
HAL Id: hal-01949583
https://hal.inria.fr/hal-01949583

Submitted on 10 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Privacy-Preserving Queries on Highly Distributed
Personal Data Management Systems
Julien Loudet, Luc Bouganim, Iulian Sandu Popa

To cite this version:
Julien Loudet, Luc Bouganim, Iulian Sandu Popa. Privacy-Preserving Queries on Highly Distributed
Personal Data Management Systems. 34ème Conférence sur la Gestion de Données – Principes,
Technologies et Applications, Oct 2018, Bucharest, Romania. �hal-01949583�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162951405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01949583
https://hal.archives-ouvertes.fr


Privacy-PreservingQueries on Highly Distributed Personal Data
Management Systems

Julien Loudet1,2,3
1Cozy Cloud

France
julien@cozycloud.cc

Luc Bouganim2,3
2INRIA Saclay

France
<fname.lname>@inria.fr

Iulian Sandu-Popa2,3
3University of Versailles

France
<fname.lname>@uvsq.fr

1 INTRODUCTION

The time of individualized management and control over one’s
personal data is upon us. Thanks to smart disclosure initiatives [4]
and new regulations [8], we can access our personal data from the
companies or government agencies that collected them. Concur-
rently, Personal Data Management System (PDMS) solutions are
flourishing in academia [1] and industry [3]. Their goal is to offer
a data platform allowing users to easily store into a single place
any personal data: data directly generated by user devices (e.g.,
quantified-self data, smart home data, photos, etc.) and user inter-
action data (e.g., user preferences, social interaction data, health,
bank, telecom, etc.). Users can then leverage the power of their
PDMS to use their personal data for their own good and in the
benefit of the community. Thus, the PDMS paradigm holds the
promise of unlocking new innovative usages while preserving the
current ones developed around personal data. A prominent exam-
ple of novel usages is related to the computations between a large
number of PDMSs (e.g., recommendations, participative studies,
collective decisions).

However, these exciting perspectives should not eclipse the se-
curity issues raised by the PDMS paradigm. Indeed, each PDMS
can store potentially the entire digital life of its owner, thereby
proportionally increasing the impact of a leakage. Hence, central-
izing all users’ data into few powerful servers is risky since the
data servers become genuine honeypots: huge amounts of personal
data belonging to millions of individuals could be leaked or lost as
illustrated by recent massive attacks [5]. Besides, such a centralized
solution makes little sense in the PDMS context in which data is
naturally distributed at the users’ side.

Fortunately, Trusted Execution Environments (TEE) [6, 7] are
also rising and employing them in PDMS context leads to trustwor-
thy computational data platforms. Hence, in this work, we assume
that all PDMSs are secured thanks to a TEE. A PDMS can be con-
sidered to offer high connectivity and availability and can establish
peer-to-peer (P2P) connections with other PDMSs. As such, we
envision a fully distributed architecture of PDMS devices in which
participants can create large communities, contribute with their
personal data and issue queries over the globally contributed data.
In this context, an important issue needs to be addressed: how to
query this massively distributed data in a pertinent, efficient and
privacy-preserving way?

2 DESCRIPTION OF THE SOLUTION

To achieve a high degree of pertinence, in our system each query
only targets the subset of PDMSs exposing a given user profile: a
structured description indicating the user’s attributes (e.g. location,
age, interests). Besides pertinence, a second benefit of user profiles

is to increase query processing efficiency by avoiding flooding the
entire network with each query. The queries can be, for instance,
aggregate queries allowing users to compute generic statistics (e.g.,
recommendations of films). While the data and query model def-
initions and expressivity are significant issues, the global system
security is paramount for a large system adoption, i.e., gaining
users’ trust and encouraging them to contribute with their data.
We thus focus on privacy preservation during query execution in
the abovementioned system.

As previously stated, TEEs provide a high level of data confiden-
tiality against malicious PDMS owners. However, since no security
measure can be considered as unbreakable, we cannot exclude hav-
ing some corrupted nodes in the system and, even worse, those
corrupted nodes might very well be undistinguishable from hon-
est nodes. As we consider a fully distributed system, the query
processing relies exclusively on PDMS nodes. This implies some
data disclosure risk whenever a corrupted node is selected as a
query actor. Therefore, to maximize the system security, we need
to minimize the benefit of corrupting a node. This translates into
two requirements:
R1: Minimize the private information any node could have access
to whenever it is assigned with a data related task.
R2: Ensure that an attacker controlling several corrupted nodes
cannot influence the selection of the nodes processing a query.

To efficiently index and retrieve node profiles, we leverage the
classical Distributed Hash Table (DHT) P2P overlay [9, 11]: each
node is responsible for a set of use profile attributes and indexes all
the node IP addresses that match one of them. To query our system
in a secure and efficient manner, we build a distributed protocol on
top of this P2P overlay.

Our protocol relies on three design principles, namely knowl-
edge dispersion, task compartmentalization and imposed randomness,
which, once combined, answer both requirements.
Knowledge dispersion. This principle aims at protecting the
data-at-rest (i.e. the distributed index used to retrieve the nodes
corresponding to a given user profile) and can be summed up by:
no single node (or few nodes) should store a significant amount of
sensitive data, unless it owns that data.

In practice, this design principle is realized through the use
of Shamir’s Secret Sharing technique [10]. Even though the DHT
uniformly distributes the knowledge among the nodes, if one node
were to be corrupted it could access the entire list of IP addresses
corresponding to the set of user attributes it indexes. By applying
this technique the entries in the distributed index become “shards”
that, taken alone, cannot be decrypted, thus protecting the data.

1



Task compartmentalization. The second principle concerns
the query execution. Thanks to the first design principle the data-
at-rest is protected, but the data-in-use — the data that is used to
compute the final result — is still open to attacks. To protect it we
perform task compartmentalization: we split the query execution
in elementary tasks assigned to distinct nodes, so that each actor
has only access to the minimal information it needs to know to
perform its task.

In practice, this principle is enforced through the use of different
actors having different roles. Also, whenever possible, several nodes
are assigned to the same role to further split the access to sensitive
data. The roles are: the Concept Indexors indexing the attributes,
the Target Finders determining the relevant nodes based on a target
profile, and the Data Aggregators aggregating the individual results
to obtain the answer to the query.
Imposed randomness. The third and last design principle stipu-
lates how the query actors should be selected. Indeed, if an attacker
controls enough nodes in the network and manages to execute a
query where all the actors are corrupted, then all our previous pre-
cautions would be nullified. This reason is why we force imposed
randomness: the actors for each query must be randomly selected
and the selection cannot be influenced by an attacker controlling
several nodes.

In practice, this principle is applied by generating verifiable
random numbers in a distributed fashion using an algorithm based
on CSAR [2]. Those random numbers will designate a location on
the DHT overlay, around which the actors will be selected (also
randomly, using such number).

Thus, our protocol answers the requirement R1 by applying
knowledge dispersion and task compartmentalization design princi-
ples to protect, respectively, the data-at-rest and the data-in-use
during the query evaluation process. Requirement R2 is addressed
by applying the imposed randomness design principle in the selec-
tion of the nodes processing a query.

This guarantees that an attacker cannot obtain more private
information than what she can passively get from observing the
information randomly reaching its corrupted nodes. Thus, the im-
pact of a collusion attack remains proportional with the number of
corrupted nodes, which is the best situation given our context.

To assess the security offered by our protocol we have imple-
mented a simulation in which we measured the impact of collusion
attacks at different scales: where an attacker controls 1, 50, 0.01%, 1%
nodes in a network that contains 10k, 100k, 1M and 10M nodes. For
each level of attack we repeatidly simulated the execution of a query
and measured the latency and total effort in terms of cryptographic
operations as well as the disclosure rate.

We realized the same measurements with two relaxed versions
of our protocol: (i) a naïve version that does not respect any design
principle (the querier is at the center of the execution and handles
all the information), and (ii) a basic distributed version that only
respects the first two (i.e. without imposed randomness — the in-
formation is split between different actors but they are not chosen
randomly).

We finally compared the results we obtained: the naïve version
only requires one corrupted node to leak all of the exchanged infor-
mation and does not scale well as the Querier acts as a bottleneck;

the basic distributed version requires an inconsiderate amount of ac-
tors to achieve an acceptable disclosure (i.e. their number has to be
greatly superior to the number of corrupted nodes) which, in turn,
greatly increases the cost of the execution of a query; finally, our
protocol offers the best features: the private information disclosure
is guaranteed to increase linearly with the number of corrupted
nodes, while the enforcement cost only increases logarithmically.

3 CONCLUSION

Personal Data Management Systems arrive at a rapid pace allowing
users to share their personal data within large P2P communities.
While the benefits are unquestionable, the important risks of pri-
vate personal data leakage and misuse represent a major obstacle
on the way of the massive adoption of such systems. This work is
one of the first efforts to deal with this important and challenging
issue. To this end, we propose a fully-distributed P2P system lay-
ing the foundation for secure, pertinent and efficient evaluation of
aggregate queries based on user profiles. By considering a realistic
threat model and guided by three design principles (knowledge
dispersion, task compartmentalization and imposed randomness),
we proposed a secure and efficient distributed protocol to protect
both the data-at-rest and the data-in-use against an attacker control-
ling many nodes in the system. Furthermore, our simulation-based
experiments show that our solution offers interesting properties:
the private information leakage increases linearly with the num-
ber of corrupted nodes, while the cost of the security mechanisms
increases logarithmically.

ACKNOWLEDGMENTS

This research is supported by the ANR PersSoCloud grant n°ANR-
16-CE39-0014.

REFERENCES

[1] Serge Abiteboul, Benjamin André, and Daniel Kaplan. 2015. Managing your
digital life. Commun. ACM 58, 5 (2015), 32–35.

[2] Michael Backes, Peter Druschel, Andreas Haeberlen, and Dominique Unruh.
2009. CSAR: A Practical and Provable Technique to Make Randomized Systems
Accountable. In NDSS, Vol. 9. 341–353.

[3] Cozy Cloud. 2013. Cozy allow you to control your personal data (pictures, bank
statements, bills, health reinbursements) in a secure and private space. Retrieved
September 3, 2018 from https://cozy.io/en

[4] Fing. 2013. The mesinfos project explores and implements the self data concept
in france. Retrieved September 3, 2018 from http://mesinfos.fing.org/english

[5] Troy Hunt. 2013. ’;–Have I been pwned? Check if you have an account that
has been compromised in a data breach. Retrieved September 3, 2018 from
https://haveibeenpwned.org

[6] Saliha Lallali, Nicolas Anciaux, Iulian Sandu Popa, and Philippe Pucheral. 2017.
Supporting secure keyword search in the personal cloud. Information Systems 72
(2017), 1–26.

[7] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative instructions
and software model for isolated execution. HASP@ ISCA 10 (2013).

[8] European Parliament. 2016. Regulation (EU) 2016/679 on the protection of natural
persons with regard to the processing of personal data and on the free movement
of such data. Law. Retrieved September 3, 2018 from https://eur-lex.europa.eu/
legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679

[9] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.
2001. A scalable content-addressable network. Vol. 31. ACM.

[10] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.
[11] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Balakrish-

nan. 2001. Chord: A scalable peer-to-peer lookup service for internet applications.
ACM SIGCOMM Computer Communication Review 31, 4 (2001), 149–160.

2

https://cozy.io/en
http://mesinfos.fing.org/english
https://haveibeenpwned.org
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679

	1 Introduction
	2 Description of the solution
	3 Conclusion
	References

