

Playing with number representations and operator-level approximations

Olivier Sentieys

▶ To cite this version:

Olivier Sentieys. Playing with number representations and operator-level approximations. Keynote at the Third Workshop on Approximate Computing (AxC), in conjunction with IEEE European Test Symposium (ETS), Jun 2018, Bremen, Germany. 2018. hal-01941868

HAL Id: hal-01941868

https://hal.inria.fr/hal-01941868

Submitted on 10 Dec 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Playing with number representations and operator-level approximations

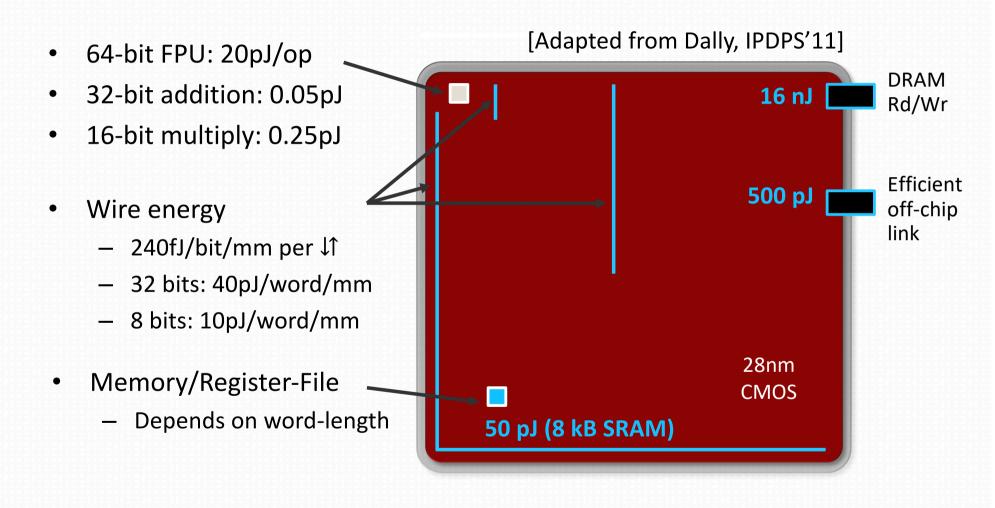
Olivier Sentieys

INRIA

Univ Rennes

olivier.sentieys@inria.fr

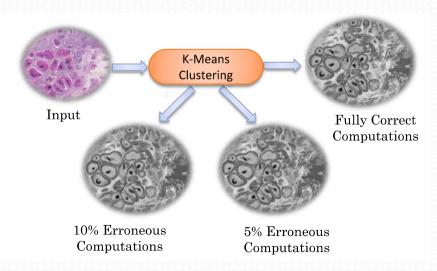
Energy Cost in a Processor/SoC



Energy strongly depends on data representation and size

Many Applications are Error Resilient

- Produce outputs of acceptable quality despite approximate computation
 - Perceptual limitations
 - Redundancy in data and/or computations
 - Noisy inputs
- Digital communications, media processing, data mining, machine learning, web search, ...



e.g. Image Segmentation

Approximate Computing

- Play with number representations to reduce energy and increase execution speed while keeping accuracy in acceptable limits
 - Relaxing the need for fully precise operations

- Trade quality against performance/energy
 - Design-time/run-time
- Different levels

- Application quality degradation
- Operators/functions/algorithms

Outline

- Motivations for approximate computing
- Number representations
- Approximate operators or careful rounding?
- Operator-level support for approximate computing
- Stochastic computing
- Conclusions

Outline

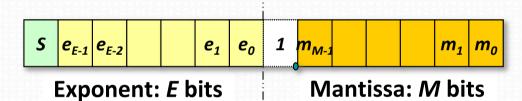
- Motivations for approximate computing
- Number representations
 - Fixed-Point
 - Floating-Point
 - Customizing Arithmetic Operators
 - ApxPerf Framework
- Approximate operators or careful rounding?
- Operator-level support for approximate computing
- Stochastic computing
- Conclusions

Number Representation

Floating-Point (FIP)

$$x = (-1)^s \times m \times 2^{e-127}$$

s: sign, m: mantissa, e: exponent



- Easy to use
- High dynamic range
- IEEE 754

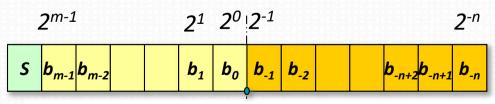
Format	е	m	bias
Single Precision	8	23	127
Double Precision	11	52	1023

Fixed-Point (FxP)

$$x = p \times K$$

p: integer, $K=2^{-n}$: fixed scale factor

- Integer arithmetic
- Efficient operators
 - Speed, power, cost
- Hard to use...

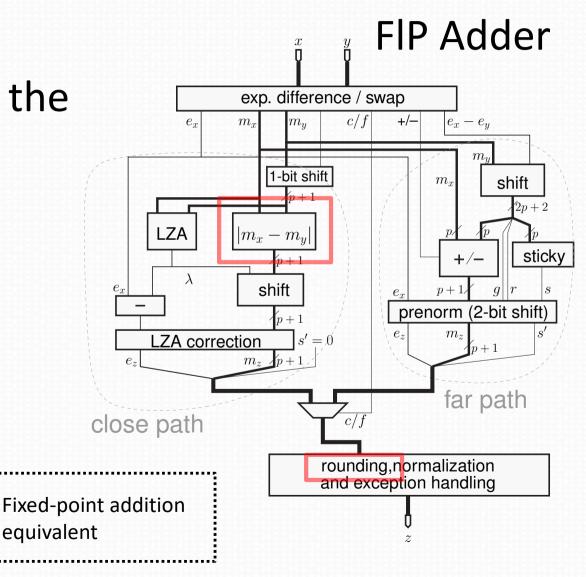


Integer part: *m* bits Fractional part: *n* bits

Floating-Point Arithmetic

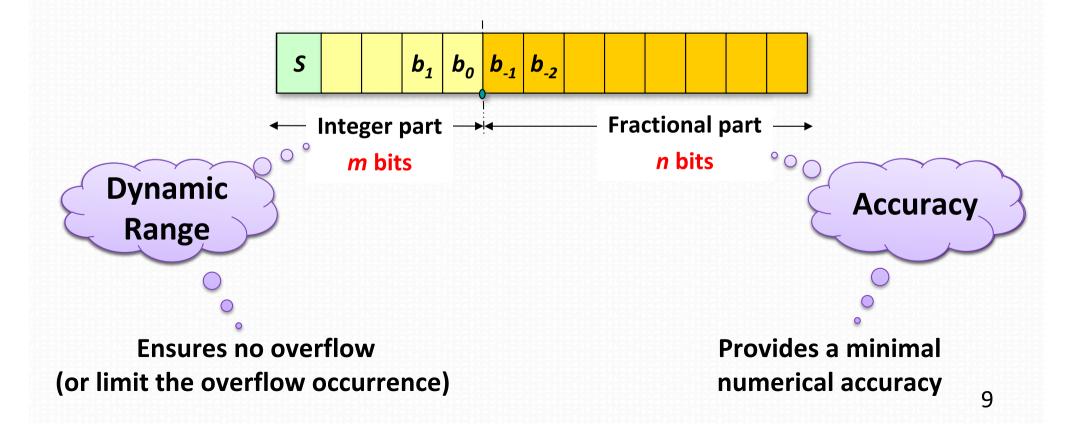
 Floating-point hardware is doing the job for you!

 FIP operators are therefore more complex



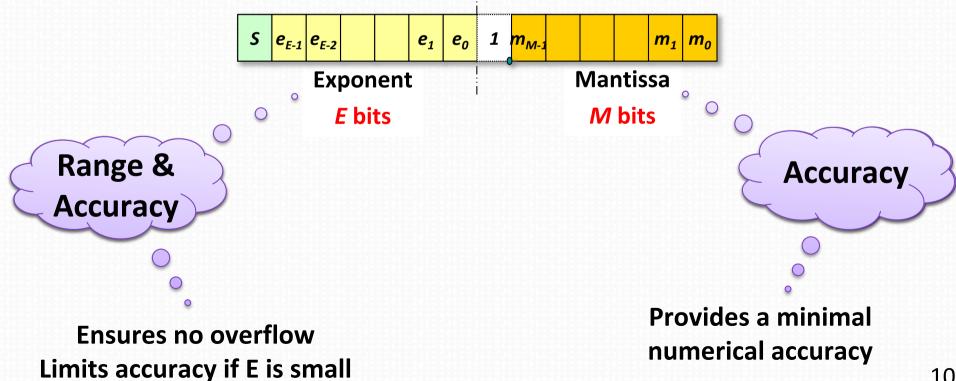
Customizing Fixed-Point

- Minimize word-length W=m+n
- Determine integer and fractional parts



Customizing Floating-Point

- Minimize word-length W=E+M+1
- Determine exponent and mantissa (and bias)
- Error is relative to number value



ct_float: a Custom-FIP C++ Library

- ct_float: a Custom Floating-Point C++ Library
 - Operator simulation and (High-Level) synthesis
 - Templated C++ class
 - Exponent width e (int)
 - Mantissa width m (int)
 - Rounding method r (CT_RD,CT_RU,CT_RND,CT_RNU)
 - Many synthetizable overloaded operators
 - Comparison, arithmetic, shifting, etc.

```
ct_float<8,12,CT_RD> x,y,z;
x = 1.5565e-2;
z = x + y;
```

ct_float, FloPoCo, ac_float

- ct_float provides comparable (or slightly better) results
 - 16-bit Floating-Point Addition/Subtraction (200MHz)

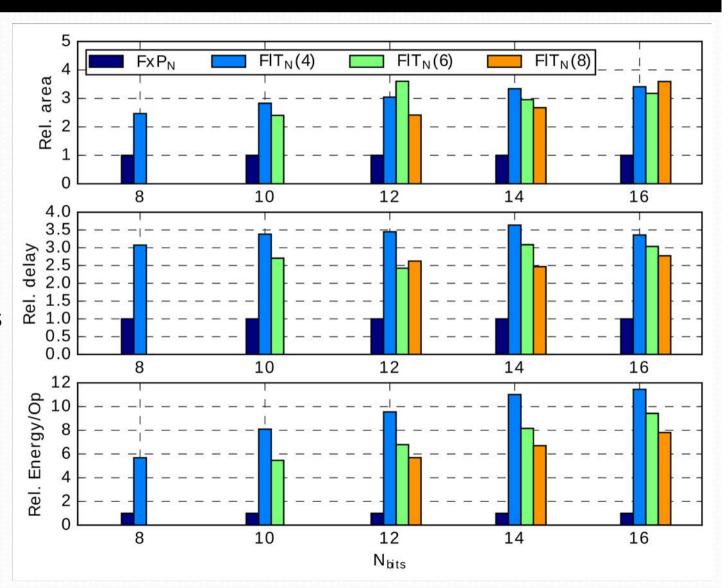
	Area (μm^2)	Critical	Total	Energy per
	Alea (µm)	path (ns)	power (mW)	operation (pJ)
AC_FLOAT	312	1.44	1.84E-1	9.07E-1
CT_FLOAT	318	1.72	2.13E-1	1.05
FLOPOCO	361	2.36	1.84E-1	9.06E-1
CT_FLOAT/AC_FLOAT	+2.15%	+19.4%	+15.4%	+15.7%
CT_FLOAT/FLOPOCO	-11.8%	-27.0%	+15.7%	+15.8%

16-bit Floating-Point Multiplication (200MHz)

	Area (μm^2)	Critical	Total	Energy per
	Alea (µm)	path (ns)	power (mW)	operation (pJ)
AC_FLOAT	488	1.18	2.15E-1	1.05
CT_FLOAT	389	1.13	$1.76E{-1}$	$8.59E{-1}$
FLoPoCo	361	1.52	1.34E-1	6.50E-1
CT_FLOAT/AC_FLOAT	-20.4%	-4.24%	-18.2%	-18.2%
CT_FLOAT/FLOPOCO	+7.68%	-25.6%	+31.7%	+32.1%

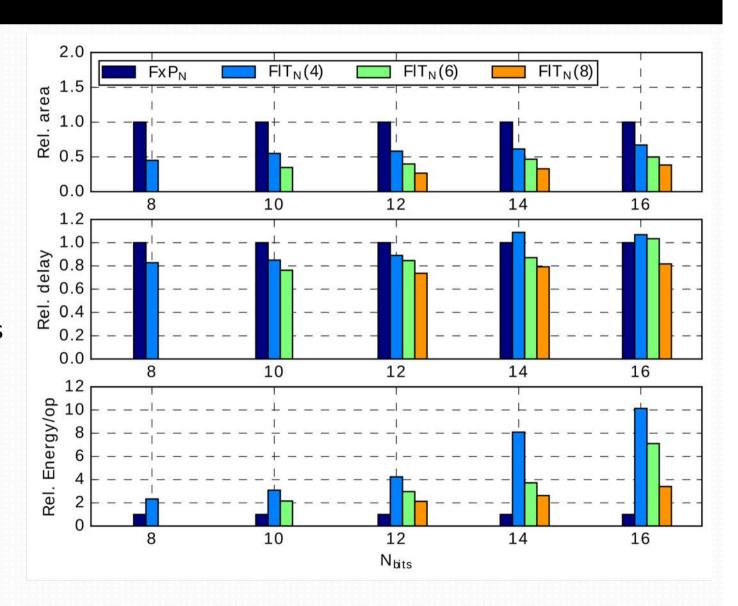
FxP vs. FIP: Adders

- FxP_N
 - Fixed-Point
 - N bits
- FIT_N(E)
 - Floating-Point
 - N bits
 - Exponent E bits
- FxP adders are always smaller, faster, less energy



FxP vs. FIP: Multipliers

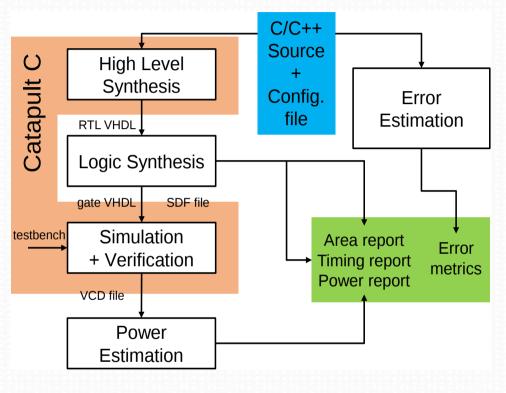
- FxP_N
 - Fixed-Point
 - N bits
- FIT_N(E)
 - Floating-Point
 - N bits
 - Exponent E bits
- FIP multipliers
 are smaller,
 faster, but
 consume more
 energy



28nm FDSOI technology, Catapult (HLS), Design Compiler, PrimeTime

Energy-Accuracy Trade-offs

- ApxPerf2.0 framework
 - Based on C++ templates,
 HLS, and Python
 - VHDL and C/C++ operator descriptions
 - Approximate, FxP, FIP
 - Fully automated
 - Generates delay, area, and power results
 - Extract error metrics
 - mean square error, mean average error, relative error, min/max error, bit error rate, etc.

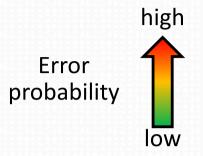


Outline

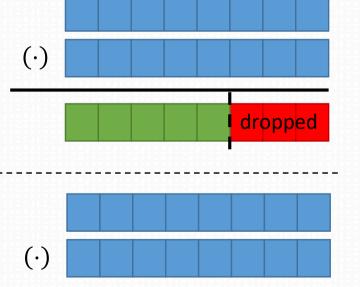
- Motivations for approximate computing
- Number representations
- Approximate operators or careful rounding?
- Operator-level support for approximate computing
- Stochastic computing
- Conclusions

Approximate arithmetic

Comparison of two paradigms



- Classical fixed-point (FxP) arithmetic
 - Exact integer operators
 - Approximation by rounding the output
- Approximate (Apx) integer arithmetic
 - State-of-the-art approximate operators

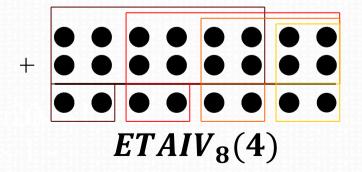


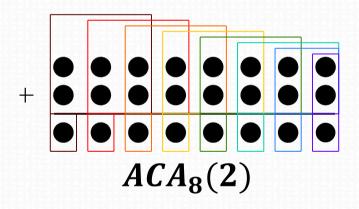
 $FxP_8(5)$

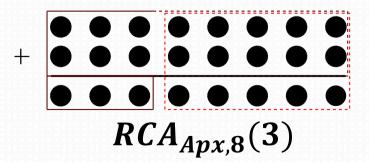
Approximate operators

Adders

- Almost Correct Adder (ACA)
- Error-Tolerant Adder IV (ETAIV)
- Approximate Ripple Carry Adder (RCAApx)
 - 3 possible Full-Adder approximations

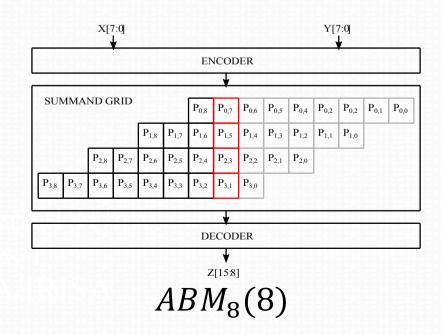


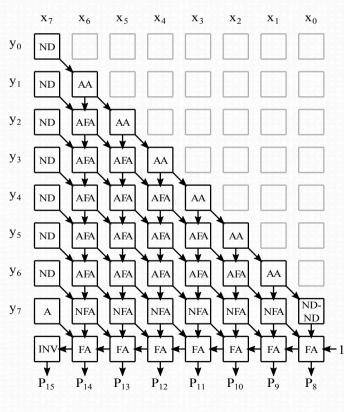




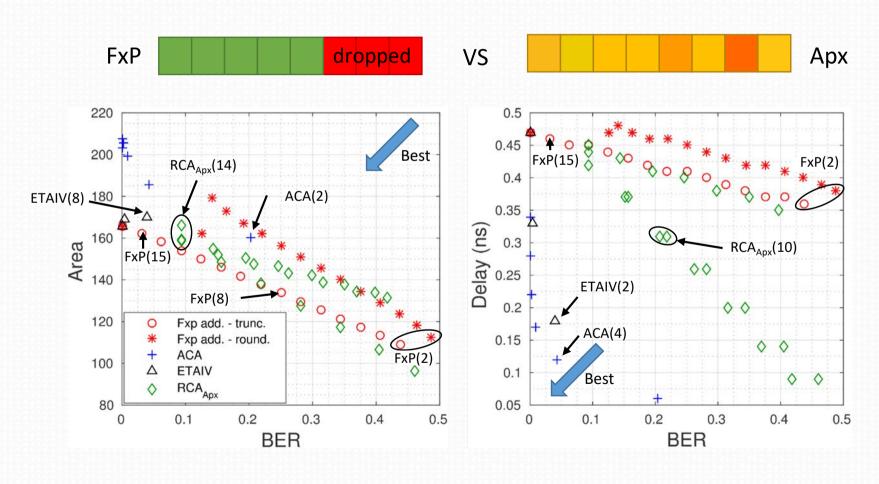
Approximate operators

- Fixed-width multipliers
 - Approximate Array Multiplier (AAM)
 - Approximate modified Boothencoded Multiplier (ABM)





• Results: 16-bit adders

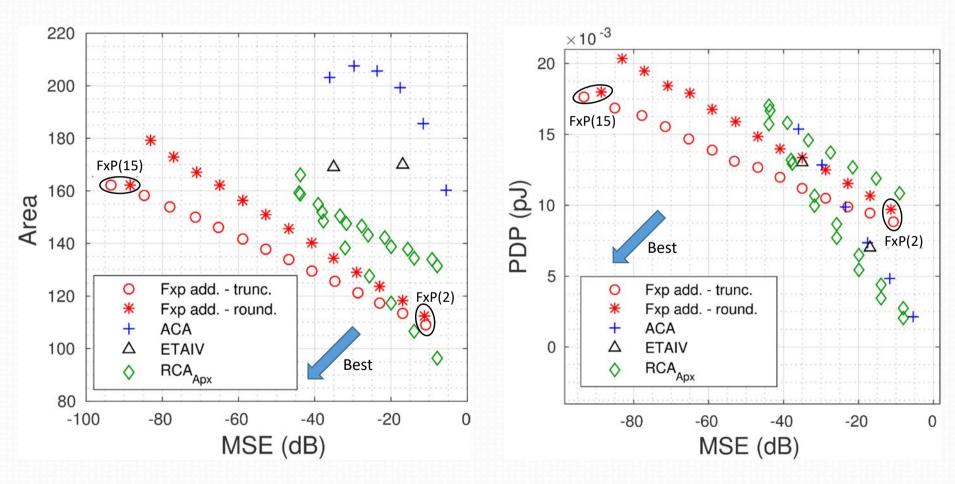


B. Barrois, O. Sentieys, D. Menard, The Hidden Cost of Functional Approximation Against Careful Data Sizing – A Case Study, IEEE/ACM DATE, 2017

Results: 16-bit adders



Results: 16-bit adders



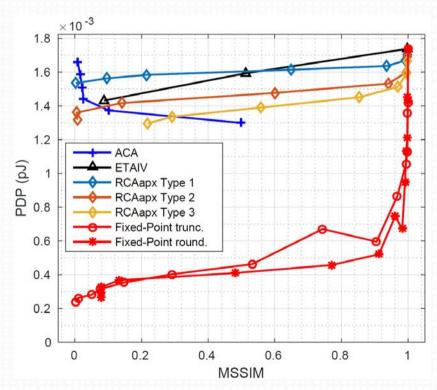
B. Barrois, O. Sentieys, D. Menard, The Hidden Cost of Functional Approximation Against Careful Data Sizing – A Case Study, IEEE/ACM DATE, 2017

- Results: Multipliers $16 \times 16 \rightarrow 16$ bits
 - $-MUL_t(16,16)$ is classical exact multiplier with output truncated to 16 bits

	FxP _{t,16} (16)	AAM ₁₆ (16)	ABM ₁₆ (16)
Power (mW)	0.273	0.359	0.446
Delay (ns)	0.91	1.23	0.57
PDP (pJ)	0.249	0.442	0.446
Area ($\mu\mathrm{m}^2$)	805.2	665.5	879.5
BER (%)	23.4	27.7	27.9
MSE (dB)	-89.1	-87.9	-9.63

Performance of FxP and AO multipliers

- Results on applications
 - JPEG, HEVC, K-Means



Adders – Apx DCT cost in JPEG encoding

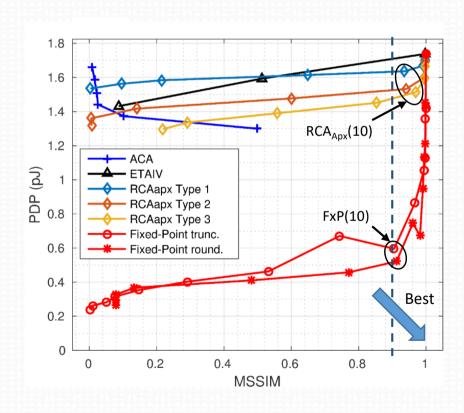
	MSSIM	Adder Energy (pJ)	Min. Mult. Energy (pJ)	Total Energy (pJ)
$ADD_t(16, 10)$	99.29%	1.39E-2	4.39E-2	0.898
ACA(16, 12)	96.45%	1.54E - 2	2.49E - 1	4.20
ETAIV(16,4)	98.02%	1.30E - 2	2.49E - 1	4.17
$RCA_{Apx}(16, 6, 3)$	99.67%	1.00E-2	2.49E - 1	4.12

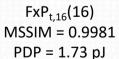
Adders – cost in HEVC filter

	Success	Multiplier	Min. Adder	Total
	Rate	Energy (pJ)	Energy (pJ)	Energy (pJ)
$MUL_t(16, 16)$	99.84%	2.49E-1	1.83E-2	5.15E-1
AAM(16)	99.43%	4.42E - 1	1.83E-2	$9.02E{-1}$
ABM(16)	10.27%	$2.54E{-1}$	1.83E-2	5.27E-1
$MUL_t(16,4)$	10.87%	2.04E-1	1.24E - 3	4.09E - 1

Multipliers – cost of distance computation in K-Means algorithm

Results: DCT in JPEG Encoding – 90% effort





 $AAM_{16}(16)$ MSSIM = 0.9981 PDP = 2.71 pJ

 $ABM_{16}(16)$ MSSIM = 0.8579PDP = 2.72 pJ

Conclusion (Apx. or Round?)

- Datasize reduction gives better results than operator-level approximation
- High error entropy is not energy efficient

high Error prob.

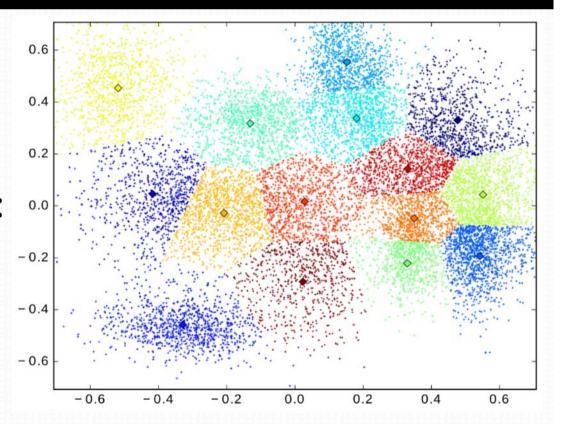
- True for processing datapath
- Should be emphasized when considering data storage and transportation
- Approximate operators could be suitable for fixed-width datapath (e.g. CPU)

Outline

- Motivations for approximate computing
- Number representations
- Approximate operators or careful rounding?
- Operator-level support for approximate computing
 - K-Means Clustering, FFT
 - Approximate deep learning
- Stochastic computing
- Conclusions

K-Means Clustering

- Data mining, image classification, etc.
- A multidimensional space is organized as:
 - -k clusters S_i ,
 - $-S_i$ defined by its centroid μ_i



• Finding the set of clusters $S = \{S_i\}_{i \in [0,k-1]}$

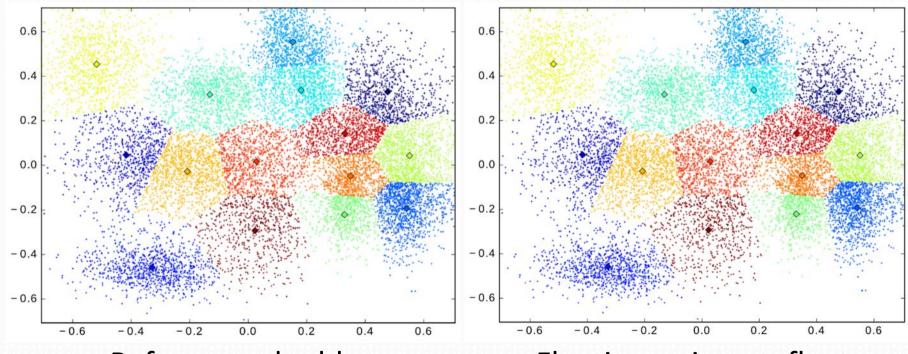
$$S = \{S_i\}_{i \in [0, k-1]}$$

satisfying

$$\underset{S}{\operatorname{arg\,min}} \sum_{i=1}^{k} \sum_{x \in S_{i}} \|x - \mu_{i}\|^{2}$$

is NP-hard

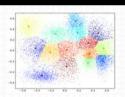
- W = 16 bits, accuracy = 10^{-4}
- No major (visible) difference with reference



Reference: double

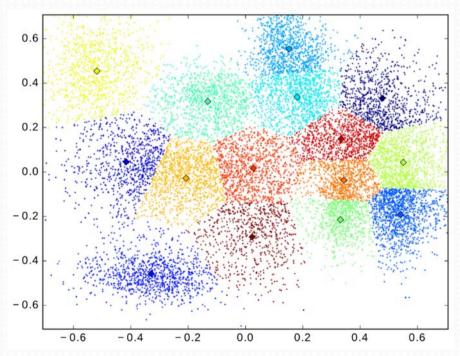
Floating-point: ct_float₁₆
5-bit exponent
11-bit mantissa

• W = 16 bits, accuracy = 10^{-4}

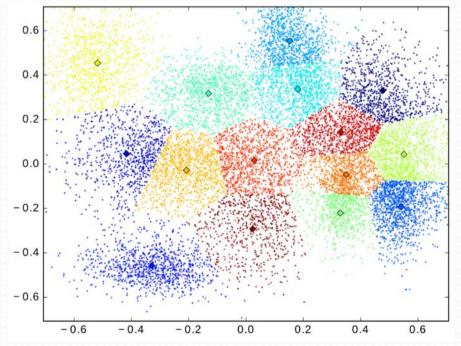


30

No major (visible) difference with reference

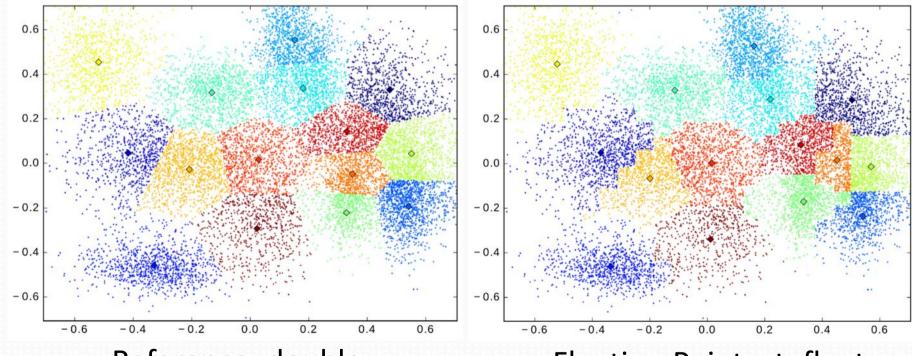


Fixed-Point: ac_fixed₁₆
3-bit integer part
13-bit fractional part



Floating-point: ct_float₁₆
5-bit exponent
11-bit mantissa

- W = 8 bits, accuracy = 10^{-4}
- 8-bit float is still practical

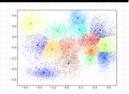


Reference: double

Floating-Point: ct_float₈
5-bit exponent
3-bit mantissa

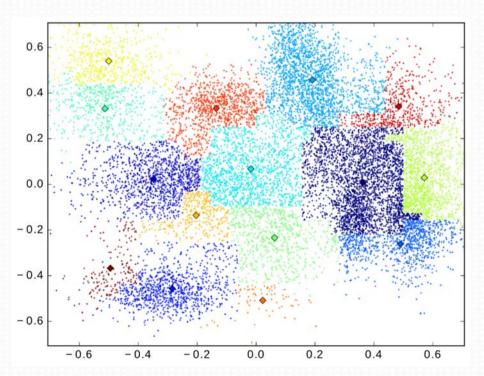
31

• W = 8 bits, accuracy = 10^{-4}

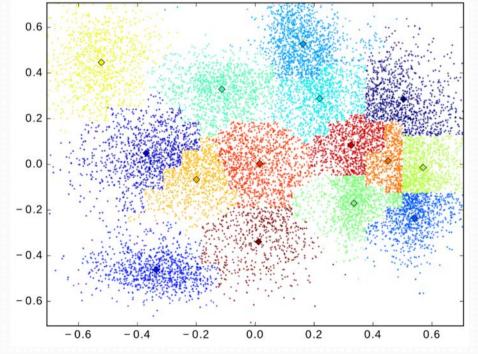


32

8-bit float is better and still practical



Fixed-Point: ac_fixed₈
3-bit integer part
5-bit fractional part

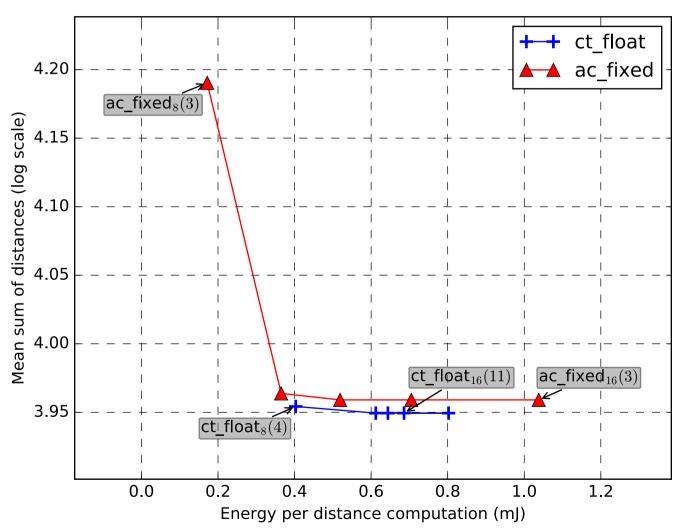


Floating-Point: ct_float₈
5-bit exponent
3-bit mantissa

Energy versus Mean Sum of Distances

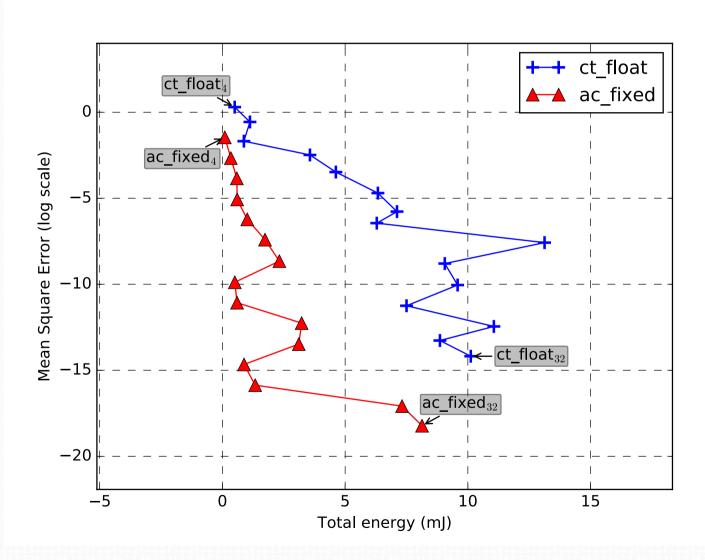
Average energy consumed by K-means algorithm

Stopping condition:
 10⁻⁴



Energy vs. Error: FFT

FxP
 performs
 always
 better (5×)
 than FIP

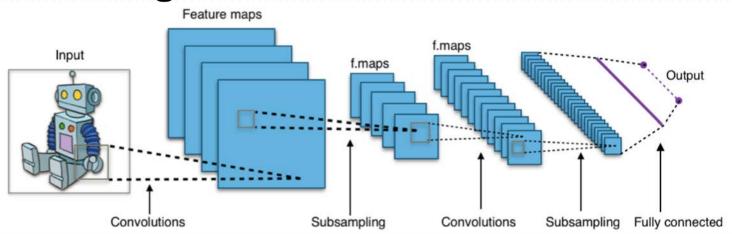


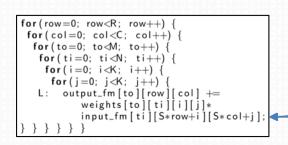
Conclusions (FIP vs. FxP)

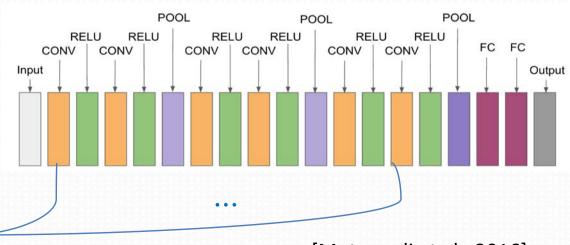
- Slower increase of errors for floating-point
 - Small floating-point (e.g. 8-bit) could provide better error rate/energy ratio
 - 8-bit FIP is still effective for K-means clustering
- Choice FIP vs. FxP is not obvious
 - Application-dependent
 - Certainly requires static/runtime analysis
- Perspectives
 - Custom exponent bias in ct_float
 - Towards an automatic optimizing compiler considering both FxP and FIP representations

Deep Convolutional Neural Networks

General organization



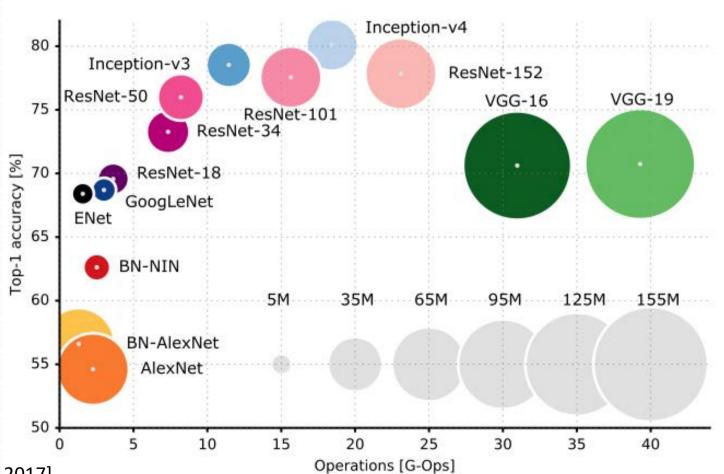




Complexity of Deep CNNs

- 10-30 GOPS
 - Mainly convolutions

- 10-200 MB
 - Fully-connected layers



37

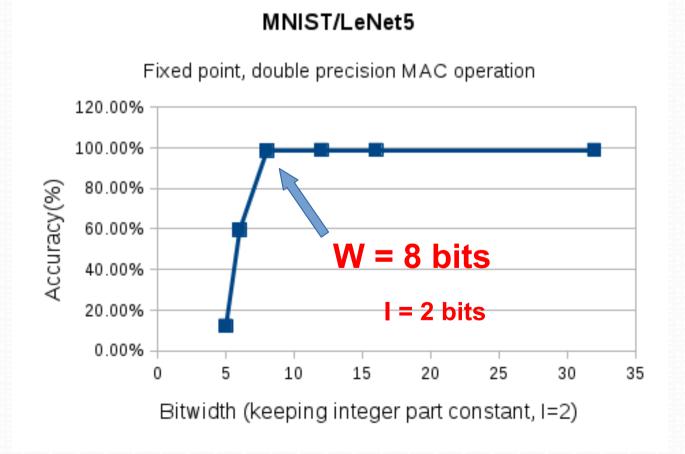
Resilience of ANN

According to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a wrod are, the olny iprmoatnt tihng is taht the frist and Isat Itteer be at the rghit pclae. And we spnet hlaf our Ifie Iarennig how to splel wrods. Amzanig, no!

- ant to
- Our biological neurons are fault tolerant to computing errors and noisy inputs
- Quantization of parameters and computations provides benefits in throughput, energy, storage

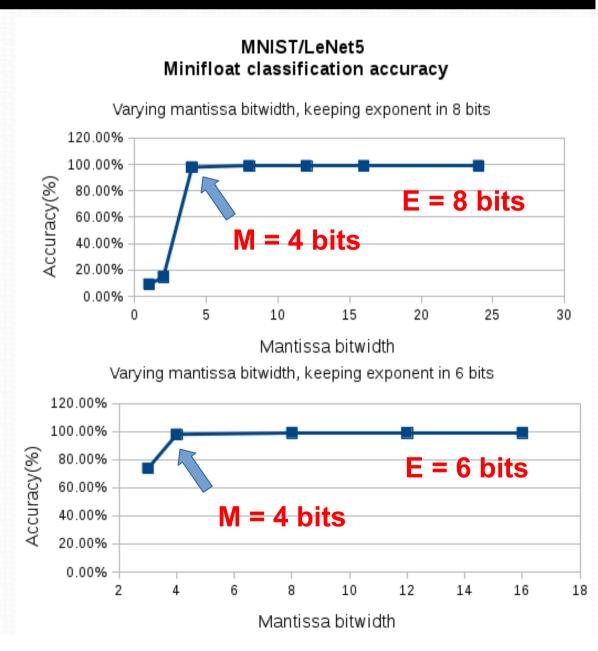
Approximate CNNs: Accuracy

- 10k images, MNIST/Lenet5
- Single/Double-Precision Fixed-Point



Approximate CNNs: Accuracy

- 10k images,
 MNIST/Lenet
- Custom Floating-Point
- 10-bit FxP or FIP keeps accuracy near reference
- Better results would be achieved with longer training and fine tuning



Outline

- Motivations for approximate computing
- Number representations
- Operator-level support for approximate computing
- Approximate operators or careful rounding?
- Stochastic computing
 - What is a stochastic number?
 - Basic operators
 - Stream correlation
 - Examples
 - Digital filters
 - Image processing
- Conclusions

A Strange Way to Represent Numbers

- Stochastic numbers are represented as a Bernoulli random process
 - p is coded as a finite sequence of independent random variables $x_i \in \{0, 1\}$, with $P(x_i=1) = p$
- Unipolar: $p \in [0, 1]$ - stream of N bits $X=\langle x0, x1,...,xN-1\rangle$ $\langle 00010100\rangle = 1/4$ $\langle 0010010010000001\rangle = 1/4$ - N_1 ones, $N-N_1$ zeros: $p=N_1/N$
- Bipolar: $p \in [-1, 1], 2.P(x_i)-1=p$ <00010100> = -1/2

Stochastic Computing

- Uses Stochastic Number representation
- Uses conventional logic circuits to implement arithmetic operations with SNs
 - Realized by simple logic circuits
- SC provides massive parallelism
- SN is intrinsically error tolerant
- Only suitable for low-precision (~5-6 bits)
- High processing latency (e.g. 128-bit streams)

Numerical Accuracy of SNs

Estimation of p out of the N-bit stream X

$$\hat{p} = \frac{N_1}{N}$$

$$\mathcal{L}(\hat{p}) = p$$

Binomial distribution

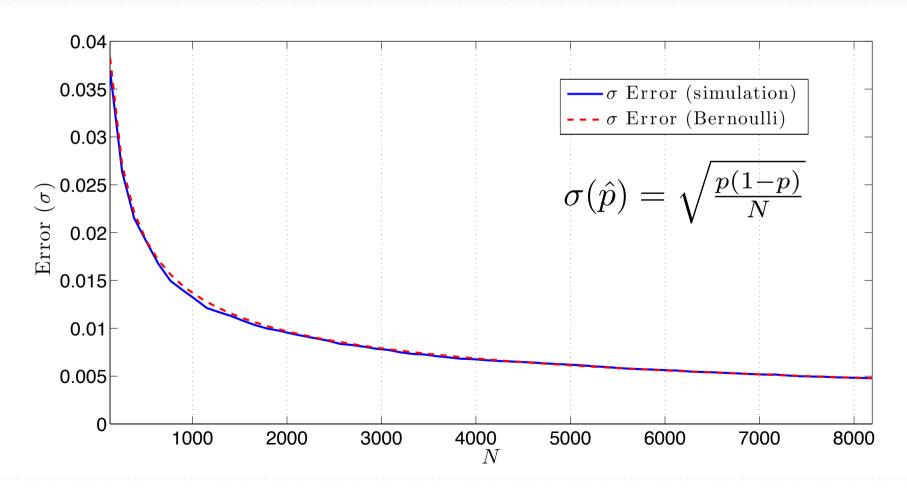
 $\sigma(\hat{p}) = \sqrt{\frac{p(1-p)}{N}}$

- Accuracy in estimation of p increases as square root of N (computation time)
- Example: *N=256*
 - − Possible values of $p \in \{0, 1/256, 2/256, ..., 255/256, 1\}$
 - Accuracy
 - minimum for $p=\{0,1\}$, maximum for p=0.5
 - *p*=0.75: *σ*=0.027 (≈5.2 bits)

(1/256=0.0039)

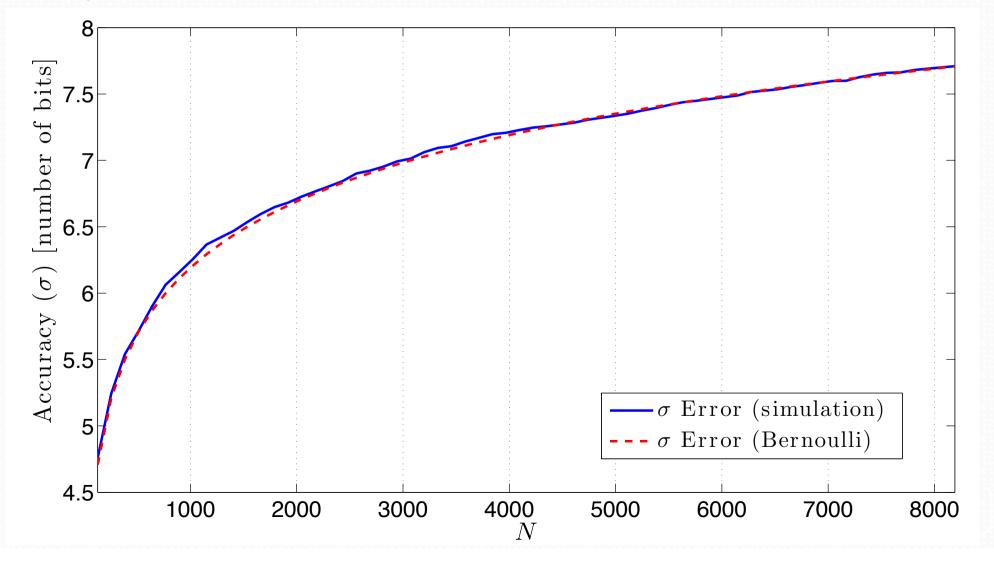
Numerical Accuracy of SNs

- p=0.75, N=128..8192
- σ of error: simulation and analytical



Numerical Accuracy of SNs

• p=0.75, N=128..8192



Basic Arithmetic Operators

Unsigned multiplication

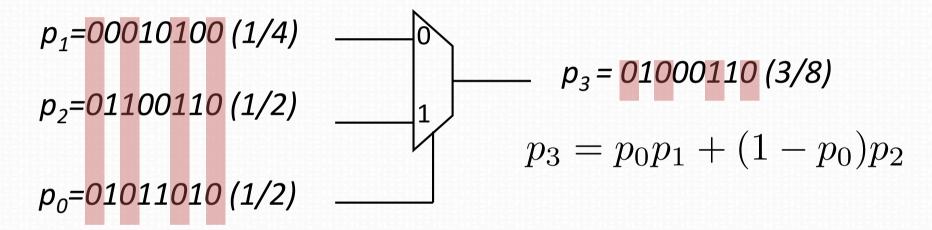
- Nice! but for real cases, accuracy is reduced
- and p_3 must be longer
- and true only for uncorrelated p_i

Correlation further Reduces Accuracy

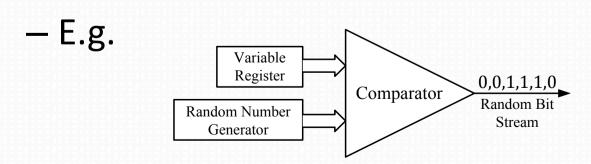
 Correlation among bit streams implies reduced accuracy

Basic Arithmetic Operators

Addition (stochastic weighted summer)



Stochastic Number Generation

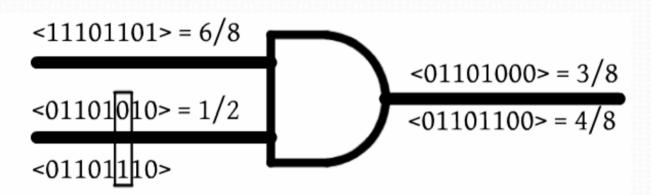


Error Tolerance

Conventional computing

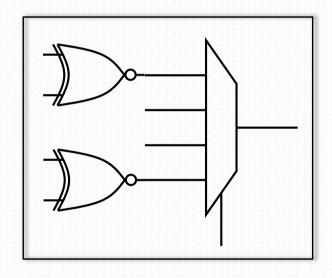
Stochastic computing

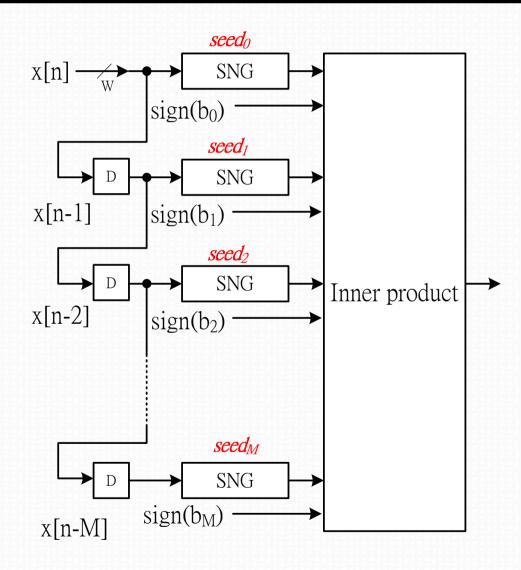
$$6/8$$
 $1/2$ $3/8$
 $110 \times .100 = .011$
 $010 \times .100 = .001$
 $1/8$



Digital Filters

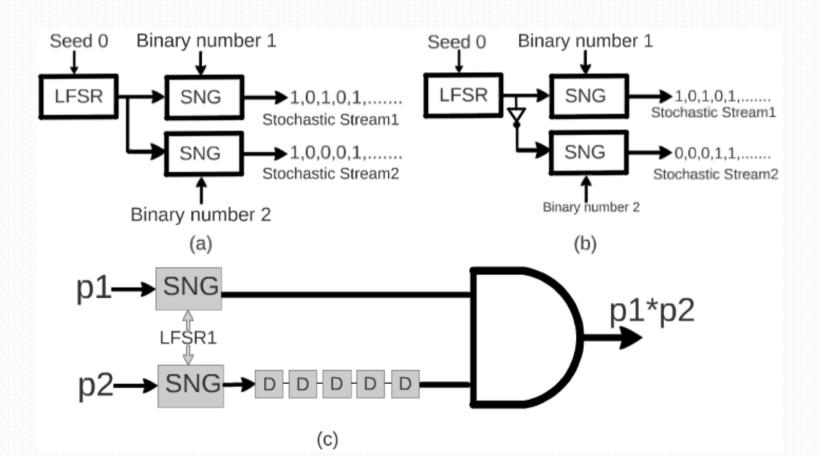
• Sum of product





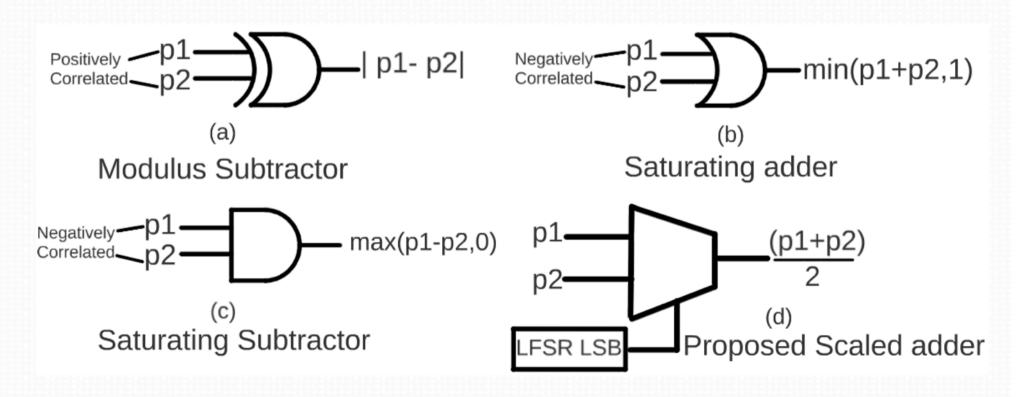
Taking Advantage of Correlation in Stochastic Computing

- Correlated inputs reduces complexity of SNG
- Correlation can be exploited wisely



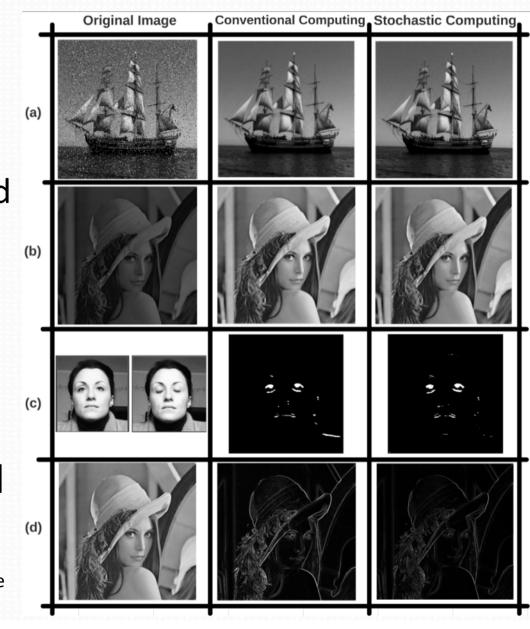
Taking Advantage of Correlation in Stochastic Computing

- Correlated inputs reduces complexity of SNG
- Correlation can be exploited wisely



Results

- Image processing
 - median filter,
 - contrast stretching
 - frame difference based image segmentation
 - edge detection
- 256-bit stochastic streams
- Implementation on Xilinx ZYNQ 706 board



R.K. Bhudhwani, R. Ragavan, O. Sentieys. Taking advantage of correlation in stochastic computing, IEEE ISCAS, 2017.

Results

- Conventional, existing, and proposed SC
- Accuracy, area, and delay
 - Mean output accuracy reduction per pixel

Benchmarks	Conventional Implementation				
	Mean Accuracy reduction per pixel (%)	Area (LUTs)	Delay (ns)		
Median Filter	0.00	234	15.98		
Contrast Stretching	0.00	291	24.04		
Frame Segmentation 0.00		16	3.88		
Edge Detection	0.00	116	4.39		

Existing Stochastic Implementation		Proposed Stochastic Implementation			
Mean Accuracy reduction per pixel (%)	Area (LUTs)	Delay (ns)	Mean Accuracy reduction per pixel (%)	Area (LUTs)	Delay (ns)
1.82	478	5921.5	0.00	50	903.42
4.96	42	921.08	3.11	22	573.44
0.82	43	1062.91	0.52	21	860.16
6.8	98	2361.6	4.25	45	767.23

Soft Error Injection

SC is more tolerant to fault injection

	Mean Accuracy reduction per pixel (%)					
	Conventional		Proposed Stochastic			
	Implementation		Implementation			
Soft Error	0%	10%	20%	0%	10%	20%
Median Filter	0.00	2.39	4.21	0.00	1.12	1.24
Contrast Stretching	0.00	10.42	18.69	3.11	6.81	9.69
Frame Segmentation	0.00	11.57	20.57	0.52	1.52	2.26
Edge Detection	0.00	8.76	18.48	4.25	5.12	7.26

Conclusion (SC)

- SC provides massive low area, parallelism, error tolerance
- Only suitable for low-precision
- High processing latency

- Exploiting correlation
 - improves accuracy by 37% on average
 - Reduction of 50-90% in area and 20-85% in delay

Conclusions

- Most applications tolerate imprecision
- Playing with accuracy is an effective way to save energy consumption
 - Word-length
 - Number representations, including exotic ones
- Not only computation, but also memory and transfers
- Run-time accuracy adaptation would increase energy efficiency even further
- Analytical accuracy models are key to scalability of exploration techniques