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ABSTRACT
A methodology is proposed for the design of robust structurally constrained con-
trollers for linear time-delay systems, focusing on decentralised and overlapping
fixed-order controllers for Multiple Input Multiple Output (MIMO) systems. The
methodology is grounded in a direct optimisation approach and relies on the minimi-
sation of the spectral abscissa and H∞ cost functions, as a function of the controller
or design parameters. First, an approach applicable to generic MIMO time-delay
systems is presented, which is based on imposing a suitable sparsity pattern with
the possibility of fixing elements in the controller parameterisation. Second, we show
that if the delay system to be controlled has by itself the structure of a network of
coupled identical subsystems, this structure can then be exploited by an improved
algorithm for the design of decentralised (or overlapping) fixed-order controllers for
the infinite-dimensional system, thereby increasing the computational efficiency and
scalability with the number of subsystems. The two approaches, which have been
implemented in a publicly available software, support system models in terms of
delay differential algebraic equations. They allow to model interconnected systems
in a systematic way, and include retarded and neutral systems with delays in state,
inputs and outputs. Several numerical examples illustrate the effectiveness of the
methodology, as well as its extension towards consensus type problems.

KEYWORDS
robust control, structured controllers, time-delay systems, large-scale
interconnected systems.
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1. Introduction

In this paper we address the design of structurally constrained stabilising and H∞
optimal controllers for large-scale linear systems with time-delays, including systems
having a network structure. Time-delays are present in the system model as the trans-
fer of energy, material or information is usually not instantaneous. They appear, for
instance, as computation and communication lags, they model the transport phenom-
ena and heredity, and arise as feedback delays in control loops (Michiels, Hilhorst,
Pipeleers, Vyhĺıdal, & Swevers, 2017). For large-scale multiple-input, MIMO systems,
it is often infeasible or costly to implement centralised controllers (see (Siljak, 1991),
(Lunze, 1992) and references within). As a consequence, structurally constrained con-
trollers, in particular decentralised or distributed (PID) controllers, are favourable for
industrial applications (McMillan, 2012).

Traditional methods for designing stabilising and optimal H∞ controllers for linear
time-invariant (LTI) MIMO are grounded in the Riccati equation and linear matrix
inequality (LMI) framework (see (Gahinet & Apkarian, 1994), (Fridman, 2014), and
references therein). In general, controllers designed by these methods are not struc-
tured and their dimension is equal or larger than the order of the plant. The problem
addressed in this paper is characterised by two main challenges. First, with the afore-
mentioned approaches imposing constraints on the structure or order of the controller
gives rise to non-convex bi-linear matrix inequalities, which are difficult to solve. Sec-
ond, by including delays the system models become infinite-dimensional (Michiels et
al., 2017), hence, any controller design problem involving tuning of finitely many con-
troller parameters can be considered as a reduced-order controller design problem.

The methodology used in this paper is grounded in the direct optimisation approach
for controller design, where objective functions specifying performance criteria are di-
rectly optimised as a function of the available controller or design parameters. More
specifically, the stabilisation and robust controller design problem for the delay sys-
tem are translated into solving the, in general, non-smooth non-convex optimisation
problems of minimising the spectral abscissa function and H∞ norms (see (Michiels,
2011) and (Gumussoy & Michiels, 2011) respectively) using dedicated optimisation
algorithms. This approach generalises the one underlying the HIFOO package (Burke,
Henrion, Lewis, & Overton, 2006) and the one underlying the MATLAB function
hinfstruct (Apkarian & Noll, 2006), both for finite-dimensional LTI systems.

The subject-matter of this paper is two-fold. First, the direct optimisation approach
for designing fixed-order H∞ optimal controller for time-delay systems is extended to-
wards a more general class of structured controllers for MIMO systems, which includes
decentralised and overlapping controllers (recalling from (Dileep, Michiels, Hetel, &
Richard, 2018)). We assume that controllers are overlapping when they consider mea-
sured output from neighbouring subsystems. Hereby the structural constraints are
translated into sparsity patterns for the controller parameterisation, as done in (Ozer
& Iftar, 2015) for the stabilisation problem. The approach starts from a state space
representation and fully exploits properties of delay systems. Particularly for neutral
type systems with multiple delays, it explicitly takes into account the fragility (prob-
lem) of potential sensitivity of the spectral abscissa and H∞ norms with respect to
infinitesimal delay perturbations (Hale & Verduyn Lunel, 2002; Michiels, Vyhĺıdal,
Ziték, Nijmeijer, & Henrion, 2009). The adopted approach complements the generic
approach for infinite-dimensional systems in (Apkarian & Noll, 2017), which is based
on appropriately sampling the frequency response. Finally we notice that the tun-
ing of decentralised PID controller for flexible structures in (Shi, Davison, Kwong, &
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Davison, 2016) also falls within the direct optimisation approach. We also point to
(Alavian & Rotkowitz, 2015, 2013) and the references therein, where it is shown how
for particular combinations of LTI plants and admissible controllers, the H∞ design
problem can still be recast as a convex optimisation problem.
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Figure 1. Classes of systems under consideration. Section 3.3 presents an approach for the design of structured

controllers for generic MIMO systems (shown in Fig. 1a for the special case of decentralised feedback control).
In Section 4 an improved approach is presented for a class of systems having a network structure (Fig. 1b).

Second, as the main contribution we consider systems which have themselves a net-
work structure, and show how in the design of classes of decentralized and distributed
fixed-order controllers the structure of the overall system can be exploited by a refined
method, in order to arrive at a higher computational efficiency, and improved scala-
bility with respect to the number of subsystems. More precisely, we will assume that
the MIMO system consists of a network of coupled identical subsystems, each of them
having an identical local controller to be designed. The key will be a decoupling trans-
formation reducing the overall design problem into a robust/simultaneous controller
design problem for one parameterised subsystem, where the allowable values of the
parameter are related to the adjacency matrix of the network graph. The same kind
of transformation has been used for the design of full order distributed controllers for
delay-free systems in (Massioni & Verhaegen, 2009), within an LMI framework. It has
also proven its usefulness in the analysis of linear consensus problems (see, e.g. (Olfati-
Saber & Murray, 2004) and the references therein), and of network synchronisation,
as it lays at the basis of the so-called Master Stability Function (Pecora & Carroll,
1998).

The presented algorithms for structurally constrained controller design, with the
possibility of network exploitation, have been integrated in the existing software tool
tds_hopt for fixed-order H∞ optimisation of delay systems corresponding to the ar-
ticle (Gumussoy & Michiels, 2011). The improved software tool (tds_hopt-nse, see
(Dileep & Michiels, 2018)) allows the designer to select the sub-controller input-output
interactions and specify their orders. Additionally, the user can also specify the ad-
jacency matrix and other matrices corresponding to the input or output signals ex-
changed between coupled subsystems.

Both presented methods start from system models in terms of linear delay-
differential algebraic equations (DDAEs), which are very flexible and general as they
allow a systematic description of (sub)-systems, controllers and their interconnections.
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Furthermore, as we shall see in Section 2, DDAE models include delay systems of both
retarded and neutral type and preserve linearity of system matrices with respect to
the controller parameters in the closed-loop system description. We will also illustrate
how, relying on the DDAE framework mentioned above, the applicability of the design
method can be extended towards synchronisation and consensus type problems in net-
works of delay-coupled systems. This involves the design of feedback controllers acting
on output measurements, relative with respect to the output of other subsystems. The
targeted classes of systems, related to the two main contributions mentioned above,
are illustrated in Fig. 1.

The remainder of the paper is organised as follows. Section 2 introduces the class of
DDAE models and Section 3 reviews the direct optimisation approach for designing
fixed-order controllers for time-delay systems. In Section 3.3, its extension towards the
design of structurally constrained controllers, focusing on decentralised and overlap-
ping controllers, is presented (recalling from (Dileep et al., 2018)). Section 4 addresses
the main contribution for networks of interconnected systems, and the exploitation
of the network structure. Some numerical examples are presented in Section 5, where
as an example of a consensus-type problem, the control of a model for a platoon of
vehicles is considered. Finally, some concluding remarks are given in Section 6.

2. Preliminaries

In this work we consider plants described by delay differential algebraic equations

P :


Epẋp(t) = Ap0xp(t) +

∑m
i=1Apixp(t− τi) +Bp1u(t) +Bp2w(t),

y(t) = Cp1xp(t),

z(t) = Cp2xp(t),

(1)

where xp(t) ∈ Rnp is the instantaneous state vector at time t. Similarly, u(t) ∈ Rnu
and y(t) ∈ Rny are instantaneous controlled input and measured output vectors at
time t, whereas the instantaneous exogenous input and the instantaneous exogenous
(or controlled) output are represented as w(t) ∈ Rnw and z(t) ∈ Rnz respectively.
We use the notations R, R+ and R+

0 to represent sets of real numbers, non-negative
real numbers and strictly positive real numbers respectively, and xp ∈ Rnp is a short
notation for (xp1, ..., xpnp). There are m distinct time-delays present in the state vector,
where m is a positive integer. Throughout this paper, A, B, C, D and E (with or
without subscript) will be used to represent constant real-valued matrices. We allow
the leading matrix Ep in (1) to be singular. The time-delays satisfy 0 < τi ≤ τmax.

Even without the presence of the feed-through terms, input delays or output delays,
the model given by (1) allows to describe LTI systems with discrete delays in their
most general form, including systems of retarded and neutral type, delays in input and
output, non-trivial feed-through, and delayed interconnections of subsystems. This is
portrayed with the help of a simple example below (we refer to (Dileep et al., 2018)
for more examples). Furthermore, as differential equations and algebraic equations
modelling connections can be directly included in (1), the latter is very amendable for
modelling interconnected systems.

Example 2.1. Let us consider the presence of time-delays at the controlled input, the
measured output and the first-order derivative of the state vector in an LTI system (a
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neutral type time-delay system),{
ψ̇(t) + e1ψ̇(t− φ) = aψ(t) + b0u(t) + b1u(t− φ̄),

y(t) = c0ψ(t) + c1ψ(t− φ̂) + du(t),
(2)

where a, b0, b1, e1, d, c0 and c1 are constants, φ, φ̄ and φ̂ are constant time-delays, ψ is
the state, u is the input, and y is the output. Using dummy variables γψ, γu and γy,
we can rewrite the system as

γ̇ψ(t) = aψ(t) + b0γu(t) + b1γu(t− φ̄),

0 = −γψ(t) + ψ(t) + e1ψ(t− φ),

0 = −γu(t) + u(t),

0 = −γy(t) + c0ψ(t) + c1ψ(t− φ̂) + dγu(t),

y(t) = γy(t).

(3)

The dummy variables γψ, γu and γy , defined by the 2nd-4th equations in (3), allow to
move a delay in the derivative of the state variable (inherent to a neutral type system),
in the input and the output to a delay in a (pseudo) state variable, and then remove
the feed-through term from the output equation. That is, by defining the new state
vector as xp(t) = [γT

ψ (t) ψT(t) γT
u (t) γT

y (t)]T, the LTI system (2) can be turned into

form (1). ◦

The system described in (1) can be controlled using a feedback controller with
prescribed order “nc”,

K :

{
ẋc(t) = Acxc(t) +Bcy(t),

u(t) = Ccxc(t) +Dcy(t),
(4)

where xc(t) ∈ Rnc is the controller state vector. Here, the case of nc = 0 corresponds
to a static or proportional controller of the form u(t) = Dc y(t). The other cases of
nc ≥ 1 corresponds to that of a dynamic controller as given in (4), where Ac is a
matrix of size nc × nc.

The feedback interconnection of plant (1) and controller (4) can be described, when
defining x = [xT

p u
TγT

wx
T
c y

T]T, by the following DDAE,{
Eẋ(t) = A0x(t) +

∑m
i=1Aix(t− τi) +Bw(t),

z(t) = Cx(t),
(5)

where

E =


Ep 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 I 0
0 0 0 0 0

 , A0 =


Ap0 Bp1 Bp2 0 0
Cp1 0 0 0 −I
0 0 −I 0 0
0 0 0 Ac Bc
0 −I 0 Cc Dc

 . (6)
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and

Ai =


Api 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , B =


0
0
I
0
0

 , CT =


Cp2
0
0
0
0

 .

The price to pay for the generality of system description (1) is that also classes of
non-causal systems and systems with impulsive solutions are included. For the former,
consider as an example system{

ẋ1(t) = −x1(t) + x2(t),
0 = x1(t) + x2(t− 2).

In order to exclude such systems, in the remainder of the paper we take the following
assumption for well-posedness which is satisfied in most practical cases of interest.

Assumption 1. Matrix UT (Ap0 +Bp1DcCp1)V is invertible, where the columns of U
and V form a minimal basis for the left and right null space of matrix Ep respectively.

This assumption, which corresponds to a rephrasing of Assumption 3.1 in (Gu-
mussoy & Michiels, 2011) (see appendix for proof), ensures that DDAE (1) without
inputs is semi-explicit (differentiation index equal to 1), and that this property is not
altered by the feedback. We refer to (Gumussoy & Michiels, 2011) for more details.
Throughout this paper, we assume that plants of the form (1) can be stabilised using
a fixed-order controller of the form (4).

3. Fixed-order controller design

We build on the approach of (Michiels, 2011), (Gumussoy & Michiels, 2011) and
(Dileep et al., 2018) to stabilise and subsequently optimise the robustness of the closed-
loop system. We directly optimise stability and performance measures as a function of
the parameter vector p, containing the tunable parameters of the controller, that is,

p = vec

([
Ac Bc
Cc Dc

])
(7)

for a non-structured controller of dimension nc.The objective functions used for opti-
misation of the controller parameters are described in the following subsections.

3.1. Robust spectral abscissa optimisation

The spectral abscissa of the closed-loop system (5) with w ≡ 0 is defined as follows,

c(p; τ ) = sup
λ∈C
{R(λ) : det∆(λ,p; τ ) = 0}, (8)
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where

∆(λ,p; τ ) = λE −A0(p)−
m∑
i=1

Aie
−λτi ,

τ ∈ (R+
0 )m is the vector of system time-delays, and R(λ) is the real part of the

complex number λ. We use the notation m(a; b) throughout this paper to indicate
m as a function of variable a, depending on parameter b. The exponential stability
of the null solution of (5) is determined by the condition c(p; τ ) < 0 (see (Michiels,
2011)). However, the function τ 7→ c(p; τ ) might not be continuous and could be
sensitive to infinitesimal delay changes (in general, as neutral time-delay system could
be included in model (1)). Therefore, we define the robust spectral abscissa C(p; τ ) as
in the following way,

C(p; τ ) := lim
ε→0+

sup
τε∈B(τ ,ε)

c(p; τε). (9)

In (9), B(τ , ε) is an open ball of radius ε ∈ R+ centered at τ , B(τ , ε) := {θ̄ ∈ Rm :
||θ̄−τ || < ε}. The sensitivity of the spectral abscissa with respect to infinitesimal delay
perturbations has been resolved by considering the robust spectral abscissa, since this
function can be shown to be a continuous function of the delay parameters (and also
parameters in p), see (Michiels, 2011). We now define the concept of strong exponential
stability.

Definition 1: The null solution of (5) when w ≡ 0 is strongly exponentially stable if
there exists a number ε > 0 such that the null solution of

Eẋ(t) = A0x(t) +

m∑
i=1

Aix(t− (τi + δτi)))

is exponentially stable for all δτ ∈ Rm satisfying ||δτ || < ε and τi + δτi ≥ 0, i =
1, ....,m.

In (Michiels, 2011) it has been shown that the null solution is strongly exponentially
stable iff C(p) < 0. Note that we stress the dependence of functions on τ only when
necessary. However, for the optimisation problem, the objective function only has
controller parameters (p) as variables. To obtain a strongly exponentially stable closed-
loop system and to maximise the exponential decay rate of the solutions, the tunable
controller parameters (in p) are optimised for minimum robust spectral abscissa, that
is, they are obtained by minimising

min
p
C(p). (10)

3.2. Strong H∞ norm optimisation

The transfer function from w to z of the system represented by (5) is given by

G(λ,p; τ ) := C
(
λE −A0(p)−

m∑
i=1

Aie
−λτi

)−1
B. (11)
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Under assumption of internal stability, the H∞ norm of the transfer function given in
(11) can be expressed as

||G(jω,p; τ )||H∞ = sup
ω∈R

σ1(G(jω,p; τ )). (12)

However, similar to the spectral abscissa function, the function τ ∈ (R+
0 )m 7→

||G(jω,p; τ )||H∞ might not be continuous and could be sensitive to infinitesimal delay
changes (in general, inherited from the behaviour of the transfer function at high fre-
quencies). Therefore, under the assumption of strong exponential stability of the null
solution, we define the strong H∞ norm |||G(jω,p; τ )|||H∞ .

|||G(jω,p; τ )|||H∞ := lim
ε→0+

sup
τε∈B(τ ,ε)

||G(jω,p; τε)||H∞ (13)

Contrary to the (standard) H∞ norm, the strong H∞ norm continuously depends on
the delay parameter. The continuous dependence also holds with respect to the ele-
ments of the system matrices, which include the elements in p, as shown in (Gumussoy
& Michiels, 2011).
To improve robustness or performance expressed in terms of the H∞ norm of (12),
tunable controller parameters (in p) can be optimised by solving the problem

min
p
|||G(jω,p)|||H∞ . (14)

Finally, recall that if the closed-loop system corresponds to a delay system of retarded
type, the robust spectral abscissa and strong H∞ norm reduce to the standard spectral
abscissa and H∞ norm (see (Michiels, 2011) and (Gumussoy & Michiels, 2011)).

3.3. Design of structurally constrained controllers

Several kinds of structurally constrained controllers can be obtained by enforcing con-
straints on elements of the controller matrices contained in

PM :=

[
Ac Bc
Cc Dc

]
and only use the free parameters as variables in the optimisation problem described
in the previous section (see (Dileep et al., 2018) for more details). For decentralised
and overlapping controllers this amounts to introducing a sparsity pattern, as can be
portrayed with the help of the following example.

Example 3.1. Consider a MIMO system containing two control inputs and two mea-
sured outputs, and a controller parameterised in the following way:


ẋc1
ẋc2
u1

u2

 =

PM︷ ︸︸ ︷
ac11 0 bc11 0
0 ac22 bc21 bc22
cc11 0 dc11 0
0 cc22 dc21 dc22



xc1
xc2
y1

y2

 . (15)
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The controller is of order 2 (nc = 2), however, two sub-controllers of order 1 are
present. We can observe that if the elements bc21 and dc21 are set be zero, we have
decentralised sub-controllers, that is, interactions between their states, inputs, and
outputs are decoupled. If elements bc21 and dc21 are non-zero, the sub-controllers are
overlapping, that is, the input and sub-controller state interactions are decoupled, but
one of the measured output is shared between the two sub-controllers. ◦

The sparsity pattern can be described by a binary matrix FM of the same dimensions
as PM , whose (i, j)-th element satisfies

fMij =

{
0, if pMij is an optimisation variable;

1, if pMij is a fixed element.
(16)

This allows us to redefine the parameter vector from (7) to include only the non-
zero/non-fixed elements using information in FM ,

p = vec
FM

PM = vec
FM

[
Ac Bc
Cc Dc

]
, (17)

where vecFM PM is a vector containing the elements of PM for which the corresponding
element in FM is equal to one, keeping the same order as in vec PM .

In the MATLAB tool corresponding to this article (Dileep & Michiels, 2018), the
user has the option to either specify FM directly, or, for the case of decentralised and
overlapping controllers, specify two interaction matrices MCu and MCy . These matri-
ces denote the interaction between input, output and sub-controllers, The controller
parameters (in p) can also be optimised for the function fo(p),

fo(p) =

{
∞, if C(p) ≥ 0,

α C(p) + (1− α) |||G(jω,p)|||H∞ , if C(p) < 0.
(18)

Here 0 ≤ α ≤ 1 is the weight used for linear combination of the objective functions.
The two objective functions in this combination are in general non-convex. They may
be not-everywhere differentiable, even not-everywhere Lipschitz continuous, see (Gu-
mussoy & Michiels, 2011; Michiels, 2011) where using the same approach (unstruc-
tured) fixed-order controllers are designed. In our implementation the HANSO code
(Hybrid Algorithm for Non-smooth Optimisation, see (Overton, 2009)) is used for solv-
ing the optimisation tasks. The algorithm relies on a routine for the computation of
the considered objective function as well as its gradient whenever the objective func-
tion is differentiable. The value of the objective function is obtained by computing
rightmost eigenvalues of the DDAE for the spectral abscissa, and by a generalisa-
tion of the Boyd-Balakrishnan-Kabamba (Boyd, Balakrishnan, & Kabamba, 1989) /
Bruinsma-Steinbuch (Bruinsma & Steinbuch, 1990) algorithm for the H∞ norm, re-
lying on computing imaginary axis solutions of an associated Hamiltonian eigenvalue
problem. It typically constitutes the dominant computational cost in every iteration.
On the contrary, derivatives of the objective functions with respect to controller pa-
rameters are obtained at a negligible cost from left and right eigenvectors. By this
property and by the fact that fixed-order controllers of lower order are desirable for
application, reducing the number of variables beyond the imposed structure, e.g., by
working with canonical forms, does not have a considerable impact on the overall
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computational cost. We refer to (Gumussoy & Michiels, 2011; Michiels, 2011) and the
references therein for more information on the previously described algorithmic com-
ponents.
A strongly exponentially stable closed-loop system is required to start the optimisation
of objective functions involving the strong H∞ norm. If this is not the case, a prelimi-
nary stabilisation phase is performed based on optimising the robust spectral abscissa.
Due to the non-convexity of the objective functions, there is no guarantee of conver-
gence to the global minimum. In our software, this is addressed by using randomly
generated initial values for the controller parameters, along with initial controllers
specified by the user, and choosing the best solution from them.

Remark. It is also possible to design other type of controllers by imposing sparsity
or fixing elements in the parameterisation of the unstructured controller. A kind of
distributed controller can be considered by including the off-diagonal blocks (or ele-
ments) of the Ac matrix in the vector p. In (Dileep et al., 2018), structural constraints
in a dynamic controller were used to represent a PID controller. �

4. Exploiting network structure of systems

We improve the generic approach presented in Section 3.3 for the case of designing a
decentralised (or overlapping) controller for a special class of systems. These systems
have some network structure, consisting of identical subsystems to be controlled by
identical local controllers, see Fig. 1b.

More precisely, we consider a network described by a directed graph G = {V, E , AM}
with a set of nodes V = {1, 2, 3, ...., n} and a set of edges E ⊂ V × V. The edge
(i, j) ∈ E connects from node j ∈ V to node i ∈ V. The graph G need not be strongly
connected. However, we assume that the graph is simple, which means that there is
no self coupling. We denote by

AM = [aMij ]
n
i,j=1

the weighted adjacency matrix with zero diagonal entries and non-negative off-diagonal
entries such that aMij > 0 if and only if the corresponding edge (i, j) ∈ E .

Each of the n nodes hosts a dynamical system described by a DDAE as
Êpẋpi(t) = Âp0xpi(t) +

∑m
k=1 Âpkxpi(t− τk) + B̂p1ui(t) + B̂p2wi(t) + B̂p3uci(t),

yi(t) = Ĉp1xpi(t),

zi(t) = Ĉp2xpi(t),

yci(t) = Ĉp3xpi(t), i = 1, . . . , n,

(19)

where xpi ∈ Rn̂p is the state, ui ∈ Rn̂u is the controlled input, yi ∈ Rn̂y is the measured
output, wi ∈ Rn̂w is the exogenous input, and zi ∈ Rn̂z is the exogenous output of
node “i”. The additional input uci ∈ Rnuc and output yci ∈ Rnyc are related to the
coupling with other nodes/subsystems in the network, described by

uci(t) =

n∑
j=1

aMijycj(t), i = 1, . . . , n. (20)
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For the same reason as that of (1), (19) is in the most general DDAE form (Êp can
be singular). We consider the case where a system of the form (1) is composed of
subsystems of the form (19) and (20). We assume that each subsystem is controlled
using a fixed-order LTI feedback controller of the form{

ẋci(t) = Âcxci(t) + B̂cyi(t),

ui(t) = Ĉcxci(t) + D̂cyi(t).
(21)

Defining xi(t) = [xT
pi(t) u

T
i (t) γT

wi x
T
ci(t) y

T
i (t)]T, the closed-loop system state xi ∈ Rncl

which includes the plant and controller can be written in the DDAE form as{
Êẋi(t) = Â0xi(t) +

∑m
k=1 Âkxi(t− τk) +

∑n
j=1 aMijB̂Ĉxj(t) + B̂2wi(t)

zi(t) = Ĉ2xi(t), i = 1, . . . , n,
(22)

where

Ê =


Êp 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 I 0
0 0 0 0 0

 , Â0 =


Âp0 B̂p1 B̂p2 0 0

Ĉp1 0 0 0 −I
0 0 −I 0 0

0 0 0 Âc B̂c
0 −I 0 Ĉc D̂c

 (23)

and

Âk =


Âpk 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 B̂ =


B̂p3
0
0
0
0

 ; ĈT =


Ĉp3
0
0
0
0

 B̂2 =


0
0
I
0
0

 ; ĈT
2 =


Ĉp2
0
0
0
0

 .

The state-space representation for the overall structured system then takes the form

I ⊗ Ê


ẋ1(t)
ẋ2(t)

...
ẋn(t)

 = I ⊗ Â0


x1(t)
x2(t)

...
xn(t)

+

m∑
k=1

I ⊗ Âk


x1(t− τk)
x2(t− τk)

...
xn(t− τk)



+AM ⊗ B̂Ĉ


x1(t)
x2(t)

...
xn(t)

+ I ⊗ B̂2


w1(t)
w2(t)

...
wn(t)

 ,

z1(t)
z2(t)

...
zn(t)

 = I ⊗ Ĉ2


x1(t)
x2(t)

...
xn(t)

 .
(24)

In the following subsections, we describe how the model in (24) can be decomposed
for stability and robustness optimisation.
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4.1. Decoupling for the stabilisation problem

Based on the (complex) Schur decomposition theorem (see (Meyer, 2000)), there al-
ways exists a unitary transformation matrix T ∈ Cn×n and an upper-triangular matrix
Z ∈ Cn×n such that

TAMT
−1 = Z. (25)

Note that spectrum of AM appears on the diagonal of Z. Let us consider the whole
system where w(t) ∈ Rn·n̂w and z(t) ∈ Rn·n̂z are the exogenous input and output
respectively, and x(t) ∈ Rn·ncl and x̄(t) ∈ Rn·ncl are the state before and after the
transformation respectively. Also, w(t) = [wT

1 (t) ... wT
n (t)]T, z(t) = [zT

1 (t) ... zT
n (t)]T,

x(t) = [xT
1 (t) ... xT

n (t)]T, and x̄(t) = [x̄T
1 (t) ... x̄T

n (t)]T . If we apply the transformation

using T̂ (that is, x(t) = T̂−1x̄(t)) to (24), where T̂ = T ⊗ I, we obtain the equation

(I ⊗ Ê) ˙̄x(t) = (I ⊗ Â0)x̄(t) +

m∑
k=1

(I ⊗ Âk)x̄(t− τk) + (Z ⊗ B̂Ĉ)x̄(t)

+ T̂ (I ⊗ B̂2)︸ ︷︷ ︸
(I⊗B̂2)T̂

w(t), z(t) = (I ⊗ Ĉ2)T̂−1︸ ︷︷ ︸
T̂−1(I⊗Ĉ2)

x̄(t).
(26)

Note that this transformation does not affect Â0, Âk or Ê because of the property

T̂ (I ⊗ Â0)T̂−1 = (T ⊗ I)(I ⊗ Â0)(T−1 ⊗ I) = TT−1 ⊗ Â0.

Observing that for zero exogenous input, (26) has a cascaded structure, the following
theorem directly follows.

Theorem 4.1. Let the spectrum of AM be denoted by {λa1, . . . , λam}. System (26)
with w ≡ 0 is exponentially stable if and only if the system

Ê ˙̄xi(t) =
(
Â0 + λaiB̂Ĉ

)
x̄i(t) +

m∑
k=1

Âkx̄i(t− τk) (27)

is exponentially stable ∀ i ∈ {1, ..., n}. Moreover we have C(p) = max1≤i≤n C̃(p, λai),

where C̃(p, λai) is the robust spectral abscissa of (27).

Proof. The assertions follow from the block-triangular structure of (26), with (27)
appearing as a diagonal block, and from the corresponding structure of the associated
eigenvalue problem.

4.2. Decoupling for the H∞ optimisation problem

Now we focus on the decomposition of the system norms, under an additional assump-
tion, for G(s) defined as the transfer function of (24) from w to z. We start by stating
this assumption (recall that a matrix T is unitary if T ∗T = TT ∗ = I).

Assumption 2. There exists a unitary transformation matrix T such that
TAMT

−1 = Λa, with Λa = diag(λa1, . . . , λan).

13



We now arrive at the main theorem.

Theorem 4.2. If Assumption 2 is satisfied, then we can express

||G(jω,p)||H∞ = max
i∈{1,..,n}

||G̃(jω,p;λai)||H∞ (28)

and

||G(jω,p)||H2
=

√√√√ n∑
i=1

||G̃(jω,p;λai)||2H2
, (29)

where G̃(jω,p;λai), i = 1, . . . , n, is the transfer function of system

Ê ˙̄xi(t) =
(
Â0 + λaiB̂Ĉ

)
x̄i(t) +

m∑
k=1

Âkx̄i(t− τk) + B̂2w̄i(t), z̄i(t) = Ĉ2x̄i(t). (30)

Proof. When choosing T in (25) according to Assumption 2, the transformation to
(26) can be done with Z = Λa. Since Λa is a diagonal matrix, system (26) can be
fully decoupled. However, input and output signals get mixed. We can express this
decoupling as

G(s) = T̂−1Ḡ(s)T̂ , (31)

where T̂ = T ⊗ I, with

Ḡ(s) =

G̃(s,p;λa1) . . . 0
...

. . .
...

0 . . . G̃(s,p;λan)

 . (32)

Since T̂ is a unitary matrix (T̂ T̂ ∗ = T̂ ∗T̂ = I), induced by T being unitary from
Assumption 2, we get(

T̂−1Ḡ(s)T̂
)∗ (

T̂−1Ḡ(s)T̂
)

= T̂
∗ (
Ḡ
∗

(s)Ḡ(s)
)
T̂ ,

having the same spectrum as Ḡ∗(s)Ḡ(s). In this way, we obtain

||G(s)||H∞ = ||Ḡ(s)||H∞ , ||G(s)||H2
= ||Ḡ(s)||H2

.

The assertion regarding the H∞ norm directly follows. For the H2 norm we get

||Ḡ(s)||H2
=

√
1

2π

∫ +∞

−∞
trace[Ḡ∗(jω)Ḡ(jω)]dω

=

√√√√ n∑
i=1

1

2π

∫ +∞

−∞
trace[G̃(jω;λai)∗G̃(jω;λai)]dω

(33)
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and the proof is complete.

It is important to observe that equation (30) can be interpreted as the closed-loop
system formed by (19)-(21), provided coupling (20) is replaced with uci(t) = λaiyci(t).
Hence, the decoupling (on which Theorem 4.2 is based) can be visualised as in Fig. 2.

u1

y1

y2

u2

u4

y3

u3

y4

z2

w2

z1

w1

w4

z3

w3

z4

P

P

P

P

K

K

K

K

......

......

(a) Structured plant with identical sub-
systems and controllers.

λai are the eigenvalues of AM , where

i ∈ {1, 2, ..., n}.

K

λai

w̄i z̄i
P

(b) Decoupled equivalent system.

Figure 2. Decoupling of the structured plant of identical subsystems. The relation between their stability

properties and their system norms of the transfer functions from w to z (and w̄ to z̄), are described by

Theorems 4.1 and 4.2.

4.3. Discussion

The stabilisation and H∞ optimisation problem of (24) can be turned into a simulta-
neous stabilisation and H∞ optimisation problem of n plants of form (27), to optimise

the controller parameters contained in matrix Â0, using Theorems 4.1-4.2. This is par-
ticularly useful for the adopted direct optimisation approach. Recall that the dominant
computational cost of evaluating the robust spectral abscissa and the strong H∞ norm
amounts to computing the rightmost eigenvalues of a DDAE and the imaginary axis
solutions of an associated Hamiltonian eigenvalue problem respectively. In both cases
the number of operations with the algorithms proposed in (Michiels, 2011) and the
references therein scales with the cube of the dimension, leading to a reduction from
O((n · ncl)3) to O(n · (ncl)3). Moreover, one can also interpret (30) as an uncertain
system, where the uncertainty is contained in the eigenvalue parameter taking n dif-
ferent values. When handling this “uncertainty” using methods from robust control,
similarly as done in (D’Andrea & Dullerud, 2003; Massioni & Verhaegen, 2010) for
delay-free systems, there is potential to arrive at scalable design methods whose cost
does not depend on the size of the network.

For the existence of the decoupling it is essential that the subsystems/nodes in G are
identical with respect to system dynamics. We also assume that the coupling features
are identical, including constant communication delays independent of the link (which
are “absorbed” in the DDAE model for the subsystems, as we shall illustrate in Section
5.3). For the relation between system norms expressed in Theorem 4.2, two additional
conditions are to be satisfied. First the transformation matrices used to diagonalise the
adjacency matrix must be unitary. Note that this is satisfied whenever the adjacency
matrix is symmetric, corresponding to symmetric bi-directional coupling, or circulant.

15



The (complex) Schur decomposition and spectral decomposition of a matrix coincide
when the matrix is a normal matrix. Second, one has to restrict to the induced norm
from w to z in the H∞ problem formulation, in which the exogenous inputs and
regulated outputs of the individual nodes are equally weighted.

The exploitation of the network structure, inferred from Theorem 4.1 (spectral
abscissa) and first part of Theorem 4.2 (H∞ norm) has been integrated in the publicly
available software as an additional feature to tds_hopt. It relies on modifying the
objective functions (9) and (13) accordingly.

4.4. Generalisations to distributed and overlapping controllers

The approach discussed in the previous subsections might be misconceived to be re-
stricted to the case of a fully decentralised control configuration. Due to the generality
of DDAEs in modelling interconnected systems, it is possible to include namely classes
of distributed and overlapping controllers in the framework sketched in the beginning
of Section 4. This is illustrated with the help of two examples.

Example 4.3. If we would modify system description (19)-(20) to

Êpẋpi(t) = Âp0xpi(t) +
∑mA

k=1 Âpkxpi(t− hAk ) + B̂p1ui(t) + B̂p2wi(t)

+[B̂p3 0]uci(t),
0 = −ξi(t) + ui(t)
0 = −ηi(t) + [0 I]uci(t)

yi(t) =

[
Ĉp1xpi(t)
ηi(t)

]
,

zi(t) = Ĉp2xpi(t),

yci(t) =

[
Ĉp3xpi(t)
ξi(t)

]
, i = 1, . . . , n,

(34)

and

uci(t) =

n∑
j=1

aMijycj(t), i = 1, . . . , n. (35)

where we consider the first three equations in (34) as the modified plant DDAE.
Now the seemingly decentralised controller of the form (21) would correspond to an
overlapping controller, whose input yi consists not only of the original plant’s output
Cp1xpi but also of the weighted average of the outputs generated by neighbouring
controllers. The latter can be seen from

ηi(t) =

n∑
j=1

aMijξj(t) =

n∑
j=1

aMijuj(t),

now we can use Theorems 4.1-4.2 to design robust controller for this example. ◦

Remark. In Section 5.3, we will consider the control of a model for the platoon of
vehicles. In this application, the coupling between systems is only realised through the
control. Such a control is of diffusive type (the controller in each vehicle is reacting
on relative distances and velocities with respect to neighbouring vehicles) resulting in
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overlapping controllers. We will show that the model for the closed loop system can
still be turned into the form (19)-(21). �

Finally, the decomposition approach trivially extends to the case where the con-
trollers communicate their state to neighbouring controllers under the condition that
the interactions between different subsystems and the interactions between different
controllers are described by the same network,ẋci(t) = Âcxci(t) + B̂c1yi(t) + B̂c2

(∑
j aMijĈc2xcj(t− τ)

)
,

ui(t) = Ĉc1xci(t) + D̂c1yi(t) + D̂c2

(∑
j aMijĈc2xcj(t− τ)

)
,

with τ representing a transmission delay. However, after decoupling the system, the
i-th controller would become{

˙̄xci(t) = Âcx̄ci(t) + λaiB̂c2Ĉc2x̄ci(t− τ) + B̂c1ȳi(t),

ūi(t) = Ĉc1x̄ci(t) + λaiDc2Ĉc2x̄ci(t− τ) + D̂c1ȳi(t),

and hence also depend on the eigenvalue parameter. This is consistent with (Massioni
& Verhaegen, 2009) for the delay-free case.

5. Numerical examples

We use some numerical examples to illustrate the network exploitation methodology
presented earlier.

5.1. A system with input and coupling delays

C(p = 0) = 0.8549

(a) No feedback

K

K

K K

K

C(p) = −3.3672

(b) ui = Kyi

K1

K3

K2 K4

K5

C(p) = −4.0846

(c) ui = Kiyi

Figure 3. Robust spectral abscissa computed for the example system and the closed-loop subsystems.

Consider the following system with a network structure,
ẋpi(t) =

[
0 0.5

0.5 −3

]
xpi(t) +

[
0

5

]
ui(t− 0.1) + Iuci(t− 0.3) +

[
1

1

]
w(t),

yi(t) =

[
1 1

0 1

]
xpi(t), yci(t) = Ixpi(t), uci(t) =

∑n
j=1 aMijxpj(t),

zi(t) = Ixpi(t), i = 1, ..., 5,

(36)
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whose adjacency matrix can be written as

AM =


0 0.5 0.5 0 0

0.5 0 0 0.5 0
0.5 0 0 0 0.5
0 0.5 0 0 0.5
0 0 0.5 0.5 0

 . (37)

Without control the system is unstable, with robust spectral abscissa equal to 0.8549.
The generic approach of Section 3.3 is used to design decentralised controllers of the
form

ui(t) = Kiyi(t), i = 1, ..., 5, (38)

using the following values (generated randomly) as starting points for optimisation,

K̃1 =
[
−0.8045 0.6966

]
, K̃2 =

[
0.8351 −0.2437

]
, K̃3 =

[
0.2157 −1.1658

]
,

K̃4 =
[
−1.1480 0.1049

]
, K̃5 =

[
0.7223 2.5855

]
,

(39)
leading to

K1 =
[
−10.2555 9.2164

]
, K2 =

[
−13.9911 12.3932

]
, K3 =

[
−14.3001 12.7874

]
,

K4 =
[
−11.3138 9.9052

]
, K5 =

[
−10.0127 9.1918

]
,

(40)
and a minimal robust spectral abscissa of −4.0846. Subsequently, using the methodol-
ogy of Section 4, a static stabilising controller was designed by minimising the (robust)
spectral abscissa, using the starting point (generated randomly) K̃ = [ 0.3188 −1.3077]
for optimisation, leading to

ui(t) = Kyi(t) =
[
−8.9481 7.7775

]
yi(t) (41)

and a minimal robust spectral abscissa of −3.3672. This value is greater than that of
the control law ui = Kiyi, because of the constraint that the gains are equal to each
other. In Fig. 3, the robust spectral abscissa values for the subsystems and controllers
are shown. Finally, the controller gains K and Ki, i = 1, ..., 5, were optimised for the
(strong)H∞ norm of the transfer function from w to z, to obtain K̆ and K̆i, i = 1, ..., 5.
The results are shown in Table 1, which illustrates a trade-off between performance
and robustness, expressed here in terms of the robust spectral abscissa and the H∞
norms respectively. As expected, we can also observe in Table 1 that the average time
required for computing the objective functions have been reduced considerably by
using the network structure exploitation approach (from 0.1079s to 0.0625s and from
13.676s to 1.7556s for spectral abscissa and H∞ norm evaluations respectively).

Fig. 4 shows the convergence of the optimisation problems through HANSO itera-
tions for the results given in Table 1. Due to the non-convexity of the problem, different
starting points could lead to different results and therefore different convergence pro-
files (including the number of iterations or function evaluations). In the optimisation
process, HANSO might perform multiple objective function evaluations within one
iteration. For more details on the controllers and other results presented in this paper,

1Average time taken (MATLAB tic-toc) for the objective function evaluation in the optimisation process.
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Table 1. Results obtained for simple numerical example using the two approaches
Simple numer-
ical example

Objective function H∞
norm

Spectral
abscissa

Function eval-
uations (No.)

Function
evaluation
time1(s)

No feedback — ∞ 0.8549 — —

ui = Kyi Robust spectral abscissa (α = 1) 3.2246 −3.3672 326 0.0625↓
ui = K̆yi Strong H∞ norm (α = 0) 2.7661↓ −2.1936↑ 38 1.7556↓
ui = Kiyi Robust spectral abscissa (α = 1) 2.8662 −4.0846 432 0.1079↑
ui = K̆iyi Strong H∞ norm (α = 0) 2.7580↓ −2.6168↑ 53 13.676↑

please refer to the complementary software package (Dileep & Michiels, 2018). The
tests were performed using an Intel R© CoreTMi7-6820HQ CPU at 2.7 GHz with 8GB
RAM.

0 50 100 150

−4

−2

0

2

HANSO iteration number

C
(p

)

ui = Kyi
ui = Kiyi

(a) Robust sectral abscissa optimisation.

0 5 10 15
2.6

2.8

3

3.2

HANSO iteration number

|||
G

(j
w
,p

)||
| H
∞

ui = K̆yi

ui = K̆iyi

(b) Strong H∞ norm optimisation.

Figure 4. Convergence profile of the optimisation process for (a) robust spectral abscissa (α = 1) and (b)

strong H∞ norm (α = 0) of the simple numerical example.

5.2. A neutral type time-delay system

Let us consider a neutral type time-delay system

[
0 1

0.5 2

]
ẋpi(t) +

[
0 0

0.2 1

]
ẋpi(t− 0.2) =

[
1 −0.5

0 2

]
xpi(t)

+

[
1

0

]
ui(t− 0.5) + Iuci(t− 0.3) +

[
1

1

]
w(t),

yi(t) =

[
1 1

0 1

]
xpi(t), yci(t) = Ixpi(t), uci(t) =

∑n
j=1 aMijxpj(t),

zi(t) = Ixpi(t), i = 1, ..., 5,

(42)

whose adjacency matrix is the same as in (37). Without control, this system is un-
stable with a robust spectral abscissa equal to 0.7927. However, using the approach
of network structure exploitation presented in Section 4, we were able to find a stab-
lising controller (optimising with α = 1) K̂ =

[
−0.8420 −3.2729

]
and subsequently

a robust controller (optimising with α = 0) K̄ =
[
−1.6118 −2.5654

]
. The results

corresponding to robust spectral abscissa and strong H∞ norm are given in Table 2.
In this example, the results have not been compared to the design approach using

2Average time taken (MATLAB tic-toc) for the objective function evaluation in the optimisation process.
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Table 2. Results obtained for neutral type time-delay system
Neutral type
system

Objective function H∞
norm

Spectral
abscissa

Function eval-
uations (No.)

Function
evaluation
time2(s)

No feedback — ∞ 0.7927 — —

ui = K̂yi Robust spectral abscissa (α = 1) 8.5494 −0.4870 96 0.80073
ui = K̄yi Strong H∞ norm (α = 0) 6.3943↓ −0.3719↑ 48 4.3647

structural constraints in the controller. The resulting conclusions were not found to
qualitatively differ from that presented in the previous example.

5.3. A consensus type problem

We consider a car-following problem involving n vehicles. We use a simplified vehicle
model from (Zheng, Li, Wang, Wang, & Li, 2014),

ṡi(t) = vi(t),

v̇i(t) = fi(t),

ḟi(t) = − 1

τc
fi(t) + ui(t− τ̆),

(43)

where fi(t), vi(t) and si(t) represents the acceleration force, velocity and position of
the vehicle i at the time t. The time constant of the vehicle engine (in (Stankovic,
Stanojevic, & Siljak, 2000; Zheng et al., 2014), and references therein) is denoted by
τc(= 0.4) and the overall delay in the control is denoted by τ̆(= 0.8s). We consider
position and velocity as outputs,

yi(t) =
[
si(t) vi(t)

]T
. (44)

This system can be rewritten in state space form (with ψi =
[
si vi fi

]T
) as

ψ̇i(t) =

0 1 0
0 0 1
0 0 − 1

τc


︸ ︷︷ ︸

Ag

ψi(t) +

0
0
1


︸︷︷︸
Bg

ui(t− τ̆), yi(t) =

[
0 1 0
0 0 1

]
︸ ︷︷ ︸

Cg

ψi(t).
(45)

Note that, without control, the stationary solutions of (43) can be parameterised by

si(t) = ski + vk t,

vi(t) = vk,

fi(t) = 0, vk, ski ∈ R,
(46)

where ski is the desired zero-velocity position and vk is the desired velocity. We consider
a network of n nodes, each node corresponding to a system/vehicle, and R ≥ 0 virtual
nodes, indexed by i ∈ {n+ 1, ..., n+R}. The dynamics of the virtual nodes, which are
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used to generate external reference trajectories (e.g., a leader), can be written as

ψ̇i(t) = Agψi(t),

yi(t) = Cgψi(t) ∀ i = n+ 1, ..., n+R.
(47)

We consider identical controllers in each vehicle that react on differences in position
and velocities with respect to neighbours (possibly including external reference
generated by the virtual nodes), more precisely we let3

ui(t) =K1

n+R∑
j=1
j 6=i

aMij (sj(t)− si(t)− dij)

+K2

n+R∑
j=1
j 6=i

aMij (vj(t)− vi(t)) , ∀ i ∈ {1, ..., n},

(48)

where we assume aMij ≥ 0, i = 1 . . . , n, j = 1, . . . , , n+R and

n+R∑
j=1

aMij = 1, i = 1, . . . , n.

The above set of equations describes diffusive coupling between systems, where dij is
the constant prescribed reference distance between the vehicles i and j.

5.3.1. Standard form

Let the function t ∈ R→ xri(t) be a reference trajectory for system i such that

ẋri(t) = Agxri(t) i = 1, . . . , n+R,
xri(t) = ψi(t), i = n+ 1, ..., n+R,

xri(t)− xrj(t) =
[
dij 0 0

]T
i, j ∈ 1, ..., n+R, t ≥ 0.

(49)

If we consider the new state as ψ̄i(t) = ψi(t)− xri(t) then we can reformulate (45) as

˙̄ψi(t) = Agψ̄i(t) +Bgui(t− τ̆),

ȳi(t) = Cgψ̄i(t),
(50)

since by definition ψi − xri = 0, i = n+ 1, ..., n+R, control law (48) becomes

ui(t) = K

 n∑
j=1

aMij (ȳj(t)− ȳi(t))−
n+R∑
j=n+1

aMij ȳi(t)


︸ ︷︷ ︸∑n

j=1 aMij ȳj(t)−ȳi(t)

, i = 1, . . . , n.
(51)

3In order to simplify notations and shorten the equations, we denote by u = K(s)y the application of a

feedback controller coupling y(t) to u(t) , whose transfer function is given by K(s).
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with K(s) = [K1(s) K2(s)]. Unlike in the standard form (19)-(21), system (50)-(51)
features input delay as well as controllers acting (partly) on differences in outputs.
However, using dummy variables (ν and ξ) we can rewrite (51) as

˙̄ψi(t) = Agψ̄i(t) +Bgνi(t− τ̆) + w(t)

0 = −νi(t) + ui(t)

0 = −ξi(t)− Cgψ̄i(t) + uci(t)

ȳi(t) = ξi(t)

yci(t) = Cgψ̄i(t)

z(t) =
[
0 1 0

]
ψ̄i(t)

, (52)

which is of form (19) with xpi =
[
ψ̄T
i (t) νT

i (t) ξT
i (t)

]T
, while the coupling becomes

uci(t) =

n∑
j=1

aMijycj(t), i = 1, . . . , n. (53)

The feedback is described in the Laplace domain by

ui(s) = K(s)ȳi(s), i = 1, . . . , n, (54)

where K(s) is the transfer function of the dynamic controller. We allow virtual nodes,
therefore, it is possible that

∑n
j=1 aMij ≤ 1.

5.3.2. Ring topology: consensus problem

For a ring configuration there are no virtual nodes (R = 0), and the adjacency matrix
is described by

AM1 =


0 . . . 0 1
1 . . . 0 0
...

. . .
...

...
0 . . . 1 0

 (55)

for unidirectional coupling, and by

AM2 =



0 0.5 0 . . . 0 0.5
0.5 0 0.5 . . . 0 0
0 0.5 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0.5

0.5 0 0 . . . 0.5 0

 (56)

for bidirectional coupling where the control is based on the average of the deviation
of speed and velocity with respect to the preceding and following vehicle.
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Without virtual nodes, the row-sum condition

n∑
j=1

aMij = 1, i = 1, . . . , n

is satisfied, hence, the adjacency matrix always has an eigenvalue equal to one (Michiels
& Nijmeijer, 2009). As shown in the appendix this implies that, independent of the
control, the closed-loop system (52)-(54) always has a double eigenvalue at zero. This
has a natural interpretation. We are dealing with a consensus problem, where every
solution of form (46) with vki independent of i and skj − ski = dij , correspond to a
stationary solution. If the remaining eigenvalues are in the open left half plane, the
reached consensus with respect to speed and the offset of the position component of
the limit solution depend on the initial condition and disturbances.
As a consequence of the above, the robust spectral abscissa for the closed-loop system
is always greater or equal to zero. However, to maximise the speed in which a consensus
is reached we optimise instead

C̆(p; τ ) := lim
ε→0+

sup
τε∈B(τ ,ε)

c̆(p; τε),

c̆(p) = max
1≤i≤n
i 6=k

{
sup
λ∈C
{R(λ) : det∆̃(λ;λai) = 0}

}
,

(57)

where ∆̃ is the characteristic matrix of (27) and k is such that λak = 1. When opti-
mising the above modified spectral abscissa for plant (52)-(54) and (56), with n = 5
and controller order nc = 1, we obtainẋci(t) =

[
−86.2588

]
xci(t) +

[
−249.5680 −48.9190

]
ȳi(t),

ui(t) =
[
−8.0038

]
xci(t) +

[
−23.8468 −4.7045

]
ȳi(t).

(58)

The corresponding rightmost eigenvalues are visualised in Fig. 5. In general, defining
any exogenous inputs and regulated outputs results in the strong H∞ norm for the
closed-loop system to be equal to infinity, due to the fact that the system does not
settle back to the original stationary solution after a perturbation.
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Figure 5. Optimised spectrum plotted for the consensus problem of five vehicles in a ring topology with
bidirectional communication links.
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5.3.3. Linear topology: mixed consensus/reference tracking problem

Let us now consider a linear platoon of vehicles. In case of unidirectional coupling, a
special treatment should be given to the first vehicle, which we can solve by adding
a virtual node (R 6= 0) that serves as a generator of the reference trajectory for this
vehicle. In this way we arrive at elements aMij contained in

AM3 =


0 . . . 0 0
1 . . . 0 0
...

. . .
...

...
0 . . . 1 0

 . (59)

All eigenvalues of AM3 are equal to zero, implying that the decomposition approach
leads to identical subsystems of form (30). The interpretation is as follows: for each
vehicle we have to solve the same control problem of tracking the outputs generated by
preceding vehicle. For bidirectional coupling, a special treatment should also be given
to the last vehicle, in order to preclude any asymmetry, and the adjacency matrix
takes the form

AM4 =



0 0.5 0 . . . 0 0
0.5 0 0.5 . . . 0 0
0 0.5 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0.5
0 0 0 . . . 0.5 0

 , (60)

where there exist virtual nodes (R 6= 0) communicating with the first and last nodes.

Table 3. Strong H∞ norm optimisation.
Example Feedback

control
Robust
spectral
abscissa

Strong H∞
norm

Platoon of four
vehicles

ui = K(s)ȳi −0.2103 20.5379

ui = K̆(s)ȳi −0.1648↑ 8.2504↓
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(a) ui = K(s)ȳi.
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(b) ui = K̆(s)ȳi.

Figure 6. The maximum singular value plot of the transfer function from w to z for the structured closed-loop
systems before and after the strong H∞ norm optimisation of the controller parameters.
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Table 4. Zero-velocity positions (ski as in (46)).
Vehicle “i” t ∈ [0, 10) t ∈ [10, 34) t ≥ 34

1 10 8 8
2 20 16 16
2b - - 24
3 30 32 32
4 40 40 40
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(a) Relative positions of the vehicles in linear platoon.
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(b) Velocities of the vehicles in linear platoon.

Figure 7. MATLAB simulation of a new vehicle merging into a platoon of 4 vehicles, where the vehicle

dynamics is adopted from the closed-loop system (52)-(54). The platoon makes way for the new vehicle at 10s
and Vehicle 2b joins the platoon at 34s.

We consider n = 4 vehicles and we first design controller K(s) in (51) as a dynamic LTI
controller of order 3 minimising the (robust) spectral abscissa, resulting in a spectral
abscissa of −0.2103. Subsequently, we use this controller as starting point to optimise
the (strong) H∞ norm of the transfer function from w to z for the system in (52) and

we obtain the robust controller K̆(s). The robust spectral abscissa and strong H∞
norm values obtained are shown in Table 3. The maximum singular value plots of the
transfer function from w to z for the structured closed-loop systems (ui = K(s)ȳi and

ui = K̆(s)ȳi) are shown in Fig. 6.

Finally, we consider the bidirectional coupling case and controller K̆(s) designed in
this subsection, to show the effect of adding a node. By switching the off-sets of the
reference trajectories and the relative distances dij appropriately, as in Table 4, we
simulate the merging of a new car in a platoon of 4 vehicles. Note that at the level
of equations (50), such switches correspond to jumps in the state-variables perturbing
the equilibrium. The results are visualised in Fig. 7a and Fig. 7b.

6. Conclusion

The problem of the decentralised/overlapping controller design for systems with time-
delays has been addressed in this article. A generic technique for LTI systems modelled
by DDAEs is presented, based on imposing sparsity constraints in the controller param-
eterisation, and a structure exploiting approach is proposed for networks of identical
systems and local controllers. By means of a case-study inspired by the control of a
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platoon of vehicles, the applicability to consensus type problems is shown, while also
illustrating the flexibility of the modelling framework and control technique.

The proposed direct optimization approach is a non-conservative technique for con-
troller design in the frequency domain, grounded in necessary and sufficient stability
conditions. The approach is flexible with respect to the structure that can be imposed
on the controller. Issues related non-convexity and non-smoothness of the optimisa-
tion problem in general (especially for H∞ norm) are still existent as in the centralised
setting. The non-smoothness is handled by using the special algorithm HANSO. With
respect to the non-convexity, the algorithm can converge to local optima which are not
global. The latter is mitigated by considering sufficiently large number of randomly
generated (or user specified) starting points for the optimisation problem.

A main direction for future research consists of further exploiting the decomposition
for classes of applications, aiming at a computational cost barely depending on the
network size. One of the starting points is the combination of the presented results
with the computation and optimization of structured pseudo-spectral abscissae, which
relate to necessary and sufficient robust stability conditions for broad classes of delay
systems (see, e.g., (Borgioli & Michiels, 2018)).
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Appendix A. Well posedness of the systems considered

In this section of appendix we refer to the Assumption 3.1 in (Gumussoy & Michiels,
2011) applied to the closed loop system (5) which reads as det(ŨTA0Ṽ ) 6= 0 where the
columns of matrix Ũ and Ṽ are the (minimal) basis for the right and left nullspace of
E respectively,

ŨTE = 0 and EṼ = 0.

This can be rephrased as the Assumption 1 mentioned in this paper, using the theorem
below.

Theorem A.1. Matrix UT (Ap0 + Bp1DcCp1)V being non-singular is equivalent to

ŨTA0Ṽ being non-singular.

Proof. We consider the following relations for U and V with Ũ and Ṽ respectively,

ŨT =


UT 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 0 I

 ; Ṽ =


V 0 0 0
0 I 0 0
0 0 I 0
0 0 0 0
0 0 0 I

 . (A1)

Using (23) and (A1) we can write the expression

M := ŨTA0Ṽ =


UTAp0V UTBp1 UTBp2 0
Cp1V 0 0 −I

0 0 −I 0
0 −I 0 Dc

 . (A2)
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The matrix ŨTA0Ṽ being invertible is equivalent to the block

X :=

 0 0 −I
0 −I 0
−I 0 Dc

 (A3)

and the Schur complement (M/X) of the block X of the matrix M being invertible.
We can see that X is always invertible (independent of Dc) due to its structure. M/X
is invertible if

M/X = UTAp0V −
[
UTBp1 UTBp2 0

]
X−1

Cp1V0
0


= UTAp0V + UTBp1DcCp1V

(A4)

is invertible. The proof is complete.

Appendix B. Vehicular platoon in a ring network topology

In this section of the appendix we show that the closed-loop system (52)-(54) in a ring
configuration has double zero eigenvalues, independent of the control.

Theorem B.1. There always exist two zero eigenvalues for the closed-loop system of
a platoon of vehicles (52) in ring network topology and their controller(s), irrespective
of the controller parameters and the number of vehicles.

Proof. The closed-loop system can be written in the DDAE form of (22) for w ≡ 0 us-
ing (21) and (52). For this, we consider the new state xi(t) = [ψ̄T

pi(t) ν
T
i (t) ξT

i (t) xT
ci(t)]

T

,I 0 0 0
0 0 0 0

0 0 0 0
0 0 0 I

 ẋi(t) =

 Ag 0 0 0

0 −I D̂c Ĉc

−Cg 0 −I 0

0 0 B̂c Âc

xi(t) +

0 Bg 0 0
0 0 0 0

0 0 0 0

0 0 0 0

xi(t− τ̆) +

0
0

I

0

uci(t),
yci(t) = [Cg 0 0 0]xi(t).

(B1)

Now we can bring the above equation, supplemented with (53) in a decoupled form as
in (27), after the use of an appropriate transformation matrix,I 0 0 0

0 0 0 0
0 0 0 0

0 0 0 I

 ˙̄xi(t) =

 Ag 0 0 0

0 −I D̂c Ĉc

−Cg 0 −I 0

0 0 B̂c Âc

+ λai

 0 0 0 0

0 0 0 0
Cg 0 0 0

0 0 0 0

 x̄i(t)

+

0 Bg 0 0
0 0 0 0

0 0 0 0
0 0 0 0

 x̄i(t− τ̆),

(B2)

for i ∈ {1, ..., n}. Based on the assumption that the system has a ring network topology,
AM contains an eigenvalue 1 ∀ n ∈ N \ {1} at some value i = k (λak = 1), where N
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represents the set of all natural numbers. The k-th subsystem then takes the formI 0 0 0

0 0 0 0
0 0 0 0

0 0 0 I

 ˙̄xk(t) =

Ag 0 0 0

0 −I D̂c Ĉc

0 0 −I 0

0 0 B̂c Âc

 x̄k(t) +

0 Bg 0 0

0 0 0 0
0 0 0 0

0 0 0 0

 x̄k(t− τ̆). (B3)

The above equation shows that the spectrum of system matrix Ag, which contains a
double eigenvalue at zero, is part of the spectrum of the closed-loop system. The proof
is complete.

Remark. Theorem B.1 also holds true for other network typologies whose adjacency
matrix has at least one eigenvalue equal to 1. �
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