity decreases. In order to examine the best case scenario for models that value duration
match between templates and queries, we selected optimal α values for BP and JP, based
on the aforementioned response pattern similarity. Therefore, it should be noted that we
select the best possible model for each language, and it is this fitted model that we will
later analyse. Parameter values which minimise the distance between human responses and
model responses were α = 8 for BP, and α = 3 for JP. The classification patterns obtained
with these parameter values can be seen in Figure 2.20. We now turn to our main ques-
tions: Do these models better reflect default epenthetic vowel choice and flanking vowel
influence than models based solely on spectral features and without duration-mismatch
penalties?
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Figure 2.19: Similarity between human and model responses for varying values of
the duration-mismatch parameter α. Solid lines display the mean similarity, dashed
lines display the distribution of proportions across items (median and quartiles).
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Figure 2.20: Responses given by exemplar models with added duration-mismatch
penalty for BP (left) and JP (right). Numbers indicate trial counts, with darker cell
backgrounds representing higher values. Within each 3 x 3 grid, trials are separated
according to V1 (columns) and V2 (rows). Within each individual rectangle, the
cluster C1 is given by the horizontal axis, while the vertical axis corresponds to
response categories. For instance, the JP model yielded /u/-epenthesis on 28 trials
involving /ibC2a/ items.

/i/-epenthesis The proportion of /i/-epenthesis given by these models is shown in
the left panel of Figure 2.21. The main effect of Language was not significant (mode:
−0.97, HPD: [−6.02, 2.40]); the models do not appear to reproduce the higher rates of
/i/-epenthesis for BP than JP. Note, however, the change in sign of the posterior mode
and the shift in HPD interval towards more negative values, compared to values found
for Language when there was no duration penalty (mode: 2.85, HPD: [−1.48, 8.70]),
reflecting the increase in /i/-epenthesis for the BP model (relative to JP) with the addition
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of the duration penalty. If we look at the plot in Figure 2.21 it might seem surprising
that the main effect of Language is not significant. However, note that the interaction
Language x NSFV was significant (mode: −1.02, HPD: [−1.50,−0.47]). The higher
rates of /i/-epenthesis for the BP model relative to the JP model was estimated to be due
to a greater effect of flanking vowel for the former. Additionally, we found a significant
main effect of NSFV (mode: 2.08, HPD: [1.80, 2.31]); as for human participants, more
/i/ flanking vowels resulted in higher rates of /i/-epenthesis by exemplar models with a
duration penalty.
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Figure 2.21: Proportion of /i/-epenthesis (left) and /u/-epenthesis (right) exhibited
by BP and JP exemplar models with duration penalty. The box and whiskers plots
display the distribution of proportions across C1C2 clusters (median, quartiles and
extrema). Dashed lines connect mean values.

/u/-epenthesis The proportion of /u/-epenthesis given by models with duration penalty
is shown in the right panel of Figure 2.21. The main effect of Language was significant
(mode: 2.38, HPD: [0.20, 4.36]); models with duration penalty seem to reproduce the
higher rates of /u/-epenthesis for JP than BP. The main effect of NSFV was also sig-
nificant (mode: 0.45, HPD: [0.23, 0.61]); models with duration penalties reproduced the
tendency to epenthesize /u/ more often with more /u/ flanking vowels. The interaction
Language x NSFV was also significant (mode: −1.21, HPD: [−1.61,−0.86]).

2.4.4 Discussion

In this study we enhanced our production-based exemplar models of nonnative speech
perception from section 2.3. Notable improvements include basic speaker adaptation,
through speaker-specific standardisation of acoustic features. The newer version of the
model, therefore, is not purely acoustic as it previously was. We also included the possi-
bility to add a duration-mismatch penalty to be taken into consideration when computing
the similarity between an item to be classified and exemplars used by the model for clas-
sification.

Because the statistical analyses were not identical to those in section 2.3, we re-
analysed data from the perceptual experiment for a fairer comparison to the most recent
version of our models. As expected, we found that BP listeners epenthesise more /i/ than
JP listeners, while the opposite pattern is true with /u/-epenthesis. Participant responses
are modulated by the quality of flanking vowels; more neighbouring /i/ and /u/ vowels
lead to more /i/- and /u/-epenthesis, respectively, by BP and JP participants.
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First we simulated the perceptual experiment with models that did not include a
duration-mismatch penalty. The models were able to reproduce modulations of epenthetic
vowel quality brought by flanking vowels, but they did not reproduce the higher prevalence
of default epenthetic vowels. We then examined models with a duration-mismatch penalty.
We did find that models with a non-null duration-mismatch penalty gave response patterns
closer to that of human participants than when the penalty was absent. We then evaluated
the best possible models that did incorporate a duration-mismatch penalty. As models
with no duration-mismatch penalty did, these models exhibited higher rates of /i/- and
/u/-epenthesis with more /i/ and /u/ flanking vowels, respectively. We also found an
overall higher prevalence of /u/ for the JP model relative to the BP model, but the opposite
situation with /i/ did not occur. However, the BP model seemed to be more “sensitive”
to the effect of /i/ flanking vowels on /i/-epenthesis. Adding a duration-mismatch penalty
appears to better approximate response patterns given by human participants in a task
probing perceptual epenthesis.

One question that may arise is why adding the duration-mismatch penalty during the
parameter optimisation stage (i.e., classification of BP/JP recordings in a leave-one-out
method) did not increase classification accuracy if it did help approximating epenthesis
patterns. It is difficult to pinpoint the exact reason. One possibility is that this is due
to a difference in what “gold standards” for classification labels were in the two cases.
During the experiments, a nonnative item was classified into one of three categories (/i,
o, u/) by human participants. The classification labels correspond to what participants
report hearing. However, for parameter optimisation, we used as labels what had been
read by participants when recording the items. While the recordings were transcribed by
a trained phonetician, it is not guaranteed that that label corresponds to what BP/JP
listeners would report hearing. As a reminder, our items are nonwords, some of them
with phonotactically illegal sound sequences (e.g., /aduga/ contains /du/, which is not
phonotactically legal in Japanese). It is possible that BP and JP listeners might show
variability in their classification of such stimuli.

In contrast, coming back to our experimental results, models that used duration
mismatches seem to yield response patterns closer to those given by human participants,
with flanking vowel modulations still being reproduced qualitatively. Yet even the best
possible models were not able to correctly reproduce the prominence of default vowel
epenthesis observed in psycholinguistic experiments. We expected duration mismatch to
play an important role in the emergence of the default epenthetic vowel, since we found in
section 2.3 that short duration is a characteristic shared by default vowels in JP and BP.
We hypothesised that this short duration contributed to the insertion of these vowels being
phonetically minimal. It is important to note that our models’ processing of duration can
be further improved. Indeed, our models assess the percentage of DTW steps involving
time dilation or contraction necessary to optimally align two items. Therefore, our models
evaluate duration in absolute terms. It would be interesting for duration to be evaluated
as something relative instead. For instance, we could take speech rate differences into
consideration, or modulate vowel choice by also looking at how probable is the resulting
duration of the consonants given the insertion of a vowel (i.e., consonant duration being
allocated to said vowel). Modifications such as these would involve a higher level of
abstraction than the one provided by our exemplar models, which simply compare two
sequences of acoustic frames. Notably, they would require the introduction of discrete units
(e.g., phonemes) when processing the acoustic input. Being aware of these limitations, we
will later turn towards a very different family of models that allow for these modifications.
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2.5 General Discussion

Similarly to what has been previously observed (e.g., [Dupoux et al., 1999, Dehaene-
Lambertz et al., 2000, Dupoux et al., 2011, Monahan et al., 2009, Mattingley et al.,
2015]), we find that BP and JP participants experience perceptual vowel epenthesis when
presented auditory stimuli with illegal consonant clusters. For most cases, BP and JP
participants insert what has been called a “default” epenthetic vowel, namely /i/ and /u/,
respectively. Confirming intuitions laid out by [Dupoux et al., 2011] and reminiscent of
the P-map theory in [Steriade, 2001], acoustic measurements revealed that these vowels
were, within their respective languages, acoustically minimal in that they were of shorter
duration and closer in formant space to cluster transitions than other candidate vowels.

In section 2.3 we were able to reproduce the effect of coarticulation on epenthetic
vowel quality observed in [Dupoux et al., 2011], but this time using naturally produced
stimuli. We find that the quality of epenthetic vowel is modulated by the identity of
flanking vowels: we see more /u/-epenthesis by BP participants with more /u/ flanking
vowels, and more /i/-epenthesis by JP participants with more /i/ flanking vowels. Were
these modulations of epenthetic vowel quality due to coarticulation cues contained in the
consonant clusters or were they due to a phenomenon of vowel copy based on phonological
features as proposed by [Rose and Demuth, 2006, Uffmann, 2006]?

This question was addressed in section 2.2, by assessing the perception of stimuli for
which the identity of the flanking vowels was in disagreement with that of the coarticulation
cues contained within consonant clusters. It was found that, while both flanking vowel
and coarticulation influenced epenthetic vowel quality, it was the latter that was the
most determinant. This is reflected by the results of the exemplar models evaluated in
sections 2.3 and 2.4. Indeed, these models compared the acoustics of non-native CC
clusters to native CV C exemplars, in order to determine the quality of the vowel to be
epenthesized. And while they were unable to mimic default vowel epenthesis, they were
able to reproduce quality modulations due to neighbouring vowels. Yet, these models
could not perform vowel copying in a way other than by exploiting coarticulation remnants
within the clusters.

In section 2.3 we provided evidence that default epenthetic vowels are phonetically
minimal both spectrally and at the level of duration. Yet we were not able to find evidence
that these acoustic cues are sufficient for default epenthetic vowels to emerge, since our
models were not able to mimic default epenthetic vowels. As previously stated, our proof
of concept exemplar model is very limited, as it performs pure acoustic matching between
CV C queries and a CC template. We showed that the models were not able to reproduce
default vowel epenthesis even when taking duration into consideration or/and when adding
basic speaker normalisation.

Adding to these concerns, it is important to mention that the model supposes the
existence of “multiphonemic” (i.e., sequences of phonemes) exemplars to which the non-
native input is compared to. Leaving aside the fact that the use of exemplar representations
during speech perception may be controversial, an important side-effect of exemplar-based
models is that they are unable to model lack of epenthesis. Yet we saw in both sections
2.2 and 2.3 that participants did choose the “no epenthesis” option in a non-negligible
percentage of the trials. As such, in the next chapter we will focus on perception models
that are flexible enough to also output illegal structures, as our participants do. Using
these models we will continue investigating whether information readily available from
the acoustic signal (i.e., phonetics) are sufficient to explain epenthetic vowel quality, or,
rather, whether information relative to the frequency of sounds or sound combinations are
necessary as well.

As a final reminder, our results are, as those by [Dupoux et al., 2011], better aligned
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with one-step theories of non-native speech perception than with two-step theories. Indeed,
the influence of acoustic details on epenthetic vowel quality would be lost if epenthesis
occurred after an initial categorisation step; computation of the optimal output must
therefore incorporate acoustics and phonotactics in a unique step. Following all of these
considerations, in the future chapters we will switch from a one-step DTW-based exemplar
model of non-native speech perception to more elaborate one-step Hidden Markov Models
(HMM).
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3.1. Introduction

3.1 Introduction

In the previous chapter we studied the use of exemplar-based computational models to in-
vestigate the underlying mechanisms of perceptual vowel epenthesis. While the exemplar-
based models were able to reproduce modulations in epenthetic vowel quality due to
coarticulation, they were unable to show a preference for default vowel epenthesis. More
importantly, due to their non-parametric nature, they were entirely unable to output “no
epenthesis” responses (or any response not in line with the available exemplars, for that
matter). In this chapter, we will turn to parametric models, which are implementations
of one-step theories of nonnative speech perception.

3.1.1 Implementation of a one-step model

Our experimental results from the previous chapter were supporting evidence for one-
step models of nonnative speech perception, as opposed to two-step models. Recall that,
according to one-step models, the perception process is a process of reverse inference
in which the listener attempts to retrieve the most probable percept given the auditory
evidence and language-specific phonotactic acceptability.

This proposal has been advanced by several authors [Dupoux et al., 2011, de Jong
and Park, 2012, Wilson and Davidson, 2013, Durvasula and Kahng, 2015], yet as it often
happens in the psycholinguistics literature, authors often fail to provide a well-defined im-
plementable model that accurately conveys their theory. Fortunately, an mathematically-
defined model of one-step nonnative perception was proposed by [Wilson and Davidson,
2013], allowing us to tweak and test this model empirically.

The proposal advanced by [Wilson and Davidson, 2013] falls within the Bayesian
framework. According to it, the perceptual system computes P (w|X) the posterior prob-
ability of candidate percepts w given the auditory input X. These are estimated, for each
candidate percept, from the product of P (X|w) the likelihood of the acoustics given the
percept and P (w) the prior probability of the percept, defined as its phonotactic accept-
ability. Mathematically, this can be formulated as in equation 3.1. Then, in a maximum a
posteriori (MAP) estimation scenario, the final percept ŵ corresponds to the percept with
the highest posterior probability, as shown in equation 3.2. Alternatively, the final per-
cept may be estimated by weighted sampling, where weights are defined by the posterior
probabilities.

P (w|X) ∝ P (X|w) · P (w) (3.1)

ŵ = argmax
w

{P (X|w) · P (w)} (3.2)

It so happens that a Bayesian approach is also used as the basis of models used in
the field of automatic speech recognition. In this context, the speech recognizer’s decoder
computes P (w|X) the posterior probability of possible words w given the acoustic input
X. These are estimated, for each possible word in a lexicon, from the product of P (X|w)
the likelihood of the acoustics given the word (i.e., the acoustic model) and P (w) the
prior probability of the word, defined as frequencies of observation in the corpus used for
training the model (e.g., the language model). Mathematically, this can be formulated
exactly as in equation 3.1. Since more often than not, the goal of the recognizer is to only
output the most probable transcription of an acoustic recording, the model retrieves ŵ the
sequence of words with the highest posterior probability. This is also MAP estimation,
as shown in equation 3.2. If the experimenter is interested, it is also possible to retrieve
posteriorgrams from the model, which correspond to the posterior probabilities of a finite
set of possible transcriptions.
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As can be seen above, Bayesian speech recognizers can be used to implement the one-
step proposal advanced by [Wilson and Davidson, 2013]. Importantly, since the acoustic
model and the language model are separate modules that are combined in a unique op-
timisation step, it is possible for us to tweak them, independently, before subjecting the
resulting models to experiments analogous to those used for testing nonnative speech
perception in human participants. As such, we can use these models as tools for better
understanding the mechanisms underlying perceptual vowel epenthesis.

3.1.2 Is the acoustic match sufficient?

As a continuation of the modelling work in the previous chapter (sections 2.3 and 2.4), in
this chapter we will test the ability of a reverse inference model that only relies on acoustic
match to account for patterns of speech perception. This is a special case of the model
presented in equation 3.1, where the language model is uniform and does not intervene in
the selection of the optimal percept. Considering that we have provided ample evidence of
the role of acoustics in the previous chapter, we will assume that this is the most minimal
testable version of the reverse inference proposal.

What exactly will we be testing in this chapter? In order to answer this question, let
us reprise the dissection of the phenomenon of perceptual vowel epenthesis mentioned in
the previous chapter:

1. When does epenthesis occur? (Variations in rates of epenthesis).

2. What vowel is epenthesized? (Variation in epenthetic vowel quality).

Various epenthetic patterns belonging to either of the questions above have been
assumed to be the result of abstract phonological processes, from surface phonotactics to
higher order grammar-related computations.

3.1.2.1 Variations in rates of epenthesis

Concerning the first question, we can mention variation in rate of epenthesis resulting from
cross-linguistic differences (e.g., [Dupoux et al., 1999, Dehaene-Lambertz et al., 2000,
Berent et al., 2007, Kabak and Idsardi, 2007, Dupoux et al., 2011, Shin and Iverson,
2011, Durvasula and Kahng, 2015, Durvasula and Kahng, 2016, Durvasula et al., 2018],
prosodic constraints [Kabak and Idsardi, 2007, Durvasula and Kahng, 2016], difference in
markedness (e.g., [Berent et al., 2007, Zhao and Berent, 2018]).

But what if the elements triggering these processes are embedded in the acoustic
signal, available for direct retrieval? For instance, acoustic details have been shown to
modulate rates of epenthesis both in perception [Peperkamp et al., 2008, de Jong and
Park, 2012] and production [Wilson and Davidson, 2013, Wilson et al., 2014]. So, while
we often include phonotactics as intrinsic to the very definition of vowel epenthesis, could
their role be of lesser importance than previously thought?

3.1.2.2 Variations in epenthetic vowel quality

For the second question, the following effects have at least been partially given phonological
explanations: cross-linguistic variations in default epenthetic vowel quality (e.g., [Dupoux
et al., 2011, Guevara-Rukoz et al., 2017b]), variations due to neighbouring vowels, possibly
due to phonotactics [Mattingley et al., 2015] or reverse inference of phonological rules
[Durvasula and Kahng, 2015, Durvasula et al., 2018].

Again, what if these processes are directly triggered by information contained in the
acoustic signal? For instance, we saw that default epenthetic vowels tend to be phonetically

52



3.1. Introduction

minimal in their respective language-specific inventories [Guevara-Rukoz et al., 2017b] and
are targets for further minimalisation processes such as vowel devoicing [Dupoux et al.,
2011]. Our exemplar-based models in the previous chapter were not able to reproduce
default vowel epenthesis, leaving us with uncertitudes about the need for a phonological
explanation in spite of the aforementioned acoustic hints. Do our parametric ASR models
reproduce this effect?

3.1.3 Chapter preview

In this chapter we will investigate the use of ASR systems as perceptual models in order
to tackle three main questions:

• Are speech recognizers a suitable tool for modelling nonnative speech perception
within a one-step framework?

• What is the relative contribution of the language model to patterns of vowel epenthe-
sis? Are phonotactics really needed to explain epenthetic patterns?

• Can the acoustic model alone account for processes attributed to phonology?

In section 3.2 we will present the architecture of our ASR models in more detail.
We will expose the various steps and models necessary to build the models, including
the speech data used for training, how the information is extracted from the speech and
represented in a more accessible and informative format, what the acoustic and language
models are in practice, and how they are combined to decode (i.e., transcribe and align)
the speech input.

In section 3.3 we examine if combining n-gram-based language models with our
acoustic models better approximates human perception than if using the acoustic model
alone. To do, we present a novel manipulation of Weighted Finite State Transducers (W-
FST), traditionally used in the sofware Kaldi [Povey et al., 2011] to graphically define
language models (among other components of the speech recognizer). This allows us to
simulate psycholinguistics paradigms used to probe nonnative speech perception, including
vowel epenthesis. We evaluate the various combinations of acoustic and language models
by comparing their results to a gold standard, which is given by results from behavioural
experiments described in sections 2.2 and 2.3.

In section 3.4 we investigate a medley of epenthetic patterns attributed to under-
lying higher order phonological processes. We test the hypothesis that these may result
from listeners incorrectly mapping the incoming acoustic signal to phonetic categories that
do not correspond to the parsing intended by the nonnative source. More specifically, we
study the predictive power of the acoustic model alone on cross-linguistic differences in
rates of vowel epenthesis between English and Korean listeners, increased non-default /i/-
epenthesis after palatal consonants in Korean, and word position-dependent differences in
epenthesis by English listeners. We reprise the methodology from section 3.3 to address
these phenomena.
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3.2 Anatomy of a HMM-based speech recogniser

For the experiments described in this chapter we used Hidden Markov Model (HMM)-
based speech recognisers as models of human perception. Speech audio waveforms are
transformed into a sequence of acoustic vectors X1:T = x1, ..., xT in the first step, called
feature extraction. In the decoding phase that follows, the trained ASR system attempts
to find the sequence of words w1:L = w1, ..., wL which is most likely to have produced
the sequence of acoustic feature vectors X. Mathematically, this equates to solving the
following equation:

ŵ = argmax
w

{P (w|X)} (3.3)

In terms of Bayesian inference, ŵ is the word whose posterior probability given the
observed acoustic vectors P (w|X) is maximal. To facilitate modelling, this posterior prob-
ability is broken down into two components using Bayes theorem, as shown oin equation
??.

ŵ = argmax
w

{P (X|w)P (w)} 1 (3.4)

The likelihood P (X|w), given by the acoustic model, is the probability of the
acoustics given the sequence of words. The prior P (w), given by the language model,
corresponds to the probability of the word sequence, and can be derived from frequency
counts. These probabilities can be extracted by training our ASR system using annotated
speech corpora.

Nowadays, in the field of ASR, Neural Network (NN)-based speech recognisers are
the state-of-the-art. In spite of better performance of NN-based ASR systems, we decided
to use HMM-based recognisers, which are better understood than NNs while still offering
good speech recognition performance. This results in vast availability of standard training
and test procedures, which are reliable, well documented and implemented in open-source
software packages like Kaldi [Povey et al., 2011].

Importantly for our experiments, HMMs offer a clear separation between the acoustic
model (AM; i.e., mapping between phoneme categories and acoustics) and the language
model (LM; i.e., frequencies of word/phoneme sequences). This allowed us to test ASR
systems with different LMs while keeping the AM constant, as well as adapting LMs to
mimic the experimental paradigms used when testing human participants.

We will now present the necessary components for building an HMM-based ASR
system, namely the speech corpora used to train and test the system and its featural
representation, as well as the decoder itself, composed of an acoustic model, a lexicon,
and a language model. The interaction of these elements is depicted in Figure 3.1. In the
following subsections we will present the components in more detail.

3.2.1 Corpora

In order to train and test our ASR system, we required transcribed speech corpora. These
corpora consisted of speech recordings which have been annotated; for each utterance, we
have a more or less detailed transcription of what was said. While the ideal annotation
is one for which phoneticians have provided phoneme categories (or even phones), as well

1In practice P (X|w)P (w) is often computed in the log space as α logP (X|w) + logP (w), where
α is a scaling factor called acoustic scale (set to 0.1 in our models). Having α < 1 results in down-
weighting the influence of the acostic model relative to that of the language model. This deviation
from strict Bayesian inference is traditionally used in ASR because in this context language models
tend to be more reliable than the acoustic models.
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DecoderFeature extraction

Acoustic Model

S1 S2 S3start stop

S1 S2 S3start stop

S1 S2 S3start stop
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/p/
/o/

/aɪ/

/l/ /m/

Language Model
P(dog | cute) P(dog | tomato)

P(love | I)
P(food | dog)

P(Honney | cute)

P(walk | I)
P(elevator | love)

P(sauce | tomato)

P(dog | hot)

I love my cute dog
aɪ l ʌ v m aɪ kj uː t d ɒ g SIL 0 1I

we
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love
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the

my
our 5

Honney

dog

4

cute
puppy
dog

Lexicon
dog = d + ɒ + g
Honney = h + o + n + i
love = l + ʌ + v
...
tomato = t + ə + m + eɪ + t +oʊ
tomato = t + ə + m + ɑː + t +əʊ

Aligned transcription

MFCC + pitch + ∆ + ∆2

CMVN

Figure 3.1: Architecture of our ASR system, including its input (acoustic features)
and output (transcription).

as their boundaries, often we might only have access to by-utterance annotations where
we are only provided with a sequence of words/phonemes for each utterance. In these
cases, we rely on forced alignment, and maybe also a phonetic dictionary mapping word
to phonemes, to automatically find phoneme boundaries.

In the following sections we have trained ASR systems with different “native” lan-
guages, namely Japanese (JP) and Korean (KR). These languages were of particular inter-
est because of their relatively restrictive phonotactics with regards to consonant clusters,
as well as the availability of corpora of spontaneous speech, which we will now present.
We also trained an American English (EN) corpus in order to evaluate our model’s per-
formance with respect to state-of-the-art systems.

Corpus of Spontaneous Japanese (CSJ) The CSJ [Maekawa, 2003] contains
recordings of spontaneous Standard Japanese. The corpus is composed of two subparts:
(1) academic presentation speech (APS), which consists of live recordings of academic
presentations, and (2) simulated public speech (SPS), where speakers presented everyday
topics in front of a small audience. For our models we only kept SPS, which is more rep-
resentative of everyday conversations at the level of the lexicon, and has a more balanced
population than the young, male-dominated APS. Recordings were manually transcribed
by native speakers of Japanese using Japanese syllabaries, which meant that the phonetic
transcriptions only included phonotactically legal phoneme sequences, even in cases where
the actual acoustics might have been closer to illegal sequences. Phoneme boundaries
were manually adjusted; however, this alignment was not used when training our models,
as it was only available for a subset of the data that we used. Our subset of the corpus
contained 400, 547 utterances produced by 594 speakers2 (331 female, 263 male), with
an average of 674.3 utterances per speaker. The division of the corpus across training,
validation, and test set are shown in Table 3.1.

2For the CSJ and KCSS, we used utterances from the same speakers for the validation and test
sets, but their data was not seen during model training. For the WSJ, data from all speakers was
used in the 3 corpus subsets, due to a planned comparison to another corpus not described here.
Since the speakers that we used in our experiments are not from any of the corpora, this is not an
issue. However, it needs to be kept in mind that error rates (%WER and %PER) for KCSS, CSJ,
and WSJ are only comparable within corpus.
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Table 3.1: Datasets used for training and evaluating the Japanese ASR system with
the CSJ.

Proportion # Utterances Duration (hh:mm:ss) # Speakers

train 80% 322, 208 152:26:33 475
valid 5% 19, 566 9:12:03 119
test 15% 58, 773 27:19:14 119

Korean Corpus of Spontaneous Speech (KCSS) The KCSS [Yun et al., 2015]
consists of recordings of spontaneous Seoul Korean. Forty speakers aged 10 to 49 (5 female
speakers and 5 male speakers per decade) were recorded in a quiet room, for approximately
1 hour each. Speech was ellicited through questions related to the speakers’ personal opin-
ions, habits, acquaintances, etc. Recordings were manually transcribed by native speakers
of Korean. We used phonetic transcriptions faithful to actual pronunciations which, for
instance, include phonetic reduction (akin to yesterday being transcribed as /jESeI/ in-
stead of the canonical /jEstÄdeI/). The transcription process involved the use of the main
writing system of Korean (i.e., hangul) as well as a romanization, meaning that there is a
possibility that acoustic sequences closer to phonotactically illegal sequences might have
been transcribed as phonotactically legal counterparts. Transcriptions include manually
adjusted phoneme boundaries, as well as word syllabification; however this alignment was
not used when training our models, to be consistent with how other corpora were aligned
by forced alignment. The corpus contains 57, 504 utterances produced by 40 speakers (as
explained above), with an average of 1, 437.6 utterances per speaker. The division of the
corpus across training, validation, and test sets is shown in Table 3.2.

Table 3.2: Datasets used for training and evaluating the Korean ASR system with
the KCSS.

Proportion # Utterances Duration (hh:mm:ss) # Speakers

train 80% 46, 208 18:58:15 32
valid 5% 2, 824 1:16:39 8
test 15% 8, 472 3:54:15 8

Wall Street Journal - Read (WSJ) The WSJ [Paul and Baker, 1992] is a corpus of
both read and spontaneous American English. For our work, we only kept the read subset
of the corpus, which consisted of recordings of read news articles. Contrary to the CSJ and
KCSS, the recordings were not phonetically transcribed. However, we had access to the
news articles themselves, as well as to a dictionary which mapped the standard phonetic
pronunciation of words in American English to the words in the articles. In total, 338
speakers read 71, 037 utterances, with an average of 210.2 utterances per speaker. The
division of the corpus across training, validation, and test sets is shown in Table 3.3.

3.2.2 Features

In order for our ASR systems to be able to use speech as input, it is necessary to perform
signal processing. This procedure transforms the continuous raw speech waveform into
sequential speech features. This latter form ensures a more informative representation of
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Table 3.3: Datasets used for training and evaluating the American English ASR
system with the WSJ corpus.

Proportion # Utterances Duration (hh:mm:ss) # Speakers

train 80% 56, 872 115:18:46 338
valid 5% 3, 661 7:24:22 338
test 15% 10, 504 21:12:19 338

speech, the content of which is made more accessible and easier to model. This is done
by the feature extraction process mirroring early auditory processing in humans [Schatz,
2016].

In this work we used Mel-frequency cepstrum coefficients (MFCC), traditionally used
for HMM-based ASR systems.

Speech is recorded with a microphone; the continuous audio signal is digitalized at a
sampling rate of 16kHz. The audio is then segmented into frames of 25 ms, with a shift of
10 ms between the beginning of each frame. By using frames, we make the assumption that
the signal is stationary within the 25 ms window, and we apply the following proccessing
steps to each frame, using Kaldi [Povey et al., 2011]:

1. Pre-processing: The data is extracted and pre-processed (dithering, pre-emphasis,
and DC offset removal).

2. Windowing: The data in the 25 ms frame is multiplied by a tapered window (Ham-
ming window), to avoid discontinuities at the edges of the segment.

3. Spectral analysis: By applying a Fast Fourier Transform (FFT), we find out how
much energy there is at each frequency band for this frame.

4. Nonlinear frequency scaling: In order to compensate for the fact that human hearing
is less sensitive to higher frequencies, frequencies are mapped onto a Mel scale,
which is linear until approximately 1000 Hz and logarithmic afterwards. This is
done by applying a mel-filter bank with 23 bins, which are equally spaced in the
mel-frequency domain. Each filter summarises the amount of energy in a section of
the range of frequencies.

5. Cepstral analysis: The log of the energy in each bin is computed, from which we
take the cosine transform. We keep 13 MFCCs, including c0, the zeroth coefficient
which represents the average of the log-frequency of the bins [Gales et al., 2008].

6. Cepstral liftering: Coefficients are scaled, ensuring that they have a reasonable
range.

We therefore obtain 13 MFCCs that summarise the information at each frame of
audio. To these coefficients, we add 3 coefficients carrying information about pitch:
normalized-pitch, delta-pitch, voicing-feature3. To these 16 static features we add their
respective dynamic features (∆ and ∆2) that describe the evolution of the coefficient val-
ues over time. Coefficient values are then standardised using Cepstral Mean Variance
Normalisation (CMVN); for each speaker the distribution of each coefficient’s values has
a mean value of zero and a variance of one.

3Information about pitch was added because of its contrastive relevance in Japanese at the
lexical level (i.e., pitch accent) and in Korean at the phonemic level (e.g., tonogenesis in the three-
way contrasts of plosives). In practice, adding pitch features resulted in a slight improvement of
model performance in Japanese (from 41.3% WER to 39.6%; acoustic model with 6000 Gaussians).
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3.2.3 Acoustic models

Now that we have extracted the acoustic features for the labelled utterances in our corpus,
we are able to train the acoustic model (AM). Recall that the AM gives the likelihood
P (X|w), which corresponds to the probability of the acoustics given the sequence of words
w. In order to simplify things, let’s not view an utterance as a sequence of words which
are sequences of phonemes themselves, but directly as a sequence of phonemes. Then,
we consider the probability of the acoustics X given the sequence of phonemes W . The
acoustics corresponding to a given phoneme change during the duration of the phoneme;
as such, phones are not static objects but they should be described as having acoustic tra-
jectories. By using Hidden Markov Models (HMM), we can approximate these trajectories
as sequences of static states. A priori, the more states, the better the approximation to
the real data. However, empirically it has been assessed that having three states is a good
compromise for ASR systems. Following this, we chose to model phonemes as three-state
HMMs, where the states correspond, respectively, to the beginning, middle, and end por-
tions of the phoneme. This is particularly relevant for phonemes that can be viewed as
sequences of discrete articulatory events with distinct acoustic signatures, such as plosives
(e.g., /p/) which are often described as an airway closure, followed by a period of occlu-
sion and a possibly audible release. Additionally, the separation into three states allows
to account for the fact that the acoustics of the beginning and end of a phoneme may be
differently affected by neighbouring phonemes (i.e., coarticulation) in comparison to the
medial part.

As their name suggests, HMMs follow a Markovian process; the value of a state only
depends on the value of the previous state. The transitions between states are defined by
transition probabilities not only between adjacent states, but also within a state itself (i.e.,
self-loops). These transition probabilities are defined during AM training, based on the
transitions between frames in the training corpus. While the duration of phonemes cannot
be explicitly learned by the acoustic model, they are implicitly reflected by the transition
probabilities in the self-loops: for a given state, the higher the self-loop probability, the
longer the model will “remain” at said state and the longer the sequence of acoustic vectors
assigned to the corresponding phoneme. A simplified illustration of a phoneme HMM is
shown in Figure 3.2.

In sum, each phoneme is modelled by a left-to-right 3-state HMM. But what exactly
is a state? Our acoustic models are HMM-GMMs, where GMM stands for Gaussian
Mixture Model. Our 48-dimensional feature vectors define a 48-dimensional space where
the acoustic model searches for the optimal GMMs needed to describe the three states
of each phoneme. In order to better explain what we mean by this, let us focus on the
box labeled “GMM” in Figure 3.2. In this simplified graphical example, the feature space
is 2-dimensional, but the same concepts are transposable to our 48-dimensional space.
Here we represent acoustic frames obtained during the feature extraction step as (not
yet coloured) dots. Each acoustic frame exists in the feature space, located at the point
defined by its feature values. In other words, the feature values (2 in the example, 48 in
our models) are coordinates that place the acoustic frames in the feature space.

During training, the acoustic model’s tasks are to:

1. For each phone, find three groups of acoustic frames that can be used to define the
sequential states in the HMM. This equates to colouring the dots, knowing that
a sequence of acoustic frames corresponding to a same phoneme exemplar cannot
freely jump between states. For example, if we imagine a token of the phone [p] that
has six acoustic frames 123456 , possible colouring for these frames are 123456
or 123456 , while 123456 or 123456 are not. Keep in mind that this must be
true for all tokens of [p] encountered during training, as they are all sharing the
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S1 S2 S3

GMM

{self-loop HMM

start stop

Figure 3.2: Left-to-right 3-state phoneme HMM with simplified 2-dimensional GMM
(one per state). Start and stop states connect the phoneme with the previous and
next phoneme, respectively.

same acoustic space.

2. Find combinations of Gaussian mixtures (the aforementioned GMMs), and the pa-
rameters of their respective diagonal Gaussians distributions4, that describe the
sections of the acoustic space corresponding to each state. This equates to drawing
the dashed ellipses around the coloured dots in order to define the more irregularly-
shaped coloured areas. Indeed, GMMs are universal approximators of densities when
given enough components. The number of Gaussians allocated to each phoneme
state depends on the total number of Gaussians made available to the model, and
the complexity of the distribution of the frames in the space. After training, after
the GMMs have been defined, the AM is able to tell us, for any new acoustic frame,
the likelihood that the frame originated from each GMM (i.e., phoneme state).

Why not triphones? If the reader is already familiar with ASR systems, they may
expect us to go a step further and no longer treat phonemes as units for the HMMs (i.e.,
monophone acoustic models) but, instead, use context-dependent triphones. In this lat-
ter representation, an independent three-state HMM is built for each phoneme within a
phonemic context. With some simplifications, this equates to no longer having an HMM
for the phoneme /p/, but having all context-dependent versions of this phoneme as indi-
vidual HMMs (e.g., the triphone /pa i/, which is the phone /p/ when preceded by /a/ and
followed by /i/). Traditionally, triphone-based HMM-based ASR systems perform better

4The GMMs used had diagonal-covariance.
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than monophone systems. However, these more complex models are inappropriate for our
experiments. Recall that we aim to use these speech recognition systems as models of
nonnative speech perception, using tasks analogous to paradigms used in psycholinguis-
tic experiments (namely, identification/forced-choice tasks). Importantly, we are focusing
on modelling perceptual vowel epenthesis. This situation excludes the use of triphones
because, by definition, our ASR systems will have to decode speech that does not follow
native phonotactics. Decoding such stimuli implies the existence of triphones correspond-
ing to the input, yet the model will have never encountered such triphones in the training
data. While this situation might seem analogous to what listeners may experience, one
must consider the fact that the ASR system will attempt to account for said triphones dur-
ing decoding in spite of the lack of data. Importantly, poorly estimated, phony triphones
(e.g., /ha p/, when decoding /ahpa/) will be put up against well-estimated triphones (e.g.,
/ha a/) during the forced-choice tasks. The well-estimated triphones might simply be pre-
ferred as transcriptions over poorly-estimated ones for this reason alone, irrespective of the
actual acoustic match between the stimuli and phoneme models. In order to increase the
performance of monophone models at phonetic labelling tasks such as ours, it is possible
to increase the number of total Gaussians available to the model [Saraclar, 2001].

3.2.4 Lexicon & language models

As shown in Figure 3.1, the acoustic model is combined with two other components in
order to decode speech: the Lexicon and the Language Model (LM).

The lexicon is, put simply, a pronunciation dictionary. It links the acoustic model
(i.e., phoneme-level HMMs) with the language model, which is at the word level. For
each word, we indicate in the dictionary the sequence of phonemes that constitute it. It
is also possible to account for multiple pronunciations of a word due to dialectal differ-
ences (e.g., “tomato” pronounced as /t@mA:t@U/ or /t@meIRoU/), phonological phenomena
(e.g., homorganic assimilation: “handbag” /hændb@g/ → /hæmb@g/), or suprasegmental
information (e.g., stress contrasts: “record” /’rekord/ (noun) vs. /re’kord/ (verb)).

At the word level, the language model specifies P (W ), the probability of occurrence of
word sequence W . For this we use n-grams: we approximate the probability of a sequence

P (W ) = P (w1)P (w2|w1)P (w3|w1, w2)...P (wL|w1, w2, ..., wL) (3.5)

by using the product of the probability of the component words, each conditioned on the
n-1 words preceding it. For instance, if n = 2, we obtain a bigram model, where the LM
specifies the probability of a word depending on a single preceding word. The probability
of the word sequence W can then be approximated as:

P (W ) ≈ P (w1)P (w2|w1)P (w3|w2)...P (wL|wL−1) (3.6)

In our case, these probabilities are obtained from word counts in the training corpus
as follows:

P (wi|wj) ≈
c(wi, wj)

c(wi)
(3.7)

where c(wi, wj) is the number of observations of wi followed by wj , and c(wi) is the total
number of occurrences of wi. Since not all word combinations are bound to appear in the
training corpus, smoothing is performed; null probabilities are given a small probability
of appearing.

Additionally to the bigram word LM, we computed a unigram phone LM in order to
evaluate our models’ ability to do phonetic decoding. In this case, the lexicon is identical
to the phoneme inventory and the LM consists of phoneme counts.
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3.2. Anatomy of a HMM-based speech recogniser

3.2.5 Lattices

When decoding speech, the ASR system builds a graph containing candidate word se-
quences that can serve as transcription for the audio input, based on the acoustic model,
the lexicon, and the language model. In order to keep the problem computationally
tractable, only the most likely transcription hypotheses are kept; this is known as prun-
ing.

The output of the decoding step is not a single transcription but what is called a
lattice. In this graphical representation only the most probable transcriptions are included,
with weighted paths connecting words (a minimalistic example without weights can be seen
in Figure 3.1). The weight of each path is determined by the product of the acoustic and
language model scores (derived from P (X|w) and P (W ), respectively). The final score
for each possible transcription is obtained by summing all the weights of the path that
need to be crossed to reach the sequence of words in the transcription (“I love my cute
dog”, in the example in Figure 3.1). Having access to lattices means that we are not only
able to derive the most probable transcription; we can extract the n-best transcriptions,
each with its corresponding alignment, and the total acoustic and language model scores.
By using very constrained LMs, we will use these n-best lists and their posteriorgrams in
order to model identification tasks used to test human participants.

3.2.6 Scoring: Assessing native performance

●
● ● ●

●
● ● ●

●
● ● ●

●
● ● ●

●
● ● ●●
● ● ●

WER PER

0 5 10 15 0 5 10 15

0

25

50

75

100

Number of Gaussians (x1000)

E
rr

or
 r

at
e 

(%
)

model ● mono tri corpus ● ● ●CSJ KCSS WSJ

Figure 3.3: Changes in word error rate (%WER) and phone error rate (%PER)
following variation of the number of total Gaussians allocated to monophone acous-
tic models (circles). The error rates obtained with a triphone model with 15, 000
Gaussians are included as comparison (triangles). Scores correspond to decoding
performed on the validation set (i.e., unseen speakers for the CSJ and KCSS; al-
ready seen speakers for the WSJ).

We tested the decoding performance on the validation set of AMs with total number
of Gaussians going from 1, 000 to 15, 000. These values are used as default total number of
Gaussians when training, respectively, monophone and triphone models in Kaldi (without
speaker adaptation). In order to do so, we used the language models described in section
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3.2.4, namely a word bigram LM and a phone unigram LM, which were used to obtain
word error rates (%WER) and phone error rates (%PER), respectively. Note that while we
provide word bigram %WER as a reference value to give a rough comparison with existing
speech recognition models5, our main focus is on %PER. Indeed, we will use our models in
paradigms involving phonetic decoding of non-native nonwords; the phone unigram %PER
evaluation gives us an insight into how well our ASR systems can do phonetic decoding
on native (non)words.

As seen in Figure 3.3, we find that the performance of our models increased (i.e.,
error rates decreased) when increasing the number of total Gaussians from the Kaldi
default of 1, 000 to 15, 000, which would average to approximately 125 Gaussians per state
for a language with an inventory of 35 phonemes6. Therefore, the acoustic models with
the highest amount of Gaussians (i.e., 15, 000) give the best performance for monophone
models, both at the lexical (%WER) and phonetic (%PER) levels of decoding. We did
not pursue increasing the number of Gaussians even further, as performance gain was
reaching an asymptote at this point and adding more Gaussians would have increased
the computational demands for each experiment. Additionally, we expect that adding
“too many” Gaussians might have lead to overfitting of the models to the training set. As
expected, triphone models performed better than monophone models at phonetic decoding
(%PER), in spite of having the same amount of total Gaussians than our best monophone
models:

• CSJ: 37.96% monophone vs. 25.33% triphone

• KCSS: 50.70% monophone vs. 38.42% triphone

• WSJ: 40.88% monophone vs. 28.55% triphone

Later in this chapter we will discuss how it might be possible to increase acoustic
model performance in future work, without having recourse to triphone HMMs, which as
explained previously are not appropriate for our experiments.

Concerning the test set (i.e., 15% of the corpora), we find stable %WER relative
to the validation set, in spite of differences in the lexical items. Similarly, %PER were
comparable to those obtained for the validation set:

• CSJ: 37.96% on test, 38.07% on validation

• KCSS: 50.70% on test and validation

• WSJ: 11.50 on test, 11.26% on validation

Since the validation and test sets contain utterances from the same speakers7, this
information does not allow us to evaluate our models’ variability when decoding datasets

5To have an idea of how this performance fares, in 2015 some state-of-the-art speaker adapted
HMM-GMM systems trained on 82 hours of the WSJ achieved 6.3% WER [Panayotov et al.,
2015] and 5.4% WER [Chan and Lane, 2015] on the WSJ eval’92 dataset. Contemporary deep
neural network-based systems achieved 3.5% WER on the same dataset [Chan and Lane, 2015].
However, recall that our WSJ training, validation, and test datasets share speakers due to a planned
comparison to models not described in this thesis. Therefore the scores for our WSJ model are
expected to become worse with a properly constituted training-validation-test partition of the data
such as in the WSJ eval’92 dataset.

6Phoneme counts: CSJ: 37, KCSS: 36, WSJ: 39
7This would be a seen as a huge red flag in speech engineering. However, remember that our

real “test sets” will be the items used in the experiments. The reason why we did not just use the
sum of the validation and test sets as a bigger validation set (20% of each corpus) was because of
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with different sets of speakers that are not seen in the training data (recall that none
of our models have any speaker adaptation; only CMVN is applied when processing the
features). However, the fact that validation and test set scores are similar indicates that,
while rudimentary, our acoustic models give stable performances when confronted with
datasets with structurally different lexical exemplars and acoustically different phonetic
exemplars.

the computational demands of decoding sets of such sizes, testing each combination of parameters.
This was an issue particularly when decoding with phone language models, due to the huge set of
transcriptions that were possible for any given utterance. We would like to emphasize that we are
showing error rates to give the reader a vague idea of the performance of such models, showing
that they are not as performant as state-of-the-art systems (even with a biased distribution of the
data in the sets). It is not our goal to compare our models to models that have been trained,
validated, and tested with properly balanced datasets.
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3.3 Investigating the role of surface phonotactics

The work described in this section was done in collaboration with Thomas Schatz and
Emmanuel Dupoux.

3.3.1 Introduction

In the previous section we described an ASR-based implementation of one-step models of
nonnative speech perception, as proposed by [Dupoux et al., 2011, Wilson and Davidson,
2013]. In these models, nonnative speech perception is a process of reverse inference; the
resulting percept is the output of a process where acoustic and phonotactic match are
simultaneously optimised. [Wilson and Davidson, 2013] formalises the reverse inference
process as shown in equation 3.8, where w corresponds to candidate percepts and X
corresponds to the stimulus acoustics.

ŵ = argmax
w

{P (X|w) · P (w)} (3.8)

Applying the ASR nomenclature, this equation can be paraphrased as follows: in
one-step proposals, the resulting percept is the one that maximizes the product between
the acoustic match P (X|w), determined by an acoustic model (AM), and the phonotactic
probability P (w), which is determined by a language model (LM). While the optimisation
process combines the probabilities given by the AM and LM, the two modules remain
independent from one another before their product is computed. As such, it is possible to
modify them in order to study their respective influences in the perception process.

As a continuation of our work on exemplar models in sections 2.3 and 2.4, a question
that first arises is whether the output of the LM, namely the influence of phonotactics, is
at all needed to explain the phenomenon of vowel epenthesis. We found in chapter 2 that
acoustic information, such as vowel coarticulation, was essential in determining epenthetic
vowel quality. One could hypothesize that the insertion of a vowel (as opposed to no
insertion) is determined by how the acoustic cues are interpreted.

For instance, Japanese speakers can sometimes produce devoiced high vowels as a
fricative vowel8 when they are preceded by a fricative consonant. In other words, the
devoiced vowel becomes a prolongation of the fricative consonant, yet keeping articulatory
and spectral information corresponding to the intended vowel [Matsui, 2017]9. One could
thus hypothesize that a fricative vowel is an acceptable allophone (i.e., model or exemplar)
of vowels /i/ or /u/ in Japanese, while it is not in another language such as English,
where the signal will be interpreted as a fricative instead. In this case, the difference in
the interpretation of the same acoustic information could lead to epenthesis in Japanese
but not in English. In a similar fashion, English listeners may interpret releases of stop
consonants as reduced vowels, resulting in increased rates of epenthesis with increased
release duration [Wilson and Davidson, 2013], and Korean listeners may experience more
epenthesis following consonants that give rise to salient noise [de Jong and Park, 2012].

However, are epenthetic repairs not due to cases of phonotactic illegality in the first
place? Not necessarily. Indeed, Japanese listeners have been shown to perceive epenthetic
vowels after certain acoustic realisations of coda [n], even though this syllabic structure is
phonotactically legal in Japanese. In loanword data, word-final [n] is adapted differently
according to the language of origin of the word; French /n/ may result in vowel epenthe-
sis, becoming [n:u] or [nu] (e.g., Cannes /kan/ → /kan:u/) while English [n] is kept as
a nasal coda consonant (e.g., pen adapted as /pen/). This assymetry was observed in

8Also referred to as a syllabic fricative.
9We thank Yasuyo Minagawa and Shigeto Kawahara for this comment.
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online perception with nonwords (therefore excluding the influence of orthography) and
can be explained by the presence of a strong vocalic release in French [n] but not English
[n] [Peperkamp et al., 2008]. Also, an identical segmental structure might ellicit different
amounts of epenthesis depending on the stimulus acoustics. An illustration from produc-
tion is given by the imitation study on English listeners by [Wilson and Davidson, 2013].
In that study, a cluster such as /bn/, which is phonotactically illegal in English, ellicited
lower rates of epenthesis in one item (bnase, 33% epenthesis) than in another (bnapa, 80%
epenthesis). The authors observed a correlation between the variability of certain acoustic
cues in the target stimuli and the variability in the rates of epenthesis (and other errors
such as prothesis and consonant deletion) in production.

In this section we investigate whether acoustic match is able to reproduce epenthetic
patterns in nonnative speech. To do so, in a first step, we compare the performance,
relative to human data, of ASR models that share the same AM but differ in the LM used
during decoding. Notably, we assess if LMs with basic phonotactic information better
approximate human behaviour than a null LM. In a second step, we assess if the best
AM-LM combination is capable of mirroring qualitative effects observed in human data.
As reference, we use psycholinguistic data from the identification tasks described in section
2.2 (Experiment 1) and section 2.3 (Experiment 2).

3.3.2 Experiment 1

In this experiment we investigated how various versions of our ASR model differing in their
language models (LMs) compared to real behavioural data. While we varied the LMs, the
acoustic model was kept constant; as stated in the previous section, we used HMM-GMM
monophone models with 15000 Gaussians. We used our models to perform simulations
of the identification task described in section 2.2, where Japanese listeners were asked to
indicate whether they heard an epenthetic vowel within the consonant cluster of V1C1C2V1
items (e.g., /ahpa/). For these items, the quality of the coarticulation cues either matched
or mismatched the quality of the flanking vowels. We analysed the results quantitatively
in order to assess if injecting additional phonotactic information allowed the model to
better approximate human responses. We also performed qualitative analyses in order to
see if the best version of the model reproduced the effects observed in section 2.2.

3.3.2.1 Methods

Stimuli We used the same stimuli as in section 2.2. As a reminder, we recorded 3
speakers producing disyllabic V1C1C2V1 and trisyllabic V1C1V2C2V1, with V1 a flanking
vowel in the set /a, e, i, o, u/, C1 /h/ or /k/, and C2 a fixed consonant, /p/ (e.g,
/ahpa/, /ahapa/). By cross-splicing the disyllabic natural control items (e.g., /ahpa/),
we obtained disyllabic spliced control items (e.g., /ahapa/), disyllabic spliced test stimuli
(e.g., /ahupa/), and trisyllabic spliced fillers (e.g., /ahapa/), where subscripts indicate the
identity of the vowels flanking the clusters in the original recording. Therefore, within
each speaker, all stimuli of the same structure (in our example, /ah(V )pa/ items) have
acoustically identical flanking vowels.

Language models In order for the decoding task to be analogous to the behavioural
experiment described in section 2.2, trial-specific language models were constructed, as
shown in Figure 3.4. Thus, when decoding a V1C1(V2)C2V1 stimulus, the perception
model was only given the possibility to transcribe it as V1C1(V2)(SIL)C2V1, where phones
between parentheses are optional, V2 was from the set of vowels /a, e, i, o, u/, and SIL is
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an optional silence10.

0 1a:a 2h:h 3

<eps>:<eps> / P(/ahpa/)

a:a / P (/ahapa/)

e:e /     P (/ahepa/)
i:i / P (/ahipa/)

o:o / P (/ahopa/)

u:u / P (/ahupa/)

4<eps>:<eps>
SIL:SIL

5p:p 6a:a

Figure 3.4: Constrained language model used to test the models (here: LM for /ahpa/
trials). Nodes in the graph represent states, weighted edges represent transitions
between states (here: phonemes). When relevant, weighted edges are labeled with the
probability to choose that edge when decoding, which affects the final language model
score of each possible path. When no weights are shown (e.g., between states 3 and
4), there is no preference between the paths concerned. The language model scores
are combined with acoustic scores when decoding experimental items.

In this section, we investigate the type of phonotactic information that might be
used by Japanese listeners when perceiving foreign speech that does not conform to native
phonotactics. We test 5 types of language models (LM) when decoding our V1C1(V2)C2V1
items; these LMs differ only in the weights given to edges between nodes 2 and 3 in the
graph shown in Figure 3.4. The weights were obtained by computing frequency counts
from the portion of the CSJ used for training the acoustic model. Using the same acoustic
model, we compared the following LMs:

1. A null LM, which implies that listeners base their decoding of consonant clusters on
phonetic match alone, without using information on phonotactics.

2. A phone-unigram LM, which implies that listeners do not take neighbouring phonemes
into consideration when decoding the consonant clusters; only the frequency of the
vowel V2 to be epenthesized (compared to that of C2) is taken into account when
choosing epenthetic vowel quality.

3. An online phone-bigram language model, which implies that listeners decode the
clusters as they hear them (i.e., decoding is done from the start of the item), and
the choice of (no) vowel is conditioned on the presence of C1. Therefore, the choice
of epenthetic vowel is modulated by C1V2 and C1C2 diphone frequencies.

4. A retro phone-bigram language model, which implies that listeners decode the clus-
ters based on the most recent information (i.e., decoding is done from the end of the
item), and the choice of (no) vowel is conditioned on the presence of C2. Thus, the
choice of epenthetic vowel is modulated by VepC2 and C1C2 diphone frequencies.

5. A batch phone-bigram language model, which implies that listeners decode the item
considering the entire structure, taking into consideration the probability of having
a vowel V2 given the presence of C1 and C2. Here the choice of epenthetic vowel is
modulated by the product of C1V2 and V2C2 (or by C1C2) diphone frequencies.

10SIL, which corresponds to the closure of the plosive /p/, is added in order to reduce alignment
artifacts. Additionally, it allows us to also model the alternative parsing of the items as a sequence
of two nonwords.
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Figure 3.5: Left: Example of how the ASR system decoded the spliced control item
/ahapa/ produced by the Dutch speaker, using the null version of the language model
in Figure 3.4. The system only showed three responses (i.e., “a”, “none”, “u”) in
its 6-best decodings; a null posteriorgram was assign to missing responses (i.e., “e”,
“i”, “o”). Right: As a reference, the equivalent decoding by an ASR system with
6, 000 Gaussians is shown. In this case, the system showed all six possible responses
in its 6-best decodings. From top to bottom: original waveform, item name, aligned
transcriptions given by the model (from the most probable to the least probable, with
the corresponding posteriorgrams shown to their right side), and spectrogram with
formant contours. SIL = silence.

Identification task simulation After decoding the stimuli, we extracted from the
resulting lattice each possible transcription of each item, and the corresponding acoustic
and language model scores. An example of how the ASR system decodes the experimental
stimuli can be seen in Figure 3.5. From the (scaled) acoustic and language model scores
we derived the item posteriorgrams, which indicate how probable a given transcription
was given the audio input. We used these probabilities as proxies of the probability that
a listener might exploit when performing reverse inference during speech perception, and
therefore, the probabilities used when responding in an identification task.

As such, for each item that was decoded, we obtained a six-dimensional vector
identmodel = [pnone, pa, pe, pi, po, pu], containing a discrete probability distribution, with
a probability mass function linking the identification task options ‘none’, ‘a’, ‘e’, ‘i’, ‘o’,
‘u’, to their respective probabilities (i.e., posteriorgrams). We can define the human equiv-
alent identhuman = [pnone, pa, pe, pi, po, pu], which contains the percentage of responses for
each item, after aggregating all participant responses.
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3.3.2.2 Quantitative analysis

In order to perform a global evaluation of the similarity between the behavioural responses
and the responses obtained with the five LMs described above, we computed the Pearson’s
product-moment correlation coefficient between the human and model posteriorgrams.
The model with the highest correlation to the human data was the null LM (r = 0.76),
followed by the unigram, bigram online, and bigram retro LMs (r = 0.65), and
lastly, the bigram batch LM (r = 0.62). Numerically, the null LM better approximated
the human data.

In order to assess if the correlation differences between the null LM and other LMs
were significant, we computed these differences and their corresponding 95% confidence
intervals (CIs), using bootstrapping with 1000 samples11. As can be seen in Table 3.4,
the correlation between the human data and the output of the null LM was significantly
higher than those of other LMs.

Table 3.4: Difference in correlation with human data between the null LM and other
LMs. The lower and upper bounds of the 95% confidence intervals are given between
brackets. Positive values indicate higher correlation between human data and null
model output than between human data and other LM output.

Correlations Difference Significant?

null vs. unigram 0.76− 0.65 0.10 [0.07, 0.14] Yes
null vs. bigram online 0.76− 0.65 0.11 [0.08, 0.14] Yes
null vs. bigram retro 0.76− 0.65 0.10 [0.07, 0.13] Yes
null vs. bigram batch 0.76− 0.62 0.13 [0.10, 0.17] Yes

Contrary to the null and unigram LMs, the bigram models were subject to an arbi-
trarily set smoothing parameter, which determined the probability of choosing a sequence
of phonemes that had never been observed in the training data. We set this smoothing
parameter to 10−8, which is a strict value, as it is relatively close to zero. This was done
in order to evaluate whether the acoustic match could rescue decoding options which are
not supported by the language’s phonotactics. In order to evaluate the similarity between
models’ outputs and human data without the influence of the value of the smoothing pa-
rameter, we computed the correlation between the human data and models’ posteriorgrams
after excluding the posteriorgrams for “none” responses and re-normalising the remaining
posteriorgrams. As such, we are focusing on the correlation related to epenthetic vowel
quality. Here, the highest correlation still corresponded to the null LM (r = 0.77), fol-
lowed by the bigram retro (r = 0.74), the bigram online (r = 0.73), and finally the
unigram and the bigram batch LMs (r = 0.71). As shown in Table 3.5, while the
difference between the correlations diminished relative to what is shown in Table 3.4, the
CIs still did not overlap with zero, meaning that the correlation between the human data
and the output of the null LM was significantly higher than those of other LMs.

3.3.2.3 Qualitative analyses

Identification accuracy Using the set of filler items such as /ahapa/ and /okipo/
(i.e., spliced items with a full vowel between C1 and C2), we can assess identification
accuracy relative to our item labels. Indeed, recall that while our phonetically-trained
speakers were instructed to read items following “standard” IPA pronunciations, it is

11Sampling was done by item.
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Table 3.5: Difference in correlation with human data between the null LM and other
LMs, after removing the “none” responses. The lower and upper bounds of the
95% confidence intervals are given between brackets. Positive values indicate higher
correlation between human data and null model output than between human data and
other LM output.

Correlations Difference Significant?

null vs. unigram 0.77− 0.71 0.05 [0.03, 0.08] Yes
null vs. bigram online 0.77− 0.73 0.04 [0.02, 0.06] Yes
null vs. bigram retro 0.77− 0.74 0.02 [0.01, 0.04] Yes
null vs. bigram batch 0.77− 0.71 0.06 [0.03, 0.08] Yes

possible for our human participants to not perceive the intended vowel categories due to
adaptation processes (e.g., misperceiving /u/, which is not realised as [u] but as [W] in
Japanese), and/or due to speaker idiosyncrasies.

Overall, human participants identified the correct intended vowel category in 79.5%
of the trials. As can be seen in Figure 3.6, this was mostly due to confusions between
the intended /o/ and /u/ categories, with most errors consisting of /u/ being identified
as /o/. Consistent with our correlation analyses, the null LM gave the highest accuracy
out of all models (accuracy: 74%), followed by the bigram retro (accuracy: 72.6%),
the unigram (accuracy: 72.5%), the bigram online (accuracy: 72.6%), and finally the
bigram batch LM (accuracy: 68.7%). As seen in Figure 3.6, like human participants,
the models showed difficulty categorising /u/ items as such; in particular, these were
almost always classified as exemplars of /o/ when C2 = /h/. However, unlike human
participants, models misperceived /e/ as /i/. This misperception appears to be worse for
the bigram online and bigram batch language models. In sum, while the accuracy
rates for the models were close to that of humans, we saw that the models showed not only
quantitative but also qualitative differences in their identification of non-native full vowels,
in comparison with human participants. Below we continue our qualitative analyses on
what was determined to be the best model according to the correlation analyses and the
filler item accuracy, namely the ASR system with a null LM.

Control items Human participants experienced vowel epenthesis in 56% (/hp/: 52%;
/kp/: 61%)12 of control items in which the flanking vowel and coarticulation are of the
same quality. The null LM gave an output of 68% epenthesis, with 72% and 65%
epenthesis for /hp/ and /kp/, respectively. As such, the model gave a higher percentage
of epenthesis for /hp/ clusters compared to /kp/clusters, while the opposite was true for
humans.

Now we focus on epenthetic vowel quality, meaning that we perform analyses after
removing “none” responses and re-normalising posteriorgrams. We find that, like humans
(/hp/: 44%; /kp/: 87%; total: 66%), the model gave lower percentages of default /u/-
epenthesis for /hp/- (47%) than for /kp/- (65%) clusters (total: 56%). However, this
difference is not as marked as it is for Japanese listeners. Recall that in section 2.2 we

12Note that since posteriorgrams are computed by weighting items from all three speakers equally,
values reported in this section might differ slightly from those in section 2.2. Indeed, due to how
data was cleaned in section 2.2, some trials were removed and the number of trials per item per
speaker might have differed in some cases. In order to ensure that human and model data are
comparable, we re-do statistical analyses of human data when necessary and report the resulting
coefficients.

69



Chapter 3. Modelling speech perception with ASR systems

●● ● ●●● ●

●● ●●●●●● ●●

●
●

●

● ●●●●

●●●
●

●

●
●

●●●●

●

●●● ●

●
●

●

●●

●●● ●●●●

●

●

●

●●●

●

●

●●

●●●●

●●

●

●

●

●●●●

●●● ●●● ●

●

●●●

●

●

●

●

●

●●

●●● ●●●

●

●●

●

●

●●●●

●●●● ●

●

●

●

●

●

human null unigram bigram_online bigram_retro bigram_batch

A

E

I

O

U

0 a e i o u 0 a e i o u 0 a e i o u 0 a e i o u 0 a e i o u 0 a e i o u

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Response

P
ro

po
rt

io
n

Consonant cluster /hp/ /kp/

Figure 3.6: Response patterns for the identification task on full vowel stimuli (filler
items). Human and models responses are separated by columns; intended identity of
the medial vowel is given by rows. Within each rectangle, the horizontal axis corre-
sponds to possible responses from the set {“none”, “a”, “e”, “i”, “o” , “u”}. The
vertical axis corresponds to proportion of responses (i.e., posteriorgrams, in the case
of models). The box and whiskers plots display the distribution of the proportions
across items (median, quartiles and extrema). For instance, we can see from the first
row that, similar to humans, all models correctly classified most /VCapV/ items as
containing a medial /a/ vowel.

found that Japanese listeners experience significantly more default /u/-epenthesis for /kp/
clusters, and significantly more vowel copy epenthesis for /hp/ clusters. These patterns of
responses mirrored loanword data. Do we find these effects in the output of our model?

We first examined possible effects of consonant cluster on default /u/-epenthesis by
using the R statistical software [R Core Team, 2016], using Markov chain Monte Carlo
generalised linear mixed-models [Hadfield, 2010, Plummer et al., 2006]. These Bayesian
models sample coefficients from the posterior probability distribution conditioned on the
data and given priors. We used priors that are standard for linear models. Model conver-
gence was assessed by visual inspection of trace plots and the Gelman–Rubin convergence
diagnostic [Gelman and Rubin, 1992], using eight chains with different initialisations. Ef-
fects were considered statistically significant if the 95% highest posterior density (HPD)
interval estimated for the coefficient of interest did not include zero. We report both the
posterior mode and the 95% HPD interval.

The left panel of Figure 3.7 shows the posteriograms of /u/-epenthesis for humans and
all models. For the ASR system with the null LM, we assessed the variation of the contin-
uous response variable “u” response Posteriorgram that was caused by the fixed effect
Consonant cluster (/kp/ vs. /hp/; contrast coded with deviance coding). We initially
included random intercepts for Speaker and Item, as well as a random slope for Speaker
on Consonant. However, these were removed as their addition caused the models to be
singular (estimated null variances), with consequently poor trace plots. We found the main
effect of Consonant to be significant (mode: −0.19, HPD: [−0.29,−0.07]), meaning that
as for humans (mode: −0.42, HPD: [−0.61,−0.26]), the model gave significantly more
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/u/-epenthesis for /hp/- than for /kp/-clusters. However, as evidenced by the statistical
model coefficients, the magnitude of the effect is larger for humans than for the model.

●

●

●

●

●

●

●
●

●

●

0.00

0.25

0.50

0.75

1.00
hu

m
an

nu
ll

un
ig

ra
m

bi
gr

am
_o

nl
in

e

bi
gr

am
_r

et
ro

bi
gr

am
_b

at
ch

LM

P
ro

po
rt

io
n 

/u
/−

ep
en

th
es

is

Consonant cluster /hp/ /kp/

Control items

●

●

0.00

0.25

0.50

0.75

1.00

hu
m

an

nu
ll

un
ig

ra
m

bi
gr

am
_o

nl
in

e

bi
gr

am
_r

et
ro

bi
gr

am
_b

at
ch

LM

P
ro

po
rt

io
n 

co
py

 e
pe

nt
he

si
s

Consonant cluster /hp/ /kp/

Control items

Figure 3.7: Proportion of default /u/-epenthesis (left) and vowel copy epenthesis
(right) given by human participants and models. The box and whiskers plots dis-
play the distribution of the proportions across items (median, quartiles, extrema and
outliers).

Turning to vowel copy epenthesis in control items for which the flanking vowel was
not /u/, we used the same statistical models but with copy vowel Posteriorgram as the
continuous response variable. For instance, for the item /ekepe/, this was the posterior-
gram for the “e” response. The distribution of posteriorgrams for humans and all models
is shown in the right panel of Figure 3.7. While there was a trend in the same direction
for the null LM, namely higher percentages of vowel copy for /hp/- than for /kp/-clusters,
we did not find a significant main effect of Consonant for the model (mode: 0.11, HPD:
[−0.02, 0.24]) as we did for humans (mode: 0.39, HPD: [0.20, 0.58]).

Test items Next we examine the identification task response patterns for test items.
As a reminder, for these spliced items, the vowel coarticulation was different from the
flanking vowels.

As shown in Figure 3.8, reponses that were represented the most in the null model
posteriorgrams were “none” (32%), “i” (16%), and “u” (40%). These were also the re-
sponses that human participants gave the most (“none” (37%), “i” (22%), and “u” (33%)).

We saw in section 2.2 that, for human participants, responses were mainly determined
by the quality of the vowel coarticulation within the consonant cluster. This manifested
itself in the appearance of horizontal bars, and some very faint vertical bars, in the top
panels of Figure 3.9. Do we observe something similar in the output of the model with
null LM?

When examining the bottom panels in Figure 3.9, we see that response patterns are
noisier than for human participants. In spite of that, we can notice several similarities
to human responses. We generally see that responses are mostly organised in horizontal
lines, with “none” and “u” responses spread relatively uniformly across all combinations
of vowel coarticulations and flanking vowels. This spread was even more uniform than
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Figure 3.8: Response patterns for the identification task on spliced test stimuli. Hor-
izontal axes correspond to possible responses from the set {“none”, “a”, “e”, “i”,
“o” , “u”}. Vertical axes correspond to proportion of responses (i.e., posteriorgrams,
in the case of models). The box and whiskers plots display the distribution of the
proportions across items (median, quartiles, extrema, and outliers).

for human responses, where less “u” responses were given for items with front vowel
coarticulation (i.e., [i, e]). In spite of this increase in “u” responses for items with front
vowel coarticulation, the model responses show that, as for humans, most “i” responses
were triggered by front vowel coarticulation.

When focusing on /hp items, we see that for human responses there is a correspon-
dence between the quality of the vowel coarticulation and the response (e.g., most “a”
responses come from items with [a] coarticulation). This correspondence is blurred in the
model responses, as follows:

• “a” responses: A horizontal line is visible corresponding to [a] vowel coarticulation
as it is for human responses. However, additional horizontal lines corresponding
to back vowel coarticulation (i.e., [o, u]) are also visible. The source of most “a”
responses are items with [u] coarticulation.

• “e” responses: These were triggered by front vowel coarticulation for the model,
while for humans they were triggered specifically by [e] vowel coarticulation (hori-
zontal line) and /e/ flanking vowel (fainter vertical line).

• “i” responses: Similar to humans, the majority of “i” responses given by the model
were triggered by front vowel coarticulation. However, instead of seeing fainter
vertical lines corresponding to front vowel flanking vowels as in human responses,
for the model, “i” responses were also triggered to a lesser extent by non-front vowel
coarticulation, even when the flanking vowel was not a front vowel.

• “o” responses: For humans, this response was triggered by back vowel coarticulation.
For the model, [a] vowel coarticulation also triggered “o” responses. In other words,
“o” responses were mostly triggered by non-front vowel coarticulation.

Additionally, we see that differences between model responses for /hp/-items and
/kp/-items is not as apparent as it is for human responses. In the latter (top panels of
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Figure 3.9: Counts of responses for the test items for human participants (top panel)
and the ASR model with a null LM (bottom panel). Within each panel: Top: /hp/-
items; bottom: /kp/-items. Within each rectangle, flanking vowels and vowel coar-
ticulation are given in the horizontal and vertical axes, respectively. Darker colours
indicate higher counts. Concerning human data, only test items are included here,
while the very similar Figure 2.2 from section 2.2 includes test items, as well as
spliced control items.

Figure 3.9), we see that participants barely responded {“a”, “e”, “o”} for /kp/-items.
Meanwhile, for model responses, the rectangles for {“a”, “e”, “o”} responses for /kp/-
items are fainter versions of their /hp/ counterparts.

Results from section 2.2 led us to conclude that vowel coarticulation, which was less
present in /kp/ clusters, influenced response patterns less for /kp/-items than for /hp/-
items. Coherent with qualitative analyses on vowel copy epenthesis in control items, the
difference of the effect of vowel coarticulation on /hp/- and /kp/-items is not as marked
for the model as it is for human participants.
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3.3.2.4 Summary

In summary, through quantitative analyses, we found that, out of the different LM tested,
the responses from the ASR model with a null LM better approximated human responses.
Qualitative analyses showed that the null LM model responses where generally similar to
human responses, but with some twists.

For the identification of full vowels, like humans, the model was accurate at identifying
/a, i, o/. Like humans, the model identified /u/ as “o” in many instances; however, the
specific patterns were not exactly mirroring the confusions observed in human responses.
Also unlike humans, the model identified instances of /e/ as “i”.

For the identification of control items (i.e., spliced items with matching vowel coar-
ticulation and flanking vowel), the model numerically mirrored the two effects observed in
human responses: more default /u/ epenthesis for /kp/-items than /hp/-items, and more
copy vowel epenthesis for /hp/-items than /kp/-items. However, the effects are damped
for the model; the latter difference was not significant for the model, while the former
was significant but of lower magnitude than in human responses. Also unlike humans, the
model epenthesized vowels more often for /hp/-items than for /kp/-items, as the opposite
was true for humans.

Concerning the test items (i.e., spliced items with mismatching vowel coarticulation
and flanking vowel), like humans, most of the null LM model responses are in the set
{“none”, “u”, “i”}. When examining model responses more in detail, we found that vowel
coarticulation was driving responses as for humans, but the influence was less specific.
One thing to note is that the differences observed in the model responses do not appear
to be random; they are in line with the acoustics of the stimuli. As seen in the acoustic
analyses of the items in section 2.2, vowel coarticulations in /hp/-items can be clustered
as follows, based on their formant values: [[[a,u],o][e,i]]. There is a separation of front and
non-front vowel coarticulations, which is also seen in the model responses. Since humans
also seem to be sensitive to this acoustic proximity (e.g., “i” responses mostly triggered
by [i,e] coarticulation; “o” responses mostly triggered by [o,u] coarticulation), a question
that arises is if the noise observed in the model might be reduced when using a more
performant acoustic model in the ASR system; indeed, we are not using state-of-the-art
models (see below for further discussion). We will now present a similar analysis of the
model’s ability to model Japanese listeners’ behaviour, performed on data from a different
psycholinguistcs experiment.

3.3.3 Experiment 2

As in the previous experiment, here we investigated how various versions of our ASR
model13 differing in their language models (LMs) compared to real behavioural data. The
models were used to simulate the identification task described in sections 2.3 and 2.4,
where Japanese listeners were asked to indicate whether they heard an epenthetic vowel
within the consonant cluster of V1C1C2V2 items (e.g., /abgi/). For human participants,
we saw that (1) they mostly experienced default /u/-epenthesis, and (2) the quality of
the flanking vowels V1 and V2 modulated their responses due to coarticulation. Does the
output of the ASR model that best approximated human responses reflected these two
aforementioned effects?

13Note that for this experiment, the acoustic model of the ASR system only had 6, 000 Gaussians,
instead of 15, 000 as in the previous experiment. This was due to having mistakenly used an older
version of the model when decoding the stimuli. Please be aware that this was only discovered when
doing final corrections for this manuscript; as such, conclusions were written with the assumption
that the ASR acoustic models used for Experiments 1 and 2 were identical.
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3.3.3.1 Methods

Stimuli We used the same stimuli as in sections 2.3 and 2.4. As a reminder, a native
French speaker recorded 54 items with the structure V1C1C2V2, with V1 and V2 vowels
from the set {/a/, /i/, /u/}, and C1C2 a cluster from the set {/bg/, /bn/, /db/, /dg/,
/gb/, /gn/} (e.g. /abgi/).

Language models In order for the decoding task to be analogous to the behavioural
experiment described in section 2.3.2, trial-specific language models were constructed,
as shown in Figure 3.10. Thus, when decoding a V1C1C2V2 stimulus, the perception
model was only given the possibility to transcribe it as V1C1(Vep)(SIL)C2V2, where phones
between parentheses are optional and Vep was from the set of vowels /a, e, i, o, u/, and
SIL is an optional silence. Concerning the weights between states 2 and 3, we created
language models in a way analogous to the LMs in Experiment 1, adapted to the V1C1C2V2
items used in this experiment.

0 1a:a 2g:g 3

<eps>:<eps>  / P(/agni/) 

a:a / P(/agani/) 

e:e / P(/ageni/)

i:i / P(/agini/)

o:o / P(/agoni/)

u:u / P(/aguni/)

4<eps>:<eps>
SIL:SIL

5n:n 6i:i

Figure 3.10: Constrained language model used to test the models (here: LM for
decoding /agni/). Nodes in the graph represent states, weighted edges represent
transitions between states (here: phonemes). When relevant, weighted edges are
labeled with the probability to choose that edge when decoding, which affects the final
language model score of each possible path. When no weights are shown (e.g., between
states 3 and 4), there is no preference between the paths concerned. The language
model scores are combined with acoustic scores when decoding experimental items.

Identification task simulation We used the same procedure as in Experiment 1.
An example of how the ASR system decodes the experimental stimuli can be seen in Figure
3.11.

3.3.3.2 Results: Quantitative analysis

As in Experiment 1, we computed the Pearson’s product-moment correlation coefficient
between the human and model posteriorgrams in order to assess a global measure of the
ressemblance between models’ outputs and human data from section 2.3.2. The model
with the highest correlation to the human data was the bigram retro LM (r = 0.43),
followed by the null (r = 0.40), the unigram (r = 0.30), the bigram online (r = 0.23)
and lastly, the bigram batch LM (r = 0.19). Numerically, the bigram retro LM better
approximated the human data.

In order to assess if the correlation differences between the null LM and other LMs
were significant, we computed these differences and their corresponding 95% confidence
intervals (CIs), using bootstrapping with 1000 samples. As can be seen in Table 3.6, the
correlation between the human data and the output of the null LM was significantly
higher than those of the unigram, bigram online and bigram batch. While the
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/agni/
SIL a g n i SIL
SIL a g i n i SIL
SIL a g e n i SIL
SIL a g u n i SIL
SIL a g o n i SIL
SIL a g a n i SIL

Time (s)
16.98 17.49
0

5000

Fr
eq

ue
nc

y
(H

z)

0.62
0.20
0.08
0.07
0.02
0.01

6,000 Gaussians

Figure 3.11: Example of how the ASR system (with 6, 000 Gaussians) decoded the
item /agni/, using the null version of the language model in Figure 3.10. From top
to bottom: original waveform, item name, aligned transcriptions given by the model
(from the most probable to the least probable, with the corresponding posteriorgrams
shown to their right side), and spectrogram with formant contours. SIL = silence.

correlation to the human data for the bigram retro LM was numerically higher than
for the null LM, we did not find evidence of a significant difference between the two as
the CIs of their difference overlaps zero.

Table 3.6: Difference in correlation with human data between the null LM and other
LMs. The lower and upper bounds of the 95% confidence intervals are given between
brackets. Positive values indicate higher correlation between human data and null
model output than between human data and other LM output.

Correlations Difference Significant?

null vs. unigram 0.40− 0.30 0.11 [0.03, 0.18] Yes
null vs. bigram online 0.40− 0.23 0.18 [0.03, 0.31] Yes
null vs. bigram retro 0.40− 0.43 −0.03 [−0.13, 0.08] No
null vs. bigram batch 0.40− 0.19 0.21 [0.06, 0.35] Yes

Similarly to how we did in Experiment 1, we evaluated the similarity between mod-
els’ outputs and human data without focusing on percentage of vowel epenthesis. For this
we computed the correlation between the human data and models’ posteriorgrams after
excluding the posteriorgrams for “none” responses and re-normalising the remaining pos-
teriorgrams. Recall that, as a consequence, we are focusing on the correlation related to
epenthetic vowel quality. The highest correlation corresponded to the null LM (r = 0.53),
followed by bigram retro (r = 0.46), unigram (r = 0.33), bigram online (r = 0.21),
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and bigram batch (r = 0.17). As can be seen in Table 3.7, the correlation between the
human data and the output of the null LM was significantly higher than those between
the human data and other LMs.

Table 3.7: Difference in correlation with human data between the null LM and other
LMs, after removing the “none” responses. The lower and upper bounds of the
95% confidence intervals are given between brackets. Positive values indicate higher
correlation between human data and null model output than between human data and
other LM output.

Correlations Difference Significant?

null vs. unigram 0.53− 0.33 0.21 [0.16, 0.26] Yes
null vs. bigram online 0.53− 0.21 0.33 [0.18, 0.46] Yes
null vs. bigram retro 0.53− 0.46 0.08 [0.04, 0.12] Yes
null vs. bigram batch 0.53− 0.17 0.36 [0.21, 0.51] Yes

3.3.3.3 Results: Qualitative analysis
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Figure 3.12: Response patterns for the identification task. Human and models re-
sponses are separated by columns; responses are given by rows. Within each rect-
angle, the horizontal axis separates proportions according to C1. The vertical axis
corresponds to proportion of responses (i.e., posteriorgrams, in the case of models).
The box and whiskers plots display the distribution of the proportions across items
(median, quartiles and extrema).

Default vowel Figure 3.12 shows response patterns from the behavioural experiment
and model simulations. The most frequent responses given by Japanese listeners were “u”
(63%), “i” (15%), and “none” (13%), with “o”, “e”, and “a” being infrequent responses
(< 5% each). The model with the null LM shares the same three most frequent reponses,
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ordered as follows based on their posteriorgrams: “none” (28%), “u” (25%), “i” (23%);
other responses (“e”, “o”, “a”) had posteriorgrams below 12%. While human and model
responses assign most of the responses to the same three options, we saw that the model’s
preferred response is not “u” but “none”. Yet, humans experienced default /u/-epenthesis
in more than half of the trials. As such, the model was not able to reproduce the default
epenthetic vowel preference.

Effect of coarticulation Next we examined if the coarticulation effect observed in
human responses also appeared in model responses. Statistical analyses were performed
with the R statistical software [R Core Team, 2016], using Markov chain Monte Carlo
generalised linear mixed-models [Hadfield, 2010, Plummer et al., 2006]. These Bayesian
models sample coefficients from the posterior probability distribution conditioned on the
data and given priors. We used priors that are standard for linear models. Model conver-
gence was assessed by visual inspection of trace plots and the Gelman–Rubin convergence
diagnostic [Gelman and Rubin, 1992], using eight chains with different initialisations. Ef-
fects were considered statistically significant if the 95% highest posterior density (HPD)
interval estimated for the coefficient of interest did not include zero. We report both the
posterior mode and the 95% HPD interval.

In order to assess the influence of V1 and V2 (henceforth: flanking vowels) on epenthetic
vowel quality (/i/ or /u/), we chose as fixed effect for our statistical models Number of
Same Flanking Vowels (NSFV; considered as a continuous variable with values 0, 1,
or 2 instead of a factor with 3 levels, in order to reduce the number of model parameters
and promote convergence). Due to the almost null variance and the consequent poor trace
plot for the random intercept Cluster, we did not include it in the statistical models.
Our response variable was the continuous variable Posteriorgram.14

The left panel of Figure 3.13 shows the posteriorgrams for /i/-epenthesis given by our
ASR-based model with a “null” language model. The main effect of NSFV was significant
(mode: 0.14, HPD: [0.06, 0.22]). An increased number of /i/ flanking vowels resulted in
higher posteriorgrams for stimuli transcriptions with /i/ epenthesis.

The right panel of Figure 3.13 shows the posteriorgrams for /u/-epenthesis given by
our ASR-based model with a “null” language model. The main effect of NSFV was not
significant (mode: 0.03, HPD: [−0.03, 0.09]). Therefore, an increased number of /u/ flank-
ing vowels did not result in significantly higher posteriorgrams for stimuli transcriptions
with /u/ epenthesis.

3.3.3.4 Summary

In summary, we compared the output of our various ASR models to responses given by
Japanese listeners in the experiment described in sections 2.3 and 2.4. Quantitative analy-
ses revealed that the ASR model using a null LM during decoding was better approximat-
ing human responses, in particular when examining epenthetic vowel quality. Focusing on
the null model, it was able to capture Japanese listeners’ preference for responding “none”,
“u”, and “i” during the identification task. However, while humans responded “u” in more
than half of the experimental trials, the model posteriorgrams for these three options were
numerically very close. As such, the model was unable to capture the “default” status of
/u/-epenthesis in Japanese.

Turning to coarticulation effects observed in the behavioural task, we saw in sections
2.3 and 2.4 that Japanese listeners were more prone to epenthesizing vowels /i/ and /u/
when more flanking vowels were of the same quality. The model was able to reflect

14Responses by human participants and exemplar models were given by trial; therefore, in pre-
vious analyses the response variable was binomial.
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Figure 3.13: Posteriorgrams for /i/-epenthesis (left) and /u/-epenthesis (right) ob-
tained when decoding with a “null” language model (top panels). The box and
whiskers plots display the distribution of posteriorgrams across experimental items,
represented by individual dots. As a reference, the equivalent results from the be-
havioural experiment with Japanese listeners are given in the bottom panels (Lan-
guage JP), which are a reproduction of Figure 2.16

this coarticulation effect partially: more /i/ flanking vowels resulted in significantly more
/i/-epenthesis; however, we did not find evidence for the analogous situation for /u/-
epenthesis.

3.3.4 Discussion

In this section we investigated the role of surface phonotactics on perceptual vowel epenthe-
sis by Japanese listeners. We used perceptual models based on ASR systems, which are
each composed by an acoustic model (AM) and a language model (LM). Following the re-
verse inference proposal of nonnative speech perception [Wilson and Davidson, 2013] and
using the terminology from [Dupoux et al., 2011], the AM determines the acoustic match
between the nonnative structure and candidate native percepts, while the LM determines
the phonotactic probability of the candidate percepts (i.e., sequence match). During the
one-step process of reverse inference, the product of the probabilites given by the AM and
LM are optimised, in order to find the optimal candidate percept.

We evaluated the hypothesis stating that the AM was not only necessary, but suf-
ficient, to predict patterns of perceptual vowel epenthesis. This was done by comparing
the results of the identification tasks completed by Japanese listeners (cf. sections 2.2 and
2.3) to model results in analogous identification tasks. We built various ASR systems by
pairing up a unique AM with different decoding LMs, one of which was a null LM and the
others being LMs including basic phonotactic information (unigram/bigram frequency).
Did these phonotactic LMs outperform the null LM?
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Quite the contrary, quantitative analyses revealed that the identification results from
the ASR system with the null LM better approximated behavioural data. Response pat-
terns from the null LM showed a preponderance of responses “none” (i.e., no epenthesis),
“u”, and “i”. This preponderance was present in responses given by Japanese listeners.
However, human participants showed a distinct preference for /u/-epenthesis; indeed, this
is often referred to as the “default epenthetic vowel in Japanese” both in the psycholinguis-
tics and loanword literature. The model was not fully capable of reflecting this preference,
as it was observed in Experiment 1 but not in Experiment 2. Concerning other qual-
itative effects observed in human responses patterns, the model was able to reproduce
some effects (e.g., higher /u/-epenthesis for /kp/- than for /hp/-items), while in others
the patterns were opposite to those observed in humans (e.g., higher rates of epenthesis
for /hp/- than /kp/-clusters). Coarticulation effects, in particular, were always at least
numerically present, yet not always statistically significant. Indeed, for all effects observed
in the model that were coherent with effects seen in human responses, we noticed a damp-
ening of the effects and an increase in noise. It seems that the null LM was the best of
the tested LMs, yet it was not good enough. Why not? We will discuss two possibilities.

3.3.4.1 Need for a better acoustic model

The presence of filler items in Experiment 1 enabled us to see that the ASR systems (all
LMs comprised) were generally able to identify nonnative medial vowels /a, i, o/ similarly
to how humans did. However, the identification patterns of full vowels /e, u/ by the mod-
els did not match Japanese listeners’ identification patterns. Therefore, the ASR system’s
current acoustic model, while mostly good, is not a perfect model of Japanese listeners’
perception of stimuli from Experiment 1. Concerning Experiment 2, the correlation be-
tween model and human data (r ≈ 0.4) was much lower than in Experiment 1 (r ≈ 0.7).
Unfortunately, there were no full vowel items available for Experiment 2, so we are unable
to make educated guesses about the causes of the lower correlation values and how they
may be due to acoustic model quality15.

It is also possible that the current acoustic model is not fully mirroring human data
due to bad duration modelling. Indeed, recall that we saw in section 2.4 that adding
duration information to an exemplar model increased the closeness of its response patterns
to that of humans. By definition, in HMMs the observed emission at state n is only
determined by the previous state n-1. These types of models are therefore not ideal for
modelling duration effects, even though some duration information is encoded in the self-
loop probabilities (i.e., probabilities determining whether to remain in state n).

In sum, in order to continue testing the hypothesis that the acoustic model is suffi-
cient to predict patterns of vowel epenthesis16, an even better acoustic model is required.
Indeed, recall that we are using relatively primitive ASR models that have a phoneme error
rate (%PER) of 50% on “native”, Japanese data. In the future, it would be a good idea to
investigate whether other types of acoustic models (e.g., neural network-based ASR sys-
tems) better approximate native perception and, as a consequence, nonnative perception.
But what if the AM quality is not the source of the problem?

3.3.4.2 Need for phonotactics and/or abstract grammar

We assessed how language models with basic phonotactics would fare against a null model.
More precisely, we used a unigram LM and three versions of bigram LMs. However, it is
always possible to improve our primitive models.

15It goes without saying that we recommend including full vowel items in future research.
16Or, in other words, falsify the fact that the language model is necessary
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Due to how probabilities were computed in this identification task, the probability
of choosing the non-epenthetic response depended greatly on how the corpus probability
of C2 (e.g., /p/ in /ahpa/) compared to the probabilities of the five Japanese vowels.
However, since participants had access to a partial transcription of the stimulus (e.g.,
visual prompt ah?pa for /ahpa/), the probability17 of C2 was in practice equal to 1 for all
responses. The probability of epenthesizing x in /ahpa/ is

P (ahxpa) = P (a) ∗ P (h) ∗ P (x) ∗ P (p) ∗ P (a) (3.9)

with P (a) = P (h) = P (p) = P (a) = 1 because of the orthographic prompt, meaning that

P (ahpa) = P (a) ∗ P (h) ∗ P (p) ∗ P (a) = 1 (3.10)

or put differently,

P (ahpa) =
P (ahxpa)

P (x)
=
P (x)

P (x)
= 1 (3.11)

An alternative way of setting the probabilities would be to, for instance, weight P (ahpa)
and P (ahxpa) by the corpus frequencies of words with 4 and 5 phonemes, respectively 18.

Another possible modification relates to how the LMs dealt with bigrams never seen
in the corpus (i.e., nonnative sequences). In order to examine the effect of strict LMs, the
probabilities assigned to unseen bigrams was extremely small. This equates to viewing
the native phonotactics filter as a binary process (i.e., legal versus illegal structures). It
would be possible to find an optimal smoothing parameter (i.e., setting the threshold of the
binary filter), or even infer gradient probabilities of the unseen sequences based on natural
classes, their ocurrence across intonational phrases (cf [Durvasula and Kahng, 2016]), etc.
It would also be possible to tune the acoustic scale, which determines the weight of the
output of the AM with respect to the LM.

It would be important to also assess the validity of using probabilities derived from
a corpus, as some patterns of epenthetic response might be more in line with native
phonotactic knowledge rather than with frequency counts (e.g., [Kabak and Idsardi, 2007]).
An example of how frequency introduced unexpected response patterns is how our non-
null models showed higher rates of /a/-epenthesis compared to the null model, simply
because this is the most frequent vowel in our Japanese corpus, yet Japanese listeners
rarely epenthesized [a].

An obvious next step would be to test the language models used in [Wilson and
Davidson, 2013], where the authors found that most LMs performed better than the null
LM at predicting data from a production task. In that work, the favoured LMs were the
ones where phonotactic legality was a gradient process, where phones were represented
with featural descriptions (e.g. [Albright, 2009]) or where weights given to grammatical
constraints were derived from the principle of maximum entropy (e.g. [Boersma and Pater,
2007, Hayes and Wilson, 2008]). In parallel, we can also explore whether our ASR system’s
acoustic model (accompanied by a null language model) is able to explain effects attributed
to abstract grammatical processes. We will experiment this in the next section.

3.3.5 Appendix

3.3.5.1 Unigram (phone-level) language model

The central idea in a unigram model is to have the probability of a word be proportional
to the product of the probabilities of the individual phones composing it.

17Here we do not specify whether the probability is unigram, bigram, or other.
18Please refer to the appendix of this section for a more thorough explanation on how to enhance

the computation of n-gram-based phonotactics.
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Translating this formally, for a word w formed from the Nw phones ρw1 , ρw2 , ..., ρwNw
,

we have:

p1(w) =
1

K

Nw∏
i=1

p(ρwi ),

where p1(w) is the probability of occurrence of w according to a unigram language model,
p(ρ) is the probability of occurrence of phone ρ and K is a normalization constant (the
same for all words).

There is a difficulty with this definition however: if we want to allow words of arbitrary
length, it becomes impossible to find an appropriate normalization constant (i.e. one such
that p1 is a proper probability distribution, whose sum over all possible words equals
one)19

Next, we consider three different ways of solving this problem and get a properly
defined unigram language model.

Finite language The simplest solution consists in defining the language model only
on a finite set of possible words, for example by considering a language consisting only of
words of length less than a specified limit.

If we note L the finite set of possible words considered, then:

K =
∑
w∈L

p1(w)

is finite and:

p1(w) =

∏Nw
i=1 p(ρ

w
i )

K
=

∏Nw
i=1 p(ρ

w
i )∑

w∈L
∏Nw
i=1 p(ρ

w
i )

defines a proper unigram language model over L.

Application to the ah(V?)pa language Let us note fa, fe, fi, fo, fu, fp the
respective probabilities of phones a, e, i, o, u, p (typically obtained as the frequency of
occurrence of these phones in a representative corpus).

After simplification, we get20:

p1(ahpa) =
1

1 + fi + fa + fe + fo + fu

and, for any V ∈ {a, e, i, o, u}:

p1(ahV pa) =
fV

1 + fi + fa + fe + fo + fu
.

3.3.5.2 ‘Word-end’ phone

The previous solution defines a unigram language model for a finite language. One way to
define a proper unigram language model for potentially infinite languages is to introduce
a special ‘word end’ phone π with its own probability of occurrence p(π)21.

19To see this notice that for any integer l ≥ 1, the sum of p1(w) over all words of length l is
1/K. Thus, if K > 0,

∑
p1 =

∑
l∈{1,2,...} 1 = +∞ and if K = 0,

∑
p1 = 0.

20In the language models used in this work, we have erroneously used p1(ahpa) =
fp

fp+fi+fa+fe+fo+fu
instead

21Typically estimated from a representative corpus, like the other phone probabilities. For
example, for a corpus containing the single sentence {He has.} with the phonetic transcript {hi
hæz}, out of seven phones (including word-ends), two are word-ends, so p(π) = 2/7.
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We can then define a proper unigram language model over all words as:

p1(w) =
p(π)

1− p(π)

Nw∏
i=1

p(ρwi ),

where the special ‘word-end’ phone is not included in the decomposition of w into ρw1 , ρw2 ,
..., ρwNw

.
The key is that now the total probability of the ‘normal’ phones is 1−p(π) < 1. As a

consequence, the sum of the probability over all words of length l becomes p(π)(1−p(π))l−1.
We can check that the sum of the probability over all possible words is 1 by recog-

nizing: ∑
w

p1(w) =

+∞∑
l=1

p(π)(1− p(π))l−1

as the sum of terms of a geometric series with reason 1− p(π) < 1, so that:∑
w

p1(w) = p(π)
1

1− (1− p(π))
= 1.

This defines a proper unigram language model over all possible words. To obtain
a unigram language model for a more restricted language L, we simply compute the
conditional probabilities:

p1(w|w ∈ L) =
p1(w)∑
w∈L p1(w)

.

Application to to the ah(V?)pa language We can easily check that the formula
remain the same as in Section 3.3.5.1, but the procedure to estimate the phone probabilities
is now different. As we start counting word-ends as a special phone, the probability of
occurrence for the other phones mechanically decreases (it gets multiplied by a factor of
1− p(π)).

Explicit word length modeling One limit of the previous solutions is that they
do not allow a realistic modeling of the distribution of word lengths observed in natural
languages (by which we mean the distribution of length of word tokens not word types).
In English for example, according to Miller, Newman & Friedman (1958), the probability
of words first increases with length up to words of length three before decreasing. This
pattern cannot be properly captured by the two previous solutions22.

A simple way to avoid these shortcomings consists in estimating the distribution of
word lengths from a corpus and combine it with the individual phone probabilities to
define a language model, as follows:

p∗1(w) = p1(w)pλ(Nw),

where pλ(Nw) is an estimate of the probability for word tokens to have length Nw and, as
before:

p1(w) =

Nw∏
i=1

p(ρwi ).

p∗1 defines a proper probability distribution over all possible words as long as pλ is a
proper probability distribution, because, as we have mentioned already the sum of p1 over
all possible words of length l for any integer l ≥ 1 is equal to 1.

22With the first solution, long words are just as likely as shorter words. With the second solution,
word probability decreases with word length according to a power law.
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As in the previous Section, this defines a unigram language model over all possible
words and we can obtain language models for a more restricted language L by conditioning
over L.

3.3.5.3 Application to to the ah(V?)pa language

We use the same notation as before. Let us define in addition q4, respectively q5, the
estimated probability that word tokens have length 4, respectively 5. Then:

p∗1(ahpa) =
q4

q4 + q5(fi + fa + fe + fo + fu)

and, for any V ∈ {a, e, i, o, u}:

p∗1(ahV pa) =
q5fV

q4 + q5(fi + fa + fe + fo + fu)
.

3.3.6 Bigram (phone-level) language model

For a bigram language model, the central idea is to obtain word probabilities from tran-
sition probabilities between pairs of consecutive phones.

One way to instantiate this formally is to have for a word w formed from the Nw

phones ρw1 , ρw2 , ..., ρwNw
:

p2(w) =
1

K
p(ρw1 )

Nw∏
i=2

p(ρwi | ρwi−1),

where p2(w) is the probability of occurrence of w according to a bigram language model,
p(ρ) is the probability of occurrence of phone ρ, p(ρa | ρb) is the probability of occurrence
of phone ρa immediately after phone ρb and K is a normalization constant (the same for
all words).

As for the unigram model, this first approach gives probability 1/K to word of length
l for any integer l ≥ 1 and thus does not define a proper language model over all possible
words.

The three ideas we presented to solve this problem in the unigram case translate to
the bigram case relatively easily.

3.3.6.1 Finite language

As in the unigram case, it is straightforward to apply our definition to a finite language.
If we note L the finite set of possible words considered, then:

K =
∑
w∈L

p2(w)

is finite and:

p2(w) =
p(ρw1 )

∏Nw
i=2 p(ρ

w
i | ρwi−1)∑

w∈L p(ρ
w
1 )

∏Nw
i=2 p(ρ

w
i | ρwi−1)

defines a proper bigram language model over L.
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Application to the ah(V?)pa language Let us note pS1S2 , the bigram transition
probability between phones S1 and S2 and V the vowel set {a, e, i, o, u}.

After simplification, we get:

p2(ahpa) =
php

php +
∑

V ∈V phV pV p

and, for any V ∈ V:

p2(ahV pa) =
phV pV p

php +
∑

V ∈V phV pV p
.

3.3.6.2 ‘Word-beginning’ and ‘Word-end’ phones

The second idea can also be adapted, but this is more involved and the distribution of
probability for word lengths becomes hard to characterize. One difference in the bigram
case is that it becomes natural to also introduce a special ‘Word-beginning’ phone here.
This approach was not used, so we do not give more detail here.

Application to to the ah(V?)pa language The formula are the same as in Section
3.3.6.1, but the way the bigram transition probabilities are estimated changes following
the introduction of the special ‘word beginning’ and ‘word end’ phones.

3.3.6.3 Explicit word length modeling

The reasoning we applied to the unigram case extend directly to the bigram case. We
obtain the formula:

p∗2(w) = p2(w)pλ(Nw),

where, as before, pλ(Nw) is an estimate of the probability for word tokens to have length
Nw and:

p2(w) = p(ρw1 )

Nw∏
i=2

p(ρwi | ρwi−1).

Application to to the ah(V?)pa language Keeping the same notations as before,
we get:

p2(ahpa) =
q4php

q4php + q5
∑

V ∈V phV pV p

and, for any V ∈ V:

p2(ahV pa) =
q5phV pV p

q4php + q5
∑

V ∈V phV pV p
.

3.3.7 Online and Retro language models

Until now, we have considered the probability provided by the language model to whole
words in the ah(V?)pa language. Let us call this condition the batch condition. We are
also interested in an online condition, where the language model is applied to obtain
information at a moment where only the beginning of the word, up to the ambiguous
middle part (one of the 5 vowels or nothing) has been presented. We also consider a
retro condition as a control, where the language model is applied based only on the word
information presented after the the ambiguous middle part of the ah(V?)pa stimuli. The
word probability given by our various unigram models are the same in all three conditions
(batch, online, retro), so we only distinguish these conditions for the bigram models.

We give the bigram language model probabilities for the ah(V?)pa stimuli in the
Online and Retro conditions below for the Finite Language case defined in Section 3.3.6.1
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and for the Explicit word length modeling case defined in Section 3.3.6.3, as these are the
case we have investigated in practice.

3.3.7.1 Finite Language

We keep the same notations as in previous sections.
For the Online condition, we get:

p2(ahpa) = p2(ahp) =
php

php +
∑

V ∈V phV

and, for any V ∈ V:

p2(ahV pa) = p2(ahV ) =
phV

php +
∑

V ∈V phV
.

For the Retro condition, we get:

p2(ahpa) = p2(hpa) =
php

php +
∑

V ∈V pV p

and, for any V ∈ V:

p2(ahV pa) = p2(V pa) =
pV p

php +
∑

V ∈V pV p
.

3.3.7.2 Explicit word length modeling

We keep the same notations as in previous sections.
For the Online condition, we get:

p2(ahpa) = p2(ahp) =
q4php

q4php + q5
∑

V ∈V phV

and, for any V ∈ V:

p2(ahV pa) = p2(ahV ) =
q5phV

q4php + q5
∑

V ∈V phV
.

For the Retro condition, we get:

p2(ahpa) = p2(hpa) =
q4php

q4php + q5
∑

V ∈V pV p

and, for any V ∈ V:

p2(ahV pa) = p2(V pa) =
q5pV p

q4php + q5
∑

V ∈V pV p
.
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3.4 Medley of epenthetic variations: Due to phono-

logical processes or embedded in the phonet-

ics?

3.4.1 Introduction

In the previous section we explored the hypothesis that the acoustic model (AM) might
not only be necessary to explain patterns of vowel epenthesis, but that it might even
sufficient. We tested n-gram implementations of local phonotactics through the ASR
systems’ language models (LMs), as these are typically the type of phonotactic models
used in ASR when doing phonetic decoding. We saw that LMs in that format did not add
any predictive value to the perception models, compared to just letting the AM decide of
the optimal decoding. We propose then, to find ways to implement alternative phonotactic
models to ASR systems in order to continue testing the relative importance of acoustic
and phonotactics.

In the meantime, it is also possible to further investigate the predictive power of the
AM alone. Many phenomena encountered in the field of perceptual vowel epenthesis have
been assigned a grammatical explanation; in this section we select a few of them in order
to test whether these effects can be ellicited by our AMs, without an abstract grammar
component that has been defined in the model explicitly. In other word, can some of these
seemingly abstract effects be accounted for by how the acoustic information is interpreted
by the acoustic model?

We will study three effects at least partially attributed to abstract grammars: (1)
cross-linguistic differences in epenthesis (Experiment 3), (2) variations of epenthetic vowel
quality due to neighbouring consonants (Experiment 3), and (3) variations in epenthesis
due to syllabic structure (Experiment 4).

3.4.1.1 Cross-linguistic differences in epenthesis

There is often a control group in experiments probing epenthesis, in most cases constituted
of native listeners of the language used to create the experimental stimuli. This allows to
ensure that observed effects of epenthesis are due to the difference in linguistic experience,
and not due to idiosyncrasies in the items used in the experiment. Both the control
group and the test group are processing the same acoustic input, yet only the test group
experiences epenthesis. It has been argued that this is evidence against the hypothesis
that phonetic properties drive perceptual distortions (e.g., [Berent et al., 2007]).

However, the acquisition of native phonetic categories has been described as a process
of partitioning the phonetic space in an optimal way, respective to the phonemic needs of
the native language [Best, 1994, Kuhl and Iverson, 1995]. Phonemic misperceptions can
then result from mapping the nonnative input to a native category that is not congruent
with the original, intended nonnative category, or that lacks finer grained separations
that specify additional phonemic contrasts. Can we explain cross-linguistic differences in
perceptual vowel epenthesis within a similar framework? Each language has its partition of
the acoustic space specified (i.e., the acoustic model in our ASR systems). The differences
between languages at the level of the mapping between their respective AMs and the
stimulus acoustics may then trigger vowel epenthesis. We will investigate this possibility
in Experiment 3.
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3.4.1.2 Variations of epenthetic vowel quality due to neighbouring con-
sonants

Within a given language, most episodes of epenthesis involve a “default” epenthetic vowel
(e.g., [W] in Japanese, [1] in Korean, [@] in English and Mandarin Chinese). Aside from
variations in epenthetic vowel quality due to coarticulation [Dupoux et al., 2011, Guevara-
Rukoz et al., 2017b, Guevara-Rukoz et al., 2017a], variations have also been triggered
by changes in neighbouring consonants [Mattingley et al., 2015, Durvasula and Kahng,
2015, Durvasula et al., 2018].

For instance, previous work has highlighted the fact that palatalized consonants may
increase the rate of /i/-epenthesis in languages with a different default epenthetic vowel,
as follows:

• For Japanese listeners tested by [Mattingley et al., 2015], the voiced alveolo-palatal
affricate /

>
dý/ mostly triggered [i]-epenthesis (92%), with very few cases of default

[W]-epenthesis (6%).

• For Mandarin Chinese listeners tested by [Durvasula et al., 2018], the aspirated
alveolo-palatal affricate /

>
tCh/ ellicited more [i]-epenthesis than other vowels (in-

cluding the “default” [@]).

• For Korean speakers tested by [Durvasula and Kahng, 2015], palatal consonants /ch/
and /S/ mostly ellicited [i]-epenthesis, with very low rates of default [1]-epenthesis.

We will now shift our focus to this latter work. The authors interpreted the higher
rates of /i/-epenthesis after palatal consonants as listeners taking into consideration phono-
logical alternations when using reverse inference to parse the stimuli. More specifically,
palatal consonants are allophonic variants of alveolar consonants preceding the vowel /i/,
as shown in Figure 3.14: in front of /i/, /th/ surfaces as [ch], while /s/ surfaces as [S]. Ac-
cording to the hypothesis proposed by the authors, Korean listeners may interpret palatal
consonants in a cluster as suggestive of the presence of the vowel /i/.

Figure 3.14: Mappings and neutralisations resulting from the palatalisation process
in front of the vowel /i/. Reproduced from [Durvasula and Kahng, 2015].

Given how we found front vowel coarticulation to be particularly salient at triggering
/i/-epenthesis for both humans and ASR models (cf. Figure 3.9), we could hypothesize
that similar acoustic cues may be found in palatal consonants. Similarly, [de Jong and
Park, 2012] observed variation in rates of epenthesis by Korean listeners that could be
explained in part by the acoustic salience of the consonants in the clusters. Therefore,
can our AM-only ASR model reproduce the palatal effects observed by [Durvasula and
Kahng, 2015], without explicit knowledge about phonological alternations? We will study
this in Experiment 3.

3.4.1.3 Variations in epenthesis due to syllabic structure

There has been evidence of syllabic structure being taken into consideration by the per-
ceptual system when listening to nonnative speech. For instance, [Kabak and Idsardi,
2007] observed that Korean listeners experienced different rates of epenthesis following a
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pattern that seemed to be dictated by syllable structure violations. They were tested on
their discrimination of items with clusters and their “epenthesized” equivalents. Korean
listeners performed better on stimuli with an illegal cluster with a C1 legal in coda posi-
tion, than on the stimuli that also had an illegal cluster but with a C1 that is not allowed
in coda position in Korean.

A theory of word recognition, posited by [Church, 1987], hypothesized that low level
cues could be used in a parsing step, allowing a rough segmentation of speech in lexical
chunks that could then be looked up in a lexicon. Some of the low level cues suggested by
the author were acoustic cues: allophonics, suprasegmental cues (duration, pitch, intensity,
etc). Concerning allophonics, consider the case of an English listener parsing a sentence
with unknown words. The presence of aspiration in a stop consonant may be used to find
syllable boundaries, since in English it only occurs syllable-initially. Therefore, looking at
it the other way around, syllable boundaries have an influence on the acoustic realisation
of phones.

We could then hypothesize that the acoustic model in the perceptual system is aware
of certain allophonic variations, instead of just having a single model per phoneme. In this
case, phonotactics have an influence on the acoustic model while it is established, helping
the clustering of phones into positionally-relevant groups, for instance. During percep-
tion, acoustic match may be considered between the acoustic input and the independent
allophones of all phonemes. At the time of perception, a same nonnative phoneme may
contain different acoustic cues in different realisations, depending on its position on the
word (akin to the aspiration example in syllable-initial stops in English). The acoustics
of a Serbian cluster such as /gm/ produced in syllable-initial position may be more sug-
gestive of acoustics in English [g@m], while the word-medial realisations of Serbian /gm/
might actually better approximate English [gm] acoustically.

We expect English listeners to be able to correctly perceive certain Serbian clusters
such as /gm/ word-medially but not word-initially, as they are phonotactically illegal
in this latter position. Can our AM-only ASR system reproduce this effect? We will
investigate this in Experiment 4.

3.4.2 Experiment 3: Variations due to native phonology

The work described in this section was done in collaboration with Emmanuel Dupoux. We
thank Karthik Durvasula and Jimin Kahng for kindly sharing with us the stimuli used in
the work described in [Durvasula and Kahng, 2015]. We also thank Rory Turnbull and
Jeffrey Holliday for providing the K-SPAN database used for frequency analyses [Holliday
et al., 2017].

In this experiment, we investigate if our ASR models are able to reproduce qualitative
effects observed in previous work by [Durvasula and Kahng, 2015]. More specifically, we
trained ASR models using Korean and English data to model the perception of consonant
clusters by Korean and American English listeners, respectively. The American English
listeners, who served as the control population, did not experience vowel epenthesis, un-
like their Korean counterparts. Additionally, the authors observed that Korean listeners
epenthesized /i/ more often when the first consonant of the cluster was a palatal conso-
nant, at the expense of the default epenthetic vowel /1/23. The authors attributed this
to listeners taking into consideration phonological alternations when using reverse infer-
ence to decode the stimuli. More specifically, palatal consonants are allophonic variants

23Following the original article, we use [1] to denote the close back unrounded vowel found in the
Korean vowel inventory. However, the notation [W] has also previously been used (e.g., in [Kabak
and Idsardi, 2007])
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of alveolar consonants preceding the vowel /i/. Therefore, according to their hypothesis,
Korean listeners may interpret palatal consonants in a cluster as suggestive of the presence
of the vowel /i/. Since our models were not explicitly made aware of these phonological
alternations, to what extent were they able to reproduce these effects? Can our mod-
els reproduce the cross-linguistic differences in rates of vowel epenthesis without explicit
information about native phonological alternations?

3.4.2.1 Methods

Stimuli The stimuli, which have been previously used in [Durvasula and Kahng, 2015],
were kindly provided by the authors from said paper. They consist of 12 items of the
form /eC(V)ma/, with C either a consonant from the set of alveolar consonants {/th, s/}
or their palatal counterparts {/ch, S/}, and V a vowel from the set {/1, i/}. Each item
was recorded twice by a male trained phonetician. The speaker is a native speaker of
Indian English and Telugu, also a near-native speaker of standard Hindi. The clusters
present in the items are phonotactically legal in these two latter languages. All items were
produced with stress on the first syllable. The organisation of the stimuli, based on place
of articulation of C, is shown on Table 3.8.

Table 3.8: Experimental items. Reproduced from [Durvasula and Kahng, 2015] (Ta-
ble I).

vowels
[1] [i] none

alveolar eth1ma ethima ethma
es1ma esima esma

palatal ech1ma echima echma
eS1ma eSima eSma

ASR system Two populations of listeners were simulated in this experiment, based
on [Durvasula and Kahng, 2015]: we simulated an English-listening control group using
the acoustic model trained on English data (WSJ corpus), and a Korean-listening target
group using the acoustic model trained on Korean data (KCSS). As a reminder, we selected
the HMM-GMM monophone models with the best performance, namely the models with
15000 Gaussians.

Concerning the language models used during the decoding, in order for the decoding
task to be analogous to the behavioural experiment described in [Durvasula and Kahng,
2015], trial-specific language models were constructed, as shown in Figure 3.15. Thus,
when decoding the stimulus /eC1(V2)ma/, the perception model was only given the pos-
sibility to transcribe it as /eC1(V2)(SIL)ma/, where phones between parentheses are op-
tional, V2 was from the set of vowels /i, 1/24, and SIL is an optional silence.

Identification task simulation After decoding the stimuli with the ASR models,
we extracted from the resulting lattices each possible transcription of each item, and

24In [Durvasula and Kahng, 2015] it was assumed that English listeners would associate the
grapheme 〈u〉 to the phoneme /U/. It is unclear to us if English listeners would, in a similar fashion,
associate the grapheme 〈i〉 to the phoneme /I/ instead of /i:/. Since English /i:/ is probably the
closest vowel to [i] in the stimuli, and since the choice is arbitrary without behavioural testing, we
chose its back counterpart /u:/ for “u” instead of /U/. However, it would have also been possible
to build language models that account for more than one possible mapping between native and
nonnative phonemes (cf. experiment below).
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0 1ee - /e/ 2s0 - /s/ 3

<eps> - none

ii - /i/

xx - /ɨ/
4<eps>

SIL
5mm - /m/ 6aa - /a/

Korean

0 1EH - /ɛ/ 2S - /s/
SH - /ʃ/

3

<eps> - none

IY - /iː/
UW - /uː/

4<eps>
SIL

5M - /m/ 6AA - /ɑː/

English

Figure 3.15: Constrained language model used to decode stimuli with the English
(top) and Korean (bottom) acoustic models. The models here were used to decode
items /es([i|1])ma/, as well as /eS([i|1])ma/. This is because there is only one /s/
phoneme in Korean. As a consequence, we neutralised /s/ and /S/ for the English
model to use either phoneme in a similar way. However mismatches between the
intended consonant and the transcriptions rarely happened in practice. Nodes in the
graph represent states, edges represent transitions between states (here: phonemes).
WSJ/KCSS labels are shown on edges, along with their IPA transcriptions. The
LMs are null, as they only constrain the possible decoding outputs without assigning
higher or lower probabilities to certain edges. The optimal decoding path is therefore
only dependent on the acoustic scores.

the corresponding acoustic and language model scores. From the (scaled) acoustic and
language model scores we derived the item posteriorgrams, which indicate how probable a
given transcription was given the audio input. We used these probabilities as proxies of the
probability that a listener might exploit when performing reverse inference during speech
perception, and therefore, the probabilities used when responding in an identification task.

As such, for each item, we obtained a three-dimensional vector identmodel = [pnone, pi, pi−bar],
containing a discrete probability distribution, with a probability mass function linking the
identification task options {‘none’, ‘i’, ‘1’}, to their respective probabilities (i.e., poste-
riorgrams). We can define the human equivalent identhuman = [pnone, pi, pi−bar], which
contains the percentage of responses for each item, after aggregating all participant re-
sponses.

3.4.2.2 Results

Identification accuracy Figure 3.16 shows human and model accuracy when identi-
fying medial full vowels, such as [1] in /eth1ma/. While English listeners showed an almost
perfect performance (mean accuracy: [i]: 98%; [1]: 96%), the English model had difficulty
identifying vowels, especially after palatal consonants (mean accuracy: [i]: 71%; [1]: 85%).
This may be due to an acoustic mismatch between the nonnative vowels in the stimuli
and the native vowels in the training corpus.

Contrary to their English-speaking counterparts, Korean listeners showed more dif-
ficulty identifying [1] (61% accuracy) while achieving good performance for [i] (93%).
Numerically, we found a similar pattern in model results (mean accuracy: [i]: 89%; [1]:
81%). However, unlike Korean listeners, the Korean model did not consistently perform
better in [i]-trials than in [1]-trials.
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Figure 3.16: Identification accuracy on items with a full medial vowel, for human
listeners (top, data from [Durvasula and Kahng, 2015]) and the respective simula-
tions (bottom). Results are shown for a model trained on American English (left)
and a model trained on Korean (right). Points with error bars show the mean and
standard deviation, respectively. The box and whiskers plots display the distribution
of the proportions across items (median, quartiles, extrema and outliers).

Proportion of epenthesis Human and model response patterns for items with con-
sonant clusters are given in Figure 3.17. Concerning the control English human and model
responses, as expected, the predominant case is not experiencing epenthesis. English lis-
teners experienced epenthesis in only 1% of the trials, while the English model’s average
posteriorgram for epenthesis was 15%. The model’s data was noisier than for humans, but
the performances for both human and model in English surpassed the Korean equivalents.

Indeed, Korean listeners experienced epenthesis in 78% of the trials, and the Korean
model’s posteriorgrams for epenthesis averaged to the equivalent of 66% of the trials.
Mirroring the higher rates of epenthesis for the English model, the Korean model outputs
lower rates of epenthesis than Korean listeners.

Overall, we saw that the models were able to show the crosslinguistic difference in
rates of epenthesis, with low rates for English and high rates for Korean.

Effect of palatalisation on /i/-epenthesis Focusing on epenthetic vowel quality,
[Durvasula and Kahng, 2015] found that Korean listeners mostly epenthesized [i] after
palatal consonants, while they epenthesized the “default” vowel [1] after alveolar conso-
nants. This can be seen for Korean listeners in Figure 3.17, but a similar effect is not
visible for the Korean model, for which the rates of /i/- and /1/-epenthesis are at similar
values around 25%− 50%. Figure 3.18 shows the proportion of trials with epenthesis for
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Figure 3.17: Identification patterns on items with consonantal clusters, for human
listeners (top, data from [Durvasula and Kahng, 2015]) and the respective simu-
lations (bottom). Proportion of “none”, “i”, and “u”/“1” responses given by the
American English (left) and Korean (right) ASR systems. Points with error bars
show the mean and standard deviation, respectively. The box and whiskers plots dis-
play the distribution of the proportions across items (median, quartiles, extrema and
outliers).
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Figure 3.18: Proportion of /i/-epenthesis on trials with epenthesis in cluster items,
separating according to whether C1 is a palatal or alveolar consonant. The box
and whiskers plots display the distribution of the proportions across items (median,
quartiles, extrema and outliers).
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which the epenthetic vowel quality was /i/. Indeed, the difference between palatal (65%)
and alveolar (55%) consonants observed in the Korean model is negligible compared to
that observed in human responses (over 30% difference).

3.4.2.3 Summary

In this experiment, we investigated if ASR systems with a null language model could
reproduce psycholinguistic effects attributed to native phonotactics. More precisely, we
based ourselves on a study on the perception of consonant clusters by Korean listeners,
where their performance was compared to that of American English listeners.

The first question related to when listeners experience vowel epenthesis when lis-
tening to nonnative speech. The English group served as a control group; the authors
expected low rates of epenthesis, as English phonotactics are less restrictive than Korean
phonotactics. Indeed, this was the case, with Korean speakers experiencing epenthesis in
most trials, unlike English speakers. Thought not as clear cut as for humans, we found
a similar effect when comparing cluster decoding by Korean and American English ASR
systems.

Concerning trials where there was a full medial vowel between the consonants, the
models diverged from human behaviour; in general, the identification accuracy was lower
than for humans (especially the English one).

A second question referred to phonological influences on epenthetic vowel quality.
The authors observed higher rates of /i/-epenthesis in palatal allophones of alveolar con-
sonants, in detriment of the default vowel /1/. This prompted them to hypothesize that
phonological alternations were influencing epenthetic vowel selection during perception.
We examined this hypothesis by investigating if our models, which lack explicit abstract
phonological rules or contraints, could reflect this palatal effect. The hypothesis being
that palatal consonants might contain acoustic cues more similar to the front vowel /i/
than to /1/. However, we did not find evidences of the effect in the output of our mod-
els. It would be interesting to see if the effect might come from phoneme co-occurrences
as, for instance, the diphone [chi] is more frequent than [ch1] (Figure 3.19). This might
explain, in part, higher rates of /i/- than /1/-epenthesis in /chm/ clusters. However, we
remain skeptical, following the discussion about the low predictive power of n-gram-based
phonotactic models in the previous section.

3.4.3 Experiment 4: Variations due to syllabic structure

The work described in this section was done in collaboration with Ewan Dunbar, Paul
Andrey, Amelia Kimball, Clara Delacourt, Antoine Hedier, and Emmanuel Dupoux. We
thank Milica Denić, our Serbian speaker.

In this experiment, we introduced basic allophony to the acoustic models of our ASR
system, and evaluated whether this modification resulted in a better approximation of
human responses in a task probing epenthesis. More specifically, we trained two differ-
ent acoustic models which differed in whether phones were word-position-dependent (i.e.,
different HMM-GMMs depending on the position within the word) or not. We trained
the models using the WSJ American English corpus, in order to model the perception of
phonotactically illegal Serbian clusters by American English listeners. The clusters were
either word-initial or word-medial. Based on results by [Kabak and Idsardi, 2007], we
expected American English listeners to experience epenthesis less frequently with word-
medial clusters, when the consonant clusters could be syllabified as a coda followed by an
onset consonant. On the other hand, these clusters were not phonotactically legal word-
initially, where the only syllabification possible is as a complex onset cluster. We examined

94



3.4. Medley of epenthetic variations: Due to phonological processes or embedded
in the phonetics?

ci

cɨ

0.0

2.5

5.0

7.5

10.0

0 500 1000

Rank

lo
g(

T
yp

e 
fr

eq
ue

nc
y)

ci

cɨ

0

5

10

0 500 1000

Rank

lo
g(

T
ok

en
 fr

eq
ue

nc
y)

Figure 3.19: Diphone frequency of [chi] and [ch1], relative to all diphones in Korean.
Frequencies are computed from the frequencies of word types (top) and word tokens
(bottom), as documented in K-SPAN [Holliday et al., 2017].

whether American English listeners showed differences in rates of epethesis according to
word position and, if so, whether word-position-dependent models better approximated
participants’ rates of epenthesis than word-position-independent ones.

3.4.3.1 Methods

Stimuli We recorded a female native speaker of Serbian from Kruševac in a sound
proof room reading a list of 136 items containing one of 34 C1C2 cluster either in word-
initial position (C1C2V1C3V1, e.g., /znapa/) or word-medial position (V1C1C2V1, e.g.,
/azna/). V1 and C3 were always set to /a/ and /p/, respectively. We also recorded
the “epenthesized” equivalents of said stimuli, namely C1VepC2V1C3V1 (/z@napa/) and
V1C1VepC2V1 (/az@na/) with Vep set as [@]. For all stimuli stress fell on the first V1. The
list of C1C2 clusters is given in Table 3.9.

Behavioural experiment We recruited 38 monolingual native listeners of American
English through the online platform Amazon Mechanical Turk. An additional 43 partici-
pants were also tested, but they were excluded from the analyses if they met at least one
of the following conditions: did not finish all trials, extensive exposure to languages other
than English, auditory problems, dyslexia, unable to use headphones or earbuds during
the experiment. This information was retrieved from pre-test and post-test questionnaires.

After audio setup25 and a few training trials, in each experimental trial participants
heard an item (e.g., /azna/). Since the grapheme-to-phoneme mapping is not as trans-
parent in English as it is in Japanese or Korean, and because the position of the cluster
in the item was not fixed, the task was slightly altered compared to other experiments
described in previous sections. Participants were not asked if they had heard a vowel
between the consonants; instead, they were given a 2-alternative forced choice task with
orthographic transcriptions: if the auditory stimulus was /azna/, participants would be

25Participants were given the opportunity to setup the audio to comfortable hearing levels.
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Table 3.9: Clusters used to construct the experimental stimuli, ordered by increasing
rates of epenthesis given by humans (word-initial position). We indicate the sonority
contour, as well as whether the cluster is a legal onset in English.

Cluster Sonority Legal word-initially?

/tk/ plateau No
/zg/ plateau No
/br/ largerise Yes
/dl/ largerise No
/dg/ plateau No
/kl/ largerise Yes
/ks/ plateau No
/bl/ largerise Yes
/fl/ largerise Yes
/zd/ plateau No
/pS/ plateau No
/zn/ smallrise No
/kr/ largerise Yes
/zm/ smallrise No
/zl/ largerise No
/kv/ plateau No
/zb/ plateau No
/pl/ largerise Yes
/gd/ plateau No
/bd/ plateau No
/gl/ largerise Yes
/pn/ smallrise No
/km/ smallrise No
/tm/ smallrise No
/kn/ smallrise No
/pt/ plateau No
/zr/ largerise No
/tl/ largerise No

/mn/ plateau No
/gm/ smallrise No
/ml/ smallrise No
/dn/ smallrise No
/gn/ smallrise No
/mr/ smallrise No

given the options “azna” and “azana”. Since online participants are not as immersed in the
experiment as participants tested in a laboratory setting, the experiment was self-paced
and participants were able to listen to the stimuli as many times as necessary.

Each participant completed 81 trials. For each item, participants heard either the
cluster version (e.g., /azna/) or the “epenthesized” version (e.g., /az@na/). Presentation
of trials was counterbalanced between participants.
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ASR systems We simulated perception of nonnative nonwords by English listeners
using acoustic models trained on American English data (WSJ corpus). As in previous
experiments, we used HMM-GMM monophone models with 15000 Gaussians. However,
we tested two types of acoustic models:

1. WPD-False (word-position-independent) acoustic models: These are the type of
models that have been used in all previous sections. For these models, all acoustic
realisations of a phoneme are grouped together in a unique HMM. Therefore, for
instance, in these models there is only one HMM corresponding to the phoneme
/p/.

2. WPD-True (word-position-dependent) acoustic models: In these models, different
HMM-GMMs are built for phones, according to their position in a word (initial,
medial, final, isolate). Therefore, there will be four separate HMM-GMMs for the
phoneme /p/.

WPD-False and WPD-True acoustic models are allocated the same number of Gaus-
sians, even though the latter have more phones (up to four times more than WPD-False
models). This means that it is almost certain that the average number of Gaussians per
phone HMM-GMM is lower in WPD-True than in WPD-False acoustic models. Also,
since now acoustic realisations are separated according to their position in a word, we
expect Gaussians to be distributed differently amongst HMM-GMMs. As a matter of
reference, phonetic transcription on the test set revealed the word-position-independent
model to be numerically less performant (41.3%PER) than the word-position-dependent
model (40.9%PER).

Concerning the language model used for decoding stimuli, item-specific language
models were constructed, as shown in Figure 3.20. For instance, when decoding an
item /C1C2apa/, the perception model was only given the possibility to transcribe it as
/C1(Vep)C2apa/, where phones between parentheses are optional and Vep = [@]. While all
non-medial vowels were intended to be /a/ phonologically, we allowed the model to tran-
scribe them as any phoneme associated with the grapheme 〈a〉. This allowed us to account
for phonetic reduction in our stimuli, but also to account for the possibility that these al-
ternative transcriptions might also be considered by English-speaking participants in the
psycholinguistic experiment, due to item transcriptions being presented orthographically
on-screen.

We use a null language model as shown in Figure 3.20, meaning that the decoding
process is entirely dependent on the acoustic model, without using information on phono-
tactics. Note that since we did not constrain the WPD-T model to only transcribe WPD
allophones in their respective positions (e.g., allowing only the word-initial allophone of
/z/ between states 1 and 2 of the LM for /znapa/, but not the isolated /z/ allophone), we
are only comparing the two AMs based on their catalogues of phones, not on word-position
matching of said phones.

Identification task simulation After decoding the stimuli, we obtained for each
possible transcription of each item the corresponding acoustic and language model scores.
From these we derived the item posteriorgrams; we collapsed together reponses with and
without epenthesis, respectively. As such, posteriorgrams indicated the probability of
epenthesizing [@] given the acoustic input. We used these probabilities as proxies of the
probability that a listener might exploit when performing reverse inference during speech
perception, and therefore, the probabilities used when responding in an identification task.
In other words, for each item, we obtained a percentage of vowel epenthesis26.

26For simplicity reasons, the term “epenthesis” will sometimes be used for items with full medial
vowels (e.g., /az@na/), even though this is technically incorrect.
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Figure 3.20: Constrained language model used for stimulus decoding (here: LMs
for /azna/ (top) and /znapa/ (bottom) trials). Nodes in the graph represent states,
edges represent transitions between states (here: phonemes, transcribed in WSJ
notation). Models were given the choice to transcribe the phoneme /a/ with any
of the phonemes linked to the grapheme 〈a〉, as English listeners might have also
done so during the task. The LMs are null, as they only constrain the possible
decoding outputs without assigning higher or lower probabilities to certain edges.
The optimal decoding path is therefore only dependent on the acoustic scores.

3.4.3.2 Results

Qualitative analysis The left panel of Figure 3.21 shows the average percentage of
epenthesis given by human participants for each item. Clusters are ordered according to
the ranking of word-initial C1C2 clusters. We see that human participants were generally
good at detecting [@] between two consonants, but their performance was not perfect,
in particular when the target phonemes were word-initial. Concerning C1C2 clusters,
there is a large range of rates of epenthesis for word-initial items, going from almost no
epenthesis for /tk/ to almost 75% epenthesis for /mr/. For word-medial clusters we do
not see the same variation in epenthesis, as most clusters ellicited epenthesis less that
25% of the times. However, we do see that clusters are ordered relatively similarly to
word-initial counterparts (e.g., the lowest and highest rates of epenthesis are for /tk/ and
/mr/, respectively). Note that, while most of the clusters are phonotactically illegal as
syllable onsets in English, clusters that ellicited less epenthesis are not necessarily only
the few clusters that are indeed legal (range from /br/: 6% to /gl/: 31%). Indeed, as
can be seen in Figure 3.22, most syllable-initial illegal clusters ellicit rates of epenthesis
similar to those ellicited by legal clusters.

Next we examined if, as predicted based on phonology, English listeners experienced
lesser amounts of misperceptions when the clusters can be parsed as a sequence of a
coda and an onset (word-medial cluster), instead of a complex onset (word-initial clus-
ter). Statistical analyses were performed with the R statistical software [R Core Team,
2016], using Markov chain Monte Carlo linear models [Hadfield, 2010, Plummer et al.,
2006]. These Bayesian models sample coefficients from the posterior probability distri-
bution conditioned on the data and given priors. We used priors that are standard for
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Figure 3.21: Experimental results for American English listeners. Left: Proportion
of epenthesis, collapsed across participants. Clusters are ordered according to rates
of epenthesis in word-initial clusters. Right: Identification accuracy, according to the
position of the cluster within the word and presence or absence of a vowel between the
consonants. The box and whiskers plots display the distribution of the proportions
across items (median, quartiles, extrema and outliers).
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Figure 3.22: Distribution of rates of epenthesis for human responses on word-initial
clusters, according to phonotactic legality in onset position. Densities show the dis-
tributions normalised within each category of phonotactic legality.

linear models. Model convergence was assessed by visual inspection of trace plots and the
Gelman–Rubin convergence diagnostic [Gelman and Rubin, 1992], using eight chains with
different initialisations. Effects were considered statistically significant if the 95% highest
posterior density (HPD) interval estimated for the coefficient of interest did not include
zero. We report both the posterior mode and the 95% HPD interval.

Our response variable was the continuous variable %Accuracy. We chose as fixed
effect for our statistical models Position (categorical variable with 2 levels: medial vs.
initial, contrast coded with deviation coding) and Vowel (categorical variable with 2
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levels: true vs. false, contrast coded with deviation coding), as well as their interaction.
The right panel of Figure 3.21 shows the percentage of accuracy for human partici-

pants. We found a significant main effect for Position (mode: −0.11, HPD: [−0.15,−0.07]),
Vowel (mode: −0.07, HPD: [−0.11,−0.03]), as well as their interaction (mode: −0.12,
HPD: [−0.18,−0.02]). English listeners were generally better at detecting a present vowel
(i.e., no incorrect elision) than at correctly parsing clusters (i.e., no incorrect epenthesis).
They experienced more misperceptions at trials where the cluster was word-initial, even
more so for C1C2-items than for C1[@]C2-items.
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Figure 3.23: Simulation results for ASR models. Left: Epenthesis posteriorgrams.
Clusters are ordered according to rates of epenthesis in word-initial clusters given by
human participants. Right: Identification accuracy, according to the position of the
cluster within the word and presence or absence of a vowel between the consonants.
The box and whiskers plots display the distribution of the proportions across items
(median, quartiles, extrema and outliers).

Model responses can be seen in Figure 3.23. On the left panel, we can see that
the models almost never elide full vowels (light gray datapoints). This results in almost
perfect performance for these items, as seen in the right panel. On the other hand, there
is large variability in the posteriorgrams for C1C2 clusters, even for word-medial items.
This is also visible from the elongated black boxplots on the right panel. Recall that
English listeners gave a large range of percentages for word-initial items only, while they
experienced lower rates of epenthesis for word-medial clusters. Closer examination of
epenthesis rates according to the ranking of the clusters in the left panel reveals that for
word-initial clusters the models generally agree with humans as to which clusters ellicit
more (e.g., /gn/, /mr/, /dn/) or less (e.g., /zg/, /dl/, /kl/) epenthesis. We did not
analyse the model data as we did for human data, due to issues related to highly skewed
distributions for full vowel items, and too much variability for cluster items (almost uniform
distribution in the [0,1] interval). However, from looking at both panels from Figure 3.23,
we can hypothesize that models also misperceived C1C2-items more often than C1[@]C2-
items. Yet, it is difficult to find evidence for lessened misperception of clusters in word-
medial position.

Quantitative analysis The relationship between human responses and model esti-
mation can be visualized in Figure 3.24. In order to perform a global evaluation of the
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Figure 3.24: Models’ epenthesis posteriorgrams as a function of the percentage of
epenthesis given by humans for a given C1C2 cluster (black) or C1[@]C2 (light gray)
item. Dashed lines indicate identity.

similarity between human responses and the responses given by the WDP-F and WPD-T
models, respectively, we used leave-one-out cross-validation. This method consists of com-
puting CV, the average prediction error on an item i by a statistical model trained on all
items except i. We used the following linear models (one per AM) as predictive models:

%epenthhuman = %epenthmodel ×Position×Vowel + ε (3.12)

In other words, we compared the predictive power of linear models using as predic-
tor variables the model posteriorgrams (%epenthmodel), the cluster position (position;
medial vs. initial), the presence of a full vowel (Vowel; true vs. false), their interactions,
and residuals (ε). The data to be predicted were human percentages of epenthesis per item
(%epenthhuman). Contrary to expectations, we found the ASR system with the WPD-F
acoustic model to have lower average prediction error (CV = 0.014) than the ASR system
with the WPD-T acoustic model (CV = 0.016).

3.4.3.3 Summary

In this experiment we tested the perception of Serbian clusters (and their “epenthesized”
counterparts) by native listeners of English. Most of these clusters were phonotactically
illegal syllable-initially in English. We found that while English listeners were better at de-
tecting the presence of a full vowel than detecting its absence, they still experienced elision
on items with full vowels between the consonants of interest. However, the predominant
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category of mistakes is epenthesis. In particular, listeners experienced misperceptions
more often when the clusters where word-initial than when they were word-medial. Ad-
ditionally, amongst clusters that ellicited the least amount of epenthesis in word-initial
position we find clusters that are phonotactically legal in this position, and other that are
illegal.

We simulated the experiment above using ASR systems with two types of acoustic
models: a WPD-F model, which groups all acoustics related to one phoneme within a
unique phone, and a WPF-T model, which groups acoustics according to whether they
originate from a word-initial, word-medial, word-final, or isolated phone. We found that,
globally, the WPD-F model better approximated human results. However, it appears that
neither model is able to reproduce the lower accuracy for word-medial than for word-initial
C1([@])C2 items.

3.4.4 Discussion

In this section we investigated whether some epenthetic effects attributed to phonolog-
ical rules/grammars could be explained by the processing of the acoustic signal by an
acoustic model (AM) agnostic to such abstract rules/grammars. In particular, as a per-
ceptual model, we used ASR systems for which the AM in question was accompanied by
a language model (LM) that only contrained the set of possible percepts, without adding
any phonotactic information to the decoding process. The models’ patterns of item de-
coding were compared to results from psylinguistics experiments in order to tackle three
main questions, as follows: (1) cross-linguistic differences in epenthesis, (2) variations of
epenthetic vowel quality due to neighbouring consonants, and (3) variations in epenthesis
due to syllabic structure.

3.4.4.1 Cross-linguistic differences in epenthesis

We tested the hypothesis that cross-linguistic difference in rates of epenthesis might be
due not to interference from a higher order native grammar, but due to how the acoustic
space is partitioned during the acquisition of the native phonology. In order to do so,
we compared the rates of epenthesis of an American English-native and a Korean-native
ASR systems when decoding stimuli containing consonant clusters that are phonotactically
illegal in Korean. Indeed, in the original study by [Durvasula and Kahng, 2015], American
English listeners almost never experienced epenthesis, while rates of epenthesis were high
for Korean listeners.

We found that this asymmetry was also evident in the results from our models, albeit
with more nuance: the English model showed low rates of epenthesis but not the near-
perfect performance shown by English listeners; the Korean model showed high rates of
epenthesis but not as numerically high as Korean listeners did.

Therefore, we provide evidence supporting the hypothesis that cross-linguistic differ-
ences in rates of vowel epenthesis may be drive by how the acoustic input is processed
and mapped onto a native phonetic inventory. A confound remains in our comparison,
however; the corpora used to train the English and Korean models were very different in
nature:

• English speech was read speech while Korean speech was spontaneous. The next
step would be to re-do the same experiment with a corpus of spontaneous American
English (e.g., Buckeye corpus [Pitt et al., 2007]) and a corpus of read Korean speech
(e.g., Globalphone Korean corpus [Schultz, 2002]). It then becomes possible to
disentangle the roles of speech register and native language on the observed cross-
linguistic effect.
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• The phonetic transcriptions in the WSJ corpus were automatically derived from a
lexicon of English words. In order to ensure higher fidelity between the transcriptions
and the acoustics, it would have been better for it to be manually transcribed,
possibly by trained linguists, as it was the case for the Korean corpus. Unfortunately,
this is very costly in terms of time and human resources.

• The corpus of Korean was much smaller than the English corpus. This was the
case when looking both at the length of the recordings and the number of different
speakers. It is therefore possible that the Korean AM is noisier and less mature than
its English counterpart. Carefully match the corpora sizes remains a possibility in
future work.

3.4.4.2 Variations of epenthetic vowel quality due to neighbouring con-
sonants

Certain variations of epenthetic vowel in Korean have been attributed to a role of phono-
logical alternations during reverse inference [Durvasula and Kahng, 2015]. Specifically, the
authors hypothesized that listeners mentally undo native phonological rules during per-
ception (here: use of the palatal allophone of an alveolar consonant before the vowel /i/
→ a palatal consonant is suggestive of a vowel /i/ following it). The behavioural evidence
for this was an increase of /i/-epenthesis after palatal consonants, disfavouring default
/1/-epenthesis. We tested the hypothesis that this may be due to acoustic cues relative to
palatalisation being more suggestive of the acoustics of the vowel /i/ than the vowel /1/.
In that case, we expected our Korean model to show a similar pattern of results. This was
not the case; while the average rate of /i/-epenthesis was numerically higher for palatal
than for alveolar consonants, this difference was negligible compared to the magnitude of
the difference observed in human listeners.

While data from our models does not support the hypothesis that the effect observed
by [Durvasula and Kahng, 2015] is driven by the acoustic content of the stimuli, there
is an alternative hypothesis involving phonology that does not necessarily go as deep as
suggesting the retrieval of an underlying representation. Indeed, work on loanword adap-
tation by [Uffmann, 2006] advanced the influence of neighbouring consonants on variations
of epenthetic vowel quality in loanwords in Shona, Samoan, Sranan. For instance, the au-
thor observed that labial and front/coronal consonants increased the rates of /u/- and
/i/-epenthesis, respectively. They proposed that this was a case of consonantal spreading,
where the consonantal features were spread onto the epenthetic vowel. Future work should
aim to disentangle various phonology-based explanations.

It is also possible that our task-specific null LMs may have been too restrictive,
as they assume that all phonemes (except medial vowels) will be correctly identified by
the listeners that it is emulating. We used this type of LM in continuation of the work
in the precedent section, however there is no mention of Korean listeners having been
shown a partial orthographic transcription of the stimuli during the identification task
in [Durvasula and Kahng, 2015]. As such, there is no guarantee that Korean listeners’
perception of consonants in the items is as intended by the authors. It is possible that the
choice of epenthetic vowel quality may have been influenced by the consonants imposed
to the model. Indeed, a less-than-ideal fit at the level of the C1 consonant could cause
abnormal boundaries (e.g., suboptimal assignment of acoustic frames to [S] due to the
language model imposing that it is [s] instead), meaning that acoustic frames that would
have otherwise been interpreted as a given vowel (here, [i]) might be included to a different
segment purely by artifact.

Therefore, the next step to have a more comparable task with less assumptions about
Korean preception would be to see how the Korean model transcribes the stimuli when
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given an unconstrained null model. In this scenario, the model finds the optimal combi-
nation of phonemes that match the acoustics. However, this may impair the analysis of
the results as the model might be able to input transcriptions such as [eth1thma]. Does
this constitute a case of epenthesis or not? It would be up to the experimenter to pre-
pare for such ambiguous transcriptions. An intermediate solution might be to construct
a semi-constrained LM, where the number of phonemes are set, but not their identity.

3.4.4.3 Variations in epenthesis due to syllabic structure

In English, certain consonantal clusters are legal in word-medial position while they are
illegal in word-initial position. This is because in the former situation it is often possible
to parser the two consonants as part of different adjacent syllables, while in the latter
case, the only possibility is for the cluster to be a complex syllable onset. In other words,
phonotactic legality of a consonant cluster is not absolute and the exact environments of
phonotatic illegality need to be defined. In this case, the clusters studied in this section
were phonotactically illegal as a syllable onset.

We tested the hypothesis that acoustics tuned by positional differences in the nonna-
tive language might be interpreted differently by the native listener, resulting in clusters
being misperceived in certain positions only. For the case of clusters illegal as onset in
English, which are legal in Serbian, this would equate to the acoustic realisations of a given
cluster being different according to syllabification, for instance. Then, English listeners
might epenthesize vowels more readily when the cluster is a complex onset in Serbian
due to a poorer acoustic match to the exemplars of the cluster in English relative to
epenthesized alternatives, while the opposite may be true when the acoustic realisation
corresponds to a word-medial cluster in Serbian.

We tested the perception of an array of Serbian clusters by American English partic-
ipants and American English ASR models. The asymmetry in rates of epenthesis between
word-initial and word-medial clusters was apparent in human responses, but not in model
responses.

An interesting remark is that, for many clusters that are phonotactically illegal in
onset position, English listeners reported low rates of epenthesis in word-initial position,
comparable to those of legal clusters. When ordering word-initial clusters by increasing
rates of epenthesis, we saw that this order was grossly mimicked by the acoustic models.
This is in line with the hypothesis advanced by [Wilson and Davidson, 2013, Wilson et al.,
2014], stating the influence of phonetic properties on cluster misproductions and the pos-
sible preservation of phonotactically illegal representations in perceptual and productive
processes. Whether participants in our task were able to perceive word-initially illegal
clusters as accurately as rates of epenthesis may suggest requires further investigation.
Indeed, vowel epenthesis may have been blocked by other misperception processes such
as deletion/cluster simplification (e.g., /tkapa/ → /kapa/) or perceptual adaptation (e.g.,
/tl/ → /kl/, as already attested by [Hallé and Best, 2007]).

3.4.4.4 Conclusion

In conclusion, our purely acoustic ASR models were able to mirror cross-linguistic effects
linked to rates of vowel epenthesis in nonnative clusters. However, they were not able
to capture variations in epenthetic vowel quality due to neighbouring consonants (i.e.,
/i/-epenthesis after palatal consonants in Korean), or to capture asymmetries in how a
same nonnative cluster might ellicit more epenthesis in one syllabic configuration and not
in another. This suggests that, at least for our currentmodels, more abstract phonological
information may be need to be injected to the models in order to be able to account for
all of the effects studied in this section.
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3.5 General Discussion

In this chapter we used parametric models from the field of automatic speech recognition
(ASR) as models of (nonnative) speech perception. In particular, we focused on empirically
testing one-step theories of speech perception. We selected these models as they are defined
within a Bayesian framework, akin to the one-step reverse inference proposal by [Wilson
and Davidson, 2013].

Notably, we introduced a methodology for simulating the identification paradigm
commonly used when studying nonnative speech perception when using ASR systems
as models of speech perception. This consists in limiting the set of possible decoding
options by manually constraining weighted Finite State Transducer (W-FST) used as a
language model for decoding. This is done by configuring the W-FSTs according to the
response alternatives given to human participants furing the identification task. As the
name suggests, it is possible to alter the weigths in the W-FST based on, for instance,
corpus frequency statistics, to inject a more informative LM to the system. It is then
possible to run the simulation with various LMs, using the same AM, in order to test
hypothesis about phonotactic information, for example. The model results are evaluated
by comparison with human results from an analogous experiment.

3.5.1 Language model contributions

In section 3.3 we asked whether injecting information to the LM about n-gram probabil-
ities would enhance the predictive power of our ASR, with respect to behavioural data.
We found that, contrary to expectation, the best performing ASR system was the one
combining the AM with a null LM, i.e., a LM which only constrained the set of responses,
without favouring certain responses over others. Does this mean that the reverse inference
proposal should be simplified to a purely acoustic version? We do not think so. At least
not yet. Indeed, while standard in the ASR field, n-gram-based models, where the unit for
n is a phone, have not been supported by previous work as a good model of phonotactics
[Hayes and Wilson, 2008]. Thus, our work is in line with these previous findings. The next
step would be to modify our models in order for them to accept other types of phonotactic
models [Hayes and Wilson, 2008, Albright, 2009].

3.5.2 Model adequacy

Continuing our work with the ASR systems, we focused on a purely acoustic model (i.e.,
AM combined with a null LM) for the remaining of the chapter. Before dwelling into
the perception of nonnative structure, let us discuss results on a more straighforward
task: identification of full vowels. Three out of our four experiments had a subset of
stimuli containing a medial vowel, in the position where test items would otherwise have
a nonnative cluster. How did our models fare in full vowel identification? In Experiment
1 of section 3.3, we saw that the Japanese models’ identification accuracy was generally
at ceiling as were human responses, except for vowel /e/ and /u/. For these vowels, the
model reponses did not match the responses of Japanese listeners. Similarly, the English
model in Experiment 3 of section 3.4 mimicked the near-perfect identification performance
seen in human responses only for half of the items with full vowels. The Korean model
also showed noisy in its performance, as did Korean listeners, but the matching between
the two sets of responses is not stellar as humans accurately identified the vowel /i/ and
the model did so for a couple of items. In Experiment 4 of section 3.4 identification of full
vowels did not focus on vowel quality; the models were generally very good at detecting a
vowel when present, even more consistently than human participants.
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3.5.3 Predictive power of the acoustic model

Now let us turn to how the ASR system decodes items containing consonant clusters that
are phonotactically illegal in its “native language”. We will divide the epenthetic variations
studied in this chapter depending on whether they relate to rate of epenthesis or epenthetic
vowel quality. Within each groups, we will see what were the models’ successes and other
lessons learned (i.e., “failures” from which we can build upon to guide future research).

3.5.3.1 Variations in rates of epenthesis

Successes In both experiments in section 3.3, (along with high vowels /i, u/) the re-
sponse “none” was within the set of responses preferentially given by the Japanese (null)
model, similar to human responses. In a similar vein, the English models in the Ex-
periment 4 in section 3.4 were able to show similar rankings on which clusters ellicited
more or less epenthesis, relative to responses by English listeners. Finally, and against ex-
pectations, the English model and the Korean model showed opposite patterns of rates of
epenthesis, with the English model outputting low rates and the Korean model outputting
high rates. While the difference was of lesser magnitude for the models than for humans,
this pattern is what was observed in human data from [Durvasula and Kahng, 2015]. A
very important finding is that even null models, which do not have constraints regarding
phoneme sequences, are able to experience epenthesis. In other words, the model will pre-
fer to epenthesize a vowel when the input’s acoustics better match an epenthetic percept
following the native phonetic mappings. This suggests that crosslinguistic differences in
rates of epenthesis might have an acoustic basis.

Lessons Our Japanese models epenthesized vowels more often for items with /hp/- than
for /kp/-clusters, while the opposite pattern was true for humans. It was hypothesized
that the behaviour observed in humans might be due to release cues in the stop consonant
/k/ being interpreted as vowels (similar to what was observed in [de Jong and Park, 2012]).
For the model, we can hypothesize that the silent closure periods of the stops in the /kp/
clusters are very salient, long-lasting cues that can be readily matched to the SIL (i.e.,
silence) phone and the stop phones themselves. The release burst of /k/, on the other
hand, was more subtle and very short in duration. It is possible that the model was not
sensitive to less salient acoustic cues as such. On the other hand, /hp/ clusters show
long-lasting sections of noise that is spectrally similar to devoiced vowels that the model
may have encountered in the training data. This may explain why the model epenthesized
more readily after /h/.

On another topic, the English models in Experiment 4 of section 3.4 was not able to
capture the difference in rates of epenthesis for a same cluster depending whether it is in
word-initial position (resulting in more epenthesis) or word-medial position (resulting in
less epenthesis). As such, it seems that the acoustic properties of the Serbian clusters did
not vary in a way that would have allowed the models to correctly parse one positional
allophone and not the other. This suggests that the process may indeed require a phono-
logical explanation, such as the syllable boundary violations that [Kabak and Idsardi,
2007] advanced to explain their results. However, in order to totally rule out an acoustic
explanation, one possibility would be to use syllable position-sensitive allophones.

3.5.3.2 Variation in epenthetic vowel quality

Successes As highlighted above, in both experiments in section 3.3, the Japanese (null)
model’s preferred vowels for epenthesis were high vowels /i/ and /u/. These happen
to be vowels prone to devoicing in Japanese [Han, 1962, Vance, 1987]. They are also,
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respectively, vowels used for vowel epenthesis in Japanese loanwords. Consistent with how
/i/ is epenthesized after palatal consonants in loanwords (e.g., “peach” → /pitCi/) and in
online perception [Mattingley et al., 2015], the model epenthesized the vowel /i/ in cluster
with coarticulation cues proper of front vowels. This was also the pattern observed in
human data. Concerning /u/, acoustic analyses in section 2.3 showed it to be acoustically
minimal compared to other vowels used for epenthesis in loanwords (/i, o/). The model is
able to reflect the resulting abundance of the default /u/-epenthesis that is seen in humans,
at least in Experiment 1 of section 3.3. In particular, the model is able to mirror higher
rates of /u/-epenthesis for clusters with less amounts of coarticulation (/kp/ than clusters
with more salient remnants of (previously) flanking vowel coarticulation (/hp/). This is
coherent with the hypothesis that the choice of epenthetic vowels is primarily driven by
acoustic factors, not phonological ones.

On the topic of coarticulation and continuing on section 3.3, in Experiment 1, re-
sponse patterns from the Japanese model showed sensitivity to the front/back vowel coar-
ticulation distinction that we observed in human data and in acoustic analyses of the
items in section 2.2. Additionally, in Experiment 2, the model showed higher rates of
/i/-epenthesis in the presence of more /i/ vowels flanking the clusters. This shows that
the model was sensitive to coarticulation cues that were also exploited by humans, at least
for the more salient case of front (high) vowels.

Lessons Surprisingly, the same model that reproduced default /u/-epenthesis in Exper-
iment 1 in section 3.3 was unable to show the same effect for stimuli in Experiment 2 of
the same section. It is unclear why this happened, and we can only enumerate candidates
for exploration (e.g., differences between speakers, speaker native language, etc). In the
same vein, and contrary to what was found for /i/ coarticulation, the model only showed a
numerical, non-significant increase in /u/-epenthesis. It is possible that /u/-coarticulation
was not salient enough for the model to catch it. Additionally, the model was not able
to explain processes that we hypothesized to be due to coarticulation readily available in
the acoustic signal: higher percentages of vowel copy in clusters with greater amounts of
coarticulation (Japanese model, Experiment 1 in section 3.3), and /i/-epenthesis following
palatal consonants (Korean model, Experiment 3 in section 3.4). The latter is particu-
larly surprising since we saw that coarticulation cues from /i/ were salient enough for the
Japanese model to capture them and use them during decoding. It remains to be seen
if these inconsistencies indicate fundamental limits to the acoustic hypothesis, in which
case the choice of epenthetic vowels would require more underlying abstract mecanisms, or
whether they would disappear when using more performant acoustic models (i.e., models
that are better able to mimic adult nonnative vowel perception resuls; see section 3.5.2).

3.5.4 Model enhancements

In sum, the acoustic model studied in this chapter was only able to partially mirror
epenthetic patterns from behavioural experiments. Some effects were only reproduced nu-
merically but non statistically significantly; it was only a few phenomena where the model
showed patterns opposite to those shown by human participants. Critically, however, we
observed that for the effects that the models succeeded at replicating, the effect sizes were
smaller than for humans. We used the words “damped down” to qualify the positive effects
of the model, as indeed they were of lesser intensity.

Interestingly, some of the effects that were damped down or not found for the paramet-
ric ASR model were of greater maginitude in the output of non-parametric exemplar-based
models in sections 2.3 and 2.4 (e.g., higher rates of /u/-epenthesis even if still not at default
levels, modulations in rates of /i/- and /u/-epenthesis due to increased coarticulation for
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both high vowels ...). This indicates that the models’ failures to reproduce these specific
effects cannot be interpreted as the immediate need to find a non-acoustic/phonetic origin
for them. In order to approach that conclusion in a safer way, it would be necessary to test
models that are compromise between our parametric models (able to have phones as its
unit, can output any combination of phones, including those resulting in no epenthesis...),
and our non-parametric models (can account for duration mismatches, is more sensitive to
coarticulation cues...). It might be possible that newer generation neural network (NN)-
based acoustic models may be able to be more performant than our deprecated monophone
HMM-GMM acoustic models. In particular, Long Short Term Memory (LSTM) networks
might be promising, as they are able to learn long-term dependencies. However, one must
be careful when choosing NN-based models as the acoustic model: if one is to study how
some effects might be AM- or LM-specific, one must make sure that the two components
are completely independent from each other (e.g., as triphone HMM-GMMs were not).
This is maybe difficult to assess in NNs, often referred to as “black boxes”.

3.5.5 Data enhancements

But before getting carried away with trendy NNs, there is a more pressing issue; the
corpora used to train the acoustic models (no matter what architecture) must be cleaned
up for future experiments. A badly paraphrase of a saying often heard in the field of
Machine Learning is that it does not matter how good or complex your model is if the
data quality is poor. Indeed, we found several issues with the different corpora that we
used.

The transcription process is not standardised across corpora: corpora built by lin-
guists are often (painfully) carefully annotated, with manual alignments, transcription of
allophones and sometimes acoustic details, validated by comparing transcriptions done by
several linguists, etc. This is the ideal situation, and the corpus that more closely matches
this description is the Korean corpus (KCSS). However, this elaborate annotations also
mean that corpora created in this format are often of much smaller in size (as is the
KCSS). On the other extreme, corpora from the speech engineering side may prioritize
having larger volumes of data, as for their applications detailed transcriptions are not
needed. As an example, the WSJ was not even manually transcribed. Since the record-
ings were based on people reading text, the transcriptions were assumed to be the very
same texts used to ellicit speech. It is possible that there are artifacts due to a person not
saying exactly what is in the text (e.g., in cases of stuttering, word replacement...). The
phonemic transcriptions were automatically obtained from a dictionary, which could have
also introduced audio-transcription mismatches.

The CSJ is located between the two, in that it has been manually annotated and
aligned. However, annotations were provided by Japanese annotators using the Japanese
writing systems. This means that, even if acoustically the signal produced by a Japanese
speaker presents phonotactically illegal productions such as non-nasal consonant codas or
clusters (due to high vowel deletion, for instance), this may not be reflected in the tran-
scriptions. Even if the transcriber were to be able to correctly perceive the illegal structure,
the use of the Japanese writing system automatically blocks any chance of seeing cases
like this in the corpus. This matters because the “transcription epenthesis” introduces
mismatches between the audio and the transcriptions, adds noise to the representations of
the phonemes in question, and biases corpus frequency statistics to not presenting gradient
phonotactics. It is highly probable that this directly impacted the results in section 3.3. It
also matters conceptually, keeping in mind results by [Dupoux et al., 2011]. They showed
that listeners of two dialects of Portuguese, that had the same phonotactics, showed very
different rates of epenthesis when hearing items with phonotactically illegal clusters (lis-
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teners from Portugal did not experience epenthesis, while listeners from Brazil did). It was
hypothesized that this was due to vowel deletion processes in European Portuguese that
caused the phonotactically illegal clusters to surface in speech. Since we know Japanese
(and Korean) have vowel devoicing and even deletion processes as well, the corpora might
not be good enough to reflect the kind of effects seen by [Dupoux et al., 2011].

A way to bypass transcription irregularities would be to iteratively train the acoustic
models initially with the accompanying transcription, and later with a null language model
and its own decoding output as the transcriptions for the next training. We hypothesize
that the model would eventually converge to a transcription that is more faithful to the
acoustic signal. Another possibility requiring more effort would be to find exemplars of
speech segments of interest (e.g., for /hp/, instances of [hV p]) and checking that they have
been correctly transcribed. From then, it is possible to adapt language model probabilities
to account for cases of erroneous transcriptions (e.g., proportionally increase the weight
of the “none” path and decrease the weight of the “u” path if many [hWp] are actually
[hp])27.

3.5.6 Conclusion

In this chapter we modelled nonnative speech perception with a relatively simple mono-
phone HMM-GMMs speech recognizer. This model was a direct implementation of the
one-step reverse inference model proposed by [Wilson and Davidson, 2013]. Using a novel
methodology we tested the perception of our models in tasks analogous to vowel identi-
fication tasks used to probe vowel epenthesis in human participants. In particular, we
investigated whether a purely acoustic version of the model could account for various pat-
terns of epenthesis. Results are mixed, and cannot yet deny the need for phonological
processes to explain epenthetic patterns studied in this chapter. However, results are also
promising, as the purely acoustic models were able to mimic certain processes attributed
to phonology such as crosslinguistic differences in rates of vowel epenthesis. In order to
continue the investigation further, we propose exploring better alternatives for the acous-
tic models, and whenever possible, standardisation and clean-up of the data used to train
the models.

27We thank Thomas Schatz for this comment.
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Conclusion

In this thesis, we investigated the mechanisms underlying perceptual vowel epenthesis, by
combining experimental and modelling approaches. We specifically focused on the pro-
cessing steps underlying vowel epenthesis during perception, and the acoustic, phonetic,
and phonological factors influencing vowel epenthesis. All proposals in the two-step and
one-step subgroups of theories accept that these multiple factors may explain the phe-
nomenon of vowel epenthesis. It is in how these factors are weighted and integrated that
lie the differences between the two families of theories.

Two-step theories posit that the epenthetic vowel is inserted by the phonological
grammar after segment categorisation has been performed, while one-step theories propose
that all influencing factors are integrated simultaneously in a probabilistic manner. As of
now, it is difficult to formally compare these two hypotheses, due to lack of data that allows
to disentangle them, but mostly because of the lack of quantitative model implementations
of the theories that would allow us to generate detailed predictions, to be compared to
experimental data.

In this thesis, we contributed to filling this gap by providing more experimental data
and by developing quantitative models that are implementations of one-step theories.
Two such models were developed: an exemplar-based model that compares nonnative in-
put to minimally different native exemplars stored in memory (Chapter 2), and a speech
recogniser that transcribes speech without relying on exemplars, but relying on models of
phonemes instead (Chapter 3).

In particular, we focused on two main questions:

1. Is perceptual vowel epenthesis a one-step or two-step process?

2. How does a computational implementation of a one-step proposal fare when quan-
titatively and qualitatively compared to behavioural results?

In Chapter 2, we investigated the role of acoustics in determining epenthetic vowel
quality in cases where the epenthesized vowel is of the same quality as its neighbours,
as opposed to attributing this phenomenon to a phonological process such as flanking
vowel copy. We specifically examined how coarticulation cues present in speech items,
either naturally or by splicing, modulated the quality of epenthetic vowels perceived by
Brazilian Portuguese and Japanese listeners. In the case of spliced items, we were able
to tease apart the individual contributions of acoustic/phonetic factors on the one hand,
and phonological factors on the other hand. Based on results from two identification ex-
periments, we found that participants’ response patterns could be better explained by
variations in coarticulation, with only a small contribution from flanking vowels. We were
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able to confirm the importance of acoustic detail on epenthetic vowel quality by sim-
ulating the behavioural experiments with exemplar-based models of perception. These
models only had access to acoustic information and were able to reproduce modulations
of epenthetic vowel quality observed in human results. These results were in support of
one-step models of nonnative speech perception, in which the acoustic match and sequence
match between the nonnative stimulus and the native percept are optimised simultane-
ously. On the contrary, two-step models in which sequence match is evaluated after an
initial categorisation step, are unable to account for acoustic cues modulating epenthetic
vowel quality.

In Chapter 3, given the evidence in the previous chapter, we turned to evaluating one-
step models specifically. To do so, we recruited tools from the field of speech engineering
and automatic speech recognition (ASR). Namely, we built an implementation of a “reverse
inference” one-step proposal ([Wilson and Davidson, 2013]) by using HMM-GMM speech
recognizers. These systems are composed of two independent modules: the acoustic model
and the language model, which provide the computations necessary to retrieve the acoustic
match and sequence match of a speech input and possible parses, respectively. The optimal
transcription can be found by combining the two in a one-step optimisation process. We
proposed a novel way of testing such ASR models in an identification task analogous
to those used when probing perceptual vowel epenthesis in human participants. We do
this by building language models for decoding that are constrained to only output the
response options given to human participants in the forced choice identification task.
Depending on the type of phonotactic model that is used, different options may have
different weights, i.e., different probabilities. The model outputs responses by integrating
the acoustic probabilities given by its acoustic model, and the probabilities found in the
constrained forced choice language model.

Considering the findings from the previous chapter, we used this method to evaluate
the predictive power of the acoustic model. Following the result that the ASR system
with a null model better approximated human responses than ASR systems with more
phonotactically elaborate language models, we assessed whether the speech recogniser
with the null language model was able to mirror effects of variation in epenthesis. The
underlying hypothesis being that the acoustic model may be sufficient to explain these
effects, without contributions of more abstract phonological processes. We found that the
output from our model was, however, not perfect; the model was not able to faithfully
reproduce certain effects that are of acoustic/phonetic origin such as nonnative vowel
assimilation, and modulations of the epenthetic vowel quality by coarticulation that the
exemplar-based model was able to capture. It was also unable to account for variations
of rates of epenthesis due to the syllabic position of the clusters. Importantly, the effects
that the model was able to reproduce (e.g., modulations of the epenthetic vowel quality
by /i/ coarticulation) were of lower magnitude, compared to their human equivalents.

These results from using relatively simple ASR models suggest that the acoustic
model component of the ASR system must be enhanced in order to better evaluate which
effects are due to acoustics and which ones may be due to phonological processes. The
use of language models should also be explored further by testing language models that
incorporate concepts of higher level than bigram transition probabilities. Connectionist
models made available by deep learning implementations offer the opportunity to enhance
models at the level of both the acoustic and language models, and are therefore a promising
avenue of future research, in spite of their need for large volumes of data for training.
Recall, however, that we highlighted that the quality of the data used for training should
also be improved, if possible, even when used more elaborate ASR models.

Aside from improving our model implementation with more state-of-the-art ASR sys-
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tems, future work should involve a combination of various psycholinguistic paradigms, to
ensure that effects observed in both human and model data are not solely due to the spe-
cific task used. While we focused on modelling identification tasks (i.e., n-forced choice
paradigms), it is also possible to evaluate ASR models using non-metalinguistic tasks,
such as the ABX discrimination task [Schatz et al., 2018]. Testing as many combina-
tions of parameters (e.g., acoustic features, model architectures, input data, experimental
paradigms, ...), in a search of replicability, is a necessary step towards elucidating the
mechanisms underlying speech perception.

A modelling approach combined with the availability of behavioural data, such as
how it was presented in this thesis, allows us to quantitatively and qualitatively test well-
defined theories of nonnative speech perception. Importantly, the same model architecture
can be used to study the phenomenon of interest (here: vowel epenthesis) in a crosslin-
guistic fashion. Not only by cross-referencing to existing behavioural data, but also by
allowing to derive new predictions about nonnative speech perception. Moreover, our
modelling approach can be easily adapted and extended to fields outside of the field of
nonnative speech perception. We encourage future research to combine experimental and
modelling approaches in order to evaluate mathematically- and/or algorithmically-defined
psycholinguistic theories.
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Abstract

We investigate whether infant-directed speech (IDS) could facilitate word form learning when

compared to adult-directed speech (ADS). To study this, we examine the distribution of word

forms at two levels, acoustic and phonological, using a large database of spontaneous speech in

Japanese. At the acoustic level we show that, as has been documented before for phonemes, the

realizations of words are more variable and less discriminable in IDS than in ADS. At the phono-

logical level, we find an effect in the opposite direction: The IDS lexicon contains more distinc-

tive words (such as onomatopoeias) than the ADS counterpart. Combining the acoustic and

phonological metrics together in a global discriminability score reveals that the bigger separation

of lexical categories in the phonological space does not compensate for the opposite effect

observed at the acoustic level. As a result, IDS word forms are still globally less discriminable

than ADS word forms, even though the effect is numerically small. We discuss the implication of

these findings for the view that the functional role of IDS is to improve language learnability.

Keywords: Speech perception; Psycholinguistics; Language development; Word learning; Infant-

directed speech; Hyperspeech

1. Introduction

Infants’ language acquisition proceeds at an amazing speed despite the inherent diffi-

culties in discovering linguistic units such as phonemes and words from continuous

Correspondence should be sent to Adriana Guevara-Rukoz, Laboratoire de Sciences Cognitives et Psy-

cholinguistique, 29 rue d’Ulm, 75005 Paris, France. E-mail: adriana.guevara.rukoz@ens.fr
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speech. A popular view holds that part of the problem may be alleviated by the infants’

caregivers, who may simplify the learning task when they speak to their infants in a par-

ticular register called infant-directed speech (IDS). In this paper, we compare IDS and

adult-directed speech (ADS) in terms of dimensions that are relevant to the learnability

of sound categories. We first review alternative hypotheses about a possible facilitatory

role of IDS.

1.1. IDS-ADS differences in the context of learnability

The notion that particular speech registers may have articulatory and acoustic proper-

ties that enhance speech perception may have been first introduced by Lindblom in the

context of his Hyper and Hypo-articulation (H&H) theory (1990). In the case of hyper-

articulation, the resulting listener-oriented modifications are referred to as ‘hyperspeech’.

Here, the priority is to enhance differences among contrasting elements, and it runs

counter the speaker-oriented tendency to produce more economical articulatory

sequences.

Fernald (2000) proposed a more general definition of hyperspeech in the context of

language acquisition. The idea is that parents may manipulate linguistic levels other than

articulatory ones, such as information relating to word frequency or neighborhood den-

sity, resulting in facilitated perception:

[T]he hyperspeech notion should not be confined to articulatory factors at the segmen-

tal level, but should be extended to a wider range of factors in speech that facilitate

comprehension by the infant.

While the hyperspeech notion initially refers to a modification of language as to

enhance perception, Kuhl et al. (1997) go one step further, positing that IDS register-spe-

cific modifications may also enhance learning:

Our findings demonstrate that language input to infants has culturally universal charac-

teristics designed to promote language learning.

We call this last hypothesis the Hyper Learnability Hypothesis (HLH). It goes beyond

the hyperspeech hypothesis in that it refers not to perception but to the language learning

processes operating in the infant. Importantly, these two notions may not necessarily be

aligned. In some instances, both hyperspeech and HLH are congruent with the usually

reported properties of IDS: exaggerated prosody and articulation (Fernald et al., 1989;

Soderstrom, 2007), shorter sentences (Fernald et al., 1989; Newport, Gleitman, & Gleitman,

1977; Phillips, 1973), simpler syntax (Newport et al., 1977; Phillips, 1973), and slower

speech rate (Englund & Behne, 2005; Fernald et al., 1989) (see Golinkoff, Can, Soder-

strom, & Hirsh-Pasek, 2015; Soderstrom, 2007, for more comprehensive reviews). All of

these properties are plausible candidates for facilitating both language perception and lan-

guage learning at the relevant linguistic levels—namely phonetic, prosodic, lexical and

2 A. Guevara-Rukoz et al. / Cognitive Science (2018)
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syntactic—by making these features more salient or more contrastive to the infant. Yet, in

other instances, perception and learning may diverge. As Kuhl (2000) notes:

Mothers addressing infants also increase the variety of exemplars they use, behaving in

a way that makes mothers resemble many different talkers, a feature shown to assist

category learning in second-language learners.

In this case, increase in variability, which is known to negatively affect speech percep-

tion in both adults and children (see Bergmann, Cristia, & Dupoux, 2016; Mullennix,

Pisoni, & Martin, 1989; Ryalls & Pisoni, 1997) is nevertheless hypothesized to positively

affect learning in infants. Work by Rost and McMurray (2009) suggests that this might

be the case for 14-month-old infants learning novel word-object mappings. However, it

appears that not any kind of variability will do; only increased variability in certain cues

—specifically those irrelevant to the contrasts of interest— promoted learning of word-

object mappings (Rost & McMurray, 2010). This illustrates the very important point that

HLH cannot be empirically tested independently of a specific hypothesis or theory of the

learning process in infants. Ideally, the hypothesis or theory should be explicit enough

that it could be implemented as an algorithm, which derives numerical predictions on

learning outcomes when run on speech corpora of ADS and IDS (Dupoux, 2016). Unfor-

tunately, as of today, such algorithms are not yet available for modeling early language

acquisition in infants. Yet a reasonable alternative is to resort to measurements that act as

a proxy for learning outcomes within a given theory.

In the following, we focus on a component of language processing which has been partic-

ularly well studied: speech categories. For this component, a variety of theories have been

proposed, which can be separated in two types: bottom-up theories and top-down theories.

We review these two types in the following sections and discuss possible proxies for them.

1.2. Bottom-up theories: Discriminability as a proxy

Bottom-up theories propose that phonetic categories emerge from the speech signal;

they are extracted by attending to certain phonetic dimensions (Jusczyk, Bertoncini, Bijel-

jac-Babic, Kennedy, & Mehler, 1990), or by identifying category prototypes (Kuhl,

1993). More explicitly, Maye, Werker, and Gerken (2002) proposed that infants construct

categories by tracking statistical modes in phonetic space. This idea can be made even

more computationally explicit by using unsupervised clustering algorithms, such as Gaus-

sian mixture estimation (De Boer & Kuhl, 2003; Lake, Vallabha, & McClelland, 2009;

McMurray, Aslin, & Toscano, 2009; Vallabha, McClelland, Pons, Werker, & Amano,

2007), or self-organizing neural maps (Guenther & Gjaja, 1996; Kohonen, 1988; Vallabha

et al., 2007). Given the existence of such computational algorithms, it would seem easy

to test if IDS enhances learning by running them on IDS and ADS data, and then evaluat-

ing the quality of the resulting clusters.

However, this is not so simple for two reasons. First, each of the above-mentioned

algorithms makes different assumptions about the number, granularity, and shape of
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phonetic categories, parameters which could potentially lead to different outcomes. Even

more problematic is that this subset of algorithms does not exhaust the space of possible

clustering algorithms.

Since we do not know which of these assumptions and algorithms are those that best

approximate computational mechanisms used by infants, applying these algorithms to data

may not get us any closer to a definitive answer. Second, these particular algorithms have

only been validated on artificially simplified data (e.g., representing categories as formant

measurements extracted from hand-segmented data) and not on a corpus of realistic

speech. In fact, when similar algorithms are run on real speech, they fail to learn phonetic

categories; instead, they learn smaller and more context-dependent units (e.g., Varadara-

jan, Khudanpur, & Dupoux, 2008; see also Antetomaso et al., 2016). The unsupervised

discovery of phonetic units is currently an unsolved problem which gives rise to a variety

of approaches (see Versteegh, Anguera, Jansen, & Dupoux, 2016, for a review).

Given the unavailability of effective phoneme discovery algorithms that could test the

bottom-up version of HLH, many researchers have adopted a more indirect approach

using descriptive measures of phonetic category distributions as a proxy for learnability.

Here, we review two such proxies: category separation and category discriminability.
Category separation corresponds to the distance between the center of these categories in

phonetic space. Kuhl et al. (1997) measured the center of the ‘point’ vowels /a/, /i/, and /u/

in formant space, in ADS and IDS, across three languages (American English, Russian, and

Swedish). Results revealed that the spatial separation between the center of these vowels

was increased in IDS compared to ADS. This observation has been replicated in several

studies (Andruski, Kuhl, & Hayashi, 1999; Bernstein Ratner, 1984; Burnham, Kitamura, &

Vollmer-Conna, 2002; Cristia & Seidl, 2014; Liu, Kuhl, & Tsao, 2003; McMurray, Kovack-

Lesh, Goodwin, & McEchron, 2013; Uther, Knoll, & Burnham, 2007; although see Benders,

2013). However, it is less clear that separation generalizes to other segments beyond the

three point vowels. For instance, Cristia and Seidl (2014) attested increased separation of

the point vowels in speech spoken to 4- and 11-month-old learners of American English, but

not for other vowel contrasts (e.g., [i-I]). The between-category distance among the latter

vowel categories was not larger in IDS than in ADS (see also McMurray et al., 2013, for

similar results). This is problematic for learnability because one might argue on computa-

tional grounds that the vowels that are difficult to learn are probably not the point vowels

which are situated at the extreme of the vocal space, but rather the ones that are in the mid-

dle and have several competitors with which they can be confused.

There is another reason to doubt that separation is a very good proxy in the first place.

As shown in Fig. 1, categories are defined not only by their center, but also by their vari-

ability. If, for instance, IDS not only increases the separation between category centers

compared to ADS, but also increases within-category variability, the two effects could

cancel each other out or even wind up making IDS more difficult to learn. In fact, as we

mentioned above, Kuhl et al. (1997) reported that parents tend to be more variable in

their vowel productions in IDS than ADS. This was confirmed in later studies (Cristia &

Seidl, 2014; Kirchhoff & Schimmel, 2005; McMurray et al., 2013). If so, what is the net

effect of these two opposing tendencies on category learnability?
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Previous work by Schatz (2016) has shown that the performance of unsupervised

clustering algorithms can be predicted by a psychophysically inspired measure: the

ABX discrimination score. The intuition behind this measure is illustrated in Fig. 1: it

is defined as the probability that tokens within a category are closer to one another than

between categories. If the two categories are completely overlapping, the ABX score is

0.5. If, on the other hand, the two categories are well segregated, the score can reach

1.1 This work has demonstrated that the ABX score tends to be more statistically stable

than standard clustering algorithms (k-nearest neighbors, spectral clustering, hierarchical
clustering, k-means, etc.) while predicting their outcomes better than they predict each

other’s outcomes. All in all, this method is independent of specific learning algorithms,

is non-parametric (i.e., it does not assume particular shapes of distributions) and can

operate on any featural representation including raw acoustic features. It can therefore

be used as a stable proxy of unsupervised clustering and, therefore, of bottom-up

learnability.

Using this measure, Martin et al. (2015) systematically studied the discriminability of

46 phonemic contrasts of Japanese by running the ABX discriminability test on a speech

corpus with features derived from an auditory model, namely mel spectral features. The

outcome was that, on average, phonemic categories were actually less discriminable in

IDS than in ADS. While most contrasts did not differ between the two registers, the few

Fig. 1. Schematic view of separation, variability, and discriminability between two categories A and B (left),

and a possible clustering obtained from the distributions (right). Separation measures the distance between

the center of categories A and B; it is computed as the distance between the medoids mA and mB. Variability
measures the spatial spread of tokens within a given category; it is computed as the average distance between

tokens in a category. Discriminability depends on both variability and separation; it is quantified with an

ABX score as the probability that a given token x (say, of A) is less distant to another token a of A than to a

token b of B.

A. Guevara-Rukoz et al. / Cognitive Science (2018) 5

Appendix A. Example of research based on computational modelling

125



that systematically differed pointed rather toward a decrease in acoustic contrastiveness

in IDS at the phonemic level.

To sum up, if one uses ABX-discriminability as a proxy for bottom-up learnability, we

can conclude that the HLH is not supported by the data available. However, bottom-up

learning is not the only theoretical option available to account for phonetic learning in

infants. Next, we examine top-down theories.

1.3. Top-down theories: Three learnability subproblems

Top-down theories of phonetic category learning share with linguists the intuition that

phonemes are defined, not so much through their acoustic properties, but rather through

their function. The function of phonemes is to carry meaning contrasts at the lexical

level. Top-down theories therefore posit that phonemes emerge from the lexicon. As sta-

ted by Werker and Curtin (2005) (see also Beckman & Edwards, 2000):

As the vocabulary expands and more words with overlapping features are added,

higher order regularities emerge from the multidimensional clusters. These higher order

regularities gradually coalesce into a system of contrastive phonemes. (p. 217)

There are many ways to flesh out these ideas in terms of computational mechanisms.

All of them involve at least the requirement that (some) word forms are learned and that

these forms constrain the acquisition of phonetic categories. This can be summarized in

terms of three subproblems (Fig. 2B): (a) segmenting word tokens from continuous

speech, (b) clustering said word tokens into types, and (c) using said types to learn pho-

netic categories via a contrastive mechanism. Arguably, these three subproblems are

interdependent (in fact, some models address several of them jointly, for example, Feld-

man, Griffiths, & Morgan, 2009, or iteratively, for example, Versteegh, Anguera, Jansen,

& Dupoux, 2016), and only a fully specified model would enable to fully test the func-

tional impact of IDS for learnability under such a theory. Yet, as above, we claim that

one can develop measures that can act as proxies for learnability, even in the absence of

a full model.

In what follows, we focus on the second subproblem, that is, the clustering of word

types, which we take to be of central importance for phonetic category learning. Indeed,

in case of a failure to solve subproblem 1 (e.g., infants undersegment “the dog” into

“thedog,” or oversegment “butterfly” into “butter fly”), it is still possible to use con-

trastive learning with badly segmented proto-words to learn phonetic categories (Four-

tassi & Dupoux, 2014). In contrast, in case of a failure to solve subproblem 2 (e.g.,

infants merge “cat” and “dog” into a signal word type, or split “tomato” into many

context or speaker dependant variants), then it is much more dubious that contrastive

learning can be of any help to establish phonetic categories. Our experiments therefore

only address subproblem 2, and we come back to the other two subproblems in the

General Discussion.
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1.4. The present study: Word form discriminability

The construction of word form categories is a similar computational problem to the

problem of constructing phonetic categories discussed above. Both can be formulated as

unsupervised clustering problems, the only difference being the granularity and number

of categories being formed. Instead of sorting out instances of ‘i’, ‘a’, and ‘o’ into clus-

ters, the problem is to sort out instances of ‘cat’, ‘dog’, and ‘tomato’ into clusters. There-

fore, in both instances, it is possible to use ABX discriminability as a proxy for the

(bottom-up) learnability of these categories. Of course, words being composed of pho-

nemes, one would expect a correlation between ABX discriminability on phonemes and

on words. However, the word form level introduces two specific types of effects making

such a correlation far from trivially true.

First, the word level typically introduces specific patterns of phonetic variability. For

instance, the word ‘tomato’ can be produced in a variety of ways:

Fig. 2. Schematic view of (A) bottom-up and (B) top-down models of phonetic learning, together with ABX

discriminability as a proxy for measuring the effect of adult-directed speech (ADS) versus infant-directed

speech (IDS) on learnability.
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etc. Some of these variations are dependent on the dialect but others can surface

freely within speaker, or depending on context, speaking style, or speaking rate. Such pho-

netic effects translate into distinct acoustic realizations of the word forms, potentially com-

plicating the task of word form category learning. Could it be that IDS limits this source of

variation, thereby helping infants to construct word form categories? Some studies have

shown the use of more canonical forms in IDS than ADS (e.g., Dilley, Millett, McAuley, &

Bergeson, 2014), while others have not (e.g., Fais, Kajikawa, Amano, & Werker, 2010;

Lahey & Ernestus, 2014), but to our knowledge no study has looked at the global effect of

these variations on word discriminability, and done so systematically. This is what we will

examine in Experiment 1.

Second, and setting aside phonetic realization to focus on abstract phonological charac-

teristics, words tend to occupy sparse regions of phonological space. Put differently, there

are many more unused possible word forms than actual ones. This results in minimal

pairs being generally rare. For instance, a corpus analysis reveals that, in English, Dutch,

French, and German, minimal pairs will concern less than 0.1% of all pairs (Dautriche,

Mahowald, Gibson, Christophe, & Piantadosi, 2017); in fact, two words selected at ran-

dom will differ in more than 90% of their phonemes on average. This should make word

form clustering an easier task than phonetic clustering, a welcome result for top-down

theories. However, it could be that IDS modulates this effect by containing a different set

of words than the vocabulary directed to adults. Corpora descriptions of IDS suggest that

this is the case: Caregivers use a reduced vocabulary (Henning, Striano, & Lieven, 2005;

Kaye, 1980; Phillips, 1973), which often includes a set of lexical items with special char-

acteristics, such as syllabic reduplications and mimetics (Ferguson, 1964; Fernald & Mor-

ikawa, 1993; Mazuka, Kondo, & Hayashi, 2008). May IDS boost learning by containing

more phonologically distinct word forms than ADS? This is what we will examine in

Experiment 2.

The overall learnability of word forms, as far as clustering is concerned, is the com-

bined effect of phonetic/acoustic discriminability (isolated in Experiment 1) and phono-

logical discriminability (isolated in Experiment 2). As these two factors may go in

different directions, we study the global discriminability of IDS versus ADS word form

lexicons in Experiment 3.

1.5. Japanese IDS

Like other variants of IDS around the globe (Ferguson, 1964), Japanese IDS is charac-

terized by the presence of Infant-Directed Vocabulary (IDV), ‘babytalk’ specifically used

when interacting with infants. According to a survey and corpora studies by Mazuka

et al. (2008), these words are mostly phonologically unrelated to words in the ADS lexi-

con. In particular, IDV presents many instances of reduplications (around 65%) and ono-

matopoeias/mimetic words (around 40%).2 Phonological structures found in IDV are, in

fact, more similar to phonological patterns produced by Japanese infants earlier in devel-

opment than to patterns found in the adult lexicon (Tsuji, Nishikawa, & Mazuka, 2014; a

list of 50 earlier produced words is given by Iba, 2000). In addition to pattern repetition

8 A. Guevara-Rukoz et al. / Cognitive Science (2018)

Appendix A. Example of research based on computational modelling

128



within words, IDS also presents more content word repetition, as well as more frequent

and longer pauses, making utterances in IDS shorter than in ADS (Martin, Igarashi, Jin-

cho, & Mazuka, 2016).

Regarding the phonetics of Japanese IDS, it presents pitch-range expansion (Igarashi,

Nishikawa, Tanaka, & Mazuka, 2013), but it is not slower than ADS when taking into

account local speech rate (Martin et al., 2016). More related to our question of phonetic

categories, vowel space expansion in F1 x F2 space has been attested in Japanese IDS

(Andruski et al., 1999; Miyazawa, Shinya, Martin, Kikuchi, & Mazuka, 2017); however,

IDS categories presented higher variability and overlap (Miyazawa et al., 2017), consis-

tent with the decrease in acoustic discriminability observed by Martin et al. (2015). In

fact, contrary to intuition, IDS appears to present more devoicing of non-high vowels

than ADS (i.e., less canonical and identifiable tokens), due to breathiness (Martin, Utsugi,

& Mazuka, 2014). This paralinguistic modification of speech, which is thought to convey

affect, is more prevalent in IDS than ADS (Miyazawa et al., 2017).

1.6. Corpus

Most of the Japanese studies cited above, as well as the work described in this paper,

have used data from the RIKEN Japanese Mother-Infant Conversation Corpus, R-JMICC

(Mazuka, Igarashi, & Nishikawa, 2006), a corpus of spoken Japanese produced by 22

mothers in two listener-dependent registers: IDS and ADS (Igarashi et al., 2013).

For our study, a word was defined as a set of co-occurring phonemes with word

boundaries following the gold standard for words in Japanese, roughly corresponding to

dictionary entries. Lexical derivations were considered to belong to a separate type cate-

gory with respect to their corresponding lemmas. For instance, /nai/ and /aru/, inflections
of the verb /aru/ (English: to be), were evaluated as separate words. Homophones

were collapsed into the same word category in the analyses.

Because of the emphasis given to phonological structure when defining word cate-

gories, devoiced vowels were considered to be phonologically identical to their voiced

counterparts, and similarly for abnormally elongated vowels or consonants that did not

result in lexical modifications (i.e., use of gemination for emphasis). Additionally,

fragmented, mispronounced, and unintelligible words were not included in our analy-

ses (approximately 5% out of the initial corpus). The resulting corpus is henceforth

referred to as the base corpus; information about its content can be found in Table 1.

Table 1

Description of the base corpora for adult-directed speech (ADS) and infant-directed speech (IDS)

ADS IDS

Duration 3 h 11 h

Types 1,382 1,765
Tokens 12,248 34,253
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2. Experiment 1: Acoustic distribution of word tokens

In this experiment, we ask whether caregivers articulate words in a more or less ‘dis-

tinctive’ manner when addressing their infants. Our aim is to answer this question at a

purely acoustic level, that is, taking into account phonetic and acoustic variability, after

removing influences from other aspects that vary across registers (e.g., lexical structure).

Therefore, the following analyses have been restricted to the lexicon of words that are

common to IDS and ADS for each parent.

Our main measure is ABX discriminability applied to entire words. As in Martin et al.

(2015), we use the ABXscore which shows classification at chance with a value of 0.5,

while perfect discrimination yields a score of 1. As such, a higher ABXscore for IDS than

ADS would mean that, on average, parents make their word categories more acoustically

discriminable when addressing their infants, making these words easier to learn according

to top-down theories.

The ABX discriminability measure implies computing the acoustic distance between

word tokens, and computing the probability that two tokens belonging to the same word

type are closer to one another than two tokens belonging to two distinct word types.

Since it is the first time that such a discriminability measure is used at the word level,

we validate it in a control condition in which there are a priori reasons to expect differ-

ences in discriminability between two speech registers. Namely, we assess the discrimina-

tion of words common to ADS and read speech (RS). This register is typically articulated

in a slower, clearer, and more canonical fashion than spontaneous speech. Knowing this,

we expect the ABXscore to be higher in read speech (RS) than in spontaneous speech

(ADS).

Moreover, in order to further validate the application of our method to word units, two

additional submeasures are explored, following the distinctions introduced in Fig. 1:

between-category separation and within-category variability.

2.1. Methods

2.1.1. Control corpus
The Read Speech (RS) subsection of the RIKEN corpus consists of recordings from a

subset of 20 out of the 22 parents which had also previously been recorded in the ADS

and IDS registers. Participants read 115 sentences containing phonemes in frequencies

similar to those of typical adult-directed speech (Sagisaka et al., 1990). We extracted the

words that were common to the read and the ADS subcorpora for each individual parent.

We obtained between 19 and 32 words, each of them having between 2 and 49 occur-

rences. All of these word tokens were selected for subsequent analysis in the control

ADS versus RS comparison.

2.1.2. Experimental corpus
All 22 participants had data in the IDS and ADS registers. For each participant, we

selected the words that were common to the two registers. We obtained between 43 and
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64 word types (individual numbers can be seen in the Appendix Table A1). All of the

word tokens for these types were selected for subsequent analyses in the experimental

condition comparing ADS versus IDS. We did not match IDS and ADS on number of

tokens per type to maximize the reliability of the metrics. Since ABX is an unbiased met-

ric of discriminability, the size of a corpus will only modulate the standard error, not the

average of the metric. It therefore cannot bias the discriminability score in IDS versus

ADS; simply the fact that the ADS scores are estimated from a smaller corpus means that

they will be noisier than the IDS scores. Matching the IDS corpus size to that of ADS

would result in increasing the noise in the IDS scores. Number of total tokens per speaker

are shown in Fig. 3.

2.1.3. Acoustic distance
The three acoustic measures that were computed, namely separation, variability, and

discriminability (ABXscore), all depend on a common core function which provides the

measure of acoustic distance between two word tokens.

As in Martin et al. (2015), we represented word tokens using compressed Mel filter-

banks, which corresponds to the first stage of an auditory model (Moore, 1997; Schatz,

2016).

Specifically, the audio file of each token was converted into a sequence of auditory

spectral frames sampled 100 times per second, obtained by running speech through a

bank of 13 band-pass filters centered on frequencies spread according to a Mel scale

between 100 and 6855 Hz (Schatz et al., 2013). The energy of the output of each of the

13 filters was computed and their dynamic range was compressed by applying a cubic

root. In summary, word tokens were represented as sequences of frames, which are vec-

tors with 13-dimensions (i.e., 1 value per filter).

The distance between a pair of tokens was computed as follows. First, the two tokens of

interest were realigned in the time domain by performing dynamic time warping (DTW;

Sakoe & Chiba, 1978): This algorithm searches the optimal alignment path between the

sequences of frames of the two tokens that are being compared. The distance between two

aligned frames being compared was set to be the angle between the two 13-dimensional

feature vectors representing said frames. Secondly, the average of the frame-wise distances

along the optimal alignment path was set as the distance between that pair of tokens.

Fig. 3. Number of tokens used in Exp. 1 (A) and Exp. 3, with (B) and without (C) onomatopoeias, per

speaker. For Exp. 3, boxplots show the distribution of number of tokens within the 100 sampled lexicons.
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Each of the three measures was computed separately for each speaker, both for IDS

and for ADS.

2.1.4. Discriminability
Discriminability calculations were performed as in Martin et al. (2015) by estimating

the probability that two tokens within a category are less distant than two tokens in two

different categories. This score is computed for each pair of word types, and then aggre-

gated by averaging across all of these pairs (ABXscore). The calculations were done using

the ABXpy package available on https://github.com/bootphon/ABXpy.

More specifically, for each pair of word types A and B, we compiled the list of all

possible (a,b,x) triplets where a was a token of category A, b a token of category B and x
a token of either A or B. For instance, for word types A = /nai/ and B = /aru/, there could

be a triplet with tokens a = [nai]1, b = [aru]1, and x = [nai]2. The distance d(a, x)
between tokens a and x was compared to the distance d(b, x) between tokens b and x. In
this example, since both a and x are tokens of category A, we expect the acoustic dis-

tance between them to be smaller than their distance to a token belonging to a different

category (i.e., token b of type B).
As such, if d(a, x) > d(b, x) (i.e., [nai]2 more similar to [aru]1 than to [nai]1), the

response given by the algorithm was deemed to be incorrect and an ABXscore of 0 was

assigned to that specific triplet. On the other hand, if as expected d(a, x) < d(b, x), the
algorithm returned a response deemed as correct and a score of 1 was given to the triplet.

A final mean ABXscore for all triplets was then computed for each speaker, separately for

IDS and ADS, only taking into account word pairs that were observed in both speech reg-

isters.

2.1.5. Separation
For each pair of word types, we computed the distance between their medoids. A

medoid is defined as the word token which minimizes the average distance to all of the

other tokens in that word type. In case of ties, we used a set of medoids, and their scores

were averaged. Separation can be viewed as a generalization of the notion of phonetic

expansion, except that it applies to entire word forms instead of particular segments (e.g.,

vowels).

2.1.6. Variability
For each word type, variability was computed as the average distance between each

token and every other token within the same word type. By definition, only word types

with more than one token were included in the calculation. One can view this measure as

analogous to the standard deviation in univariate distributions.

2.2. Results and discussion

Regarding the control condition, we compared the acoustic discriminability of the

word types common to ADS and RS. We obtained an average ABX discriminability
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score per speaker per register (ADS or RS). A paired Student’s t-test revealed that

words were significantly more discriminable in RS than in ADS (t(19) = 8.74;
p < .0001; Cohen’s d = 2.68), with RS having an ABXscore 0.09 points higher than

ADS, on average (ABXscore of 92% vs. 83%, respectively). As shown in Fig. 4 (panels

D and H), all 20 parents showed this effect; individual scores can be found in the

Appendix Table A1. In other words, on average the algorithm made twice as many

errors classifying word tokens into categories in ADS compared to RS. This confirms

that the ABX measure is able to capture the expected effects of read versus sponta-

neous speech on acoustic discriminability.

Focusing on the experimental condition, for each of the three measures (discriminabil-

ity, separation, variability), we computed an aggregate score across word types separately

for each parent and register (individual scores can be found in the Appendix Table A1).

We then analyzed the effect of register by running a paired Student’s t-test across

parents.

Fig. 4. Acoustic distinctiveness scores computed on word types common to infant-directed speech (IDS) and

adult-directed speech (ADS) (panels A, B, C, E, F, G), or computed on word types common to ADS and RS

(control condition; panels D and H). Upper panels display the distribution of the scores across speakers, as

well as means within a speech register (red horizontal lines). Gray lines connect data points corresponding to

the same caregiver in both registers (either ADS-IDS or ADS-RS). Bottom panels show the distribution of

IDS minus ADS (or RS minus ADS) score differences. Densities to the right of the red zero line denote

higher scores for IDS (or RS). A, E: Mean between-category separation (ADS vs. IDS). B, F: Mean within-

category variability (ADS vs. IDS). C, G: Mean ABX discrimination score (ADS vs. IDS). D, H: Mean ABX

discrimination score (ADS vs. RS; control condition). N.S., Non-significant difference. ***p < .001.

****p < .0001.
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The results are visually represented in Fig. 4. First, the analysis revealed a numerically

small but statistically reliable degradation in acoustic discriminability of words in IDS

compared to ADS (ABXscore IDS: 80% vs. ADS: 84%; t(21) = �4.73; p < .001; Cohen’s

d = �0.84). This is consistent with the degradation in discriminability previously

observed at the level of individual phonemes (Martin et al., 2015; McMurray et al.,

2013). Second, the trend for greater separation of word categories in IDS compared to

ADS was not statistically significant (IDS: 0.47 rad vs. ADS: 0.46 rad; t(21) = 1.23;
p > .05; Cohen’s d = 0.21). Finally, there was a reliable increase in variability in IDS rel-

ative to ADS (IDS: 0.38 rad vs. ADS: 0.35 rad; t(21) = 4.28; p < .001; Cohen’s

d = 1.0). This increased variability is consistent with what has been observed at the level

of individual phonemes (Cristia & Seidl, 2014; McMurray et al., 2013).

In sum, we found that word discrimination is more easily achieved in ADS than in

IDS. This can be analyzed as being due to a large increase in variability in IDS which is

not being compensated for by a necessary increase in separation. This is in contrast to

predictions posited by the HLH, but consistent with previous work at the phonemic level

(Martin et al., 2015). In a way, this is not a totally surprising result, since by virtue of

matching word types across registers, the effect of register on phoneme variability and

discriminability is passed on to the level of words. What is new, however, is that the IDS

register does not compensate for the phonetic variability by producing more canonical

word forms. Next, we examine the content of the lexicon in the two registers.

3. Experiment 2: Phonological density

In this experiment, we focus on the phonological structure of the IDS and ADS lexi-

cons. The core question is whether parents would select a set of words that are somewhat

more ‘distinctive’ in IDS, yielding a sparser lexicon. Such a sparse lexicon could com-

pensate for the increased phonetic variability measured in Experiment 1, thereby helping

infants to cluster word forms into types.

We use normalized edit distance (NED) as our main measure of the sparseness of the

IDS and ADS lexicons. Normalized edit distance is defined as the proportion of changes

(i.e., segmental additions, deletions, and substitutions) to be performed in order to trans-

form one word into another. The smaller the edit distance between two words, the more

structurally similar they are.

NED takes into consideration not only phonological neighbors (i.e., words that differ

by one phoneme), but also higher order neighbors when evaluating variation in the

phonological structure of the lexicon in a psychologically relevant way. It is the direct

phonological equivalent of the separation metric used in Experiment 1. Indeed, both met-

rics measure the average distance between word categories: separation measures acoustic

distance, while NED measures phonological distance. Experiment 1 showed that parents

do not reliably expand the acoustic space when using IDS; Experiment 2 asks: Are they

expanding the phonological space when using this register?
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Before moving on to the analysis, we point out that mean NED may vary with lexicon

size. Indeed, as more and more words are added to a lexicon, changes in the neighbor-

hood structure are to be expected. Typically, short words tend to have denser neighbor-

hoods as the lexicon size increases (as the combinatorial possibilities for constructing

distinct short words quickly saturate). At the same time, the ratio between short and long

words tends to decrease with lexicon size, because most new additions in a lexicon tend

to be long, and long words tend to have sparser neighborhoods than short words. In order

to limit the influence of such properties on our results, IDS and ADS corpora were

matched in lexicon size before any comparison was performed.

3.1. Methods

3.1.1. Sampling
As can be seen in Table 1, the volume of data available for both speaking registers in

the base corpus was imbalanced; the IDS subset of the corpus contains more words

(types and tokens) than its ADS counterpart. In order to account for this mismatch, we

performed a frequency-dependent sampling of word types that matched their number in

both speech registers. Types which were more frequently uttered by a speaker had a

higher probability of being included in a sample than rarer ones. Moreover, since the

measurement used in this section heavily relies on the nature of the words sampled, and

as a way to increase estimation reliability, sampling was performed 100 times per speaker

per register. For instance, if a speaker uttered 82 word types in ADS and 237 in IDS, we

created 100 subsets of the IDS lexicon by sampling 82 types from the 237 available 100

times. The final metric for said speaker in a given speech register was the mean NED

obtained from the corresponding 100 samples. On average, a sample contained 179.64 �
49 word types (see Table A2 of the Appendix for more information).

3.1.2. Normalized edit distance
For each parent, within each speech register, we computed the edit distance (ED)

between every possible pair of types in the sampled lexicons. ED, also called the Leven-

stein distance, is defined as the minimal number of additions, deletions or substitutions

needed to transform one string into another. It is computed using an algorithm very simi-

lar to the Dynamic Time Warping (DTW) algorithm used in Experiment 1; the algorithm

finds a path that minimizes the total number of edits (insertions, deletions and substitu-

tions, all of them equally weighted). The maximal number of changes max(x, y) is defined
as the maximum length of the two types X and Y under comparison. Normalized edit dis-

tances (NEDs) were therefore derived as follows:

NEDXY ¼ EDXY

maxðx; yÞ
where x and y correspond to the phonemic lengths of two distinct words X and Y. For
instance, the ED between ‘tall’ /tɔl/ and ‘ball’ /bɔl/ is 1 (one substitution: /t/ ⇒ /b/). Both
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words are 3 phonemes long, so max(x, y) = 3. Therefore, the NED between these types is
1
3
. The more structurally similar two types are, the closer their NED will be to zero.

3.2. Results and discussion

The distribution of the difference in mean NEDs for IDS and ADS across parents is

shown on panels A and C of Fig. 5. Individual scores can be found in the

Appendix Table A2. A pair-wise Student’s t-test showed a systematic pattern of larger

normalized edit distances in IDS than ADS (IDS: 0.877 vs. ADS: 0.871; t(21) = 5.00;
p < .0001; Cohen’s d = 1.38). This difference shows that, overall, the IDS lexicon con-

tains words that are phonologically more distinctive than those in the ADS lexicon. In

hindsight, a difference of this sort may have been expected as IDS has been found to

contain “babytalk” or infant-directed vocabulary, that is, a special vocabulary which

includes onomatopoeias and phonological reduplications (Ferguson, 1964; Fernald &

Morikawa, 1993). This hypothesis was verified in our dataset; we found that ono-

matopoeias and mimetic words (hereafter referred to solely as “onomatopoeias”) consti-

tuted approximately 30% of the average sample of IDS word types used in this

experiment, whereas they represented less than 2% of an average ADS sample (cf.
Appendix Table A2), this latter frequency being consistent with the use of mimetic words

in Japanese observed in previous work (Saji & Imai, 2013).

In order to study the effect of onomatopoeias on phonological discriminability, we per-

formed a post hoc analysis by resampling words after removing all onomatopoeias from

the base corpus. We then re-computed the mean NED for ADS and IDS. Individual

scores can be found in the right side of the Appendix Table A2. A paired Student’s t-test
revealed that the previously noted difference between IDS and ADS mean NED scores

was no longer significant after onomatopoeia removal (IDS: 0.872 vs. ADS: 0.870; t
(21) = 1.14; p > 0.05; Cohen’s d = 0.31, visual representation on panels B and D of

Fig. 5). Therefore, the IDS lexicon was found to be globally sparser than the ADS lexi-

con, and this effect seems to be principally driven by the unequal presence of onomatopo-

etic sounds in both speech registers.

Infant-directed words may facilitate lexical development not only by decreasing the

overall phonological density of the lexicon, which directly impacts the clustering sub-

problem detailed in the introduction, but also in virtue of other intrinsic learning proper-

ties that would be relevant to a more complete model of early word learning. In the

introduction, we focused on the three key word learning subproblems of segmentation,

word clustering, and phonetic categorization. At this point, it is imperative to point out

that there are other factors that impact word learning in infancy above and beyond these

particular processes.

When asked about vocabulary specifically used when addressing infants, Japanese

women report a set of words of which 40% of the items are sound-symbolic (Mazuka

et al., 2008). An iconic relationship between an acoustic form and the semantics of the

referent (Imai & Kita, 2014) has been shown to help 14-months-old infants finding a

word’s referent (Miyazaki et al., 2013), and it also facilitates the identification by pre-
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school children of the specific features of an action a verbal word form is referring to

(Imai, Kita, Nagumo, & Okada, 2008; Kantartzis, Imai, & Kita, 2011). Additionally,

around 65% of the reported items contain reduplication of phonological patterns (Mazuka

et al., 2008), which may impact learning at a range of levels. Repetitive patterns may be

more salient and generalizable than other equally complex patterns (Endress, Dehaene-

Lambertz, & Mehler, 2007; Endress, Nespor, & Mehler, 2009), and this salience could

facilitate lexical acquisition in infants. This is supported by recent data showing that 9-

month-old English-learning infants segment words containing reduplications (e.g., neenee)

Fig. 5. Global phonological density scores (mean normalized edit distance) for adult-directed speech (ADS)

and infant-directed speech (IDS), computed on lexicons matched for number of types across the two registers.

Upper panels display the distribution of the scores across individual speakers, as well as means within a

speech register (red horizontal lines). Gray lines connect data points corresponding to the same caregiver in

both registers. Bottom panels show the distribution of IDS minus ADS score differences. Densities to the

right of the red zero line denote higher scores for IDS. A, C: Samples from base corpus. B, D: Samples from

base corpus after onomatopoeia removal. N.S., Non-significant difference. ****p < .0001.
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from running speech more easily than words without reduplications (e.g., neefoo) (Ota &

Skarabela, 2018). Furthermore, English-learning 18-month-old infants appear to better

learn novel object labels when these contain reduplications (Ota & Skarabela, 2016). In

fact, reduplication has been found to be a characteristic shared by many items from the

specialized set of “babytalk” words in various languages (Ferguson, 1964), in spite of the

tendency to avoid such repetitive patterns in adult language (Leben, 1973).

Similarly to what was observed in the survey by Mazuka et al. (2008), the majority of

the word types tagged as onomatopoeias in our IDS corpus (i.e., around 30% of the

types) present reduplication and/or sound symbolism (e.g., /waNwaN/ dog;
/korokoro/ light object rolling repeatedly). Since infants seem to have a learning bias for

words with these phonological characteristics, the higher proportion of onomatopoeias in

IDS compared to ADS may provide an additional anchor for infant word learning.

As a reviewer pointed out, it may seem counterintuitive at first to focus on the

enhanced learnability of IDS-specific words, since children are expected to eventually

master all words, whether they are specific to IDS or present in both IDS and ADS. How-

ever, we are not concerned here with all of language acquisition, but only with the possi-

bility that top-down cues affecting sound category learning are more helpful in IDS

compared to ADS. Thus, even if the words that are learned are not part of a general tar-

get lexicon, they might nonetheless present an easier word clustering subproblem, and in

that way lead to a lexicon that can be used as seed for subsequent sound category extrac-

tion routines.

In sum, we have found that IDS contains a higher proportion of onomatopoeias and

mimetic words than ADS. Aside from their remarkable distinctiveness and salience, these

items seem to contribute to decreasing the global density of the IDS lexicon. While words

in IDS seem to be more spread in phonological space than words in ADS, phoneme-like

representations may not yet be available to infants until a larger vocabulary is amassed

(Beckman, Munson, & Edwards, 2007; Lindblom, 1992; Metsala & Walley, 1998; Pierre-

humbert, 2003). As such, one may wonder if, similarly, words may be more distant in the

acoustic space when taking the structural differences into account. Indeed, we notice that

the effect size is almost twice as large for the phonological NED (Cohen’s d = �1.38)
than for the acoustic discriminability (Cohen’s d = �0.84). However, given that they are

not based on exactly the same tokens, it remains possible that the phonological advantage

does not compensate for the acoustic disadvantage. Indeed, the difference in mean NED

between IDS and ADS, while statistically significant, is numerically very small, repre-

senting a difference of less than one percent of a word. The following experiment exami-

nes the question of the effect of phonological structure on acoustic discriminability, by

integrating both factors in one global discriminability measure.

4. Experiment 3: Net discriminability

In Experiment 1, we found that when we looked at the exact same word types in both

registers, the IDS tokens were acoustically more confusable than the ADS tokens, due to
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the increased variability in IDS word categories in the acoustic space. In other words,

when removing the influence of structural peculiarities of the lexicons, IDS does not pre-

sent an advantage over ADS in acoustic discriminability. We then saw in Experiment 2

that the lexicons of IDS and ADS differed structurally. Words from the IDS lexicon were

phonologically more distinct than those in the ADS lexicon, in part due to onomatopoeias

and mimetic words.

Here, we put these two previous results together and ask the following question: When

accounting for register-specific lexical structure, is the IDS lexicon acoustically clearer

than the ADS lexicon? In other words, if we take a random pair of word tokens from two

different word types found in the IDS recordings, are these tokens more or less acousti-

cally distinct than a like-built pair in the ADS recordings?

4.1. Method

4.1.1. Sampling
In order to observe the combined effects of the differences in phonological structure

on acoustic discriminability, the same sampled lexicons used for Experiment 2 were used

for this section, that is, 100 lexicon subsets per register per speaker, matched in number

of word types across speech registers.

As it was done in Experiment 1, number of tokens per type were not matched in order

to maximize the reliability of the ABX metric. Individual number of types can be seen in

Table A2 of the Appendix, with total number of tokens shown in Fig. 3.

4.1.2. Computing acoustic discriminability
Acoustic discriminability was computed as described in Experiment 1. A mean ABX

score was computed per sampled lexicon subset. ABX scores were collapsed by comput-

ing the mean ABX score per speaker per register.

4.2. Results and Discussion

We compared the mean ABX scores for ADS and IDS obtained on the sampled lexicons

used in Experiment 2 (Fig. 6). Individual scores can be found in the Appendix Table A2.

A paired Student’s t-test revealed that mean ABXscore were significantly larger for ADS

than for IDS, whether onomatopoeias were included in the lexicon subsets (ABXscore IDS:

86% vs. ADS: 87%; t(21) = �2.37, p < .05; Cohen’s d = �0.41) or not (ABXscore IDS:

85% vs. ADS: 87%; t(21) = �2.57, p < .05; Cohen’s d = �0.43). As such, similar to

what was found in Experiment 1, words are less discriminable in IDS than in ADS even

after taking into account the phonological specificities of the infant-directed lexicon.

This result underlines the importance of assessing effects of language acquisition

enhancers not only in terms of their statistical significance across parents (p values,

Cohen’s d), but also quantitatively, that is, in terms of their numerical strength when

combined together. To see this more clearly, we computed the increase or decrease in the

score under study as a percentage relative to the ADS score taken as a baseline.
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In Experiment 1, the decrement in discriminability in IDS was 4% relative to ADS,

and this effect was robust across participants (Cohen’s d = �0.84). In Experiment 2, the

increase in NED represented a numerically smaller effect of less than 1% for IDS relative

to ADS. This effect was actually even more robust across participants (Cohen’s

d = 1.38). Interestingly, when the two effects are combined (Experiment 3), the outcome

is not determined by which effect was more statistically robust across participants, but by

which one was numerically larger. Indeed, the outcome yields a numerically small (1%

Fig. 6. Acoustic-based ABX word discrimination error in adult-directed speech (ADS) and infant-directed

speech (IDS) computed on lexicons matched for number of word types across the two registers. Upper panels

display the distribution of the scores across speakers, as well as means within a speech register (red horizon-

tal lines). Gray lines connect data points corresponding to the same caregiver in both registers. Bottom panels

show the distribution of IDS minus ADS score differences. Densities to the right of the red zero line denote

higher error rates for IDS. A, C: Samples from base corpus. B, D: Samples from base corpus after ono-

matopoeia removal. *p < .05.
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relative) decrement in discriminability, which is also much weaker across participants

(Cohen’s d = �0.41).

5. General discussion

The Hyper Learnability Hypothesis (HLH) states that when talking to their infants, par-

ents modify the linguistic properties of their speech in order to facilitate the learning pro-

cess. In this paper, we focused on the learning of phonetic categories and reviewed two

classes of theories in order to quantitatively assess the HLH: (a) bottom-up theories

assume that phonetic categories emerge through the unsupervised clustering of acoustic

information, (b) top-down theories assume that phonetic categories emerge through con-

trastive feedback from learned word types. Previous work has already addressed bottom-

up theories: Martin et al. (2015) examined phonemes in a corpus of Japanese laboratory

recordings and found that phonemes produced by caregivers addressing their 18- to 24-

month old infants were less discriminable than ADS phonemes. This rules out the HLH

for that corpus and bottom-up theories. In this study, we focused on top-down theories

using the same corpus and investigated the acoustic discriminability of word types.

In Experiment 1, we compared the acoustic discriminability of words that are common

to both speech registers, and found that words are less discriminable in IDS than in ADS

(an absolute decrease in ABXscore of 4%), likely because of increased within-category

variability. This result parallels the increase in phonetic variability found in previous

studies (Cristia & Seidl, 2014; Kirchhoff & Schimmel, 2005; McMurray et al., 2013),

and it is consistent with the decreased phoneme discriminability measured by Martin

Fig. 7. Summary of infant-directed speech (IDS) characteristics relative to adult-directed speech (ADS) in a

top-down model of phonetic category learning for the RIKEN corpus. Enhanced characteristics of IDS rela-

tive to ADS are shown in green, while those for which the opposite trend is observed are shown in red.
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et al. (2015). It is not consistent, however, with the claim that words in IDS are uttered

in a more canonical way than in ADS (Dilley et al., 2014; but see Fais et al., 2010;

Lahey & Ernestus, 2014). In Experiment 2, we turned to the structure of the phonological

lexicon. We found that the IDS lexicon was globally more spread out than that of ADS,

as shown by a larger normalized edit distance between words for the former. Interest-

ingly, this effect was attributable mostly to a higher prevalence of onomatopoeias and

mimetic words in IDS. These words have idiosyncratic phonological properties, such as

reduplications, which are likely responsible for the increase in global distinctiveness

found in the IDS lexicon, compared to the ADS lexicon. In Experiment 3, a final analysis

measured the net effect of the opposite trends found in Experiments 1 and 2, and found

that, on average, words were still less acoustically discriminable in IDS than in ADS,

although the effect was now considerably reduced (an absolute decrease in ABXscore of

1%).

Overall, then, the word form clustering subproblem is not easier to solve by using IDS

input than with ADS input; quite to the contrary, there is a numerically small but consis-

tent trend in the opposite direction. Does this undermine the HLH for top-down theories of

phonetic learning as a whole? Clearly, the answer is “no,” since – as explained in the

Introduction – HLH actually encompasses two other learning subproblems (cf. Fig. 7). We

discuss relevant evidence on IDS-ADS differences bearing on each subproblem in turn.

Regarding the problem of finding word token boundaries, Ludusan and colleagues have

started studying word form segmentation using either raw acoustics or text-like phonolog-

ical representations as input. Ludusan, Seidl, Dupoux, and Cristia (2015) studied the per-

formance of acoustic word form discovery systems on a corpus of American English

addressed to 4- or 11-month-olds versus adults. The overall results are similar to those of

Experiment 3; that is, the two registers give similar outcomes, if anything, with a very

small difference in favor of ADS, rather than the expected IDS. Computational models of

word segmentation from running speech represented via acoustics are, however, well-

known to underperform compared to models that represent speech via textual representa-

tions (Versteegh et al., 2016). Thus, in Ludusan, Mazuka, Bernard, Cristia, and Dupoux

(2017), we studied word form segmentation from text-like representations using the same

RIKEN corpus as input, and a selection of state-of-the-art cognitively based models of

infant word segmentation. Results showed an advantage of IDS over ADS for most algo-

rithms and settings.

Beyond the question of whether segmentation is easier in IDS versus ADS, we cannot

move on to the next learning subproblem without pointing out that, for future work to

assess the net effect of register on word segmentation, one would need to know more

about the size and composition of infants’ early lexicon. In fact, most accounts propose

that the phonological system is extracted from the long-term lexicon, rather than on the

fly from experience with the running spoken input (discussed in Bergmann, Tsuji, & Cris-

tia, 2017). In the present paper, we have done a systematic study of word discriminability

across the whole set of words present in the corpus, as if infants could segment the cor-

pus exactly as adults do. This is, of course, unlikely. In fact, recent evidence suggests that

infants may be using a suboptimal segmentation algorithm (Larsen, Dupoux, & Cristia,
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2017), which leads them to accumulate a “protolexicon” containing not only words, but

also over- or under-segmented tokens that do not belong to the adult-like lexicon (Ngon

et al., 2013). Such protowords can nonetheless help with contrastive learning (Fourtassi

& Dupoux, 2014; Martin, Peperkamp, & Dupoux, 2013).

Regarding contrastive learning of phonetic categories, it is too early to know whether

the net effect of register will be beneficial or detrimental. For instance, a detrimental

effect of phonetic variability in a bottom-up setting can become beneficial in a top-down

setting, by presenting infants with more varied input, and therefore preparing them for

future between-speaker variability. This is illustrated in the supervised learning of pho-

netic categories in adults (Lively, Logan, & Pisoni, 1993). However, as suggested by Rost

and McMurray (2010), variability should be limited to acoustic cues that are not relevant

to phonetic contrasts in order to promote learning. In order to fully assess the net effect

of register, two important elements have to be clarified. First, one would need to have a

fully specified model of contrastive learning itself. Candidate computational models have

been proposed (e.g., Feldman et al., 2009; Fourtassi & Dupoux, 2014), but not fully vali-

dated with realistic infant-directed speech corpora (but see Versteegh et al., 2016, for an

application to ADS corpora).

Throughout the above discussion, an important take-home message is that it is essential

to posit well-defined, testable theories of infant learning, which can be evaluated using

quantitative measures, even when fully specified computational models are not yet avail-

able. Individual studies focus only on a few pieces of the puzzle and the magnitude of

each evaluated effect must be observed relative to other effects. For instance, in our

study, even the relatively large effect of IDS versus ADS on the discriminability of word

forms found in Experiment 1 has to be compared to the much larger effect (by a factor

of 2) of read versus spontaneous speech found within the ADS register. What we propose

as a methodology is to break down theories of language acquisition into component parts,

and to derive proxy measures for each component to derive a more systematic grasp of

the quantitative effects of register. Before closing, we would like to discuss two limita-

tions of this study, one regarding the corpus and the other regarding the theory tested

(the HLH).

The main limitation of the RIKEN corpus is that it was recorded in the laboratory and

did not include naturalistic interactions between adults as they may occur in the home

environment. The presence of an experimenter and props (toys, etc.) in the laboratory set-

ting may induce some degree of non-naturalness in the interaction, both with the infant,

and with the adult. Johnson, Lahey, Ernestus, and Cutler (2013) found that in Dutch,

ADS is not a homogeneous register, and that it bears similarities with IDS when the

addressed adult is familiar as opposed to unfamiliar.3 It remains to be assessed whether

similar results are obtained in more ecological and representative IDS and ADS samples.

In addition, this study is limited by the relatively small size of the corpus. Because we

analyzed each parent separately, the size of the analyzed lexicons was between 82 and

260 words, which may under-represent the range of words heard in a home setting.

Finally, our analysis is limited to Japanese. There is evidence that vowel hyperarticulation

varies across languages (Benders, 2013; Englund & Behne, 2005; Kuhl et al., 1997), and
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more generally that the specifics of the IDS register varies across culture (e.g., Fernald &

Morikawa, 1993; Igarashi et al., 2013). It would therefore be important to replicate our

methods in more ecological, cross-linguistic corpora. Fortunately, the availability of wear-

able recording systems such as the LENA� device (Greenwood, Thiemann-Bourque,

Walker, Buzhardt, & Gilkerson, 2011) increases the prospects of automatizing the collec-

tion and analysis of naturalistic speech (Soderstrom & Wittebolle, 2013).

The second limitation of this study is that we restricted our quantitative analysis to the

testing of the HLH. However, the HLH is not the only hypothesis that can be addressed.

Other theories have been proposed regarding the etiology and role of IDS in the linguistic

development of infants (i.e., why caregivers use it, and what are the actual effects on the

child). Some modifications of the input may indeed have pedagogical functions (enhancing

learnability), while other modifications may decrease learnability while increasing some

other factor in the parent–infant interaction. For instance, it has been documented that

mothers sometimes violate the grammar of their language when teaching new words, prob-

ably in order to place the novel word in a sentence-final position (Aslin, Woodward,

LaMendola, & Bever, 1996), which is salient because of properties of short-term memory.

Similarly, it has sometimes been suggested that caregivers inadvertently sacrifice phonetic

precision in order to make infants more comfortable and/or more receptive to the input

(Papou�sek & Hwang, 1991; Reilly & Bellugi, 1996). Increased phonetic variability in IDS

at the phonemic level may stem from a slower speaking rate (McMurray et al., 2013), or

from exaggerated prosodic variations (Fernald et al., 1989; Martin et al., 2016; Soder-

strom, 2007), or possibly from gestural modifications that convey a positive affect, such as

smiling (Benders, 2013), increased breathiness (Miyazawa et al., 2017) or even a vocal

tract that is shortened to resemble the child’s own (Kalashnikova, Carignan, & Burnham,

2017). According to a study by Trueswell et al. (2016), successful word learning interac-

tions tend to be those in which actions performed by both caregivers and infants are pre-

cisely synchronized, with time-locking of gaze, speech and gestures. By focusing on

efficiently capturing the infant’s attention, caregivers could create an optimal learning

environment, in spite of potential degradations brought upon lexical acoustic clarity. A

similar interpretation is held by authors such as Csibra and Gergely (2006), who argue that

one of the main roles of IDS is to inform the infant that speech is being directed to her,

thus highlighting the pedagogical nature of the interaction as a whole. In this view, the

goal of caregivers would not be to provide clearer input, but to make language interactions

and their attached learning situations more exciting and attractive to infants.

Another direction entirely, is to propose that IDS may help infants to produce lan-

guage. Ferguson (1964) describes “babytalk” as a subset of phonologically-simplified

words due to reduced consonant clusters, use of coronals instead of velars, word shorten-

ing, etc. These adaptations would make it easier for developing infants to imitate the

words, and/or they may be inspired by previous generations’ production errors. In fact,

previous work performed on our corpus shows that, if anything, the structural properties

of words in our IDS sample better fit early patterns of Japanese infant speech production

than those of words in ADS (Tsuji et al., 2014). While the causal relationship between

babytalk use and infant word production should be further assessed experimentally, the
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phonological properties of our IDS corpus suggest that, to some extent, parental input

may be encouraging infant word production.

In brief, while the HLH focuses on the change in informational content of IDS which

may boost (or hinder) the learnability of particular linguistic structures, IDS could have a

beneficial effect on completely different grounds: enhancing overall attention or positive

emotions which would increase depth of processing and retention, or facilitating produc-

tion, thereby counteracting the inadvertent acoustic degradation of local units of speech

such as words and phonemes. For these alternative theories of HLH to be testable within

our quantitative approach, we would need to formulate these theories with enough preci-

sion that they can either be implemented, or proxies can be derived to analyze realistic

corpora of caregivers/infants interactions.

To conclude, the last 50 years we have learned a great deal about how IDS and ADS

differ, yet much remains to be understood. We believe it is crucial in this quest to bear

in mind a detailed model of early language acquisition, and to submit predictions of this

model to systematic, quantitative tests.

Acknowledgments

This work was supported by the European Research Council (Grant ERC-2011-AdG-

295810 BOOTPHON), the Agence Nationale de la Recherche (Grants ANR-2010-BLAN-

1901-1 BOOTLANG, ANR-14-CE30-0003 MechELex, ANR-10-IDEX-0001-02 PSL*,
and ANR-10-LABX-0087 IEC), the James S. McDonnell Foundation, the Fondation de

France, the Japan Society for the Promotion of Science (Kakenhi Grant 24520446, to A.

Martin), and the Canon Foundation in Europe. We thank Bob McMurray and two anony-

mous reviewers for helpful feedback.

Author contributions

R. Mazuka oversaw the collection and coding of the corpus. A. Martin wrote the algo-

rithms for extracting words and their phonological structure. R. Thiolli�ere provided cod-

ing support with the ABX task. A. Cristia directed the literature review. B. Ludusan

assisted with preparation of the ADS-RS comparison. A. Guevara-Rukoz and E. Dupoux

carried out the acoustical and phonological analyses and, along with A. Cristia, produced

the first draft. All authors contributed to the writing of this manuscript.

Notes

1. Schatz (2016) has shown that an ABX score of 1 between categories A and B

implies that the two categories can be discovered without error by the clustering

algorithm k-means.
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2. In a study by Fernald and Morikawa (1993), Japanese mothers used onomatopoetic

words more readily than American mothers.

3. In addition to these effects, Japanese and many other languages have a set of spe-

cialized morphemes that depend on familiarity between the talkers; this could have

artificially increased the difference between IDS and ADS in the present corpus.
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Appendix

Table A1

Acoustic discriminability comparisons on common words in ADS versus infant-directed speech (IDS), and in

adult-directed speech (ADS) versus read speech (RS) (Exp. 1). Individual scores for separation (in radians),

variability (in radians) and overall acoustic discrimination

Speaker

ADS Versus IDS ADS Versus RS (control)

No. of Types

Separation Variability ABXscore

# Types

ABXscore

ADS IDS ADS IDS ADS IDS ADS RS

F039 43 0.47 0.45 0.35 0.38 0.83 0.77 19 0.82 0.94

F047 67 0.47 0.49 0.34 0.37 0.87 0.83 25 0.88 0.92

F118 66 0.49 0.50 0.39 0.39 0.79 0.81 23 0.79 0.95

F233 64 0.41 0.39 0.34 0.36 0.79 0.74 25 0.78 0.93

F302 54 0.49 0.50 0.40 0.43 0.76 0.76 24 0.74 0.89

F367 70 0.46 0.45 0.32 0.35 0.88 0.84 26 0.85 0.94

F478 71 0.44 0.48 0.35 0.40 0.82 0.78 28 0.80 0.95

F483 69 0.46 0.48 0.35 0.37 0.83 0.84 23 0.80 0.91

F484 81 0.45 0.46 0.37 0.39 0.81 0.77 32 0.82 0.95

M002 73 0.46 0.46 0.31 0.37 0.91 0.80 27 0.90 0.92

M013 67 0.45 0.46 0.30 0.37 0.89 0.81 31 0.88 0.93

M024 77 0.48 0.49 0.35 0.38 0.89 0.83 31 0.85 0.93

M025 43 0.49 0.46 0.31 0.37 0.89 0.83 21 0.88 0.91

M044 86 0.47 0.46 0.35 0.35 0.86 0.83 32 0.85 0.93

M120 46 0.45 0.49 0.34 0.41 0.84 0.79 19 0.82 0.89

M125 59 0.48 0.51 0.33 0.38 0.90 0.85 31 0.91 0.92

M312 94 0.47 0.48 0.37 0.38 0.83 0.77 29 0.81 0.91

M374 90 0.47 0.46 0.35 0.37 0.87 0.81 - - -

M417 57 0.43 0.43 0.40 0.38 0.73 0.75 - - -

M425 78 0.44 0.46 0.34 0.34 0.86 0.86 27 0.82 0.9

M432 49 0.51 0.49 0.41 0.37 0.79 0.81 23 0.81 0.91

M480 68 0.47 0.47 0.36 0.38 0.83 0.82 32 0.84 0.94

M 66.91 0.46 0.47 0.35 0.38 0.84 0.80 26.4 0.83 0.92

SD 14.41 0.02 0.03 0.03 0.02 0.05 0.03 4.3 0.04 0.02
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Table A2

Phonological and acoustic discriminability comparisons in adult-directed speech (ADS) versus infant-directed

speech (IDS) (Exp. 2 & 3). Individual mean normalized edit distance (NED) and overall acoustic discrimina-

bility before and after removal of onomatopoeias. Values are computed as the mean of the corresponding val-

ues from 100 word samplings per speaker

Speaker

With Onomatopoeias No Onomatopoeias

No. of

Types

% Onom. NED ABXscore No. of

Types

NED ABXscore

ADS IDS ADS IDS ADS IDS ADS IDS ADS IDS

F039 82 6.1 35.4 0.883 0.870 0.85 0.82 77 0.882 0.867 0.85 0.82

F047 178 2.2 20.2 0.873 0.879 0.90 0.84 174 0.873 0.873 0.9 0.84

F118 139 1.4 26.6 0.876 0.876 0.84 0.85 137 0.876 0.871 0.84 0.85

F233 167 1.8 22.2 0.869 0.876 0.82 0.77 164 0.868 0.872 0.82 0.77

F302 117 0.9 50.4 0.877 0.880 0.80 0.79 116 0.877 0.873 0.8 0.79

F367 187 1.1 39.0 0.873 0.879 0.91 0.88 185 0.872 0.876 0.91 0.89

F478 221 3.2 8.1 0.870 0.876 0.82 0.81 208 0.869 0.873 0.82 0.81

F483 168 0 37.5 0.870 0.880 0.87 0.89 168 0.870 0.872 0.87 0.90

F484 250 0.8 18.0 0.872 0.874 0.85 0.86 232 0.872 0.870 0.85 0.85

M002 194 2.1 27.3 0.868 0.876 0.92 0.85 190 0.867 0.873 0.92 0.85

M013 196 2.0 19.9 0.867 0.874 0.91 0.89 176 0.868 0.872 0.91 0.88

M024 229 1.3 31.0 0.863 0.877 0.92 0.90 226 0.862 0.870 0.91 0.90

M025 120 0.8 30.0 0.873 0.881 0.94 0.89 119 0.873 0.874 0.94 0.89

M044 212 1.9 29.7 0.875 0.877 0.87 0.89 208 0.874 0.872 0.87 0.89

M120 102 1.0 63.7 0.868 0.879 0.87 0.82 101 0.867 0.876 0.87 0.81

M125 194 1.0 24.2 0.862 0.872 0.95 0.89 192 0.862 0.867 0.95 0.88

M312 248 2.8 24.6 0.868 0.870 0.86 0.87 241 0.868 0.865 0.86 0.87

M374 260 1.9 19.6 0.866 0.875 0.89 0.87 255 0.864 0.871 0.89 0.87

M417 156 0.6 34.6 0.870 0.880 0.79 0.84 155 0.870 0.872 0.79 0.84

M425 191 3.7 20.4 0.872 0.877 0.87 0.90 184 0.870 0.874 0.87 0.90

M432 139 0.7 43.9 0.869 0.877 0.82 0.84 138 0.869 0.870 0.82 0.84

M480 202 2.0 25.7 0.875 0.885 0.89 0.85 185 0.875 0.875 0.88 0.85

M 179.64 1.79 29.64 0.871 0.877 0.87 0.86 174.14 0.870 0.872 0.87 0.85

SD 48.72 1.31 12.18 0.005 0.004 0.04 0.04 46.11 0.005 0.003 0.04 0.04
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Résumé

Pourquoi des personnes ayant grandi dans des milieux linguistiques
différents ne perçoivent-elles un même signal acoustique de la
même manière? Par exemple, il arrive que des auditeurs rapportent
avoir entendu des voyelles non présentes dans l’acoustique
de mots non-natifs, lorsque ceux-ci ne se conforment pas aux
structures sonores permises dans leur langue (épenthèse vocalique
perceptive). L’identité de la voyelle épenthétique varie en fonction
des langues, mais aussi parmi les langues elles-mêmes. A quel
point ce processus est-il dirigé par des informations directement
accessibles dans le signal acoustique ? Quelle est la part de
contribution de la phonologie native ? Comment sont combinés
ces deux éléments lors du calcul du percept ? Deux familles
principales de théories ont été proposées : les théories à deux
étapes, et les théories à une étape. Les premières proposent une
analyse initiale des catégories phonétiques, suivie de réparations
faites par une grammaire abstraite. De leur côté, les théories à une
étape proposent que tous les facteurs acoustiques, phonétiques, et
phonologiques sont intégrés simultanément de manière probabiliste.

Dans cette thèse, nous combinons expériences et de
modélisation, afin d’évaluer si l’épenthèse est un processus à une
ou deux étapes. En particulier, nous examinons ceci en mesurant
le rôle des détails acoustiques dans les modulations de l’identité
de la voyelle épenthétique. Dans un premier temps, des résultats
d’expériences nous montrent que ces modulations sont influencées
aussi bien par les détails acoustiques que par des processus
phonologiques. Cependant, la plupart de la variation de l’identité
de la voyelle épenthétique est expliquée par l’acoustique. De plus,
nous présentons un modèle de perception à une étape qui utilise
des exemplaires; celui-ci est capable de reproduire les effets de la
coarticulation qui ont été relevés dans les données expérimentales.
Ces résultats constituent de l’évidence en faveur des modèles de
perception étrangère à une étape.

Dans un deuxième temps, nous présentons une implémentation
du modèle à une étape proposé par [Wilson and Davidson,
2013], en utilisant des modèles HMM-GMM, issus du milieu de la
reconnaissance automatique de la parole (RAP). Ces modèles se
composent d’un modèle acoustique et d’un modèle de langage,
qui déterminent la correspondence acoustique et phonotactique
entre la parole et des transcriptions possibles, respectivement.
Il nous est alors possible de les ajuster indépendamment afin
d’évaluer leur influence relative dans l’épenthèse vocalique
perceptuelle. Nous proposons une nouvelle manière d’utiliser
ces modèles pour simuler des paradigmes de choix forcés
utilisés pour étudier l’épenthèse vocalique chez des participants
humains, en utilisant des modèles de language contraints lors
du processus de décodage de la parole. D’abord, nous utilisons
cette nouvelle méthode afin de tester si des systèmes de RAP
avec des modèles de langage à phonotactique à n-grammes
donnent des résultats plus proches des résultats humains qu’un
système de RAP avec un modèle de langage nul. De manière
étonnante, les résultats montrent que le système à modèle de
langage nul prédit le mieux la performance des participants. Puis,
nous évaluons si certains effets traditionnellement attribués à des
processus phonologiques peuvent être expliqués par l’acoustique.
Bien que les résultats soient prometteurs, nos modèles ne sont
capables de reproduire qu’une sous-partie des effets observés
chez l’humain. Avant de pouvoir attribuer l’origine de ces effets
à des processus phonologiques, il est nécessaire de tester des
systèmes de RAP avec des modèles acoustiques plus performants.
Nous énumérons des futures pistes de recherche d’utilisation de
modèles améliorés, et nous soulignons les avantages de l’utilisation
conjointe d’expériences comportementales et modélisations
computationnelles afin d’élucider les mécanismes de la perception
de la parole étrangère.

Mots Clés

épenthèse vocalique perceptive, reconnaissance
automatique de la parole, modélisation, phonotac-
tique, phonologie, psycholinguistique

Abstract

Why do people of different linguistic background sometimes
perceive the same acoustic signal differently? For instance,
when hearing nonnative speech that does not conform to sound
structures allowed in their native language, listeners may report
hearing vowels that are not acoustically present. This phenomenon,
known as perceptual vowel epenthesis, has been attested in various
languages such as Japanese, Brazilian Portuguese, Korean, and
English. The quality of the epenthesized vowel varies between
languages, but also within languages, given certain phonemic
environments. How much of this process is guided by information
directly accessible in the acoustic signal? What is the contribution of
the native phonology? How are these two elements combined when
computing the native percept? Two main families of theories have
been proposed as explanations: two-step and one-step theories.
The former advocate an initial parsing of the phonetic categories,
followed by repairs by an abstract grammar (e.g., epenthesis),
while one-step proposals posit that all acoustic, phonetic, and
phonological factors are integrated simultaneously in a probabilistic
manner, in order to find the optimal percept.

In this dissertation, we use a combination of experimental
and modelling approaches in order to evaluate whether perceptual
vowel epenthesis is a two-step or one-step process. In particular,
we investigate this by assessing the role of acoustic details in
modulations of epenthetic vowel quality. In a first part, results from
two behavioural experiments show that these modulations are
influenced by acoustic cues as well as phonology; however, the
former explain most of the variation in epenthetic vowel responses.
Additionally, we present a one-step exemplar-based model of
perception that is able to reproduce coarticulation effects observed
in human data. These results constitute evidence for one-step
models of nonnative speech perception.

In a second part, we present an implementation of the one-
step proposal in [Wilson and Davidson, 2013], using HMM-GMM
(hidden Markov models with Gaussian mixture models) from the
field of automatic speech recognition. These models present two
separate components determining the acoustic and phonotactic
matches between speech and possible transcriptions. We can thus
tweak them independently in order to evaluate the relative influence
of acoustic/phonetic and phonological factors in perceptual vowel
epenthesis. We propose a novel way to simulate with these models
the forced choice paradigm used to probe vowel epenthesis in
human participants, using constrained language models during
the speech decoding process. In a first set of studies, we use
this method to test whether various ASR systems with n-gram
phonotactics as their language model better approximate human
results than an ASR system with a null (i.e., no phonotactics)
language model. Surprisingly, we find that this null model was the
best predictor of human performance. In a second set of studies,
we evaluate whether effects traditionally attributed to phonology
may be predictable solely from acoustic match. We find that,
while promising, our models are only able to partially reproduce
some effects observed in results from human experiments. Before
attributing the source of these effects to phonology, it is necessary
to test ASR systems with more performant acoustic models. We
discuss future avenues for using enhanced models, and highlight
the advantages of using a hybrid approach with behavioural
experiments and computational modelling in order to elucidate the
mechanisms underlying nonnative speech perception.

Keywords

perceptual vowel epenthesis, automatic speech
recognition, modelling, phonotactics, phonology,
psycholinguistics
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