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Preface

At the end of the seventies of last century in Latin America an intense
phenomenon of intellectual migration took place. The dictatorships
that were established in the south cone of the continent developed a
policy of persecution of professors and researchers of universities and
research centers of several countries of this zone. Venezuela, a stable
democracy at that time, received many of these researchers.

To this group belong two Uruguayan professors very attached to
these notes. We refer to Enrique Cabaña and Mario Wschebor. In
Venezuela both researchers addresses the study of the extension, to di-
mensions greater than one, of the Rice’s formula (recently it has been
called the Kac-Rice formula to emphasize the parallel discovery of this
formula by Marc Kac). At the same time and more or less with the same
motivations Robert Adler developed a similar study, generalizing also
the mentioned formula.

Three key works appeared in the early eighties. The article of E.
Cabaña and that the reader will have the opportunity to revisit with
these notes, bears the title “Esperanzas de integrales sobre conjuntos de
nivel aleatorios [11]”, a lecture notes written by M. Wschebor “Surfaces
aléatoires. LNM 1147 [29]” and finally the book of Robert Adler “The
Geometry of Random Fields" [1].

Perhaps these themes, "exotic" at the time they were studied, expe-
rienced a real revival in the 21st century. These well-established formu-
las at that time have been re-demonstrated again. However, the most
important aspect of this revival is the application of the Kac-Rice for-
mulas in several fields of both pure and applied mathematics. With

III



these notes we want to introduce the participants of the XXX Escuela
Venezolana de Matemáticas to an old and at the same time young area.

The authors
Caracas, Montevideo and Grenoble, July 2017



Chapter 1

Preliminaries

1.1 Introduction

There exist two variants of the change of variables formula for multiple
integrals very useful in integral geometry. The first one corresponds to
smooth, locally bijective functions G : Rd → Rd and the second applies
to smooth functions G : Rd → Rj with d > j, having a differential
with maximal rank. These formulas are called area formula and coarea
formula respectively. Applying these formulas to trajectories of random
fields and taking expectation afterwards, one obtains the well-known
Kac-Rice formulas. In recent times and fundamentally due to the ap-
pearance of two excellent books [2] and [6], there has been a growing
interest in the application of these formulas in such varied domains
as: random algebraic geometry, algorithm complexity for solving large
systems of equations, study of zeros of random polynomial systems
and finally, engineering applications. The present work is divided in
three parts.

1. In the first part, we give an analytical proof of the area and coarea
formulas. Such a proof, originally attributed to Banach and Fed-
erer [13], will be made by using elementary tools of vector calcu-
lus and measure theory in Rd.

2. The above formulas form the basis for establishing the validity of
Kac-Rice formulas for random fields. They allow computing the

1
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expectation of the measure of the level sets

CQ,X(y) = {t ∈ Q ⊂ Rd : X(t) = y},

where X : Ω×Rd → Rj is a random fields and d > j. We must
point out that one can obtain a Kac-Rice formula for almost sure
all level by using the area and coarea formulas, Fubini theorem
and duality. However, in applications the interest is directed to a
fixed level y. For instance, the zeros in the study of the roots of
a random polynomial. This precision leads us to a delicate study
for generalizing the classical inverse function and implicit func-
tion theorems. For this part we based our approach in two sem-
inal works: firstly an article of E. Cabaña [11], published in the
conference proceedings of the II CLAPEM and secondly in the
Lecture Notes of Mathematics of M. Wshebor [29]. The method
we use also makes it possible to obtain the Kac-Rice formula for
the upper moments of the level measurement.

3. The work ends with several applications. First, we show exam-
ples where the hypothesis can be checked and then we use the
Kac-Rice formulas for obtaining conditions about the finiteness
of the first and second moment of the measure of the level sets.
The very important case of the Gaussian random fields leads us to
explicitly computations. Afterwards, we address the study of the
number of roots of algebraic and trigonometric random polyno-
mials. We emphasize the asymptotic behavior of the expectation
and the variance of the number of roots [4]. Particular attention
is devoted to systems of random polynomials of several variables
that are invariant under the action of the group of rotations in
Rd. Another theme we consider is the nodal curves of the system
of random waves considered by Berry and Dennis in [9]. These
curves are called dislocations in physics and correspond to lines
of darkness in light propagation, or threads of silence in sound
propagation (cf.[9]) . We also study the application of the Kac-
Rice formula to sea modeling and to random gravitational lenses.
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1.2 Hypothesis and notations

Let D be an open set of Rd. Also let j 6 d be a positive integer and
G : D ⊂ Rd → Rj be a function.
The function G satisfies the hypothesis H1 if:

H1: G is continuously differentiable on D.
We denote ∇G(·) its Jacobian.
For y ∈ Rj we define the level set at y as:

CG(y) = {x ∈ D : G(x) = y} = G−1(y),

and
CQ,G(y) = CG(y) ∩Q,

where Q is a subset of Rd.
If G satisfies H1, we will denote Dr

G the following set

Dr
G = {x ∈ D : ∇G(x) is of rank j} .

Also CDr

G (y) (resp. CDr

Q,G(y)) denotes the level set, CDr

G (y) = CG(y) ∩Dr
G

(resp. CDr

Q,G(y) = CQ,G(y) ∩Dr
G).

From now on, σd denotes the Lebesgue measure on Rd. We use the sym-
bol T for the transposition operator. For a set A ⊂ Rd, Ac will denote
its complement on Rd and if A ⊂ D, Ac1 will denote its complement on
D. The class of set B(Rd) is the Borel σ-algebra in Rd. Also R

+ is the
set of positive real numbers including +∞, ||·||d denotes the Euclidean
norm in Rd.
For x ∈ Rd, B(x, r) (resp. B(x, r)), r > 0, is the open ball (resp. closed)
of center x and radius r, that is B(x, r) = {z ∈ Rd, ||z− x||d < r} (resp.
B(x, r) = {z ∈ Rd, ||z− x||d 6 r}).
N? = {x ∈ Z, x > 0}.
An application f : (E, dE) → (F, dF) between two metric spaces is said
to be L-Lipschitz, L > 0, if dF( f (x), f (y)) 6 L dE(x, y), for every pair of
points x, y ∈ E.
We also say that an application is Lipschitz if it is L-Lipschitz for some
L.

In the same manner an application f : (E, dE) → (F, dF) between
two metric spaces, is said to be locally Lipschitz, if for each x ∈ E, there
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exists a neighborhood Vx of x such that the restriction of function f to
Vx is Lipschitz.

L(Rd, Rj) denotes the vector space of linear functions from Rd to Rj

with the norm ||·||j,d. Also L2(Rd, Rj) is the vector space of symmetric

linear applications continues from Rd to Rj with the norm ||·||(s)j,d . If B
is a matrix, Bij denotes the element of i-row and j-column.
For j ∈N?, Sj−1 is the boundary of the unit ball of Rj.
For any function f , supp( f ) will be denoted its support.
C will be a generic constant that could change of value in the interior
of a proof.



Chapter 2

A proof of the Coarea formula

2.1 Coarea formula

The two results below are known in the literature as the coarea-formula,
c.f. Federer [13] pp. 247-249 and Cabaña [11].
Our proof is based on the excellent notes of Weizäcker & Geiβler from
Kaiserslautern University [28].

Theorem 2.1.1 Let f : Rj → R be a mesurable function and G : D ⊂ Rd →
Rj, j ≤ d, be a function satisfying the hypothesis H1 where D is an open set.
For all borel set B subset of D the following formula holds:∫

B
f (G(x))(det(∇G(x)∇G(x)T))1/2dx

=
∫

Rj
f (y) σd−j(CDr

B,G(y))dy, (2.1)

provided that one of the two integrals is finite.

Remark 2.1.1 If f is mesurable and positive the equality (2.1) holds
true and in this case the integrales can be infinite.

Remark 2.1.2 The additional hypotheses that f is bounded and B is a
compact set imply that the left side integral is finite and the formula
(2.1) holds true.

5
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Corollary 2.1.1 Let h be a mesurable function, h : Rd × Rj → R and
G : D ⊂ Rd → Rj, j 6 d, be a function satisfying the hypothesis H1
where D is an open set. For all borel set B subset of D, we have∫

B
h(x, G(x))(det(∇G(x)∇G(x)T))1/2dx

=
∫

Rj

[∫
CDr

B,G(y)
h(x, y)dσd−j(x)

]
dy, (2.2)

provided that one of the two integrals is finite.

Remark 2.1.3 If h mesurable and positive the equality (2.2) is satisfied
and in this case the integrales can be infinite.

Remark 2.1.4 The hypotheses that h is bounded and B is compact im-
ply that the left side integral of (2.2) is finite and the formula holds.

Proof of Theorem 2.1.1 and Corollary 2.1.1. In first place we will show,
along the lines of [28] pp 60-67, the following proposition:

Proposition 2.1.1 Let g : Rd → Rj, j ≤ d be a continuously differentiable
function defined on Rd. Then for all A ∈ B(Rd) we have∫

A
(det(∇g(x)∇g(x)T))1/2dx =

∫
Rj

σd−j(CA,g(y))dy.

Proof of Proposition 2.1.1. As we have observed the proof is based in
the notes [28] pp 60-67. In first place we shall prove the formula for
affine functions g, then we will consider the formula for sets A of null
Lebesgue measure in Rd, afterwards we will consider sets A that are
subsets of Dr

g and finally sets including the critical points of g.
To complete our task we will prove before some lemmas.

Lemma 2.1.1 Proposition 2.1.1 holds true for surjective affine functions g,
i.e. if g(x) = a + ϕ(x) where a ∈ Rj is fixed and ϕ is a linear function with
maximal rank j.

Proof of Lemma 2.1.1. Without lose of generality we can always consider
a = 0. Indeed, on one hand ∇g(·) = ∇ϕ(·), thus for all borel set A of
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Rd the following equality holds true:∫
A
(det(∇g(x)∇g(x)T))1/2dx =

∫
A
(det(∇ϕ(x)∇ϕ(x)T))1/2dx.

On the other hand, because the mesure σj is translation invariant, we
have:∫

Rj
σd−j(CA,g(y))dy

=
∫

Rj
σd−j(CA,ϕ(y-a))dσj(y) =

∫
Rj

σd−j(CA,ϕ(y))dσj(y).

Let now V be the vectorial subspace of Rd defined by V = ker ϕ. This
space has dimension (d− j) because ϕ is of maximal rank j. We denote
as V⊥ its orthogonal that have dimension j. We will work with a co-
ordinates systems associated to these spaces, that is if x ∈ Rd, we will
write x = (z, w) with z ∈ V⊥ and w ∈ V. Then the Lebesgue measure
σd over Rd is the product measure σj ⊗ σd−j.
Observe that ϕ/V⊥ is a one to one function since dim V⊥ = j. Let us
denote Ψ the inverse function of this restriction, that is Ψ = (ϕ/V⊥)

−1,
we have ϕ ◦Ψ = IdRj and Ψ ◦ ϕ/V⊥ = IdV⊥ . Moreover, given that ϕT

sends Rj into V⊥ by definition of V, we have:

ΨT ◦Ψ ◦ ϕ ◦ ϕT = ΨT ◦ ϕT = (ϕ ◦Ψ)T = IdRj ,

then:
det(ϕϕT)1/2 = det(ΨTΨ)−1/2 = |det(Ψ)|−1, (2.3)

the last equality is a consequence of the fact that Ψ is an endomorphism
of Rj.
Let A be a fixed borel set of Rd. Let us consider the function

h : V⊥ −→ R
+

z 7→ σd−j{w ∈ V : (z, w) ∈ A}.

Observe that for y ∈ Rj we have

ϕ−1(y) ∩ A = {(Ψ(y), w) : w ∈ V} ∩ A
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and given that Ψ(y) ∈ V⊥,

h(Ψ(y)) = σd−j(ϕ−1(y) ∩ A). (2.4)

So, given that the Lebesgue measure σd is the product measure σj ⊗
σd−j, we get

σd(A) =
∫

V⊥
h(z) dσj(z). (2.5)

Finally as the function ϕ is a linear function and by using the equalities
(2.3), (2.5), the formula of change of variable for function Ψ which is a
C1 function as well as Ψ−1 as endomorphism in finite dimension and
the equality (2.4), we obtain∫

A
(det(∇ϕ(x)∇ϕ(x)T))1/2dx =

∫
A
(det(ϕϕT))1/2dx

= σd(A) |det(Ψ)|−1

=
∫

V⊥
|det(Ψ)|−1 h(z) dσj(z)

=
∫

Rj
h(Ψ(y)) dy

=
∫

Rj
σd−j(ϕ−1(y) ∩ A) dy,

this ends the proof of Lemma 2.1.1 for the affine functions. 2

Lemma 2.1.2 Let A ⊆ Rd be a borel set and g : A −→ Rj, j ≤ d be a
Lipschitz function of Lipschitz constant, Lip(g) where Rd and Rj are respec-
tively the d and j dimensional euclidean spaces. Thus for all integer k such
that j 6 k 6 d we have∫

Rj
σk−j(g−1(y) ∩ A) dy 6

ωjωk−j

ωk
Lipj(g) σk(A).

Above ωd denotes the volume of the unit ball of Rd.

Remark 2.1.5 In particular, for k = d, we get that Proposition 2.1.1
holds true for the borel sets A of zero Lebesgue measure in Rd.
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Proof of the Remark 2.1.5. Given that g is C1 over Rd then it is locally
Lipschitz over Rd. This last space can be decomposed into a numerable
union of disjoint rectangles such that g is Lipschitz over each of them.
Thus if A is a borel set of Rd such that σd(A) = 0, it can be decomposed
in an union of disjoint borel sets, of zero Lebesgue measure, such that
g is Lipschitz over each of them.
The Lemma 2.1.2 can be applied for k = d for each of these borel sets,
this implies that Proposition 2.1.1 is satisfied for all borel set belonging
to Rd and of zero Lebesgue measure over which g is Lipschitz.
Finally given that the measure σd−j is σ-additive and using the Beppo
Levi theorem we have that Remark 2.1.5 holds. 2

Proof of Lemma 2.1.2. One can assume that A is bounded. Indeed, it
is enough to decompose A as a numerable union of bounded disjoint
borel sets and to show the lemma for these borel sets. Given that the
measures σd−j and σk are σ-additives, the lemma will be true for A any
borel set.
If δ > 0, we will denote by Hδ

k the Hausdorff euclidian pre-measure
which defines the Hausdorff euclidian measure of dimension k, de-
noted by Hk, k ∈ N?. The measure Hk coincides with the Lebesgue
measure σk on Rk with the euclidean norm (c.f. [28] page 16).

Set δ = 1
` , ` ∈N?. By definition of H

1
`
k , there exists a covering

((U`
i )i∈I`)`∈N of A formed by closed sets such that for all `

|U`
i | 6

1
`

and
ωk

2k ∑
i∈I`

|U`
i |k < H

1
`
k (A) +

1
`

, (2.6)

where |U| denotes the euclidean diameter U, that is

|U| = sup
x,y∈U

||x− y||k.

Moreover, by definition of H
1
`
k−j, and given that ((U`

i )i∈I`)`∈N covers A,
we have

2k−j

ωk−j
H

1
`
k−j(g−1(y) ∩ A) 6 ∑

i∈I`

|U`
i |k−j1g(U`

i )
(y) = h`(y). (2.7)
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Then from the inequality (2.7), the Fatou lemma and the fact that the
measures σk−j and Hk−j coincide, we get the following inequalities

2k−j

ωk−j

∫
Rj

σk−j(g−1(y) ∩ A) dy =
2k−j

ωk−j

∫
Rj

Hk−j(g−1(y) ∩ A) dy

=
2k−j

ωk−j

∫
Rj

lim
`→+∞

H`
k−j(g−1(y) ∩ A) dy 6

∫
Rj

lim inf
`→+∞

h`(y) dy

6 lim inf
`→+∞

∫
Rj

h`(y) dy = lim inf
`→+∞

∫
Rj

∑
i∈I`

|U`
i |k−j1g(U`

i )
(y) dy

= lim inf
`→+∞

∑
i∈I`

|Ui|`
k−j

σj(g(U`
i )). (2.8)

The idea is now to establish a relation between σj(g(U`
i )) and |U`

i |. The
isodiametric inequality for the norms (c.f. [28] page 14) will allow us
to get this relation and thus to continue our proof. Let us recall this
inequality.

Proposition 2.1.2 Let C be a borel set of Rj then

σj(C) 6
ωj

2j |C|
j.

Function g is Lipschitz and then continuous over A that is bounded, so
that the images g(U`

i ) are compact sets hence are bounded.
By using the isodiametric inequality for these bounded sets and using
also that g is Lipschitz with Lipschitz constant Lip(g), and to finish
inequality (2.6), inequality (2.8) gives us

2k−j

ωk−j

∫
Rj

σk−j(g−1(y) ∩ A) dy 6 lim inf
`→+∞

∑
i∈I`

|U`
i |k−jσj(g(U`

i ))

6 lim inf
`→+∞

∑
i∈I`

|U`
i |k−j ωj

2j |g(U
`
i )|j 6 lim inf

`→+∞
∑
i∈I`

|U`
i |k−j ωj

2j Lipj(g)|U`
i |j

= lim inf
`→+∞

∑
i∈I`

|U`
i |k

ωj

2j Lipj(g)

6 lim inf
`→+∞

ωj

2j Lipj(g)
2k

ωk

(
H

1
`
k (A) +

1
`

)
= 2k−j ωj

ωk
Lipj(g) Hk(A) = 2k−j ωj

ωk
Lipj(g) σk(A)
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This ends the proof of lemma 2.1.2. 2

Lemma 2.1.3 Proposition 2.1.1 holds if A ⊆ Dr
g.

Proof of Lemma 2.1.3.
We can always assume that A is a compact. Indeed, given that A is

a borel set of Rd, then it can be written, except for a zero measure set,
as a nondecreasing union of compact.
Remark 2.1.5 following Lemma 2.1.2 and the Beppo Levi theorem allow
us to show the Proposition 2.1.1 only in the compact case.

Let us choose an element x ∈ A. Consider the Rd vectorial sub-
space defined by V = ker∇g(x). It has (d− j) dimension since ∇g(x)
has maximal rank j. Let V⊥ be its orthogonal that is of dimension j. Let
us observe that ∇g(x)/V⊥ is one to one.
We will denote by πV the orthogonal projection of Rd into V and let
define the function hx : Rd → Rd as

hx(x’) = x + πV(x’) + (∇g(x)/V⊥)
−1(g(x’)− g(x)).

We want to prove that for all ε > 0, there exists a δ > 0 such that if
Bδ(x) is the set

Bδ(x) = B(x, δ) ∩ A, (2.9)

then

(
1− ε

1 + ε
)d(1 + ε)j(

∫
Bδ(x)

(det(∇g(x’)∇g(x’)T))1/2dx′ − ε σd(Bδ(x)))

≤
∫

Rj
σd−j(CBδ(x),g(y)) dy ≤ (2.10)

(
1 + ε

1− ε
)d(1− ε)j(

∫
Bδ(x)

(det(∇g(x’)∇g(x’)T))1/2dx′ + εσd(Bδ(x))).

For doing so, let us begin by showing the two following things:
For all ε > 0, there exists a δ > 0 such that if x’, x" ∈ Bδ(x), we have:

(1− ε)||x’− x"||d ≤ ||hx(x’)− hx(x")||d ≤ (1 + ε)||x’− x"||d, (2.11)
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as well as

|(det(∇g(x)∇g(x)T))1/2 − (det(∇g(x’)∇g(x’)T))1/2| < ε. (2.12)

The inequality (2.12) is a consequence of the fact that ∇g(·) is a contin-
uous function defined on A.
To prove the inequality (2.11), let us begin by pointing out that

(∇g(x)/V⊥)
−1,

is an endomorphism in finite dimension, hence continuous. Thus, we
have ||(∇g(x)/V⊥)

−1||j,j < +∞.
Moreover let us define ∆δ(x) as

∆δ(x) = sup
x’,x"∈Bδ(x)

||g(x’)− g(x")−∇g(x)(x’− x")||j
||x’− x"||d

,

recalling that Bδ(x) is defined by equality (2.9).
Given that g belongs to C1, we can write the following first order Taylor
development

g(x’) = g(x") +
(∫ 1

0
∇g(x" + λ(x’− x")) dλ

)
(x’− x"),

getting

g(x’)− g(x")−∇g(x)(x’− x")

=

(∫ 1

0
(∇g(x" + λ(x’− x"))−∇g(x)) dλ

)
(x’− x"),

this implies, since ∇g(·) is continuous, that for all ε > 0, there exists a
δ > 0, such that

∆δ(x) 6 ε ||(∇g(x)/V⊥)
−1||−1

j,j . (2.13)

Let ε > 0 be a fixed real number and x’, x" ∈ Bδ(x). Given that V =
ker∇g(x), we have

∇g(x)/V⊥(πV⊥(x’− x")) = ∇g(x)(x’− x"),
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this implies

||x’− x"− (hx(x’)− hx(x"))||d
= ||πV⊥(x’− x")− (∇g(x)/V⊥)

−1(g(x’)− g(x"))||d
= ||(∇g(x)/V⊥)

−1 (∇g(x)(x’− x")− (g(x’)− g(x")) ||d
6 ||(∇g(x)/V⊥)

−1||j,j ∆δ(x)||x’− x"||d 6 ε ||x’− x"||d,

the last inequality comes from of the inequality (2.13) and ends the
proof of (2.11).
Let Tx : Rd → Rj be the following affine function,

Tx(x’) = g(x) +∇g(x)(x’− x).

It is surjective because ∇g(x) is of maximal rank j.
Moreover it holds that Tx ◦ hx = g.
Indeed, given that πV(x’) ∈ V and (∇g(x)/V⊥)

−1(g(x’)− g(x)) ∈ V⊥,
we can write

Tx(hx(x’)) = g(x) +∇g(x)(hx(x’)− x)
= g(x) +∇g(x)(πV(x’))

+∇g(x)
(
(∇g(x)/V⊥)

−1(g(x’)− g(x))
)

= g(x) +∇g(x)/V⊥

(
(∇g(x)/V⊥)

−1(g(x’)− g(x))
)

= g(x) + g(x’)− g(x)
= g(x’)

Furthermore, the inequality (2.11) allows us to conclude that for fixed
ε > 0, hx is Lipschitz on Bδ(x), having a Lipschitz constant equal to
(1 + ε). As hx is an injective function on Bδ(x), hx admits an inverse
function defined on hx(Bδ(x)). The inequality (2.11) assures that this
inverse is also Lipschitz on hx(Bδ(x)), an has a Lipschitz constant equal
to (1− ε)−1.
These two facts allow us to apply to hx and h−1

x the Lipschitz contrac-
tion principle that we recall below (c.f. [28] page 18).

Proposition 2.1.3 Let E, F be two borel subsets of Rk. We assume that there
exists a surjective Lipschitz function f : E → F with Lipschitz constant L.
Then

σk(F) 6 Lk σk(E) for all k > 0.
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Let us apply simultaneously this last principle firstly to the function
f = hx for E = Bδ(x), F = hx(Bδ(x)), L = (1 + ε) and k = d, and
secondly to f = h−1

x for E = hx(Bδ(x)), F = Bδ(x), L = (1− ε)−1 and
k = d, we obtain

(1− ε)d σd(Bδ(x)) 6 σd(hx(Bδ(x))) 6 (1 + ε)d σd(Bδ(x)). (2.14)

Let G be a borel set such that G ⊆ hx(Bδ(x)), let apply again simultane-
ously the contraction principle to the function f = h−1

x , for E = G, F =
h−1

x (G), L = (1− ε)−1 and k = d− j, then to f = hx, for E = h−1
x (G),

F = G, L = (1 + ε) and k = d− j, we get

(1 + ε)−(d−j) σd−j(G) 6 σd−j(h−1
x (G)) 6 (1− ε)−(d−j) σd−j(G).

In particular if we choose G = T−1
x (y) ∩ hx(Bδ(x)), and observing that

Tx ◦ hx = g, σd−j(h−1
x (T−1

x (y)∩ hx(Bδ(x)))) = σd−j(g−1(y)∩ Bδ(x)), we
obtain

(1 + ε)−(d−j) σd−j(T−1
x (y) ∩ hx(Bδ(x))) 6 σd−j(g−1(y) ∩ Bδ(x)) 6

(1− ε)−(d−j) σd−j(T−1
x (y) ∩ hx(Bδ(x))).(2.15)

Now we can prove the inequality (2.10).
For doing so we apply the Lemma 2.1.1 to the surjective affine func-
tion Tx for the borel set A = hx(Bδ(x)), the inequality (2.15), also the
inequalities (2.14) and (2.12), thus we obtain∫

Rj
σd−j(g−1(y) ∩ Bδ(x)) dy

6 (1− ε)−(d−j)
∫

Rj
σd−j(T−1

x (y) ∩ hx(Bδ(x))) dy

= (1− ε)−(d−j)
∫

hx(Bδ(x))
(det(∇Tx(x’)∇Tx(x’)T))1/2dx’

= (1− ε)−(d−j) σd(hx(Bδ(x)) (det∇g(x)∇g(x)T)1/2

6 (1− ε)−(d−j) (1 + ε)d σd(Bδ(x))(det∇g(x)∇g(x)T)1/2

6 (
1 + ε

1− ε
)d(1− ε)j(

∫
Bδ(x)

(det(∇g(x’)∇g(x’)T))1/2dx′ + εσd(Bδ(x)))

In the same fashion
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∫
Rj

σd−j(g−1(y) ∩ Bδ(x)) dy

> (1 + ε)−(d−j)
∫

Rj
σd−j(T−1

x (y) ∩ hx(Bδ(x))) dy

= (1 + ε)−(d−j)
∫

hx(Bδ(x))
(det(∇Tx(x’)∇Tx(x’)T))1/2dx’

= (1 + ε)−(d−j) σd(hx(Bδ(x))) (det∇g(x)∇g(x)T)1/2

> (1 + ε)−(d−j) (1− ε)d σd(Bδ(x))(det∇g(x)∇g(x)T)1/2

>
(

1− ε

1 + ε

)d

(1 + ε)j(
∫

Bδ(x)
(det(∇g(x’)∇g(x’)T))1/2dx′

−ε σd(Bδ(x))).

To end the proof of Lemma 2.1.3, for fixed ε > 0, using the Vitali cover-
ing theorem (c.f. [28], Theorem 1. 15 page 14), the set A can be covered,
except for a set of zero Lebesgue measure, by a sequence of disjoint sets
of the type Bδ(x). These sets are closed because A is closed being a com-
pact. Since by Lemma 2.1.2 we can forget the zero measure set. Then
by taking the sum over this partition we obtain by using the inequality
(2.10) and the compactness of A that implies σd(A) < +∞(

1− ε

1 + ε

)d

(1 + ε)j
(∫

A
(det(∇g(x’)∇g(x’)T))1/2dx′ − ε σd(A)

)
≤

∫
Rj

σd−j(CA,g(y)) dy

≤
(

1 + ε

1− ε

)d

(1− ε)j
(∫

A
(det(∇g(x’)∇g(x’)T))1/2dx′ + ε σd(A)

)
.

Given that ε > 0 is small enough, Proposition 2.1.1 is satisfied if A ⊆
Dr

g, ending the proof of Lemma 2.1.3. 2

Let us consider now the critical points. This leads us to prove the
following lemma.

Lemma 2.1.4 Let A ∈ B(Rd) be a set such that A ⊂ (Dr
g)

c then σd−j(A ∩
g−1(y)) = 0 for almost surely y ∈ Rj.

Proof of Lemma 2.1.4. The idea is perturbing a little the function g in
such a way that it becomes of maximal rank but still having a small
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value of (det(∇g(x)∇g(x)T))1/2.
We begin increasing the dimension of Rd.
In the same form that in the proof of the Lemma 2.1.3 we can assume
that A is a compact set and then the partial derivatives ∂gi

∂xk
are uni-

formly continuous on A.
Let ε > 0 be a fixed real. We extend the function g : Rd → Rj to
g̃ : Rd+j → Rj, seting g̃(x, z) = g(x) + ε z.
In this form ∇g̃(x, z) is given by the matrix of dimension j× (d + j)

(∇g(x) εIj), (2.16)

where Ij is the identity matrix of order j and thus

∇g̃(x, z)∇g̃(x, z)T = (∇g(x) εIj)

(
∇g(x)T

εIj

)
= ∇g(x)∇g(x)T + ε2 Ij. (2.17)

Let us see that for (x, z) ∈ A×Rj,

0 < (det(∇g̃(x, z)∇g̃(x, z))T))1/2 6 C ε, (2.18)

where C is a constant depending on the uniform bound of the bounded
partial derivatives ∂gi

∂xk
on A.

Firstly we have(
det(∇g̃(x, z)∇g̃(x, z))T) > 0

)
⇐⇒ ( rang (∇g̃(x, z)) = j)

and by equality (2.16) since the rank of εIj is j, the same holds for the
rank of ∇g̃(x, z).
Now using equality (2.17), and denoting by Xi the i-th column of
∇g(x)∇g(x)T and if (ei)16i6j is the canonical basis of Rj, we can write
using det(∇g(x)∇g(x)T) = 0, that

det(∇g̃(x, z)∇g̃(x, z)T)

= det(∇g(x)∇g(x)T + ε2 Ij)

= det(X1 + ε2e1, X2 + ε2e2, . . . , Xj + ε2ej)

= det(∇g(x)∇g(x)T) + ε2 Bε(X1, X2, . . . , Xj)

= ε2 Bε(X1, X2, . . . , Xj),
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where Bε(X1, X2, . . . , Xj) is uniformly bounded on A since it is a com-
pact set.
Then we have proved the inequality (2.18).
Since g̃ belongs to C1 on Rd+j and that it is of maximal rank on A×Rj,
we can apply the Lemma 2.1.3.
But before, we have to compare the fibers of g and those of g̃.
Let Q be the unity ball of Rj, then for all y ∈ Rj, we have

g̃−1(y) ∩ (A×Q) = {(x, z) ∈ A×Q : g(x) = y− εz}
=
⋃

z∈Q

g−1((y− ε z) ∩ A)× {z}

Thus for all pair of points y, z of Rj, it holds

σd−j(g−1(y− ε z) ∩ A)1Q(z)

= σd−j(π
−1(z) ∩ g̃−1(y) ∩ (A×Q)), (2.19)

where π : Rd+j → Rj is the canonical projection.
Now let us apply the coarea formula to g̃, that is Lemma 2.1.3, for the
borel set A×Q, thus∫

Rj
σd(g̃−1(y) ∩ (A×Q)) dy =

∫
A×Q

(det(∇g̃(x, z)∇g̃(x, z)T))1/2 dx dz

6 C ε σd(A), (2.20)

the last bound comes from the inequality (2.18) and from the fact that
σj(Q) = 1.
The idea is now to come back to the function g and to apply the equal-
ity (2.19). To make this we will apply the Lemma 2.1.2 for a fixed y
and to the projection π, which is a contracting function thus a fortiori a
Lipschitz function with Lipschitz constant L = 1. The borel set of Rd+j

to which we apply the lemma is g̃−1(y) ∩ (A × Q) for the real k = d
that satisfies j 6 k 6 d + j. We obtain for fixed y and using the equality
(2.19)
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∫
Q

σd−j(g−1(y− ε z) ∩ A) dz

=
∫

Rj
σd−j(π

−1(z) ∩ g̃−1(y) ∩ (A×Q)) dz

6 ωj
ωd−j

ωd
σd(g̃−1(y) ∩ (A×Q)).

By integrating this last inequality with respect to y on Rj and using the
inequality (2.20), we have∫

Rj

∫
Q

σd−j(g−1(y− ε z) ∩ A) dz dy 6 ωj
ωd−j

ωd
C ε σd(A).

Applying the Fubini-Tonelli theorem and the fact that σj(Q) = 1, it
holds∫

Rj

∫
Q

σd−j(g−1(y− ε z) ∩ A) dz dy

=
∫

Q

∫
Rj

σd−j(g−1(y− ε z) ∩ A) dy dz

=
∫

Q

∫
Rj

σd−j(g−1(y) ∩ A) dy dz =
∫

Rj
σd−j(g−1(y) ∩ A) dy.

Thus we have shown∫
Rj

σd−j(g−1(y) ∩ A) dy 6 ωj
ωd−j

ωd
C ε σd(A).

Given that ε > 0 is small enough and σd(A) < +∞ because A is com-
pact, we finally have proved that∫

Rj
σd−j(g−1(y) ∩ A) dy = 0.

This implies that σd−j(g−1(y) ∩ A) = 0, for almost surely y ∈ Rj.
This ends the proof of Lemma 2.1.4. 2

To finish the proof of Proposition 2.1.1, it remains to decompose A ∈
B(Rd), under the form A =

(
A ∩ Dr

g

)
∪
(

A ∩ (Dr
g)

c
)

, noting that Dr
g

is a borel set of Rd because (Dr
g)

c = {x ∈ Rd, det(∇g(x)∇g(x)T) = 0},
that is the inverse image of {0} for the continue function

det(∇g(·)∇g(·)T).
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We just apply Lemma 2.1.3 to the borel set
(

A ∩ Dr
g

)
and Lemma 2.1.4

to the borel set
(

A ∩ (Dr
g)

c
)

.
Finishing the proof of Proposition 2.1.1. 2

We can prove now the Theorem 2.1.1 and its corollary.
We begin by proving the following theorem.

Theorem 2.1.2 Let f : Rj → R be a positive measurable function and
g : Rd → Rj, j ≤ d, be a continuously differentiable function. For all borel
set Q of Rd the following formula holds true:∫

Q
f (g(x))(det(∇g(x)∇g(x)T))1/2dx

=
∫

Rj
f (y) σd−j(CDr

Q,g(y))dy, (2.21)

the integrals could be eventually infinite.

Remark 2.1.6 Theorem 2.1.2 remains true if one assumes that the func-
tion g is only locally Lipschitz on Rd instead of being C1 on Rd. In
this case, the function g is almost surely differentiable on Rd and the
measure σd−j that appears into the right-side of the equality (2.21) is re-
placed by the euclidian Hausdorff Hd−j measure. We invite the reader
to consult the Theorem 4.12 page 61 of [28] for more details.

Proof of Theorem 2.1.2. Set A = Dr
g ∩ g−1(I) ∩ Q where I is a borel set

of Rj and Q is a borel set of Rd. Given that A is a borel set of Rd the
Proposition 2.1.1 allows us to have the following formula:∫

Q
1I(g(x))(det(∇g(x)∇g(x)T))1/2dx =

∫
Rj
1I(y) σd−j(CDr

Q,g(y)) dy,

and the equality (2.21) holds true for the corresponding functions, this
is for the functions f of the form f = 1I and also for measurable step
functions positives.
The Beppo Levi theorem assures that this equality holds true for posi-
tive measurable functions. Yielding Theorem 2.1.2. 2

Let us prove now the Theorem 2.1.1 and the Corollary 2.1.1.
This needs the following two lemmas.
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Lemma 2.1.5 Let G : D ⊂ Rd → Rj, be a locally Lipschitz function defined
on D an open set of Rd. Then the function G is Lipschitz over all compact set
K that is contained in D.

Proof of the Lemma 2.1.5. Let us consider x ∈ K ⊂ D. Since G is locally
Lipschitz on the open set D, there exists a constant Lx > 0 and a radius
rx > 0, such that B(x, rx/2) ⊂ B(x, rx) ⊂ D and satisfying, for all
u, v ∈ B(x, rx), ||G(u)− G(v)||j 6 Lx||u− v||d.
Since G is locally Lipschitz on D, it is continuous on D and also on the
compact set K. Set M = supu∈K ||G(u)||j < +∞.
Since K is compact, there exists m ∈N∗, such that for all i = 1, m, there
exists a xi ∈ K, verifying that K ⊂ ∪m

i=1B(xi, rxi /2) ⊂ D.
Set also L = maxi=1,m Lxi and r = mini=1,m rxi . Let us prove that G is
a Lipschitz function on K with Lipschitz constant L̃ which is least or
equal to max(L, 4M

r ).
Indeed, consider u, v ∈ K.
If ||u− v||d 6 r

2 ; there exists i, j ∈ 1, · · · , m, such that u ∈ B(xi, rxi /2)
and v ∈ B(xj, rxj /2). In this case u, v ∈ B(xi, rxi) and

||G(u)− G(v)||j 6 Lxi ||u− v||d 6 L||u− v||d.

If ||u− v||d > r
2 , ||G(u)− G(v)||j 6 2M 6 4M

r ×
r
2 6 4M

r ||u− v||d.
This ends the proof of the lemma. 2

Lemma 2.1.6 Let G : K ⊂ Rd → Rj, be a k-Lipschitz function where K is
a compact set of Rd. Then the function G admits an extension g : Rd → Rj

that is a
√

jk-Lipschitz function.

Proof of the Lemma 2.1.6. Let us point out that we can consider the case
where the function G takes real values, consider G : K ⊂ Rd → R and
k- Lipschitz.
In fact, if G = (G1, G2, · · · , Gj) : K ⊂ Rd → Rj is k-Lipschitz, then for
all i = 1, 2, · · · , j, the functions Gi : K ⊂ Rd → R are k-Lipschitz. If we
show that these functions can be extended to Rd by the functions gi that
still are k-Lipschitz then the function g = (g1, g2, · · · , gj) : Rd → Rj will
be an extension of G that is

√
jk-Lipschitz.

Let then G : K ⊂ Rd → R be a k-Lipschitz function, let us extend it to a
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function g : Rd → Rj, k-Lipschitz.
For x ∈ Rd and y ∈ K, set:

Gy(x) = G(y) + k||x− y||d and g(x) = inf
y∈K

Gy(x).

Let us remark first that the function g is well defined.
In fact, for all x ∈ Rd, {Gy(x), y ∈ K} is a subset of R, bounded below
by infy∈K G(y). This number exists because the function G is Lipschitz
on K then continue on K.
Let us show that the function g extends the function G.
For all x ∈ K, g(x) = infy∈K Gy(x) 6 Gx(x) = G(x).
Moreover, ∀ x ∈ K, ∀ n ∈N∗, ∃ yn ∈ K, Gyn(x) 6 g(x) + 1

n , then
G(yn) + k||x− yn||d 6 g(x) + 1

n .
But G is k-Lipschitz on K then G(x) 6 G(yn) + k||x− yn||d.
Hence we have for all x ∈ K, for all n ∈ N∗, G(x) 6 g(x) + 1

n . Finally
one shows that if x ∈ K, g(x) = G(x).
The only thing that remains to prove is that the above function g is k-
Lipschitz on Rd.
Firstly, let us observe that for all y ∈ K, the function Gy is k-Lipschitz
on Rd. Indeed, for all x ∈ Rd, for all z ∈ Rd,

|Gy(x)− Gy(z)| = k|||x− y||d − ||z− y||d| 6 k||x− z||d.

Thus for all y ∈ K, for all x, z ∈ Rd,

g(x) = inf
y∈K

Gy(x) 6 Gy(x) 6 Gy(z) + k||x− z||d,

in consequence for all x, z ∈ Rd,

g(x) 6 inf
y∈K

Gy(z) + k||x− z||d,

that is,
g(x)− g(z) 6 k||x− z||d.

Thus by symmetry one obtains that for all x, z ∈ Rd,

|g(x)− g(z)| 6 k||x− z||d,

that ends the proof. 2
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Let us come back to the proof of the Theorem 2.1.1 and Corollary 2.1.1.
We consider for all n ∈N?, the closed sets

Dn = {x ∈ Rd, d(x, Dc) >
1
n
}.

Since D is open, the sets (Dn)n∈N∗ are included in D and then for all
n ∈N?, the sets Kn, defined as Kn = Dn ∩ [−n, n]d are compact subsets
of D.
Since the function G belongs to C1 on D that is an open set it is locally
Lipschitz on D and from the Lemma 2.1.5, for all n ∈ N∗ it is Lipschitz
on the compact Kn.
The lemma 2.1.6 allows extending for n ∈ N∗, the Lipschitz function
G/Kn to the function gn : Rd → Rj still Lipschitz on Rd.
Let f : Rj → R be a measurable positive function and B a borel set
subset of D. Applying for all n ∈ N∗, the Remark 2.1.6 to the function
gn, which is Lipschitz on Rd and a fortiori locally Lipschitz on Rd, and
to the borel set Qn = Kn ∩ B, we have∫

Qn

f (gn(x))(det(∇gn(x)∇gn(x)T))1/2dx

=
∫

Rj
f (y) Hd−j(CDr

Qn,gn
(y))dy,

and since gn = G on Kn then on Qn, we get∫
Qn

f (G(x))(det(∇G(x)∇G(x)T))1/2dx =
∫

Rj
f (y) σd−j(CDr

Qn,G(y))dy.

Moreover, when n tends to infinite, the sets (Qn)n∈N∗ tend increasingly
towards B. The Beppo Levi theorem implies the Remark 2.1.1 and also
the Theorem 2.1.1.
The Remark 2.1.2 is a consequence of the fact that if B is a compact set
and the function f is bounded, then∫

B
| f (G(x))|(det(∇G(x)∇G(x)T))1/2dx

6 C
∫

B
(det(∇G(x)∇G(x)T))1/2dx < +∞,
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since the function G is C1 on D and B is a compact subset of D.
Remark 2.1.1 allows us to prove Corollary 2.1.1.
Indeed applying this remark to the measurable and positive function
f = 1A and to the borel set B ∩ Q where A (resp. B) is some borel
set of Rj (resp. Rd), and Q is a borel set of Rd, allows to establish the
Corollary 2.1.1 for the functions of the form 1B×A and also for positive
measurable step functions h , then for positive measurable functions.
Yielding Remark 2.1.3 and Corollary 2.1.1.
In the same manner as for Remark 2.1.2 we get Remark 2.1.4.
This ends the proof of the Theorem 2.1.1 and the Corollary 2.1.1. 2

2.2 Kac-Rice formulas for a.s. level

In this section X : Ω× D ⊂ Ω×Rd → Rj (j 6 d) denotes a random
field that belongs to C1(D, Rj), Y : Ω × D ⊂ Ω ×Rd → R will be a
continuous process and D is an open set of Rd.
Let H be the operator

H : L(Rd, Rj) −→ R+

A 7−→ (det(AAT))1/2.

Let us recall that the random set Dr
X was defined as Dr

X = {x ∈ D :
∇X(x) have rank j} and the level set y ∈ Rj, CDr

X (y), was defined as
CDr

X (y) = CX(y) ∩Dr
X.

Let us consider the following hypotheses

• H1: The function

u 7−→ E

[∫
CDr

X (u)
|Y(x)|dσd−j(x)

]
,

is a continuous function of the variable u.

• H?
1: The function

u 7−→ E
[
σd−j(CDr

X (u))
]

,
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is a continuous function of the variable u.

• H2: The function

u 7−→
∫

D
pX(x)(u)E[|Y(x)|H(∇X(x))|X(x) = u] dx,

is a continuous function of the variable u.

• H?
2: The function

u 7−→
∫

D
pX(x)(u)E[H(∇X(x))|X(x) = u] dx,

is a continuous function of the variable u.

• H3: For almost surely x ∈ D, the density of X(x) , pX(x)(·) exists.

By using the coarea formula and by duality, we will prove the fol-
lowing proposition.

Proposition 2.2.1 1. If X satisfies the hypotheses (H?
1 or H?

2) and H3,
then for almost surely y ∈ Rj,

E
[
σd−j(CDr

X (y))
]
=
∫

D
pX(x)(y)E [H(∇X(x))|X(x) = y] dx.

(2.22)

2. If X and Y satisfy the hypotheses (H1 or H2) and H3, then for almost
surely y ∈ Rj,

E

[∫
CDr

X (y)
Y(x)dσd−j(x)

]

=
∫

D
pX(x)(y)E [Y(x)H(∇X(x))|X(x) = y] dx. (2.23)

Proof of the Proposition 2.2.1. Let us start by proving part 1) of the propo-
sition.
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Applying the Remark 2.1.1 following the Theorem 2.1.1 to the function
G = X and f = 1A where A is a borel set of Rj and to the borel set
B = D, we have∫

D
1X(x)∈A H(∇X(x)) dx =

∫
A

σd−j(CDr

X (y)) dy.

By taking expectation of each side of the equality, that is possible be-
cause the two terms are positives, and applying the Beppo Levi theo-
rem, we get using the hypothesis H3∫

A
E
[
σd−j(CDr

X (y))
]

dy

=
∫

A

[∫
D

pX(x)(y)E [H(∇X(x))|X(x) = y]dx
]

dy.

In this step of the proof we need a duality lemma.

Lemma 2.2.1 Let f1, f2 : Rj → R
+, be two measurable functions such that

for all A ∈ B(Rj), A bounded,
∫

A f1(y) dy =
∫

A f2(y) dy < +∞, then
f1 = f2 σj-almost surely.

Proof of the Lemma 2.2.1. We begin by proving the lemma for two
measurable functions g1 et g2 taking values on R

+ such that, for all
B ∈ B(Rj),

∫
B g1(y) dy =

∫
B g2(y) dy < +∞. We consider the set

B = {g2 < g1}. The hypothesis
∫

B g1(y) dy =
∫

B g2(y) dy, implies,
since

∫
Rj g2(y) dy < +∞,

∫
Rj 1B(y) (g1(y) − g2(y)) dy = 0, and thus

1B(y) (g1(y)− g2(y)) = 0 for almost surely y ∈ Rj. In the same form
we consider B′ = {g1 < g2}, concluding 1B′(y) (g2(y)− g1(y)) = 0 for
almost surely y ∈ Rj and finally g1 = g2, σj almost surely.
Considering now two functions f1 and f2 satisfying the hypotheses of
the lemma. Let K be a compact in Rj. Since for all B ∈ B(Rj), A = B∩K
is a bounded borel set of Rj, and if g1 = f1 1K and g2 = f2 1K, we
have by hypothesis

∫
B g1(y) dy =

∫
B g2(y) dy < +∞. The prelimi-

nary result that we have shown implies that for all compact set K of
Rj, f1 1K = f21K, σj almost surely.
The proof ends remarking that except a zero measure set the set Rj can
be written as a non-decreasing union of compacts and by applying the
Beppo Levi theorem. 2
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We apply here the lemma to the function f1(y) = E
[
σd−j(CDr

X (y))
]

and
to the function f2(y) =

∫
D pX(x)(y)E [H(∇X(x))|X(x) = y] dx.

The function f1 or f2 is locally integrable by the assumption H?
1 or H?

2.
This finishes the proof of part 1) of the proposition.

Let us prove the part 2). In a first time we assume that X et Y sat-
isfy the hypotheses H1 and H3. Let us apply the Corollary 2.1.1 to the
function G = X, h(x, y) = 1A(y)×Y(x)× 1D(x) where A is a bounded
borel set of Rj and to the borel set B = D, we have almost surely∫

D
1X(x)∈A Y(x) H(∇X(x)) dx =

∫
A

[∫
CDr

X (y)
Y(x) dσd−j(x)

]
dy. (2.24)

Indeed, the hypothesis H1 implies

E

(∫
A

[∫
CDr

X (y)
|Y(x)| dσd−j(x)

]
dy
)
< +∞, (2.25)

thus almost surely
∫

A

[∫
CDr

X (y) |Y(x)| dσd−j(x)
]

dy < +∞. Let us re-
mark that the equality (2.24) is still true replacing Y for |Y|.
This last observation and the equality (2.25) imply

E

[∫
D
1X(x)∈A |Y(x)|H(∇X(x)) dx

]
< +∞.

We can take the expectation in both side of the equality (2.24) and from
the hypothesis H3, we obtain that for all bounded borel set A of Rj

∫
A

E

[∫
CDr

X (y)
Y(x) dσd−j(x)

]
dy =∫

A

(∫
D

pX(x)(y)E [Y(x)H(∇X(x))|X(x) = y]dx
)

dy.

Let us remark that the last equality is still true replacing Y by |Y| and
the corresponding integrales are finite.
Consider now

f1(y) = E

[∫
CDr

X (y)
Y(x) dσd−j(x)

]
and

f2(y) =
∫

D
pX(x)(y)E [Y(x)H(∇X(x))|X(x) = y]dx.
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The functions f1 and f2 a priori do not take their values on R
+. How-

ever, a small modification of Lemma 2.2.1 can be done, remarking that∫
A | f1(y)| dy < +∞ et

∫
A | f2(y)| dy < +∞, for all bounded borel set A

of Rj, this implies f1 = f2, σd−j almost surely.
This ends the proof of the Proposition 2.2.1 in the case where X and Y
satisfy the hypotheses H1 and H3. A similar proof can be made when
X and Y satisfy the hypotheses H2 and H3. 2
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Chapter 3

Kac-Rice formula for all level

3.1 Rice formula for a level set regular

Let us point out that the formulas (2.22) et (2.23) hold true for almost
surely y ∈ Rj. However in applications these formulas are needed for
all y fixed in Rj. We are going to establish a theorem which will give
hypotheses on X and Y in such a way that these formulas will be valid
for all y in Rj.
More precisely we will assume the continuity of the two members in
the equalities (2.22) and (2.23), restricting us to the set Dr

X and proving
the equality for all y fixed in Rj.
Before continuing let us establish two hypotheses useful for what fol-
lows.

• H4: The function

u 7−→ E

[∫
CDr

X (u)
Y(x)dσd−j(x)

]
,

is a continuous function of the variable u.

• H5: The function

u 7−→
∫

D
pX(x)(u)E[Y(x)H(∇X(x))|X(x) = u] dx,

is a continuous function of the variable u.

29
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Theorem 3.1.1 1. If X satisfies the hypotheses H?
1, H?

2 and H3, then for
all y ∈ Rj,

E
[
σd−j(CDr

X (y))
]

=
∫

D
pX(x)(y)E [H(∇X(x))|X(x) = y] dx. (3.1)

2. If X and Y satisfy the hypotheses (H1 or H2), H3, H4 and H5, then for
all y ∈ Rj,

E

[∫
CDr

X (y)
Y(x)dσd−j(x)

]

=
∫

D
pX(x)(y)E [Y(x)H(∇X(x))|X(x) = y] dx. (3.2)

Remark 3.1.1 If X and Y satisfy the hypotheses H1, H2 and H3, then
for all y ∈ Rj it holds,

E

[∫
CDr

X (y)
|Y(x)|dσd−j(x)

]

=
∫

D
pX(x)(y)E [|Y(x)|H(∇X(x))|X(x) = y]dx.

Proof of Theorem 3.1.1 and of the Remark 3.1.1. Let us beging proving the
formula (3.1).
Since X satisfies the hypotheses H?

1, H?
2 and H3, as a consequence of

part 1) of the Proposition 2.2.1, we know that for almost surely y ∈ Rj,

E
[
σd−j(CDr

X (y))
]
=
∫

D
pX(x)(y)E [H(∇X(x))|X(x) = y]dx.

The hypotheses H?
1 and H?

2 imply the continuity of each member of the
equality and in consequence their equality for all y ∈ Rj.

Reasoning in a similar way we can prove the formula (3.2). Ending
in this form the proof of Theorem 3.1.1.
The Remark 3.1.1 comes from the fact that the hypotheses H4 and H5
transform into the hypotheses H1 and H2, replacing Y by |Y|. 2
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3.1.1 Checking the hypotheses

We have proven in the precedent section the equality (3.2) assuming
principally the continuity of its two members.
Our goal in what follows is to give a large class of processes X and Y
that satisfies the hypotheses Hi, i = 1, 5.
We consider in first place the hypotheses H1 and H4. This leads us to
prove the Theorem 3.1.1 which is needed for proving Proposition 3.1.1
that follows. We need to point out that the proof that we will give is
deeply inspired by Cabaña [11].
For a while the functions X and Y will be assumed deterministic, this
is they are not random functions.

Theorem 3.1.2 Let X : D ⊂ Rd → Rj (j 6 d) be a function belonging to
C1(D, Rj) such that ∇X is Lipschitz on D which is an open and convex set
of Rd. Let D1 be an open and bounded subset of D and Y : D1 ⊂ Rd → R a
continuous function such that supp(Y) ⊂ Dr

X/D1
. Then the function

y 7−→
∫
CDr

D1,X(y)
Y(x)dσd−j(x)

is continuous with respect to the variable y.

Proof of Theorem 3.1.2. In the same fashion as Cabaña we will define an
atlas of CDr

X (y). Consider x0 ∈ Dr
X fixed, such that ∇X(x0) has rank j.

If Ad = {1, 2, . . . , d}, there exist λ = (`1, `2, . . . , `j) ∈ Aj
d, `1 < `2 <

· · · < `j such that

J(λ)X (x0) = det

(
∂(X1, . . . , Xj)

∂(x`1 , x`2 , . . . , x`j)
(x0)

)
6= 0.

Set λc the complementary index in Ad, that is λc = (i1, i2, · · · , id−j) ∈
Ad−j

d , and i1 < i2 < · · · < id−j. If (e1, e2, · · · , ed) denotes the canon-
ical basis of Rd, we denote Vλ = vect(ei1 , ei2 , · · · , eid−j) and V⊥λ its or-
thogonal, this is V⊥λ = vect(e`1 , e`2 , · · · , e`j). With these notations, if

x = (x1, x2, · · · , xd) =
d
∑

i=1
xiei ∈ Rd, we denote x̂λ = (xi1 , xi2 , · · · , xid−j).

Let us consider the function fλ defined from D ⊂ Rd into Rd such that
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x → fλ(x) = πVλ
(x) +

j
∑

k=1
(Xk(x)− yk)e`k , where Xk (resp. yk) denotes

the components of X (resp. y), k = 1, · · · , j.
The Jacobian J fλ

(x0) of this transformation evaluated at the point x0 is
J fλ

(x0) = |Jλ
X(x0)| 6= 0. By the inverse function theorem there exists an

open neighborhood Uλ
x0

of x0 included in D, such that fλ(Uλ
x0
) is still

an open set of Rd and such that the restriction fλ|Uλ
x0

has an inverse hλ

belonging to C1 defined from fλ(Uλ
x0
) onto Uλ

x0
.

Let define the set Rλ
x0

, by

Rλ
x0
= {(xi1 , xi2 , · · · , xid−j) ∈ Rd−j :

d−j

∑
k=1

xik eik ∈ fλ(Uλ
x0
)}.

Since fλ(Uλ
x0
) is an open set, the set Rλ

x0
is also an open set of Rd−j.

Let denote hλ = (hλ
1 , hλ

2 , · · · , hλ
d ). We have the following sequence of

equivalences(
x ∈ Uλ

x0
, X(x) = y

)
⇐⇒

(
x ∈ Uλ

x0
, fλ(x) = πVλ

(x)
)
⇐⇒(

πVλ
(x) ∈ fλ(Uλ

x0
), x = hλ(πVλ

(x))
)
⇐⇒(

x = πVλ
(x) +

j

∑
k=1

hλ
`k
(πVλ

(x)) e`k , x̂λ ∈ Rλ
x0

)
⇐⇒(

x =
d−j

∑
k=1

xik eik +
j

∑
k=1

hλ
`k
(

d−j

∑
k=1

xik eik)e`k , x̂λ ∈ Rλ
x0

)
⇐⇒(

x = −−→αλ,x0(x̂λ), x̂λ ∈ Rλ
x0

)
,

where we have defined −−→αλ,x0 : Rλ
x0
⊂ Rd−j → Rd by

−−→αλ,x0(xi1 , xi2 , · · · , xid−j) =
d−j

∑
k=1

xik eik +
j

∑
k=1

hλ
`k
(

d−j

∑
k=1

xik eik)e`k . (3.3)

This provides to us a local parametrization of the level set CDr

X (y), de-
fined by −→αλ . Moreover such a function belongs to C1 defined over Rλ

x0
.

Remark 3.1.2 Furthermore as a bonus we get that CDr

X (y) is a differen-
tiable manifold of dimension d− j.
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Let us mention that if x0 ∈ CDr

X (y) then −−→αλ,x0(x̂0,λ) = x0.
We now decompose Dr

X in the following form: Dr
X = ∪λ∈Bj Γ(λ), where

Bj = {λ = (`1, `2, . . . , `j), `k ∈ Ad, `1 < `2 < . . . < `j} and Γ(λ) =

{x ∈ D, J(λ)X (x) 6= 0}.

Remark 3.1.3 For all λ ∈ Bj,
Γ(λ) = {x ∈ D, ∇X(x)/V⊥λ is invertible}

Remark 3.1.4 We could have proved a less general result than the one
established in this theorem. More exactly we would have been able to
show this theorem under the following weaker hypothesis: Y : Dr

X ⊂
Rd → R is a continuous function such that supp(Y) ⊂ Γ(λ), for some
λ ∈ Bj. Indeed it is this condition we finally need in the proof of the
Propositions 3.1.1 and 3.2.1 given farther. However the result of the
above theorem seemed to us interesting in itself because we did not
find it in the literature. Furthermore this general result presents the
advantage that in the proof we exhibit in a neat way a partition of the
unity of Dr

X. This construction will allow us afterward in the proof
of Proposition 3.2.1 to decompose the function Y on this partition and
thus to come down in case where the function has its support included
in Γ(λ).

Let us prove the Theorem 3.1.2 in the case where D = D1. That is when
D is an open, convex and bounded set of Rd, X : D ⊂ Rd → Rj (j 6 d)
is a function C1(D, Rj) such that ∇X is Lipschitz and Y : D ⊂ Rd → R

is a continuous function such that supp(Y) ⊂ Dr
X. It is enough to prove

the theorem in the case where Y : Dr
X ⊂ Rd → R is a continuous

function with supp(Y) ⊂ Dr
X. Let y fixed in Rj.

In first place we assume supp(Y) ⊂ Γ(λ), λ ∈ Bj. We will define the
integral of Y over the level set CDr

X (y), that is we shall give a sense to∫
CDr

X (y) Y(x)dσd−j(x).
Consider x0 ∈ supp(Y) ⊂ Γ(λ). For the precedent facts, there exists an
open neighborhood Uλ

x0
of x0, such that(

x ∈ Uλ
x0
∩ CDr

X (y)
)
⇐⇒

(
x = −−→αλ,x0(x̂λ), x̂λ ∈ Rλ

x0

)
.

Since Uλ
x0

is an open set, one can chose a radius rλ
x0

> 0 such that the
closed ball of Rd with center x0 and radius rλ

x0
is contained in Uλ

x0
, so

B(x0, rλ
x0
) ⊂ Uλ

x0
.
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Since supp(Y) is a compact set of Rd, we can cover supp(Y) by a finite
number of balls, that is supp(Y) ⊂ ∪m

i=1B(xi, rλ
xi
) such that for all i =

1, · · · , m, we still have: B(xi, rλ
xi
) ⊂ Uλ

xi
.

We will construct a partition of unity for supp(Y) compact manifold
and let us denote it as {π1, · · · , πm}.
We define as in the book of Wendell Fleming [15] the C∞ real variable
function h by

h(x) =

 exp(
−1

1− x2 ), |x| < 1 ;

0, |x| > 1.

For i = 1, · · · , m and for x ∈ supp(Y), let set Ψi(x) = h
(
||x−xi ||d

rλ
xi

)
.

Since supp(Y) ⊂ ∪m
i=1B(xi, rλ

xi
) by construction we have that for all x ∈

supp(Y),
m
∑

i=1
Ψi(x) > 0.

Let define now for i = 1, · · · , m and for x ∈ supp(Y), πi(x) =
Ψi(x)

∑m
i=1 Ψi(x)

.
The functions {π1, · · · , πm} define a partition of unity for supp(Y)

because we have

1. πi is C∞ over supp(Y), πi > 0, i = 1, · · · , m.

2. supp(πi) = supp(Ψi) ⊂ supp(Y) ∩ B(xi, rλ
xi
) ⊂ Uλ

xi
.

3. ∑m
i=1 πi(x) = 1, x ∈ supp(Y).

The integral of Y over the level set y can be defined by∫
CDr

X (y)
Y(x)dσd−j(x) =

m

∑
i=1

∫
Uλ

xi
∩CDr

X (y)
πi(x)Y(x)dσd−j(x)

=
m

∑
i=1

∫
Rλ

xi

πi(
−−→αλ,xi(x̂λ))Y(

−−→αλ,xi(x̂λ))(det(∇−−→αλ,xi(x̂λ)∇−−→αλ,xi(x̂λ)
T))1/2 dx̂λ.(3.4)

However, if the level changes we need to modify the procedure. We
continue following the way of Cabaña.
Let consider x0 ∈ Γ(λ) ∩ CDr

X (y) fixed. We build then Uλ
x0

and Rλ
x0

.
Let define the function

G : Rλ
x0
×Rj × W̃λ

x0
⊂ Rd−j ×Rj ×Rj → Rj,
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by

G(x̂λ, δ, γ) = X(−−→αλ,x0(x̂λ) +
j

∑
k=1

γke`k)− y− δ,

where γ = (γ1, · · · , γj), x̂λ = (xi1 , xi2 , · · · , xid−j) and W̃λ
x0

is a neigh-

borhood of zero such that for all x̂λ ∈ Rλ
x0

, −−→αλ,x0(x̂λ) + ∑
j
k=1 γke`k ∈ D

and∇X(−−→αλ,x0(x̂λ) + ∑
j
k=1 γke`k)/V⊥λ is invertible, that remains possible

since Γ(λ) is an open set of D and x0 ∈ Γ(λ).
Since X is C1 and −−→αλ,x0 is C1 over Rλ

x0
, then G is C1 over Rλ

x0
× W̃λ

x0
×Rj.

Moreover, we have G(x̂0,λ, 0, 0) = X(−−→αλ,x0(x̂0,λ)) − y = X(x0) − y =
~0Rj .
And

∂G
∂γ

(x̂λ, δ, γ) = ∇X(−−→αλ,x0(x̂λ) +
j

∑
k=1

γke`k)/V⊥λ , (3.5)

this implies
∂G
∂γ

(x̂0,λ, 0, 0) = ∇X(x0)/V⊥λ ,

that is invertible by Remark 3.1.3.
The implicit function theorem can be applied. Thus there exists three
neighborhoods, in first place Vλ

x0
⊂ Rλ

x0
that we can select equal to Rλ

x0
,

and two other neighborhoods of zero in Rj denote as Wλ
x0

and W̃λ
x0

(we
can also choose this neighborhood equal to W̃λ

x0
) and a function γλ,x0

belonging to C1 defined on Rλ
x0
×Wλ

x0
onto W̃λ

x0
, that is γλ,x0 : Rλ

x0
×

Wλ
x0
⊂ Rd−j ×Rj → W̃λ

x0
⊂ Rj such that

1. γλ,x0(x̂0,λ, 0) =~0Rj

2. ∀(x̂λ, δ) ∈ Rλ
x0
×Wλ

x0
, G(x̂λ, δ, γλ,x0(x̂λ, δ)) =~0Rj

3. ∀(x̂λ, δ, γ) ∈ Rλ
x0
×Wλ

x0
× W̃λ

x0
,(

G(x̂λ, δ, γ) =~0Rj ⇒ γ = γλ,x0(x̂λ, δ)
)

Moreover, derivating the expression G(x̂λ, δ, γλ,x0(x̂λ, δ)) = ~0Rj with
respect to x̂λ, we get for all (x̂λ, δ) ∈ Rλ

x0
×Wλ

x0
,
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Oj,d−j =

∂G
∂x̂λ

(x̂λ, δ, γλ,x0(x̂λ, δ)) +
∂G
∂γ

(x̂λ, δ, γλ,x0(x̂λ, δ))× ∂γλ,x0

∂x̂λ
(x̂λ, δ),

where Oj,d−j is the null matrix with j rows and d− j columns.
From the equality (3.5) and since

∂G
∂x̂λ

(x̂λ, δ, γλ,x0(x̂λ, δ))

= ∇X(−−→αλ,x0(x̂λ) +
j

∑
k=1

γk,λ,x0(x̂λ, δ)e`k)×∇
−−→αλ,x0(x̂λ),

finally we obtain

∂γλ,x0

∂x̂λ
(x̂λ, δ) = −(∇X(−−→αλ,x0(x̂λ) +

j

∑
k=1

γk,λ,x0(x̂λ, δ)e`k)/V⊥λ )−1 ×

∇X(−−→αλ,x0(x̂λ) +
j

∑
k=1

γk,λ,x0(x̂λ, δ)e`k)×∇
−−→αλ,x0(x̂λ) (3.6)

Defining

−−−→αλ,x0,δ(x̂λ) =
−−→αλ,x0(x̂λ) +

j

∑
k=1

γk,λ,x0(x̂λ, δ)e`k , (3.7)

this function is a local parametrization of the level set CDr

X (y + δ). With
this new parametrization we can write (3.6) under the form

∂γλ,x0

∂x̂λ
(x̂λ, δ)

= −(∇X(−−−→αλ,x0,δ(x̂λ))/V⊥λ )−1 ×∇X(−−−→αλ,x0,δ(x̂λ))×∇−−→αλ,x0(x̂λ). (3.8)

In a similar manner by derivating the equality G(x̂λ, δ, γλ,x0(x̂λ, δ)) =
~0Rj with respect to δ, we get this time

∂γλ,x0

∂δ
(x̂λ, δ) = (∇X(−−−→αλ,x0,δ(x̂λ))/V⊥λ )−1 (3.9)
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We need to point out that if x̂λ ∈ Rλ
x0

then G(x̂λ, 0, 0) = X(−−→αλ,x0(x̂λ))−
y = ~0Rj . By the precedent point 3. we obtain that γλ,x0(x̂λ, 0) = 0, and
since γλ,x0 is a continuous function on Rλ

x0
×Wλ

x0
, we get firstly

lim
δ→0

−−−→αλ,x0,δ(x̂λ) =
−−→αλ,x0(x̂λ).

Being the convergence uniform over Rλ
x0

. In fact since γλ,x0(x̂λ, 0) = 0
and by using the mean value theorem and the equality (3.9), we have

||−−−→αλ,x0,δ(x̂λ)−−−→αλ,x0(x̂λ)||d

= ||
j

∑
k=1

(
j

∑
i=1

∂γk,λ,x0

∂δi
(x̂λ, θkδ)δi)e`k ||d

= ||
j

∑
k=1

((∇X(−−−−→αλ,x0,θkδ(x̂λ))/V⊥λ )−1(δ))k,1 e`k ||d

6
√

j sup
z∈K
||(∇X(z)/V⊥λ )−1||d,j × ||δ||j,

where 0 < θk < 1, for k = 1, · · · , j and K a compact set of Rd that
is defined by K = −−→αλ,x0(Rλ

x0
) + ∑

j
i=1 γ`k,λ,x0

(Rλ
x0
×Wλ

x0
)e`k . To finish, let

us recall that ||(∇X(z)/V⊥λ )−1|| remains bounded over this compact.
To show this it is enough to make smaller the open sets Vλ

x0
and Wλ

x0
.

That is chosing Vλ
x0

such that Vλ
x0
⊂ Rλ

x0
and chosing an open set Fλ

x0

containing 0 on Rj such that Fλ
x0
⊂Wλ

x0
.

Secondly, let us prove that ∇−−−→αλ,x0,δ converge uniformly towards ∇−−→αλ,x0

over Rλ
x0

. Given that for all x̂λ ∈ Rλ
x0

, X(−−→αλ,x0(x̂λ)) = y, we get

∇X(−−→αλ,x0(x̂λ))×∇−−→αλ,x0(x̂λ) = Oj,d−j.

By this last fact, (3.7) and (3.8), we have the following sequence of in-
equalities
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||∇−−−→αλ,x0,δ(x̂λ)−∇−−→αλ,x0(x̂λ)||d,d−j =

|| − (∇X(−−−→αλ,x0,δ(x̂λ))/V⊥λ )−1 ×
(
∇X(−−−→αλ,x0,δ(x̂λ))−∇X(−−→αλ,x0(x̂λ))

)
×∇−−→αλ,x0(x̂λ)||d,d−j 6

||(∇X(−−−→αλ,x0,δ(x̂λ))/V⊥λ )−1||d,j × ||∇X(−−−→αλ,x0,δ(x̂λ))−∇X(−−→αλ,x0(x̂λ))||j,d
× ||∇−−→αλ,x0(x̂λ)||d,d−j 6

sup
z∈K
||(∇X(z)/V⊥λ )−1||d,j sup

x̂λ∈Rλ
x0

||∇X(−−−→αλ,x0,δ(x̂λ))−∇X(−−→αλ,x0(x̂λ))||j,d

× sup
x̂λ∈Rλ

x0

||∇−−→αλ,x0(x̂λ)||d,d−j

The first term in the last inequality is bounded as we have explained
above. The third term is also bounded because ∇−−→αλ,x0 is continuous
over Rλ

x0
that is a compact. In the same form the second term tends to

zero because we already know that−−−→αλ,x0,δ uniformly converges towards
−−→αλ,x0 on Rλ

x0
and ∇X is continuous over K a compact set.

We will show that

lim
δ→0

∫
CDr

X (y+δ)
Y(z)dσd−j(z) =

∫
CDr

X (y)
Y(z)dσd−j(z).

Firstly using that supp(Y) is a compact set in Rd included in the open
set Γ(λ), we can prove that there exists an open set O contained in Rd

such that: supp(Y) ⊂ O ⊂ O ⊂ Γ(λ).
Secondly let us notice that since O ⊂ Γ(λ) ⊂ D, the set O ∩ CDr

X (y) is a
compact set of Rd.
Let us built a partition of unity {π1, · · · , πm} for this compact manifold
in the following form.
Let us consider x ∈ O ∩ CDr

X (y). Since x ∈ O ⊂ Γ(λ), x ∈ Γ(λ) it holds
that J(λ)X (x) 6= 0 and we can construct the open set Uλ

x . Since Uλ
x is open,

we can chose a real number rλ
x > 0 such that the closed ball of Rd with

center x and radius rλ
x is contained in Uλ

x , let B(x, rλ
x ) ⊂ Uλ

x .
But we know that O ∩ CDr

X (y) is a compact set of Rd, then we can cover
O ∩ CDr

X (y) with a finite number of these balls, that is O ∩ CDr

X (y) ⊂
∪m

i=1B(xi, rλ
xi
) in such a form that for i = 1, · · · , m, we still have:

B(xi, rλ
xi
) ⊂ Uλ

xi
.
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In the same form that in page 34, we obtain a partition of unity of O ∩
CDr

X (y), let {π1, · · · , πm}, such that:

1. πi is C∞ on O ∩ CDr

X (y), πi > 0, i = 1, · · · , m.

2. supp(πi) ⊂ O ∩ CDr

X (y) ∩ B(xi, rλ
xi
) ⊂ Uλ

xi
.

3. ∑m
i=1 πi(x) = 1, x ∈ O ∩ CDr

X (y).

Moreover, the sequence of inclusions holds true
supp(Y) ∩ CDr

X (y) ⊂ O ∩ CDr

X (y) ⊂ O ∩ CDr

X (y) ⊂ ∪m
i=0Uλ

xi
, xi ∈ O ∩

CDr

X (y), i = 1, · · · , m.
Let us use the fact that supp(Y) is a compact set of Rd and O is open,
in the following form. Consider ω ∈ supp(Y). Given that supp(Y) ⊂
O ⊂ Γ(λ), there exists two open sets Ũ(ω) and U(ω) containing {ω}
and Rω > 0, Ũ(ω) ⊂ U(ω) ⊂ O such that the restriction fλ|Ũ(ω) has
an inverse on the open ball B( fλ(ω), Rω/2) and the restriction fλ|U(ω)

has an inverse on the open ball B( fλ(ω), Rω). Also it is possible to
have Diam(U(ω)) 6 infi=1,··· ,m Diam(W̃λ

xi
), W̃λ

xi
being the neighbor-

hood of zero in Rj used to build the function γλ,xi and also the local
parametrization of the level curve at level y + δ.
Since supp(Y) is compact in Rd, it can be cover by a finite number of
such sets, that is supp(Y) ⊂ ∪k

`=1Ũ(ω`) ⊂ ∪k
`=1U(ω`) ⊂ O, ω` ∈

supp(Y) for ` = 1, · · · , k.
Let us chose δ = (δ1, · · · , δj) ∈ Rj such that ||δ||j 6 inf`=1,··· ,k Rω`

/2.
We are going to prove that if δ is small enough, all element of CDr

X (y +
δ) ∩ supp(Y) belongs to −−−→αλ,xi ,δ(Rλ

xi
), for almost one indice i belonging

to 1, · · · , m.
Let us chose z ∈ CDr

X (y + δ) ∩ supp(Y). Since z ∈ supp(Y), there ex-
ists ` = 1, · · · , k, such that z ∈ Ũ(ω`), and given that z ∈ CDr

X (y + δ),

fλ(z) = πVλ
(z) +

j
∑

k=1
δk e`k ∈ B( fλ(ω`), Rω`

/2).

It yields that πVλ
(z) ∈ B( fλ(z), ||δ||j) ⊂ B( fλ(ω`), Rω`

). Thus there ex-
ists an unique x ∈ U(ω`) ⊂ O, such that

fλ(x) = πVλ
(z) = πVλ

(x) +
j

∑
k=1

(Xk(x)− yk)e`k . So we have πVλ
(z) =

πVλ
(x) and

j
∑

k=1
(Xk(x) − yk)e`k = 0, thus X(x) = y. Since x ∈ O ∩
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CDr

X (y) ⊂ ∪m
i=0Uλ

xi
, x can be written in the form x = −−→αλ,xi(x̂λ), x̂λ ∈ Rλ

xi
,

for some i = 1, · · · , m. Finally and since πVλ
(z) = πVλ

(x), the vector z
can be written in the form z = x+πV⊥λ

(z− x). Moreover, πV⊥λ
(z− x) =

∑
j
k=1 γke`k and ||γ||j = ||πV⊥λ

(z− x)||d 6 ||z− x||d 6 Diam(U(ω`)) 6

Diam(W̃λ
xi
), because we have

sup
`=1,··· ,k

Diam(U(ω`)) 6 inf
i=1,··· ,m

Diam(W̃λ
xi
).

Finally by using the property 3. of function G, we have proven that
z = −−−→αλ,xi ,δ(x̂λ), x̂λ ∈ Rλ

xi
, i = 1, · · · , m.

Let us assume that t, s ∈ (∪m
i=0Uλ

xi
) ∩ CDr

X (y) are such that πVλ
(t) =

πVλ
(s) and t 6= s. We can write s = (πV⊥λ

(t) + σ0γ) + πVλ
(t), where

σ0 > 0, γ ∈ V⊥λ and ||γ||d = 1. By defining h(σ) = X(t + σγ) we have
h(0) = h(σ0) = y. Let us point out that this function is well defined for
0 6 σ 6 σ0, because D is a convex open set and here is the only place
where we use the convexity of the set D . Also, the Rolle’s theorem
allows us to say that if h = (h1, · · · , hj), then for all ` = 1, · · · , j, there
exists σ` ∈ (0, σ0) such that ḣ`(σ`) = ∇X`(t + σ`γ)(γ) = 0. Moreover,

1 = ||γ||d = ||(∇X(t)|V⊥λ )
−1(∇X(t)|V⊥λ (γ))||d 6 M||∇X(t)(γ)||j,

where M = ∑m
i=1 sup

x∈Uλ
xi

||(∇X(x)|V⊥λ )
−1||d,j < +∞ ( to ensure that

the last norm is finite it is sufficient to take the open sets Uλ
xi

small
enough). Finally by using that ḣ`(σ`) = 0 we obtain

1 6 M2
j

∑
`=1
|∇X`(t + σ`γ)(γ)−∇X`(t)(γ)|2

6 M2
j

∑
`=1
||∇X`(t + σ`γ)−∇X`(t)||21,d.

We will asume for the first time that ∇X is a Lipschitz function. Let L
be its Lipschitz’s constant. We have

1 6 M2L2
j

∑
`=1

σ2
` 6 jM2L2σ2,
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where σ = max`=1,··· ,j σ`. From this fact it yields

||s− t||d = σ0 > σ >
1√
jML

= a. (3.10)

Let us prove that if z ∈ CDr

X (y + δ) ∩ supp(Y), there exists a unique
x ∈ ∪m

i=0Uλ
xi
∩ CDr

X (y), such that z = x + πV⊥λ
(z − x) and such that

||πV⊥λ
(z− x)||d 6 infi=1,··· ,m Diam(W̃λ

xi
) (this is always possible by tak-

ing the open sets W̃λ
xi

small enough to have Diam(W̃λ
xi
) <

a
2

).

As z belongs to CDr

X (y + δ) ∩ supp(Y), we have shown above the ex-
istence of this x. Let us show now the unicity. We assume that there
exists another vector x′ ∈ (∪m

i=0Uλ
xi
) ∩ CDr

X (y), x′ 6= x, such that z =

x′ + πV⊥λ
(z− x′) and also that ||πV⊥λ

(z− x′)||d 6 infi=1,··· ,m Diam(W̃λ
xi
).

For the precedent result we have necessarily ||x− x′||d > a.
Furthermore, it holds

||x− x′||d 6 ||x− z||d + ||x′ − z||d
= ||πV⊥λ

(z− x)||d + ||πV⊥λ
(z− x′)||d

<
a
2
+

a
2
= a.

Thus we get a contradiction.
Now consider z ∈ CDr

X (y + δ) ∩ supp(Y), since

x ∈ O ∩ CDr

X (y) ⊂ O ∩ CDr

X (y)

and given that ẑλ = x̂λ, we obtain the sequence of equalities

Y(z) =

(
m

∑
i=1

πi(x)

)
×Y(z)

=
m

∑
i=1

πi(x)× 1{x∈Uλ
xi
∩ CDr

X (y)} ×Y(z)

=
m

∑
i=1

πi(x)× 1{x=−−→αλ,xi (x̂λ)} × 1{x̂λ∈Rλ
xi
} ×Y(z)

=
m

∑
i=1

πi(
−−→αλ,xi(ẑλ))× 1{x=−−→αλ,xi (ẑλ)} × 1{ẑλ∈Rλ

xi
} ×Y(z)
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=
m

∑
i=1

πi(
−−→αλ,xi(ẑλ))× 1{z=−−−→αλ,xi ,δ(ẑλ)} ×Y(−−−→αλ,xi ,δ(ẑλ)) × 1{ẑλ∈Rλ

xi
}

The last equality coming from the way we built the vector x from the
vector z and from the uniqueness of the decomposition of this vector z
on the set (∪m

i=0Uλ
xi
) ∩ CDr

X (y).
We have the following equality∫

CDr
X (y+δ)

Y(z)dσd−j(z)

=
m

∑
i=1

∫
{z=−−−→αλ,xi ,δ(ẑλ), ẑλ∈Rλ

xi
}

πi(
−−→αλ,xi(ẑλ))×Y(−−−→αλ,xi ,δ(ẑλ))dσd−j(z) =

m

∑
i=1

∫
Rλ

xi

πi(
−−→αλ,xi (ẑλ))Y(

−−−→αλ,xi ,δ(ẑλ))(det(∇−−−→αλ,xi ,δ(ẑλ)∇−−−→αλ,xi ,δ(ẑλ)
T))1/2 dẑλ

→
m

∑
i=1

∫
Rλ

xi

πi(
−−→αλ,xi (ẑλ))Y(

−−→αλ,xi (ẑλ))(det(∇−−→αλ,xi (ẑλ)∇−−→αλ,xi (ẑλ)
T))1/2 dẑλ,

the last convergence comes from the uniform convergence of −−−→αλ,xi ,δ to
−−→αλ,xi over Rλ

xi
and of that one of ∇−−−→αλ,xi ,δ towards ∇−−→αλ,xi over Rλ

xi
.

But

m

∑
i=1

∫
Rλ

xi

πi(
−−→αλ,xi(ẑλ))Y(

−−→αλ,xi(ẑλ))(det(∇−−→αλ,xi(ẑλ)∇−−→αλ,xi(ẑλ)
T))1/2 dẑλ

=
m

∑
i=1

∫
Uλ

xi
∩CDr

X (y)
πi(x)Y(x)dσd−j(x) =

∫
O∩CDr

X (y)
Y(x)dσd−j(x)

=
∫
CDr

X (y)
Y(x)dσd−j(x),

because supp(Y) ⊂ O.
Summing up we have proved the continuity of the function

y→
∫
CDr

X (y)
Y(x)dσd−j(x),

under the hypothesis that Y : Dr
X ⊂ Rd → R is a continuous function

satisfying supp(Y) ⊂ Γ(λ).
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Finally, we do not assume anymore that supp(Y) ⊂ Γ(λ), just that
supp(Y) ⊂ Dr

X.
Let us introduce two new functions. For λ ∈ Bj, let set for t ∈ D,

φλ(t) = inf
γ∈V⊥λ ,||γ||d=1

||∇X(t)/V⊥λ
(γ)||j, (3.11)

and
φ(t) = sup

λ∈Bj

φλ(t).

These two functions are Lipschitz then continuous, with the same Lip-
schitz constant L, that the one of ∇X. In fact, let us consider firstly the
first function. Consider two points t and t?, we have for all γ ∈ V⊥λ
satisfying ||γ||d = 1,

||∇X(t)/V⊥λ
(γ)||j = ||∇X(t)(γ)||j

6 ||∇X(t)(γ)−∇X(t∗)(γ)||j + ||∇X(t∗)/V⊥λ
(γ)||j,

using that ∇X is Lipschitz, we obtain

||∇X(t)/V⊥λ
(γ)||j 6 L||t− t?||d + ||∇X(t∗)/V⊥λ

(γ)||j,

then

φλ(t) 6 L||t− t?||d + φλ(t∗), (3.12)

since a symmetric inequality can be proven, we obtain finally

|φλ(t)− φλ(t∗)| 6 L||t− t?||d.

Let us study now the second function.
The inequality (3.12) allows writing

φ(t) 6 L||t− t?||d + φ(t∗),

given in the same form as before

|φ(t)− φ(t∗)| 6 L||t− t?||d.

Let us prove that(
λ ∈ Bj and t ∈ Γ(λ)

)
⇐⇒ (φλ(t) > 0) . (3.13)
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Let us consider t ∈ Γ(λ) for a λ ∈ Bj. That means that ∇X(t)/V⊥λ
has

an inverse and moreover that ker(∇X(t)/V⊥) =~0/V⊥ . But there exists
a γ0 ∈ V⊥λ , ||γ0||d = 1 such that φλ(t) = ||∇X(t)/V⊥λ

(γ0)||j, and this
implies that φλ(t) > 0.
To prove the other implication, let assume that for a λ ∈ Bj, t /∈ Γ(λ),
say that∇X(t)/V⊥λ

has not inverse. Then there exists γ ∈ V⊥λ , ||γ||d = 1
such that ∇X(t)/V⊥λ

(γ) = 0, and this implies φλ(t) = 0.
Now let us prove that

(t ∈ Dr
X) ⇐⇒ (φ(t) > 0) (3.14)

Indeed by Remark 3.1.3 and equivalence (3.13), we have the following
equivalences

(t ∈ Dr
X) ⇐⇒

(
∃ λ ∈ Bj, t ∈ Γ(λ)

)
⇐⇒

(
∃ λ ∈ Bj, φλ(t) > 0

)
⇐⇒ (φ(t) > 0)

We are going to built a partition of unity of Dr
X whose support inter-

sected with Dr
X will be included in Γ(λ), for all λ ∈ Bj . We will denote

this partition by ηλ .
Firstly let us consider the function χλ(t) = (2φλ(t)− φ(t))+. Since φλ

and φ are Lipschitz functions, it results that 2φλ − φ remains Lipschitz.
It follows that the function χλ is also Lipschitz and a fortiori continu-
ous.

Let us show that

(t ∈ Dr
X) =⇒

 ∑
λ∈Bj

χλ(t) > 0

 (3.15)

Consider t ∈ Dr
X. Let assume that ∑

λ∈Bj

χλ(t) = 0 and let us prove

that we get a contradiction. Since ∑
λ∈Bj

χλ(t) = 0, for all λ ∈ Bj we have

then χλ(t) = 0, that is φλ(t) 6 1
2 φ(t). This implies because this inequal-

ity holds true for all λ ∈ Bj, that φ(t) 6 1
2 φ(t) and φ(t) = 0, which is in

contradiction with the equivalence (3.14).
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Let set for all t ∈ Dr
X,

ηλ(t) =
χλ(t)

∑
λ∈Bj

χλ(t)
, (3.16)

that is possible from property (3.15). Now it is easy to see that ηλ is
continuous on Dr

X since χλ is also continuous on Dr
X.

It remains only to prove that the support of this function intersected
with Dr

X is included in Γ(λ).
For all C > 0, let us build an open set OC around of

(Γ(λ))c1 ∩ {t ∈ D, φ(t) > C},

contained in the set
{t ∈ D, χλ(t) = 0}.

More precisely, let us prove that for a given C > 0, if δ 6
C
2L

(with L
being the Lipschitz constant of the function ∇X), then

((Γ(λ))c1)δ ∩ {t ∈ D : φ(t) > C} ⊂ {t ∈ D : χλ(t) = 0}.

where for all set A we have defined the open set Aδ = {x ∈ Rd :
d(x, A) < δ}.
Thus let C > 0 be fixed and t ∈ ((Γ(λ))c1)δ ∩ {t ∈ D : φ(t) > C}. Since
t ∈ ((Γ(λ))c1)δ, then there exists a t′ ∈ B(t, δ) such that t′ ∈ (Γ(λ))c1

(and also such that φλ(t′) = 0 as a consequence of the implication
(3.13)). Then we have, since φλ is Lipschitz with Lipschitz constant
L that

φλ(t) 6 |φλ(t)− φλ(t′)|+ φλ(t′)

6 L||t− t′||d 6 L δ 6
C
2

,

hence 2φλ(t) 6 C < φ(t), and this entails that χλ(t) = 0. We have
proved that for all C > 0 and for all δ 6 C

2L , we have the inclusion

{t ∈ Dr
X : χλ(t) 6= 0} = {t ∈ Dr

X : ηλ(t) 6= 0} ⊂
((((Γ(λ))c1)δ)

c ∩ Dr
X) ∪ {t ∈ Dr

X : φ(t) 6 C},
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where we recall that the symbol c denotes the complementary set with
respect to Rd.
Noting that (((Γ(λ))c1)δ)

c is a closed set contained in Γ(λ) ∪ Dc, we
have

supp(ηλ) ⊂ [(Γ(λ) ∪ Dc) ∩ Dr
X] ∪ (∩C>0{t ∈ Dr

X : φ(t) 6 C}),

that is

supp(ηλ) ∩ Dr
X ⊂ Γ(λ) ∪ (∩C>0{t ∈ Dr

X : φ(t) 6 C} ∩ Dr
X).

It will be enough to finish to prove that ∩C>0{t ∈ Dr
X : φ(t) 6 C} ∩

Dr
X = ∅. Indeed, consider z ∈ ∩C>0{t ∈ Dr

X : φ(t) 6 C} ∩ Dr
X. Then

z ∈ Dr
X and for all C > 0, there exists a sequence of points zn,C of Dr

X,
satisfying φ(zn,C) 6 C and that converges to z ∈ Dr

X. Since the func-
tion φ is continuous on D and also on Dr

X, it holds that φ(z) 6 C. This
last inequality is true for all C > 0, then we get that φ(z) = 0. From
property (3.14) we readily get that z ∈ (Dr

X)
c1 . But z ∈ Dr

X.
We have proved that

supp(ηλ) ∩ Dr
X ⊂ Γ(λ). (3.17)

In this form we have for t ∈ Dr
X, Y(t) = ∑

λ∈Bj

ηλ(t)Y(t) = ∑
λ∈Bj

Yλ(t),

where we have set for t ∈ Dr
X, Yλ(t) = ηλ(t)Y(t).

The function Yλ is a continuous function on Dr
X with compact support

included in Γ(λ), from the inclusion (3.17) and since supp(Y) ⊂ Dr
X by

hypothesis.
We have for all y ∈ Rj

∫
CDr

X (y)
Y(z)dσd−j(z) = ∑

λ∈Bj

∫
CDr

X (y)
Yλ(z)dσd−j(z),

the continuity of the left hand side integral as a function of the y vari-
able is a consequence of the continuity of each of the terms of the sum
in the right hand side. This last fact is an application of the above pro-
cedure.
This finish the proof of Theorem 3.1.2 in the case where we have chosen
the bounded open set D1 of Rd equal to D convex (bounded).
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Let assume now that D is a convex open set of Rd, that can be un-
bounded. The function X : D ⊂ Rd → Rj is a function C1(D, Rj) such
that∇X is Lipschitz and the function Y : D1 ⊂ Rd → R is a continuous
function defined on D1 open and bounded set of Rd included in D such
that supp(Y) ⊂ Dr

X/D1
.

In this case the function X restricted to the bounded open set D1, that is
X/D1, is such that X/D1 : D1 ⊂ Rd → Rj is still a continuous function
C1(D1, Rj) such that ∇X/D1 is Lipschitz.
One can apply the precedent procedure to these two functions X/D1
and Y and also to the open set D1. The only problematic thing is that
a priori the set D1 could not be convex, but this is not a true problem.
Indeed, if we refer to page 40, the only place where we used the con-
vexity of the open set, we realize that what is important is to be able
applying the Rolle’s theorem to the function h that is defined there and
using the fact that the function ∇X is Lipschitz. Since D1 could not be
convex, we did not be sure to can do that, but this is not the case if one
works on D that is convex.
Ending the proof of the theorem. 2

Now we are able to exhibit a class of processes X and Y satisfy-
ing the hypotheses H1 and H4 through the following condition A0 and
the following proposition whose proof is based on the one given by
Cabaña [11]. In what follows we will give a new proof slightly more
general that the original one.

• A0: X : Ω × D ⊂ Ω ×Rd → Rj (j 6 d) is a random field that
belongs to C1(D, Rj), where D is a bounded open convex set of
Rd, such that for almost surely ω ∈ Ω, the process ∇X(ω) is
Lipschitz with Lipschitz constant LX(ω) satisfying E(LX(·))d <
+∞. Also Y : Ω×D ⊂ Ω×Rd → R is a continuous process such
that there exists a λ ∈ Bj such that supp(Y) ⊂ Γ(λ). Moreover,
||(∇X(·)/V⊥λ

)−1||d,j, Y(·) and ||∇X(·)||j,d are assumed uniformly
bounded on the support of Y, the bounds not depending on ω
(∈ Ω).

Proposition 3.1.1 If X and Y satisfy the condition A0, then the hypotheses
H1 and H4 are satisfied.
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Remark 3.1.5 We can replace in A0 the condition E(LX(·))d < +∞ for
the following, there exists a L > 0 such that for almost surely ω ∈ Ω,
the hypotheses supp(Y(ω)) 6= ∅ implies that LX(ω) 6 L, then the
hypotheses H1 and H4 hold.

Remark 3.1.6 We can generalize the Proposition 3.1.1 and also the Re-
mark 3.1.5 assuming that D is an open and convex set eventually un-
bounded and maintaining the same hypotheses on X. Furthermore for
Y we will assume that it is defined on D1 bounded and open set in-
cluded in D. Moreover, we need to adapt the hypotheses for Y to the
open set D1 in place of D and to X/D1. The hypotheses H1 and H4 will
be still hold for X/D1 and Y defined on D1.

Proof of the proposition 3.1.1. For almost surely ω ∈ Ω the field X(ω) :
D ⊂ Rd → Rj (j 6 d) belongs to C1(D, Rj) such that ∇X(ω) is
Lipschitz and Y(ω) : D ⊂ Rd → R is a continuous function such
that supp(Y(ω)) ⊂ Γ(λ)(ω) ⊂ Dr

X(ω) and D is an open and convex

bounded set of Rd. According to the Theorem 3.1.2 the function

y 7−→
∫
CDr

X(ω)
(y)

Y(ω)(x)dσd−j(x)

is a continuous function of the variable y.
The same is true for

∫
CDr

X(ω)
(y) |Y(ω)(x)|dσd−j(x).

Let us bound by above
∫
CDr

X (y) |Y(x)|dσd−j(x) by an integrable random
variable that does not depend on y. Then according to the dominated
convergence theorem hypotheses H1 and H4 will be fullfilled.
Since supp(Y) ⊂ Γ(λ), we can built a partition of unity of supp(Y) in
the same form as in page 34 getting as in (3.4)∫
CDr

X (y)
Y(x)dσd−j(x) =

m

∑
i=1

∫
Rλ

xi

πi(
−−→αλ,xi(x̂λ))Y(

−−→αλ,xi(x̂λ))(det(∇−−→αλ,xi(x̂λ)∇−−→αλ,xi(x̂λ)
T))1/2 dx̂λ.

Consider x̂λ fixed in Rλ
xi

such that −−→αλ,xi(x̂λ) ∈ supp(Y), i = 1, . . . , m.
We have (det(∇−−→αλ,xi(x̂λ)∇−−→αλ,xi(x̂λ)

T))1/2 6 ||∇−−→αλ,xi(x̂λ))||dd,d−j.
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Let us bound uniformly ||∇−−→αλ,xi(x̂λ))||d,d−j, for all x̂λ in Rλ
xi

such that
−−→αλ,xi(x̂λ) ∈ supp(Y).
For all x̂λ ∈ Rλ

xi
, we have X(−−→αλ,xi(x̂λ)) = y. Taken derivatives in this

equality on the open set Rλ
xi

, we obtain

∇X(−−→αλ,xi(x̂λ))×∇−−→αλ,xi(x̂λ) = 0.

By using the equality (3.3), also that −−→αλ,xi(x̂λ) ∈ Γ(λ), for all u ∈ Rd−j,
u = (u1, · · · , ud−j) it yields

∇−−→αλ,xi(x̂λ)(u)

= −
[
∇X(−−→αλ,xi(x̂λ))/V⊥λ

]−1
(
∇X(−−→αλ,xi(x̂λ))/Vλ(

d−j

∑
k=1

ukeik)

)

+
d−j

∑
k=1

ukeik .

Since ||(∇X(·)/V⊥λ
)−1||d,j, Y(·) and ||∇X(·)||j,d are uniformly bounded

on the support of Y and the bound does not depend of ω, then we have∫
CDr

X (y) |Y(x)|dσd−j(x)

6 C
∫

ΠVλ
(D)

m

∑
i=1

πi(
−−→αλ,xi(x̂λ))1{−−→αλ,xi (x̂λ)∈supp(Y)} 1{x̂λ∈Rλ

xi
} dx̂λ.

For ω ∈ Ω and x̂λ ∈ ΠVλ
(D), we consider the set A defined by

A = {−−→αλ,xi(x̂λ)(ω), x̂λ ∈ Rλ
xi
(ω)

and −−→αλ,xi(x̂λ)(ω) ∈ supp(Y)(ω), i = 1, . . . , m}

We form a partition of set A into equivalence classes. An equivalence
class Ai0 for i0 = 1, . . . , m, is the set defined as

Ai0 = {
−−→αλ,xi(x̂λ)(ω), x̂λ ∈ Rλ

xi
(ω) ∩ Rλ

xi0
(ω) and −−→αλ,xi(x̂λ)(ω)

= −−→αλ,xi0
(x̂λ)(ω) ∈ supp(Y)(ω), i = 1, . . . , m}.
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By property 3. page 34, we have the following property ∑m
i=1 πi(x) = 1,

x ∈ supp(Y). Also into each class we bound the corresponding sum by
one. Now it only remains to count the maximal number of equivalence
classes.
For counting the classes let us take two elements belonging to two dif-
ferent classes. For fixing the ideas we will take for instance

t = −−→αλ,xi(x̂λ)(ω), x̂λ ∈ Rλ
xi
(ω) and −−→αλ,xi(x̂λ)(ω) ∈ supp(Y)(ω)

and

s = −−→αλ,xj(x̂λ)(ω), x̂λ ∈ Rλ
xj
(ω) and −−→αλ,xj(x̂λ)(ω) ∈ supp(Y)(ω),

i, j = 1, · · · , m and t 6= s.
It is clear that t and s are two different elements of Rd, they have the
same projection on Vλ and belong to the level curve CDr

X (y). By re-
peating the proof given in page 40 and since t ∈ supp(Y)(ω) and that
||(∇X(·)/V⊥λ

)−1||d,j is uniformly bounded on supp(Y) by a constant C,
we have the following bound

1 6 C2 ∑
j
`=1 ||∇X`(

−−→αλ,xi(x̂λ) + σ`γ)(ω)−∇X`(
−−→αλ,xi(x̂λ))(ω)||21,d.

But for almost surely ω ∈ Ω, ∇X(ω) is Lipschitz with Lipschitz con-
stant LX(ω), we obtain

1 6 j C2L2
X(ω) σ2(ω),

where σ = max`=1,··· ,j σ`.
As in inequality (3.10) we finally get the following bound

||s− t||d = σ0(ω) > σ(ω) >
1√

jCLX(ω)
= a(ω).

The open ball with centers t and s and diameter a(ω) do not intersect.
We have at most ( diam(D)

a(ω)
)d balls of diameter a(ω) and then at most

( diam(D)
a(ω)

)d equivalence classes.
Finally for almost surely ω ∈ Ω:∫

CDr
X(ω)

(y)
|Y(ω)(x)|dσd−j(x) 6 C

∫
ΠVλ

(D)
(

diam(D)

a(ω)
)d dx̂λ

6 C σd−j(ΠVλ
(D)) (diam(D)

√
jC)dLd

X(ω) 6 C Ld
X(ω).
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Since E(LX(·))d < +∞, y 7−→ E
[∫
CDr

X (y) Y(x)dσd−j(x)
]

is continuous.

The same holds true for E
[∫
CDr

X (y) |Y(x)|dσd−j(x)
]
.

Then the hypotheses H1 and H4 have been checked. This ends the proof
of the proposition. 2

Proof of the Remark 3.1.5. It is enough to replace in the proof of the
preceding proposition LX(ω) by L and a(ω) by 1√

jCL
. In this case for

almost surely ω ∈ Ω, we have the bound∫
CDr

X(ω)
(y)
|Y(ω)(x)|dσd−j(x) 6 C.

and this implies the integrability. 2

Proof of the Remark 3.1.6. We prove this remark in the same way as in
the proof of Proposition 3.1.1. As in the proof of Theorem 3.1.2 we use
that the open set D1 is contained in D that is convex. This allows us
applying, as in page 40, the Rolle’s theorem and the fact that ∇X is
Lipschitz on D. 2

We will study now the hypotheses H2, H3 and H5 and will show the
following proposition that is also deeply inspired by Cabaña [11].
In what follows we will exhibit a class of processes X and Y satisfying
these hypotheses. So we are going to set out some conditions concern-
ing the processes X and Y.
In the first three conditions A1, A2 and A3, we will make the hypothesis
that Y can be written as a function G of X, ∇X and of a new variable
W : Ω× D ⊂ Rd → Rk, k ∈ N?, where D is an open set of Rd, in the
following form: for almost surely x ∈ D:

Y(x) = G(x, W(x), X(x),∇X(x)), (3.18)

where
G : D×Rk ×Rj × L(Rd, Rj) −→ R

(x, z, u, A) 7−→ G(x, z, u, A),

is a continuous function of their variables on D×Rk ×Rj × L(Rd, Rj)
and such that ∀ (x, z, u, A) ∈ D×Rk ×Rj × L(Rd, Rj),

|G(x, z, u, A)| 6 P( f (x), ||z||k, h(u), ||A||j,d),
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where P is a polynomial having positive coefficients and f : D −→ R+

and h : Rj −→ R+ are continuous functions.

• A1: The process X : Ω× D ⊂ Ω×Rd → Rj (j 6 d) is Gaussian
belonging to C1 on D, such that there exists a real a, 0 < a, such
that for almost surely x ∈ D, 0 < a 6 inf||z||j=1 ||V(X(x))× z||j.
Also the first order partial derivatives of its covariance ΓX are
bounded almost surely over the diagonal contained in D × D.
Moreover, for almost surely x ∈ D, the process W(x) is indepen-
dent of the vector (X(x),∇X(x)), and ∀ p ∈N, ∀ n ∈N, ∀ ` ∈N

and ∀m ∈N∫
D

f p(x)E(||W(x)||nk )E(||∇X(x)||`j,d)E(||X(x)||mj ) dx < +∞.

• A2: For all x ∈ D, X(x) = F(Z(x)), where F : Rj −→ Rj is a
bijection of class C1, such that ∀ z ∈ Rj, the Jacobian of F at z,
JF(z) satisfies JF(z) 6= 0 and the function F−1 is continuous. The
process Z : Ω× D ⊂ Ω×Rd → Rj (j 6 d) is Gaussian of class
C1 on D in such a form that there exists a real a > 0, such that for
almost surely x ∈ D, 0 < a 6 inf||z||j=1 ||V(Z(x))× z||j; the first
order partial derivatives of its covariance ΓZ are bounded almost
surely on the diagonal contained in D × D. Morever, for almost
surely x ∈ D, W(x) is independent of the vector (Z(x),∇Z(x)),
and ∀ p ∈N, ∀ n ∈N, ∀ ` ∈N and ∀m ∈N∫

D
f p(x)E(||W(x)||nk )E(||∇Z(x)||`j,d)E(||Z(x)||mj ) dx < +∞.

• A3: For all x ∈ D, X(x) = F(Z(x)), where Z : Ω × D ⊂ Ω ×
Rd → Rj′ is Gaussian of class C1 on D, with mean mZ(·) =
E(Z(·)) bounded on D, and such that there exist reals a and b,
0 < a 6 b such that for almost surely x ∈ D,

0 < a 6 inf
||z||j=1

||V(Z(x))× z||j 6 sup
||z||j=1

||V(Z(x))× z||j 6 b;

the first order partial derivatives of its covariance ΓZ are bounded
almost surely on the diagonal contained in D× D. Moreover, for
almost surely x ∈ D, W(x) is independent of the vector
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(Z(x),∇Z(x)) and we assume that this last vector has a density
denoted by pZ(x),∇Z(x)(·, ·). Finally ∀ p ∈N, ∀ n ∈N and ∀ ` ∈N∫

D
f p(x)E(||W(x)||nk )E(||∇Z(x)||`j′,d) dx < +∞. (3.19)

The function F must satisfy assumption (F) that is:

– (F) F : Rj′ −→ Rj (j < j′) is of class C2, furthermore defining
Aj′ = {1, 2, . . . , j′} there exists λ = (`1, `2, . . . , `j) ∈ Aj

j′ , `1 <

`2 < · · · , `j, such that ∀z ∈ Rj′ ,

J(λ)F (z) = det

(
∂(F1, . . . , Fj)

∂(z`1 , z`2 , . . . , z`j)
(z)

)
6= 0.

For simplicity reasons let us assume that λ = (1, 2, . . . , j) and
let us denote JF(z) instead of J(λ)F (z).
Moreover, ∀ v ∈ Rj′−j, the function Fv defined by

Fv : Rj −→ Rj

u 7−→ Fv(u) = F(u, v),

is an invertible function whose inverse denoted F−1
v is as-

sumed to be a continuous function of the variable u.
Also, ∀` ∈N and ∀µ > 0, the function T` defined by

T` : Rj −→ R+

u 7−→ T`(u)

=
∫

Rj′−j

1
|JF(F−1

z (u), z)|
e−µ ||z||2j′−j ||∇F(F−1

z (u), z)||`j,j′ dz,

(3.20)
is continuous.

• A4: For almost surely (x, y, ẋ) ∈ D × R × Rdj and for all u ∈
Rj, the density pY(x),X(x),∇X(x)(y, u, ẋ) of the joint distribution of
(Y(x), X(x),∇X(x)) exists and is continuous in the variable u.
Moreover

u 7−→
∫

D

∫
R×Rdj

|y|||ẋ||jdjpY(x),X(x),∇X(x)(y, u, ẋ) dẋ dy dx,

is continuous.
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Remark 3.1.7 • It is interesting to notice that condition A1 (resp.
A2, resp. A3) contains the case where the processes X and Y sat-
isfy ∀x ∈ D, Y(x) = G(x, X(x),∇X(x)) and also the case where
Y(x) is independent of (X(x),∇X(x)) (resp. Y(x) independent of
(Z(x),∇Z(x))).

• Note also that condition A4 is satisfied for instance in the case
where, ∀u ∈ Rj, there exists a neighborhood Vu of u and a func-
tion hu such that∫

D

∫
R×Rdj

|y|||ẋ||jdjhu(x, y, ẋ) dẋ dy dx < +∞,

and such that for all z ∈ Vu and for almost surely

(x, y, ẋ) ∈ D×R×Rdj, pY(x),X(x),∇X(x)(y, z, ẋ) 6 hu(x, y, ẋ).

In fact, these hypotheses are the ones which we need for apply-
ing the Lebesgue dominated convergence theorem that allows ob-
taining the continuity of the function

u 7−→
∫

D

∫
R×Rdj

|y|||ẋ||jdjpY(x),X(x),∇X(x)(y, u, ẋ) dẋ dy dx.

We are now able to show a class of processes X and Y satisfying the
hypotheses H2, H3 and H5 through the following proposition.

Proposition 3.1.2 If Y satisfies the condition (3.18) and if X and Y satisfy
one of the three conditions A1, A2, A3 or if X and Y satisfy condition A4,
then the hypotheses H2, H3 and H5 hold.

Proof of Proposition 3.1.2.

1. Let us first assume that the processes X and Y satisfy condition
A1. Let us show that the hypotheses H3 and H5 are satisfied.
Since X is Gaussian and that for almost surely x ∈ D,
inf||z||j=1 ||V(X(x))× z||j > a > 0, the distribution of vector X(x)
is not singular with density pX(x)(·). Moreover, u → pX(x)(u) is
continuous and it is bounded by above, that is there exists a real
M such that for almost surely x ∈ D and for all u ∈ Rj,

pX(x)(u) 6 M. (3.21)
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The hypothesis H3 is satisfied.
Let us show that the hypothesis H5 holds.
Since for almost surely x ∈ D,

Y(x) = G(x, W(x), X(x),∇X(x)),

by using the hypotheses on G and since for all A ∈ L(Rd, Rj),
H(A) 6 C ||A||jj,d , for all u ∈ Rj we have

E[Y(x)H(∇X(x))|X(x) = u]

= E[L(x, W(x), X(x),∇X(x))|X(x) = u],

where L is a continuous function of all its variables belonging to
D×Rk ×Rj × L(Rd, Rj) and such that ∀ (x, z, u, A) ∈ D×Rk ×
Rj × L(Rd, Rj),

|L(x, z, u, A)| 6 Q( f (x), ||z||k, h(u), ||A||j,d), (3.22)

where Q is a polynomial with positive coefficients and f : D −→
R+ and h : Rj −→ R+ are continuous functions.
For almost surely x ∈ D fixed, let us consider the regression equa-
tions: for s ∈ D

X(s) = α(s)X(x) + ξ(s),

∇X(s) =
j

∑
i=1
∇αi(s)Xi(x) +∇ξ(s), (3.23)

where (ξ(s),∇ξ(s)) is a Gaussian vector independent of X(x).
In particular, α(x) = Idj.
A covariance computation gives

α(s) = ΓX(s, x)× Γ−1
X (x, x),

where we recall that ΓX stands for the covariance matrix of X.
Thus for all i, m = 1, . . . , j and ` = 1, · · · , d,

(∇αi(s))`,m = (
∂ΓX

∂s`
(s, x)× Γ−1

X (x, x))mi.
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In particular for almost surely x ∈ D, i, m = 1, . . . , j and ` =
1, · · · , d,

(∇αi(x))`,m = (
∂ΓX

∂s`
(x, x)× Γ−1

X (x, x))mi.

Since for almost surely x ∈ D, inf||z||j=1 ||V(X(x))× z||j > a > 0
and the first order partial derivatives of the covariance ΓX are
bounded by above almost surely on the diagonal contained in
D×D, we get that there exists a real M such that for all i = 1, . . . , j
and for almost surely x ∈ D we have

||∇αi(x)||j,d 6 M. (3.24)

For u ∈ Rj let set

GX,L(u) =
∫

D
E[Y(x)H(∇X(x))|X(x) = u]pX(x)(u) dx.

With the above notations we obtain then

GX,L(u) =
∫

D
E[L(x, W(x), X(x),∇X(x))|X(x) = u]pX(x)(u) dx.

Since for almost surely x ∈ D the random variable W(x) is inde-
pendent of the vector (X(x),∇X(x)), using (3.23), this yields that

GX,L(u) =∫
D×Ω

L(x, W(x)(ω), u,
j

∑
i=1
∇αi(x)(ui − Xi(x)(ω)) +∇X(x)(ω))

×pX(x)(u) dP(ω) dx.

We have then eliminated the conditioning in the conditional ex-
pectation appearing into the integrant.
Now since for almost surely x ∈ D, the function u → pX(x)(u)
is continuous and since the function L is also continuous then for
almost surely (ω, x) ∈ Ω× D, the function

u→

L(x, W(x)(ω), u,
j

∑
i=1
∇αi(x)(ui − Xi(x)(ω)) +∇X(x)(ω))pX(x)(u),
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is continuous.
Morever using the bounds (3.22) and (3.24), we get that for almost
surely (ω, x) ∈ Ω× D,

|L(x, W(x)(ω), u, ∑
j
i=1∇αi(x)(ui − Xi(x)(ω)) +∇X(x)(ω))|pX(x)(u)

6 S( f (x), ||W(x)(ω)||k, `(u), ||X(x)(ω)||j, ||∇X(x)(ω)||j,d),

where S is also a polynomial with positive coefficients and ` :
Rj −→ R+ is a continuous function.
It is clear that for almost surely (ω, x) ∈ Ω× D, the function

u 7→ S( f (x), ||W(x)(ω)||k, `(u), ||X(x)(ω)||j, ||∇X(x)(ω)||j,d),

is continuous. Furthermore, we know that for ∀ p ∈ N, ∀ n ∈ N,
∀ ` ∈N and for all m ∈N,∫

D
f p(x)E(||W(x)||nk )E(||∇X(x)||`j,d)E(||X(x)||mj ) dx < +∞.

Moreover recalling that∫
D×Ω

S( f (x), ||W(x)(ω)||k, `(u), ||X(x)(ω)||j,

||∇X(x)(ω)||j,d)dP(ω)dx

=
∫

D
E(S( f (x), ||W(x)||k, `(u), ||X(x)||j, ||∇X(x))||j,d)) dx,

and since the function u 7→ `(u) is continuous we obtain that the
function

u 7→∫
D×Ω

S( f (x), ||W(x)(ω)||k, `(u), ||X(x)||j, ||∇X(x)(ω)||j,d)dP(ω)dx,

is continuous.
A weak application of the Lebesgue dominated convergence the-
orem allows to conclude that the hypothesis H5 holds true.
A similar proof can be made to show that the hypothesis H2 is
also satisfied. This ends the first part of the proof.
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2. Let assume now that the processes X and Y satisfy condition A2.
Let us prove that hypothesis H3 is satisfied.
In the same form that in part 1) of the proof, since Z is Gaussian
and given that for almost surely x ∈ D,

inf
||z||j=1

||V(Z(x))× z||j > a > 0,

the distribution of the vector Z(x) is non singular with density
pZ(x)(·). The hypotheses on the function F entail that for almost
surely x ∈ D the vector X(x) has a density pX(x)(·) given by for
all u ∈ Rj:

pX(x)(u) =
1

|JF(F−1(u))| pZ(x)(F−1(u)).

Let us show that the hypotheses H5 and H2 are satisfied.
By using the same notations of part 1), for almost surely x ∈ D
and for all u ∈ Rj we have

E[L(x, W(x), X(x),∇X(x))|X(x) = u]pX(x)(u) =

E[L(x, W(x), F(Z(x)),∇F(Z(x))×∇Z(x))|Z(x) = F−1(u)]

×pZ(x)(F−1(u)) × 1
|JF(F−1(u))| =

E[L̃(x, W(x), Z(x),∇Z(x))|Z(x) = F−1(u)]

×pZ(x)(F−1(u)) × 1
|JF(F−1(u))| ,

where the function L̃ is defined ∀ (x, z, u, A) ∈ D × Rk × Rj ×
L(Rd, Rj) by

L̃(x, z, u, A) = L(x, z, F(u),∇F(u)×A).

It is clear, since F is C1 that L̃ has the properties of L, that is L̃ is
a continuous function of its variables in D×Rk ×Rj ×L(Rd, Rj)
and that

|L̃(x, z, u, A)| 6 Q̃( f (x), ||z||k, h̃(u), ||A||j,d),
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where Q̃ is a polynomial with positive coefficients and
h̃ : Rj −→ R+ is a continuous function.
We have shown by using the notations of 1) that for all u ∈ Rj

GX,L(u) = GZ,L̃(F−1(u))× 1
|JF(F−1(u))| .

This leads us to the case considered in 1) where the process X is
replaced by the process Z. The continuity of the function u →
GX,L(u) is a consequence of the one of GZ,L̃ and the fact that the
function F−1 is continuous and F belongs to C1. This ends the
second part of the proof.

3. Let us assume that the processes X and Y satisfy the condition A3.
We need to prove that conditions H2, H3 and H5 hold.
Let us prove firstly that for almost surely x ∈ D, the distribution
of the vector (X(x),∇X(x)) has a density pX(x);∇X(x)(·; ·), and let
us compute this density.
First at all consider the following notations.
The matrix sv,u = (sik)16i6v

16k6u
∈ L(Ru, Rv), defined by its generic

element sik, will be identified to the matrix sv,u with row vector
s(v,u) ∈ Rvu, defined by

s(v,u) = (s11, s21, . . . , sv1, s12, s22, . . . , sv2, . . . , s1u, s2u, . . . , svu).

Using this notation we can introduce the following function

K : Rj ×Rj′−j ×Rjd ×R(j′−j)d −→ Rj ×Rj′−j ×Rjd ×R(j′−j)d

(
t = t(j′,1) =

(
tj,1

tj′−j,1

)
; s = s(j′,d) =

(
sj,d

sj′−j,d

))
7−→

(
(F(t))(j,1); t(j′−j,1); (∇F(t)× s)(j,d); s(j′−j,d)

)
The jacobian JK of this transformation satisfies: ∀(t, s) ∈ Rj′ ×
Rj′d:

JK(t, s) = (JF(t))d+1 6= 0,

by hypothesis.
Furthermore, since F belongs to C2 then K belongs to C1. More-
over, K is bijective having an inverse K−1 given by
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K−1 : Rj ×Rj′−j ×Rjd ×R(j′−j)d −→ Rj ×Rj′−j ×Rjd ×R(j′−j)d

(
t =

(
tj,1

tj′−j,1

)
; s =

(
sj,d

sj′−j,d

))
7−→

(
F−1

tj′−j,1
(tj,1); tj′−j,1;

[
∇F(F−1

tj′−j,1
(tj,1); tj′−j,1)

]−1
jj

×
(
sj,d −

[
∇F(F−1

tj′−j,1
(tj,1); tj′−j,1)

]
jj′−j
× sj′−j,d

)
; sj′−j,d

)
,

where we have denoted, if A ∈ L(Rj′ , Rj), by [A]jj the matrix A
for which we retain only the j first columns and by [A]jj′−j the
matrix A for which we retain the j′ − j last columns.
For all x ∈ D since

X(x) = F(Z(x)) and ∇X(x) = ∇F(Z(x))×∇Z(x),

we have

K(Z(x),∇Z(x)) =
(
X(x); (Z(x))j′−j,1;∇X(x); (∇Z(x))j′−j,d

)
.

We deduce that if for almost surely x ∈ D,
pX(x);(Z(x))j′−j,1;∇X(x);(∇Z(x))j′−j,d

(·; ·; ·; ·) denotes the density of the
vector (

X(x); (Z(x))j′−j,1;∇X(x); (∇Z(x))j′−j,d
)

,

and pZ(x);∇Z(x)(·; ·) the one of (Z(x),∇Z(x)) then

∀(u; zj′−j,1; sj,d; sj′−j,d) ∈ Rj ×Rj′−j ×Rjd ×R(j′−j)d,

we have

pX(x);(Z(x))j′−j,1;∇X(x);(∇Z(x))j′−j,d
(u; zj′−j,1; sj,d; sj′−j,d) =

pZ(x);∇Z(x)(K
−1(u; zj′−j,1; sj,d; sj′−j,d))

× 1
|JF(Fzj′−j,1

(u); zj′−j,1)|d+1 .

Finally, we get the density of the vector (X(x),∇X(x)) by inte-
grating this last expression. Hence for almost surely x ∈ D and
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∀(u; sj,d) ∈ Rj ×Rjd we have

pX(x);∇X(x)(u; sj,d) =∫
Rj′−j×R(j′−j)d

1
|JF(F−1

z (u), z)|d+1
× pZ(x);∇Z(x)((F−1

z (u); z);

([∇F(F−1
z (u), z)]−1

jj × (sj,d − [∇F(F−1
z (u), z)]jj′−j

× sj′−j,d); sj′−j,d))dsj′−j,d dz (3.25)

Remark 3.1.8 It is important to point out that the results shown
above could be obtained by using the coarea formula. We referred
to the reader to Corollary 4.18 page 68 of [28]. However, we have
preferred explicit computations in a way to obtain the exact ex-
pression of this density and also for introducing some notations
useful in what follows.

Now for u ∈ Rj, set as in part 1)

GX,L(u) =∫
D

E[Y(x)H(∇X(x))|X(x) = u]pX(x)(u) dx

=
∫

D
E[L(x, W(x), X(x),∇X(x))|X(x) = u]pX(x)(u) dx.

Since for almost surely x ∈ D, W(x) is independent of

(X(x),∇X(x)) ,

we get ∀u ∈ Rj,

GX,L(u) =∫
D×Rjd

E[L(x, W(x); u; sj,d)]pX(x);∇X(x)(u; sj,d) dsj,d dx

=
∫

D

∫
Rj′−j×R(j′−j)d×Rjd

1
|JF(F−1

z (u), z)|d+1

×E[L(x, W(x); u; sj,d)]× pZ(x);∇Z(x)((F−1
z (u); z);

([∇F(F−1
z (u), z)−1

jj × (sj,d − [∇F(F−1
z (u), z)]jj′−j × sj′−j,d);

sj′−j,d))dsj,ddsj′−j,ddzdx
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In the last integral where the domain of integration is Rjd, main-
taining (sj′−j,d; z; x) ∈ R(j′−j)d ×Rj′−j × D fixed, let us make the
following change of variable

vj,d = [∇F(F−1
z (u), z)]−1

jj × (sj,d −
[
∇F(F−1

z (u), z)
]

jj′−j
× sj′−j,d),

we get∫
Rjd

E[L(x, W(x); u; sj,d)]pZ(x);∇Z(x)((F−1
z (u); z); ([∇F(F−1

z (u), z)]−1
jj

×(sj,d −
[
∇F(F−1

z (u), z)
]

jj′−j
sj′−j,d); sj′−j,d))dsj,d =∫

Rjd
E[L(x, W(x); u; [∇F(F−1

z (u), z)]jj × vj,d

+[∇F(F−1
z (u), z)]jj′−j × sj′−j,d)]

×pZ(x);∇Z(x)((F−1
z (u), z); (vj,d; sj′−j,d)) × |JF(F−1

z (u), z)|ddvj,d =∫
Rjd

E[L(x, W(x); u;∇F(F−1
z (u), z)

(
vj,d

sj′−j,d

)
)]

×pZ(x);∇Z(x)

(
(F−1

z (u), z);
(
vj,d; sj′−j,d

))
× |JF(F−1

z (u), z)|ddvj,d.

Finally ∀u ∈ Rj,

GX,L(u) =
∫

D

∫
Rj′−j

1
|JF(F−1

z (u), z)|
×∫

R(j′−j)d×Rjd
E[L

(
x, W(x); u;∇F(F−1

z (u), z)×
(

vj,d
sj′−j,d

))
]×

pZ(x);∇Z(x)

(
(F−1

z (u), z);
(

vj,d
sj′−j,d

))
dvj,d dsj′−j,d dz dx

=
∫

D

∫
Rj′−j

1
|JF(F−1

z (u), z)|
×∫

Rj′d
E[L

(
x, W(x); u;∇F(F−1

z (u), z)× sj′,d

)
]×

pZ(x);∇Z(x)((F−1
z (u), z); sj′,d) dsj′,d dz dx. (3.26)

A slight modification of this proof or the use of the coarea formula
given in Corollary 4.18 page 68 of [28], show in first place, that for
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almost surely x ∈ D the vector X(x) has a density pX(x)(·) given
by: for all u ∈ Rj

pX(x)(u) =
∫

Rj′−j

1
|JF(F−1

z (u), z)|
× pZ(x)(F−1

z (u), z) dz,

this implies the hypothesis H3. Moreover, this density is a contin-
uous function of the variable u.
Indeed, using the hypotheses on Z, we get the existence of a num-
ber λ > 0 such that for almost surely x ∈ D and for all (z, u) ∈
Rj′−j ×Rj,

pZ(x)(F−1
z (u), z)

6 C e−2λ||(F−1
z (u),z)−mZ(x)||2j′ 6 C e−λ||(F−1

z (u),z)||2j′

6 C e−λ||z||2j′−j , (3.27)

since the function mZ(·) is bounded on D.
Furthermore, using the hypotheses satisfied by F and the process
Z, for almost surely z ∈ Rj′−j and x ∈ D, the function

u 7→ 1
|JF(F−1

z (u), z)|
× pZ(x)(F−1

z (u), z)

is continuous and also the function u 7→ 1
|JF(F−1

z (u),z)| e
−λ||z||2j′−j .

By using that the function u 7→ T`(u) is continuous for ` = 0 (see
in the hypothesis A3, the equality (3.20)), an application of the
Lebesgue dominated convergence theorem allows to assert that
for almost surely x ∈ D, the function u 7→ pX(x)(u) is continuous.
The hypothesis H3 holds.
Now coming back to the definition of GX,L(u) given by the equal-
ity (3.26), note that GX,L(u) can be written as

GX,L(u) =
∫

D

∫
Rj′−j

1
|JF(F−1

z (u), z)|
× pZ(x)(F−1

z (u), z)×

E[L(x, W(x), u,∇F(F−1
z (u), z)×∇Z(x))/Z(x)

= (F−1
z (u), z)] dz dx.
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In the same form that in part 1) of this proof, for all s ∈ D we
do the regression of Z(s) with respect to Z(x) for almost surely
x ∈ D so

Z(s) = α(s)Z(x) + ξ(s),

∇Z(s) =
j′

∑
i=1
∇αi(s)Zi(x) +∇ξ(s),

where (ξ(s),∇ξ(s)) is a Gaussian vector independent of Z(x).
Using the hypotheses on the process Z, we get as in the part 1)
of this proof the following inequality: ∃M ∈ R such that for all
i = 1, . . . , j′ and for almost surely x ∈ D we have

||∇αi(x)||j′,d 6 M. (3.28)

Moreover, for almost surely x ∈ D and using that W(x) is inde-
pendent of (Z(x),∇Z(x)), we get that for almost surely x ∈ D,

GX,L(u) =
∫

D

∫
Rj′−j

1
|JF(F−1

z (u), z)|
× pZ(x)(F−1

z (u), z)×

E[L(x, W(x), u,∇F(F−1
z (u), z)×(

j′

∑
i=1
∇αi(x)[((F−1

z (u), z))i − Zi(x)] +∇Z(x)

)
)] dz dx.

As in part 1) we have turned non conditional the conditional ex-
pectation appearing into the integral and

GX,L(u) =
∫

D

∫
Rj′−j

1
|JF(F−1

z (u), z)|
× pZ(x)(F−1

z (u), z)×

L(x, W(x)(ω), u,∇F(F−1
z (u), z)×

(
j′

∑
i=1
∇αi(x)[((F−1

z (u), z))i − Zi(x)(ω)] +∇Z(x)(ω)))dP(ω)dzdx

=
∫

D

∫
Rj′−j

∫
Ω

f (u, ω, z, x) dP(ω) dz dx

By the hypotheses satisfied by Z and F and since L is a continuous
function, we obtain for almost surely (ω, z, x) ∈ Ω ×Rj′−j × D,
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that the function u 7→ f (u, ω, z, x) is continuous. Let us bound
now the expression f (u, ω, z, x).
By using the bounds (3.22), (3.27) and (3.28) we get that for almost
surely (ω, z, x) ∈ Ω×Rj′−j × D,

f (u, ω, z, x)|

6
C

|JF(F−1
z (u), z)|

e−λ||(F−1
z (u),z)||2j′ × R( f (x), ||W(x)(ω)||k, h(u),

||∇F(F−1
z (u), z)||j,j′ , ||(F−1

z (u), z)||j′ ,
||∇Z(x)(ω)||j′,d, ||Z(x)(ω)||j′),

where R is a polynomial with positive coefficients and h : Rj −→
R+ is a continuous function.
By using that ∀n ∈N, ∃Mn > 0 such that ∀y ∈ Rj′ ,

e−λ/2||y||2j′ × ||y||nj′ 6 Mn,

we get that for almost surely (ω, z, x) ∈ Ω×Rj′−j × D,

| f (u, ω, z, x)|

6
C

|JF(F−1
z (u), z)|

e−µ||z||2j′−j × S( f (x), ||W(x)(ω)||k, h(u),

||∇F(F−1
z (u), z)||j,j′ , ||∇Z(x)(ω)||j′,d, ||Z(x)(ω)||j′)

= g(u, ω, z, x),

where S is again a polynomial with positive coefficients and µ =
λ
2 > 0.
It is clear that g is a continuous function in the variable u for al-
most surely (ω, z, x) ∈ Ω×Rj′−j × D.
In one hand, by using the hypothesis on Z and also the hypothesis
(3.19) we have that ∀ p ∈N, ∀ n ∈N, ∀ ` ∈N and ∀m ∈N,∫

D
f p(x)E(||W(x)||nk )E(||∇Z(x)||`j′,d)E(||Z(x)||mj′ ) dx 6

C
∫

D
f p(x)E(||W(x)||nk )E(||∇Z(x)||`j′,d) dx < +∞.
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Moreover, let us recall that∫
D

∫
Rj′−j

∫
Ω

g(u, ω, z, x) dP(ω) dz dx =∫
Rj′−j

C
|JF(F−1

z (u), z)|
e−µ||z||2j′−j×∫

D
E[S( f (x), ||W(x)||k, h(u), ||∇F(F−1

z (u), z)||j,j′ , ||∇Z(x)||j′,d,

||Z(x)||j′)] dx dz

In the other hand, since for all ` ∈ N the functions h and T` are
continuous in u, we obtain that the same is true for the function
u 7→

∫
D

∫
Rj′−j

∫
Ω g(u, ω, z, x) dP(ω) dz dx.

By applying the convergence dominate theorem we get that hy-
pothesis H5 holds true.
A similar proof allows us to show that hypothesis H2 is also sat-
isfied. This ends the third part of the proof.

4. Let assume now that the processes X and Y satisfy the condition
A4. Let us show that the hypothesis H5 holds true, since the hy-
pothesis H3 is clearly satisfied.
For u ∈ Rj,∫

D
E[Y(x)H(∇X(x))|X(x) = u]pX(x)(u) dx =∫

D

∫
R×Rdj

y H(ẋ)pY(x),X(x),∇X(x)(y, u, ẋ) dẋ dy dx

Using the hypotheses on the density pY(x),X(x),∇X(x)(y, u, ẋ), we
obtain that the function appearing into the integrant is a con-
tinuous function of the variable u, for almost surely (x, y, ẋ) ∈
D×R×Rdj.
Besides, since for all A ∈ L(Rd, Rj), H(A) 6 C ||A||jj,d , readily
we obtain the following bound for all u ∈ Rj, and almost surely
(x, y, ẋ) ∈ D×R×Rdj,

|y|H(ẋ)pY(x),X(x),∇X(x)(y, u, ẋ)

6 C |y| ||ẋ||jd,j pY(x),X(x),∇X(x)(y, u, ẋ) = g(x, y, u, ẋ).



67

Now it is clear that for almost surely (x, y, ẋ) ∈ D×R×Rdj, the
function u 7−→ g(x, y, u, ẋ) remains continuous and also by hy-
pothesis the function u 7−→

∫
D

∫
R×Rdj g(x, y, u, ẋ) dẋ dy dx.

The dominated convergence theorem allows to get that the hy-
pothesis H5 holds true. The same holds for the hypothesis H2.
This ends the proof of Proposition 3.1.2.

2

3.2 Rice’s formula for all level

We have given before conditions for some classes of processes X and Y
satisfying the hypotheses (H1, H4), or (H2, H3, H5).
Now we will provide a class of processes satisfying the hypotheses Hi,
i = 1, 5 simultaneously and will prove a proposition and then a theo-
rem giving conditions on X and Y allowing the validity of the Rice’s
formula for all level. We must recall that Proposition 3.2.1 that follows
was proved in 1985 by Cabaña [11]. Our proof is deeply inspired by
this work.
The difficulty is in fact to exhibit a class of processes Y sufficiently large
enough ensuring hypotheses H1 and H4, hypotheses H2, H3 and H5
being more simple to obtain. In this aim, that is to exhibit a class of pro-
cesses verifying hypotheses H1 and H4, we required the only tool we
provided before, that is using Proposition 3.1.1. Our objective is then to
construct a class of processes Y satisfying assumption A0, that is such
that Y is a continuous process for which there exists a λ ∈ Bj in such
a way that supp(Y) ⊂ Γ(λ), ||(∇X(·)/V⊥λ

)−1||d,j, Y(·) and ||∇X(·)||j,d
are uniformly bounded on the support of Y.
These assumptions being very demanding, the idea consists in given
a process Y verifying hypotheses Ai, i = 1, 4, so that by Proposition
3.1.2 verifying hypotheses H2, H3 and H5, approaching this last one for
fixed n ∈ N?, by a process Y(n), defined as Y(n) = ∑

λ∈Bj

Y(n)
λ , where Y(n)

λ

is still verifying hypotheses H2, H3 and H5 and above all assumption
A0.
In that form, by Theorem 3.1.1 we will be able for fixed n ∈N?, to pro-
pose a Rice formula for processes X and Y(n) and for all level y ∈ Rj.
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Then we will make n tends to infinity to get a Rice formula for X and
Y.

In this aim let X : Ω × D ⊂ Ω × Rd → Rj (j 6 d) be a random
field belonging to C1(D, Rj) where D is an open set of Rd, and let
Y : Ω × D ⊂ Ω × Rd → R be a continuous processes. In the same
form that in section 3.1.1, we define for fixed λ in Bj and x ∈ Dr

X,
Yλ(x) = ηλ(x)Y(x), where ηλ(t) was defined in (3.16).
For n ∈N∗, let us define the random variable Y(n) by

Y(n)(x) = ∑
λ∈Bj

Y(n)
λ (x),

for x ∈ D , where we define the random variable Y(n)
λ by

Y(n)
λ (x) = Yλ(x) fn(x)Ψ(Y(x)/n)Ψ(||∇X(x)||j,d/n)

Ψ(1/(nφλ(x))1{φλ(x)>0} + 21{φλ(x)=0})1Dr
X
(x),

where the function φλ was defined in (3.11), and Ψ is an even continu-
ous function on R, decreasing on R+ such that

Ψ(t) =

{
1, 0 6 t 6 1
0, 2 6 t

and ( fn)n∈N∗ is the sequence of functions defined on Rd to [0, 1] in the
following manner

fn(x) =
d(x, D2n)

d(x, D2n) + d(x, D(n))
,

where the closed sets D2n and D(n) are defined by

D2n = {x ∈ Rd, d(x, Dc) 6
1

2n
} and D(n) = {x ∈ Rd, d(x, Dc) >

1
n
}.

We will see later in the proof of the following Lemma 3.2.1 that the func-
tions ( fn)n∈N∗ are well defined, continuous and such that the support
of fn/D is contained in D for each n ∈ N∗. In Lemma 3.2.2 we will
prove that ( fn)n∈N∗ is a sequence of nondecreasing functions tending
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to one when n goes to infinity.

Let us explain a little more the choice in the terms compounding the
expression of Y(n)

λ . The terms

• Yλ(x) fn(x)Ψ(1/(nφλ(x))1{φλ(x)>0} + 21{φλ(x)=0}) ensures that

Y(n)
λ (x) will tend to Yλ(x) when n will be tend to infinity as x ∈

Dr
X, as we will show using the fact that fn(x) tends to one when

n goes to infinity. Then for x ∈ Dr
X, Y(n)(x) will be tend to

∑λ∈Bj
Yλ(x) = Y(x). Furthermore, this implies since for all n ∈

N? supp( fn/D) ⊂ D, that supp(Y(n)
λ ) ⊂ Γ(λ).

• Ψ((1/nφλ(x))1{φλ(x)>0} + 21{φλ(x)=0}) ensures that for all n ∈
N?, ||(∇X(·)/V⊥λ

)−1||d,j is uniformly bounded on the support of

Y(n)
λ .

• Ψ(Y(x)/n) fn(x) ensures that Y(n)
λ is uniformly bounded on D

since fn(x) 6 1.

• Ψ(||∇X(x)||j,d/n) ensures that for all n ∈ N?, ||∇X(·)||j,d is uni-

formly bounded on the support of Y(n)
λ .

We can now establish the following lemmas.

Lemma 3.2.1 Let X : Ω× D ⊂ Ω×Rd → Rj (j 6 d) be a random field
belonging to C1(D, Rj), where D is an open, convex and bounded set of Rd,
such that for almost surely ω ∈ Ω, ∇X(ω) is Lipschitz with Lipschitz con-
stant LX(ω) satisfying E(LX(·))d < +∞. Let Y : Ω× D ⊂ Ω×Rd → R

be a continuous process. Then in one hand, for n ∈ N?, X and Y(n) are satis-
fying the hypotheses H1 and H4. In the other hand, if Y satisfies the condition
(3.18) and if X and Y satisfy one of the three conditions Ai, i = 1, 2, 3 or if X
and Y satisfy the condition A4, then for all n ∈ N?, X and Y(n) satisfy the
hypotheses H2, H3 and H5 and a fortiori the hypotheses Hi , i = 1, 5.

In this form we have provided a class of processes X and Y(n) satisfying
simultaneously the hypotheses Hi, i = 1, 5. Then by Theorem 3.1.1 we
get that for all n ∈N? and for all y ∈ Rj
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E

[∫
CDr

X (y)
Y(n)(x)dσd−j(x)

]
=
∫

D
pX(x)(y)E

[
Y(n)(x)H(∇X(x))|X(x) = y

]
dx.

The idea consists to make n tends to infinite. More precisely we can
show the following lemma.

Lemma 3.2.2 Let X : Ω×D ⊂ Ω×Rd → Rj (j 6 d) be a random field be-
longing to C1(D, Rj), where D is an open, convex and bounded set of Rd, such
that for almost surely ω ∈ Ω, ∇X(ω) is Lipschitz with Lipschitz constant
LX(ω) satisfying E(LX(·))d < +∞. Let Y : Ω× D ⊂ Ω×Rd → R be a
continuous process. If Y satisfies the condition (3.18) and if X and Y satisfy
one of the three conditions Ai, i = 1, 2, 3 or if X and Y satisfy the condition
A4, for all y ∈ Rj,

lim
n→+∞

E

[∫
CDr

X (y)
Y(n)(x)dσd−j(x)

]
= E

[∫
CDr

X (y)
Y(x)dσd−j(x)

]
and

lim
n→+∞

∫
D

pX(x)(y)E
[
Y(n)(x)H(∇X(x))|X(x) = y

]
dx

=
∫

D
pX(x)(y)E [Y(x)H(∇X(x))|X(x) = y] dx.

Finally we can establish the following proposition.

Proposition 3.2.1 Let X : Ω× D ⊂ Ω×Rd → Rj (j 6 d) be a random
field belonging to C1(D, Rj), where D is an open, convex and bounded set of
Rd, such that for almost surely ω ∈ Ω, ∇X(ω) is Lipschitz with Lipschitz
constant LX(ω) such that E(LX(·))d < +∞. Let Y : Ω× D ⊂ Ω×Rd →
R be a continuous process. If Y satisfies the condition (3.18) and if X and Y
satisfy one of the three conditions Ai, i = 1, 2, 3 or if X and Y satisfy A4, then
for all y ∈ Rj we have

E

[∫
CDr

X (y)
Y(x)dσd−j(x)

]
=
∫

D
pX(x)(y)E [Y(x)H(∇X(x))|X(x) = y] dx.
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Remark 3.2.1 In the same way as in Proposition 3.1.1 we can generalize
this proposition by considering that D is an open and convex set not
necessarily bounded, maintening the same hypotheses on process X.
For Y, we will assume that it is defined on D1 an open and bounded set
included in D, adapting the hypotheses on Y to the open and bounded
set D1 instead of the open D and to X/D1. The Rice’s formula still holds
for all level y ∈ Rj and for X/D1 and Y defined on D1.

Proof of the Lemma 3.2.1. Let X : Ω× D ⊂ Ω×Rd → Rj be a random
field belonging to C1(D, Rj) such that for almost surely ω ∈ Ω,∇X(ω)
is Lipschitz with Lipschitz constant LX(ω) such that E(LX(·))d < +∞
and let Y : Ω× D ⊂ Ω×Rd → R be a continuous process.
Let us show that for all n ∈ N?, the processes X and Y(n) satisfy the
hypotheses H1 and H4.
Let us begin considering for n fixed in N? and for λ fixed in Bj the pro-

cess Y(n)
λ . We will prove now that the process X and Y(n)

λ satisfy the
condition A0 stated before the Proposition 3.1.1. In this form we will
deduce by using this proposition that these processes will satisfy the
hypotheses H1 and H4.
Let us check that Y(n)

λ is continuous on D, that is a non trivial fact due
to the presence of the indicator function of the set Dr

X into the defini-
tion of this function. Firstly let us remark that as the sets (D2n)n∈N∗

and (D(n))n∈N∗ are closed, the functions ( fn)n∈N∗ are well defined and
continuous on Rd and then on D. Let us now consider x ∈ (Dr

X)
c1 and

a sequence (xp)p∈N? of points belonging to D that converges to x when

p tends to infinite. We have Y(n)
λ (x) = 0. Let assume that there exists a

subsequence (xpk)k∈N? of (xp)p∈N? , such that Y(n)
λ (xpk) 6= 0, for all k ∈

N?. In this case, necessarily φλ(xpk) >
1

2n for all k ∈ N?, and since the
function φλ is continuous on D, it holds that φλ(x) > 1

2n . The property
(3.13) implies that x ∈ Γ(λ) ⊂ Dr

X, giving a contradiction. All the points
except maybe a finite number, of the sequence (xp)p∈N? , are such that

Y(n)
λ (xp) = 0. The sequence (Y(n)

λ (xp))p∈N? converges then towards
zero. Furthermore by using a reasoning similar to the precedent one we
can prove that function x → Ψ(1/(nφλ(x))1{φλ(x)>0} + 21{φλ(x)=0}) is

continuous on D and then on Dr
X. Then the function Y(n)

λ is continuous

on Dr
X that is an open set, yielding the continuity of Y(n)

λ on D.
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Now let us prove that for all n ∈ N?, the support of this function is
contained in Γ(λ), i.e. supp(Y(n)

λ ) ⊂ Γ(λ).
To prove this inclusion, firstly we will prove that for all n ∈ N∗, one
has supp( fn/D) ⊂ D.
Indeed, since for all n ∈N∗ the set D2n is closed, we have

supp( fn/D) = {x ∈ D, d(x, Dc) >
1

2n
} ⊂ D,

the last inclusion is a consequence of the continuity of the distance func-
tion and of the fact that D is an open set.
Hence

supp(Y(n)
λ ) ⊂ {x ∈ D, φλ(x) >

1
2n
} ∩ D ⊂ {x ∈ D, φλ(x) >

1
2n
},

the last inclusion comes from the fact that function φλ is continuous on
D. Finally the property (3.13) gives us supp(Y(n)

λ ) ⊂ Γ(λ).

Let us see that Y(n)
λ is uniformly bounded on its support.

We only need to prove that Y(n)
λ is uniformly bounded on D. Let us con-

sider x ∈ D such that Y(n)
λ (x) 6= 0. Then necessarily we have |Y(x)| 6

2n. Since one has fn(x) 6 1 and ηλ(x)1{x∈Dr
X} 6 1, |Y(n)

λ (x)| 6 |Y(x)|.
Thus it holds that |Y(n)

λ (x)| 6 2n and yields the result.
Let us show that ||(∇X(·)/V⊥λ

)−1||d,j is uniformly bounded on the sup-

port of Y(n)
λ . We have seen that supp(Y(n)

λ ) ⊂ {x ∈ D, φλ(x) > 1
2n}.

Then for x ∈ supp(Y(n)
λ ), we have ||(∇X(x)/V⊥λ

)−1||d,j 6 2n. Hence
the result holds true.
Finally let us show that ||∇X(·)||j,d is uniformly bounded on the sup-

port of Y(n)
λ . This follows from the following inclusion.

supp(Y(n)
λ ) ⊂ {x ∈ D, ||∇X(x)||j,d 6 2n} ∩ D

⊂ {x ∈ D, ||∇X(x)||j,d 6 2n},

the last inclusion come from the fact that X belongs to C1 on D.
Finally the processes X and Y(n)

λ satisfy the condition A0 and then the
hypotheses H1 and H4.
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By using that Y(n) = ∑
λ∈Bj

Y(n)
λ and that |Y(n)| = ∑

λ∈Bj

|Y(n)
λ |, it is clear

that X and Y(n) satisfy also the hypotheses H1 and H4.
Let assume now that Y satisfy the condition (3.18) and that X and Y
satisfy one of the conditions Ai, i = 1, 2, 3. Let us prove then that X and
Y(n) satisfy the hypotheses H2, H3 and H5.
For almost surely x ∈ D, we have

Y(x) = G(x, W(x), X(x),∇X(x)), (3.29)

where G is a continuous function on D×Rk×Rj×L(Rd, Rj) and such
that ∀ (x, z, u, A) ∈ D×Rk ×Rj × L(Rd, Rj),

|G(x, z, u, A)| 6 P( f (x), ||z||k, h(u), ||A||j,d).

For all n ∈N? and x ∈ D

Y(n)(x) = ∑
λ∈Bj

ηλ(x)Y(x) fn(x)Ψ(Y(x)/n)Ψ(||∇X(x)||j,d/n)

Ψ(1/(nφλ(x))1{φλ(x)>0} + 21{φλ(x)=0})1Dr
X
(x).

We deduce that for all n ∈N? and almost surely for all x ∈ D,

Y(n)(x) = Mn(x, Y(x),∇X(x)), (3.30)

where for all n ∈ N?, Mn is a continuous function defined on D×R×
L(Rd, Rj). The proof of this last assertion can be made in a similar way
that the one used for proving the continuity of Y(n)

λ on D. Moreover,
∀ (x, y, A) ∈ D×R× L(Rd, Rj),

|Mn(x, y, A)| 6 C |y|.

By (3.29), we have for all n ∈N? and for almost surely x ∈ D,

Y(n)(x) = Mn(x, G(x, W(x), X(x),∇X(x));∇X(x))
= Gn(x, W(x), X(x),∇X(x)),

where for all n ∈N? and ∀ (x, z, u, A) ∈ D×Rk ×Rj × L(Rd, Rj),

Gn(x, z, u, A) = Mn(x, G(x, z, u, A); A).
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It is clear that Gn inherits the properties of G and Mn that is Gn is a
continuous function on D×Rk ×Rj × L(Rd, Rj) and is such that

∀ (x, z, u, A) ∈ D×Rk ×Rj × L(Rd, Rj),

|Gn(x, z, u, A)| 6 C |G(x, z, u, A)| 6 C P( f (x), ||z||k, h(u), ||A||j,d)
= Q( f (x), ||z||k, h(u), ||A||j,d),

where Q is as P, a polynomial with positive coefficients and

f : D −→ R+ and h : Rj −→ R+,

are continuous functions. Finally Y(n) satisfies the condition (3.18) and
X and Y(n) satisfy one of the three conditions A1, A2 or A3. By using
Proposition 3.1.2, we proved that the hypotheses H2, H3 and H5 hold
for X and Y(n). By using the first part of this lemma we can conclude
that the hypotheses Hi, i = 1, 5, are satisfied by X and Y(n).
Let assume now that X and Y satisfy the condition A4. Let us prove
that for all n ∈N?, X and Y(n) satisfy H2, H3 and H5.
Since for almost surely (x, y, ẋ) ∈ D ×R×Rdj and for all u ∈ Rj, the
density pY(x),X(x),∇X(x)(y, u, ẋ) of the joint distribution

(Y(x), X(x),∇X(x))

exists (and is continuous in u) then for almost surely x ∈ D and for all
u ∈ Rj, the density pX(x)(u) of X(x) exists and H3 holds true.
Now by using (3.30) we have for all n ∈N? and for all u ∈ Rj,

Ln(u) =
∫

D
E[Y(n)(x)H(∇X(x))|X(x) = u]pX(x)(u) dx

=
∫

D
E[Mn(x, Y(x),∇X(x))H(∇X(x))|X(x) = u]pX(x)(u) dx

=
∫

D
E[Ln(x, Y(x),∇X(x))|X(x) = u]pX(x)(u) dx,

where Ln is a continuous function on D × R × Rdj and since for all
A ∈ L(Rd, Rj), H(A) 6 C ||A||jj,d, we have ∀n ∈ N? et ∀ (x, y, A) ∈
D×R× L(Rd, Rj),

|Ln(x, y, A)| 6 C |y| ||A||jj,d.
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Finally for all n ∈N? and for all u ∈ Rj,

Ln(u) =
∫

D

∫
R×Rdj

Ln(x, y, ẋ)pY(x),X(x),∇X(x)(y, u, ẋ) dẋ dy dx.

In the same form as in the proof of Proposition 3.1.2 (4), the dominated
convergence theorem entails that for all n ∈ N?, the function u 7−→
Ln(u) is continuous. Then the hypothesis H5 holds true. Also one can
get in the same manner the hypothesis H2. This ends the proof of this
lemma. 2

Proof of the Lemma 3.2.2. Let us prove first that for all y ∈ Rj,

lim
n→+∞

E

[∫
CDr

X (y)
Y(n)(x)dσd−j(x)

]
= E

[∫
CDr

X (y)
Y(x)dσd−j(x)

]
. (3.31)

Recall that for all n ∈N? and x ∈ D we have

Y(n)(x) = ∑
λ∈Bj

ηλ(x)Y(x) fn(x)Ψ(Y(x)/n)Ψ(||∇X(x)||j,d/n)

Ψ(1/(nφλ(x))1{φλ(x)>0} + 21{φλ(x)=0})1Dr
X
(x).

Notice that for all y ∈ Rj and for all x ∈ D,

• lim
n→+∞

Y(n)(x)1CDr
X (y)(x) = Y(x)1CDr

X (y)(x)

• |Y(n)(x)|1CDr
X (y)(x) 6 |Y(x)|1CDr

X (y)(x)

• Y · 1CDr
X (y) ∈ L1(dσd−j ⊗ dP)

Let us establish the first assertion, proving first that for x ∈ D, fn(x)
tends to one when n goes to infinity.
Consider x ∈ D. Since Dc is closed, we have that d(x, Dc) > 0, and there
exists an integer n0 ∈ N∗ such that d(x, Dc) > 1

n0
. Thus for n > n0, we

have d(x, Dc) > 1
n , that implies for n > n0, x ∈ D(n). In consequence

for all n > n0, d(x, D(n)) = 0, then fn(x) = 1 for all n > n0.
Finally the first assertion is a consequence of inclusion (3.17), that is for
all λ ∈ Bj one has supp(ηλ) ∩ Dr

X ⊂ Γ(λ). Indeed this last inclusion
implies that for all λ ∈ Bj, for all x ∈ Dr

X ∩ Γc1(λ), ηλ(x) = 0 and then

for all λ ∈ Bj, for all x ∈ Dr
X, limn→+∞ Y(n)

λ (x) = ηλ(x)Y(x) so that for
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all x ∈ Dr
X, limn→+∞ Y(n)(x) = (∑λ∈Bj

ηλ(x))Y(x) = Y(x).
The last assertion, can be proven in the following fashion. By using
Lemma 3.2.1, we know that X and Y(n) satisfy Hi , i = 1, 5 and in par-
ticular H1, H2 and H3. The Remark 3.1.1 yields that for all n ∈ N? and
for all y ∈ Rj,

E

[∫
CDr

X (y)
|Y(n)(x)| dσd−j(x)

]

=
∫

D
pX(x)(y)E

[
|Y(n)(x)|H(∇X(x))|X(x) = y

]
dx.

Remarking that the sets (D2n)n∈N∗ and (D(n))n∈N∗ which define the
sequence ( fn)n∈N∗ are respectively decreasing and nondecreasing, we
obtain that the sequence ( fn)n∈N∗ is nondecreasing. Since the func-
tion Ψ is an even function on R and decreasing on R+, the sequence
(|Y(n)|)n∈N∗ is a nondecreasing one.
We can apply the Beppo-Levi theorem and we have for all y ∈ Rj

lim
n↑+∞

↑ E

[∫
CDr

X (y)
|Y(n)(x)|dσd−j(x)

]
= E

[∫
CDr

X (y)
|Y(x)|dσd−j(x)

]
.

Similarly for all y ∈ Rj,

lim
n↑+∞

↑
∫

D
pX(x)(y)E

[
|Y(n)(x)|1Dr

X
(x)H(∇X(x))|X(x) = y

]
dx

= lim
n↑+∞

↑
∫

D
pX(x)(y)E

[
|Y(n)(x)|H(∇X(x))|X(x) = y

]
dx

=
∫

D
pX(x)(y)E

[
|Y(x)|1Dr

X
(x)H(∇X(x))|X(x) = y

]
dx

=
∫

D
pX(x)(y)E [|Y(x)|H(∇X(x))|X(x) = y]dx,

the last equality comes from the fact that for all x ∈ D we have

1Dr
X
(x)H(∇X(x)) = H(∇X(x)).

We obtain then for all y ∈ Rj
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E

[∫
CDr

X (y)
|Y(x)|dσd−j(x)

]

=
∫

D
pX(x)(y)E [|Y(x)|H(∇X(x))|X(x) = y]dx < +∞, (3.32)

since X and Y satisfy one of the four conditions A1, A2, A3 or A4 and
by consequence of Proposition 3.1.2, satisfy the hypothesis H2.
We have shown that Y · 1CDr

X (y) ∈ L1(dσd−j ⊗ dP). Then by using the
Lebesgue dominated convergence theorem we can deduce (3.31).
Let us show that for all y ∈ Rj,

lim
n→+∞

∫
D

pX(x)(y)E
[
Y(n)(x)H(∇X(x))|X(x) = y

]
dx (3.33)

=
∫

D
pX(x)(y)E [Y(x)H(∇X(x))|X(x) = y]dx.

In the same manner that above, let us notice that for all y ∈ Rj and for
almost surely x ∈ D,

• lim
n→+∞

Y(n)(x) H(∇X(x))pX(x)(y) = Y(x) H(∇X(x))pX(x)(y)

• |Y(n)(x)|H(∇X(x))pX(x)(y) 6 |Y(x)| H(∇X(x))pX(x)(y)

• E
[
|Y(x)|H(∇X(x))pX(x)(y)|X(x) = y

]
< +∞,

The finiteness of the last expression results from that of the second in-
tegral in (3.32).
The Lebesgue dominated convergence theorem allows to write for all
y ∈ Rj and for almost surely x ∈ D,

• lim
n→+∞

E
[
Y(n)(x)H(∇X(x))|X(x) = y

]
pX(x)(y) =

E [Y(x) H(∇X(x))|X(x) = y]pX(x)(y)

Furthermore, for all y ∈ Rj and almost surely for all x ∈ D,

•|E
[
Y(n)(x)H(∇X(x))|X(x) = y

]
pX(x)(y)| 6

E [|Y(x)|H(∇X(x))|X(x) = y]pX(x)(y) ∈ L1(D, dx),
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the last assertion comes from the fact that the second integral in (3.32)
is finite.
The Lebesgue dominated convergence theorem allows to obtain (3.33).
This ends the proof of Lemma 3.2.2 and this fact establishes the proof
of Proposition 3.2.1. 2

This proposition leads us to the next Theorem 3.2.1 and this one allows
us to weaken the hypotheses Ai, i = 1, 2, 3, in the following form.
More precisely, our goal is to avoid assuming the existence of uniform
lower (or upper) bounds for the variance of process Z appearing in
these hypotheses.
In the three first conditions B1, B2 et B3, we will assume that Y can be
written as in formula (3.18). Let D an open set of Rd.

• B1: Let X : Ω× D ⊂ Ω×Rd → Rj (j 6 d) be a Gaussian random
field belonging to C1 on D, such that for all x ∈ D, the vector X(x)
has a density. Moreover, for almost surely x ∈ D, the field W(x)
is independent of the vector (X(x),∇X(x)), and ∀ n ∈N,∫

D
E(||W(x)||nk ) dx < +∞.

• B2: For all x ∈ D, X(x) = F(Z(x)), where F : Rj −→ Rj is a
bijection of class C1, such that ∀ z ∈ Rj, the Jacobian of F in z, that
is JF(z) satisfies JF(z) 6= 0 and the function F−1 is continuous.
Let Z : Ω × D ⊂ Ω ×Rd → Rj (j 6 d) be a Gaussian process
belonging to C1 on D such that for all x ∈ D, the vector Z(x) has a
density. Moreover, for almost surely x ∈ D, W(x) is independent
of the vector (Z(x),∇Z(x)), and ∀ n ∈N,∫

D
E(||W(x)||nk ) dx < +∞.

• B3: For all x ∈ D, X(x) = F(Z(x)), where Z : Ω×D ⊂ Ω×Rd →
Rj′ is a Gaussian random field belonging to C1 on D such that
for all x ∈ D, the vector (Z(x),∇Z(x)) has a density. More-
over, for almost surely x ∈ D, W(x) is independent of the vector
(Z(x),∇Z(x)). Finally, ∀ n ∈N∫

D
E(||W(x)||nk ) dx < +∞.
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The function F verifies assumption (F) given in condition A3.

• B4: Is the same condition A4.

Let us now state the hypothesis H6.

• H6: For all y ∈ Rj,∫
D

pX(x)(y)E[|Y(x)|H(∇X(x))|X(x) = y] dx < +∞.

We are now ready to state the following theorem.

Theorem 3.2.1 Let X : Ω× D ⊂ Ω×Rd → Rj (j 6 d) be a random field
belonging to C1(D, Rj), where D is an open and bounded convex set of Rd,
such that for almost surely ω ∈ Ω, ∇X(ω) is Lipschitz with Lipschitz con-
stant LX(ω) such that E(LX(·))d < +∞. Let Y : Ω× D ⊂ Ω×Rd → R

be a continuous process.
If Y satisfies condition (3.18) and if X and Y satisfy one of the three conditions
Bi, i = 1, 2, 3 and the hypothesis H6 or if X and Y satisfy the condition B4,
then for all y ∈ Rj we have

E

[∫
CDr

X (y)
Y(x)dσd−j(x)

]

=
∫

D
pX(x)(y)E [Y(x)H(∇X(x))|X(x) = y] dx.

Remark 3.2.2 Under the same hypotheses as those of Theorem 3.2.1,
eliminating the condition E(LX(·))d < +∞ and the hypothesis H6, we
get the following inequality for all y ∈ Rj

E

[∫
CDr

X (y)
|Y(x)|dσd−j(x)

]

6
∫

D
pX(x)(y)E [|Y(x)|H(∇X(x))|X(x) = y]dx.

Remark 3.2.3 As in Proposition 3.2.1 we can generalize the theorem
and the Remark 3.2.2 considering that D is an open and convex set
non necessarily bounded but maintaining the same hypotheses about
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the process X. For Y one assumes that it is defined on D1 open and
bounded set included in D, then we will adapt the hypotheses on Y to
D1 instead of the open set D and to X/D1.
The Rice’s formula will still hold for all level y ∈ Rj and for X/D1 and
Y defined on D1.

Proof of Theorem 3.2.1. Let us consider for all n ∈ N?, the sets Dn =
{x ∈ Rd, d(x, Dc) > 1

n}. For all n ∈ N?, Dn is an open set included
in D. Considering now the restrictions X/Dn and Y/Dn. It is clear
that if Y satisfies condition (3.18) and if X and Y satisfy one of the
three conditions Bi, i = 1, 2, 3 then for all n ∈ N?, Y/Dn satisfies con-
dition (3.18) and X/Dn and Y/Dn satisfy one of the three conditions
Ai, i = 1, 2, 3, where we have replaced the open set D by the open
set Dn. In fact, it is enough for this to point out that for all n ∈ N∗,
Dn ⊆ {x ∈ Rd, d(x, Dc) > 1

n} which is a compact set contained in D.
The set Dn may be eventually not convex but it holds that Dn ⊂ D, and
this last set is convex.
We apply the Remark 3.2.1 which follows the Proposition 3.2.1 to X/Dn
and to Y/Dn (resp. |Y|/Dn). We get: ∀y ∈ Rj and for all n ∈N∗,

E

[∫
CDr

Dn ,X(y)
Y(x)dσd−j(x)

]

=
∫

Dn

pX(x)(y)E [Y(x)H(∇X(x))|X(x) = y]dx,

and also ∀y ∈ Rj and for all n ∈N∗,

E

[∫
CDr

Dn ,X(y)
|Y(x)|dσd−j(x)

]

=
∫

Dn

pX(x)(y)E [|Y(x)|H(∇X(x))|X(x) = y]dx.

Noting since D is an open set of Rd, limn↑+∞ ↑ Dn = D, the Beppo Levi
theorem allows to obtain, ∀y ∈ Rj
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E

[∫
CDr

X (y)
|Y(x)|dσd−j(x)

]

=
∫

D
pX(x)(y)E [|Y(x)|H(∇X(x))|X(x) = y]dx < +∞,

by using the hypothesis H6.
We can apply the Lebesgue dominate convergence theorem to get ,
∀y ∈ Rj,

E

[∫
CDr

X (y)
Y(x)dσd−j(x)

]

=
∫

D
pX(x)(y)E [Y(x)H(∇X(x))|X(x) = y]dx.

If X and Y satisfy the condition B4 which is other than the condition
A4, the above equality is trivial since already settled in the Proposition
3.2.1.
The proof of Theorem 3.2.1 is over. 2

Proof of the Remark 3.2.2. In the same way as in the proof of the Lemma
3.2.1, let us define for all n ∈ N?, the r.v. Z(n) by Z(n)(x) = ∑

λ∈Bj

Z(n)
λ (x)

for x ∈ D , where we have defined for λ fixed in Bj the r.v. Z(n)
λ by

Z(n)
λ (x) = Y(n)

λ (x)Ψ(LX(·)/n),

where we recall that we defined the r.v. Y(n)
λ by

Y(n)
λ (x) = Yλ(x) fn(x)Ψ(Y(x)/n)Ψ(||∇X(x)||j,d/n)

Ψ(1/(nφλ(x))1{φλ(x)>0} + 21{φλ(x)=0})1Dr
X
(x).

Let us note that we cannot work as in Lemma 3.2.1, since we are not
be able of showing that Z(n)

λ verifies hypotheses H2 and H5. In fact we
cannot apply the results of the Proposition 3.1.2, since we cannot verify
that Z(n)

λ verifies assumptions Ai, i = 1, 4. Indeed for x ∈ D, Z(n)
λ (x)

depends of all the trajectory of process X via the term Ψ(LX(·)/n).
The processes X and Z(n)

λ satisfy the hypotheses of the Remark 3.1.5
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and by consequence X and Z(n)
λ satisfy H1. As in the proof of Lemma

3.2.1, we deduce that X and Z(n) satisfy H1.
Furthermore, assuming that Y satisfy the condition (3.18) and that X
and Y satisfy one of the three conditions A1, A2, A3 or that X and Y
satisfy A4, the Proposition 3.1.2 allows us to deduce that H3 is satisfied.
By Proposition 2.2.1 we get that for almost surely y ∈ Rj

E

[∫
CDr

X (y)
|Z(n)(x)|dσd−j(x)

]

=
∫

D
pX(x)(y)E

[
|Z(n)(x)|H(∇X(x))|X(x) = y

]
dx,

thus for almost surely y ∈ Rj

E

[∫
CDr

X (y)
|Z(n)(x)|dσd−j(x)

]

6
∫

D
pX(x)(y)E [|Y(x)|H(∇X(x))|X(x) = y]dx.

Always according to the Proposition 3.1.2 the processes X and Y satisfy
H2. Since X and Z(n) satisfy H1, we deduce that the right and left hand
side terms of the last inequality are continuous as function of the vari-
able y. Then the inequality holds true for all y ∈ Rj.
In the same form as in the proof of the Lemma 3.2.2, by using the
Beppo-Levi theorem we obtain for all y ∈ Rj

lim
n↑+∞

↑ E

[∫
CDr

X (y)
|Z(n)(x)|dσd−j(x)

]
= E

[∫
CDr

X (y)
|Y(x)|dσd−j(x)

]
.

We have shown that for all y ∈ Rj

E

[∫
CDr

X (y)
|Y(x)|dσd−j(x)

]

6
∫

D
pX(x)(y)E [|Y(x)|H(∇X(x))|X(x) = y]dx,

this ends the proof of this remark whenever Y satisfy the condition
(3.18) and that X and Y satisfy one of the three conditions Ai, for i = 1, 3
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or that X and Y satisfy the condition A4 and then the condition B4.
In the case where Y satisfies the condition (3.18) and X and Y satisfy
one of the three conditions Bi, for i = 1, 3, in the same form as in the
proof of Theorem 3.2.1, we apply for all n ∈ N∗ the above inequal-
ity to X/Dn and Y/Dn that satisfy one of the three conditions Ai, for
i = 1, 3, making then n tends to infinity. The Beppo Levi theorem gives
the looking for result without assuring that the right hand side term is
finite because we do not assume the hypothesis H6. 2

Our goal in this stage of these notes is to propose a Rice’s formula that
holds true for all level but without the hypothesis E(LX(·))d < +∞
that was given in the Theorem 3.2.1. We will propose in the following
a little better that the inequality appearing in the Remark 3.2.2. To do
this we will replace in that theorem one of the conditions Bi, i = 1, 4 by
a condition B?

i slightly more strong. In the three first conditions B?
1, B?

2
and B?

3, we will make the hypothesis that Y can be written under the
form (3.18).
More precisely let D an open set of Rd and consider the following con-
ditions:

• B?
1: It is the condition B1, plus the following hypothesis. For al-

most surely (x1, x2) ∈ D× D, the density of the vector
(X(x1), X(x2)) exists.

• B?
2: It is the condition B2, plus the following hypothesis. For al-

most surely (x1, x2) ∈ D× D, the density of the vector
(Z(x1), Z(x2)) exists.

• B?
3: It is the condition B3, plus the following hypothesis. For al-

most surely (x1, x2) ∈ D× D, the density of the vector
(Z(x1), Z(x2)) exists.

• B?
4: It is the condition B4, plus the following hypotheses.

u 7−→
∫

D

∫
R×Rdj

y2||ẋ||jdjpY(x),X(x),∇X(x)(y, u, ẋ) dẋ dy dx,

is continuous.
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For almost surely (x1, x2, ẋ1, ẋ2) ∈ D× D×Rdj ×Rdj and for all
(u, v) ∈ Rj ×Rj, the density

pX(x1),X(x2),∇X(x1),∇X(x2)
(u, v, ẋ1, ẋ2),

of the vector(X(x1), X(x2),∇X(x1),∇X(x2)) exists.

Moreover, for all y ∈ Rj, the function

(u, v) 7−→∫
D×D

∫
Rdj×Rdj

||ẋ1||jdj||ẋ2||jdjpX(x1),X(x2),∇X(x1),∇X(x2)
(u, v, ẋ1, ẋ2)

dẋ1 dẋ2 dx1 dx2,

is bounded in a neighborhood of (y, y).

Let us express now the hypothesis H?
6.

• H?
6: For all y ∈ Rj, the function

(u, v) 7−→
∫

D×D
pX(x1),X(x2)

(u, v)×

E[H(∇X(x1))H(∇X(x2))|X(x1) = u, X(x2) = v] dx1 dx2,

is a bounded function in a neighborhood of (y, y).

Finally we can state the following theorem.

Theorem 3.2.2 Let X : Ω × D ⊂ Ω × Rd → Rj (j 6 d) be a ran-
dom field belonging to C1(D, Rj), where D is an open and convex bounded
set of Rd, such that for almost surely ω ∈ Ω, ∇X(ω) is Lipschitz. Let
Y : Ω× D ⊂ Ω×Rd → R be a continuous process. If Y satisfies (3.18) and
if X and Y satisfy one of the three conditions B?

i , i = 1, 2, 3 and the hypothesis
H6 and H?

6 or if X and Ysatisfy the condition B?
4, then for all y ∈ Rj we have

E

[∫
CDr

X (y)
Y(x)dσd−j(x)

]

=
∫

D
pX(x)(y)E [Y(x)H(∇X(x))|X(x) = y] dx.
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Remark 3.2.4 In the same form as in Theorem 3.2.1, we can generalize
this theorem to the case when D is an open an convex set not necessarily
bounded. It is enough to make the same hypotheses for the process X
adapting those of Y now defined on the bounded set D1 included in D
to D1 instead of the open set D and to X/D1.
The Rice’s formula will be still true for all level y ∈ Rj and for X/D1
and Y defined on D1.

Proof of Theorem 3.2.2. For all z ∈ Rj, and with the same notations as in
the proof of Lemma 3.2.1 and the Remark 3.2.2, we have for all n ∈N∗,

|E
[∫
CDr

X (z)
|Z(n)(x)|dσd−j(x)

]
−E

[∫
CDr

X (z)
|Y(n)(x)|dσd−j(x)

]
| =

E

[∫
CDr

X (z)
|Y(n)(x)|(1−Ψ(LX(·)/n)) dσd−j(x)

]
.

Let us begin assuming that if Y satisfies the condition (3.18) then X and
Y satisfy one of the three conditions Ai, i = 1, 2, 3, instead of the three
conditions Bi that appear in the conditions B?

i .
By Lemma 3.2.1, since X and Y satisfy one of the four hypotheses Ai,
i = 1, 4, for all n ∈ N∗, X and Y(n) satisfy the hypotheses H3 and H2 (
also H5). By Proposition 2.2.1, we have then for almost surely z ∈ Rj

and for all n ∈N?

E

[∫
CDr

X (z)
|Y(n)(x)|dσd−j(x)

]
=
∫

D
pX(x)(z)E

[
|Y(n)(x)|H(∇X(x))|X(x) = z

]
dx,

and a similar formula holds true for the r.v. Y(n).

Let us denote for simplicity reasons
(

1
2δ

∫ y+δ
y−δ f (x)dx

)
the following

multiple integral

(
1
2δ

)j
(∫ y1+δ

y1−δ
· · ·

∫ yj+δ

yj−δ
f (x)dx

)
,

where y = (y1, y2, · · · , yj) and f is a positive or integrable function

defined over Πj
i=1[yj − δ, yj + δ] and taking real values.



86

With this notation and by using the Schwarz inequality we get for all
n ∈N∗, for all y ∈ Rj and for all δ > 0:

1
2δ

∫ y+δ

y−δ

∣∣∣∣E [∫CDr
X (z)
|Z(n)(x)|dσd−j(x)

]
−∫

D
pX(x)(z)E

[
|Y(n)(x)|H(∇X(x))|X(x) = z

]
dx
∣∣∣∣ dz 6

(E[(1−Ψ(LX(·)/n))4])
1
4 × (

1
2δ

∫ y+δ

y−δ
E[
∫
CDr

X (z)
(Y(n)(x))2dσd−j(x)]dz)

1
2

× (E[
1
2δ

∫ y+δ

y−δ
σd−j(CDr

X (z))dz]2)
1
4 . (3.34)

Let us consider the second term in the product in the right hand side of
the last inequality
To this end let us remark that if Y satisfies the condition (3.18), and if
X and Y satisfy one of the three condition Ai, i = 1, 2, 3, or if X and Y
satisfy the condition B?

4, it is easy to prove, as in Proposition 3.1.2 that
X and Y2 still satisfy the hypothesis H2 and H3.
By Proposition 2.2.1 and since for all n ∈N∗ and for all

x ∈ D, |Y(n)(x)| 6 |Y(x)|,

we get the following inequalities, ∀ n ∈N∗, ∀ y ∈ Rj,

lim sup
δ→0

1
2δ

∫ y+δ

y−δ
E

[∫
CDr

X (z)
(Y(n)(x))2dσd−j(x)

]
dz 6

lim sup
δ→0

1
2δ

∫ y+δ

y−δ
E

[∫
CDr

X (z)
Y2(x)dσd−j(x)

]
dz 6

lim sup
δ→0

1
2δ

∫ y+δ

y−δ

∫
D

pX(x)(z)E
[
Y2(x)H(∇X(x))|X(x) = z

]
dx dz

→δ→0

∫
D

pX(x)(y)E
[
Y2(x)H(∇X(x))|X(x) = y

]
dx < +∞.

The last convergence comes from the fact that X and Y2 satisfy the hy-
pothesis H2. We will study now the third term in the product in the
right hand side (3.34).
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By Remark 2.1.1 following the Theorem 2.1.1 if we apply the coarea for-
mula to the functions G = X and f = 1{Πj

i=1[yi−δ; yi+δ]} > 0 and to the

borel set B = D, for all y ∈ Rj we obtain

∫ y+δ

y−δ
σd−j(CDr

X (z)) dz =
∫

D
1{X(x)∈Πj

i=1[yi−δ;yi+δ]} H(∇X(x)) dx.

If Y satisfies the condition (3.18) and if X and Y satisfy one of the three
conditions Ai, i = 1, 2, 3, instead of the three conditions Bi that ap-
pear in the conditions B?

i , the additional hypothesis in condition B?
i ,

i = 1, 2, 3, insures that for almost surely (x1, x2) ∈ D × D, the density
of the vector (X(x1), X(x2)) exists. It is enough for convincing itself to
make the computation of the density as in the proof of Proposition 3.1.2
and this yields equality (3.25).
Furthermore, if X and Y satisfy the hypothesis B?

4, it is clear that the
density of the vector (X(x1), X(x2)) exists for almost surely (x1, x2) ∈
D× D.
Finally for all y ∈ Rj, we get by the hypothesis H?

6 or by using the forth
condition appearing in B?

4 and using the same conventions of notation
as above, we get

lim sup
δ→0

E

[
1
2δ

∫ y+δ

y−δ
σd−j(CDr

X (z)) dz
]2

=

lim sup
δ→0

(
1
2δ

)2
∫ y+δ

y−δ

∫ y+δ

y−δ

∫
D×D

pX(x1),X(x2)
(z1, z2)×

E[H(∇X(x1))H(∇X(x2))|X(x1) = z1, X(x2) = z2]dx1dx2dz1dz2 6 C.

Before taking the limit when δ tends to zero in the inequality (3.34), let
us observe that in the same form as in the proof of Remark 3.2.2, X and
Z(n) satisfy the hypotheses H1 (and H4). Moreover, we have seem in
the beginning of this proof that for all n ∈ N∗, X and Y(n) satisfy the
hypothesis H2 (and H5).
Thus taking the limit when δ tends to zero, it holds for all n ∈ N∗ and
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for all y ∈ Rj

∣∣∣∣E [∫CDr
X (y)
|Z(n)(x)|dσd−j(x)

]
−∫

D
pX(x)(y)E

[
|Y(n)(x)|H(∇X(x))|X(x) = y

]
dx
∣∣∣∣

6 C
(

E[(1−Ψ(LX(·)/n))4]
) 1

4

×
(∫

D
pX(x)(y)E

[
Y2(x)H(∇X(x))|X(x) = y

]
dx
) 1

2

The idea is now to take the limit when n tends towards infinity in the
last inequality. First, let us observe that by using the Lebesgue domi-
nated convergence theorem, lim

n→+∞
E[(1−Ψ(LX(·)/n))4] = 0.

Hence for all y ∈ Rj :

lim sup
n→+∞

∣∣∣∣E [∫CDr
X (y)
|Z(n)(x)|dσd−j(x)

]
−∫

D
pX(x)(y)E

[
|Y(n)(x)|H(∇X(x))|X(x) = y

]
dx
∣∣∣∣ = 0

Furthermore, by using the Beppo Levi theorem, ∀y ∈ Rj,

lim
n↑+∞

↑
∫

D
pX(x)(y)E

[
|Y(n)(x)|H(∇X(x))|X(x) = y

]
dx =∫

D
pX(x)(y)E [|Y(x)|H(∇X(x))|X(x) = y]dx < +∞,

the fact that the last integral is finite provides from Proposition 3.1.2.
But Beppo Levi theorem also entails that, ∀y ∈ Rj,

lim
n↑+∞

↑ E

[∫
CDr

X (y)
|Z(n)(x)|dσd−j(x)

]
= E

[∫
CDr

X (y)
|Y(x)|dσd−j(x)

]
.

Then, ∀y ∈ Rj,

E

[∫
CDr

X (y)
|Y(x)|dσd−j(x)

]
< +∞, (3.35)
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(and also for ∀y ∈ Rj,

E

[∫
CDr

X (y)
|Y(x)|dσd−j(x)

]

=
∫

D
pX(x)(y)E [|Y(x)|H(∇X(x))|X(x) = y]dx).

Now replacing |Z(n)| by Z(n) and |Y(n)| by Y(n), similarly as in the
precedent proof, we get for all y ∈ Rj :

lim sup
n→+∞

∣∣∣∣E [∫CDr
X (y)

Z(n)(x)dσd−j(x)
]
−∫

D
pX(x)(y)E

[
Y(n)(x)H(∇X(x))|X(x) = y

]
dx
∣∣∣∣ = 0.

By (3.35), the Lebesgue dominated convergence theorem entails, for all
y ∈ Rj

lim
n→+∞

E

[∫
CDr

X (y)
Z(n)(x)dσd−j(x)

]
= E

[∫
CDr

X (y)
Y(x)dσd−j(x)

]
.

Also ∀y ∈ Rj,

lim
n→+∞

∫
D

pX(x)(y)E
[
Y(n)(x)H(∇X(x))|X(x) = y

]
dx =∫

D
pX(x)(y)E [Y(x)H(∇X(x))|X(x) = y]dx.

This ends the proof of the theorem in the case when either Y satisfies
the condition (3.18), X and Y satisfy one of the three conditions B?

i ,
i = 1, 2, 3, where we replaced in the condition B?

i the condition Bi by
Ai. If X and Y satisfy the condition B?

4, the theorem holds true.
Let assume now that Y satisfies condition (3.18) and X and Y satisfy one
of the three conditions B?

i , i = 1, 2, 3. We will proceed as in the proof
of Theorem 3.2.1. Let us consider for all n ∈ N?, the sets Dn = {x ∈
Rd, d(x, Dc) > 1

n}.
For all n ∈ N?, Dn is an open set contained in D. We consider the re-
strictions X/Dn and Y/Dn. It is clear that if Y satisfies the condition
(3.18) and if X and Y satisfy one of the conditions B?

i , i = 1, 2, 3, then
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for all n ∈N?, Y/Dn satisfies the condition (3.18) and X/Dn and Y/Dn
satisfy one of the conditions B?

i , i = 1, 2, 3 and also the hypothesis H?
6,

where we have replaced the open set D by the open set Dn and replaced
in B?

i the condition Bi by Ai.
We apply the theorem to X/Dn and to Y/Dn (resp. |Y|/Dn). We get
then ∀y ∈ Rj and for all n ∈N∗,

E

[∫
CDr

Dn ,X(y)
Y(x)dσd−j(x)

]

=
∫

Dn

pX(x)(y)E [Y(x)H(∇X(x))|X(x) = y]dx,

similarly replacing Y by |Y|.
The hypothesis H6 allows when n tends towards infinity to apply the
Lebesgue dominated convergence theorem in the above equality.
Ending the proof of the theorem. 2

3.3 General Rice formulas for all level

3.3.1 Preliminaries for the general Rice formula

The two following propositions proved by Azaïs & Wschebor [6, p. 178-
179] will provide the arguments for obtaining a general Rice formula
for a random field not necessarily regular and for all level y ∈ Rj.

Proposition 3.3.1 Let Z : Ω×W ⊂ Ω×R` → Rm+k (m ∈ N, k ∈ N?),
be a random field C1, W an open set of R`, J a compact subset of W whose
Hausdorff dimension is less or equal to m and z0 ∈ Rm+k fixed. We assume
that Z satisfies the following hypothesis: for all t ∈ J, the random vector Z(t)
has a density pZ(t)(v) such that there exists a C > 0, a neighborhood Vz0 of
z0 satisfying that for all t ∈ J and for all v ∈ Vz0 , pZ(t)(v) 6 C.
Then almost surely there is not point t ∈ J such that Z(t) = z0.

Proof of the Proposition 3.3.1. For T a borelian of R` contained in W, let
us denote

Rz0(T) = {ω ∈ Ω : ∃ x ∈ T , Z(x)(ω) = z0}.
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Let J a compact set contained in W whose Haussdorff dimension is less
or equal to m. Since k ∈ N?, the euclidian Haussdorff measure of J of
dimension m + k is zero, that is Hm+k(J) = 0 (c.f. definition in [28]). By
definition of the euclidian pre-measure of Haussdorff of J that defines
Hm+k(J), that is Hδ

m+k(J), we have

Hm+k(J) = 0 = lim
δ→0

Hδ
m+k(J).

Consider ε > 0 and η > 0 fixed. There exists δε > 0 such that for all
δ 6 δε, there exists a numerable set I and (ri)i∈I , 0 < ri 6 δ for all i ∈ I
such that J ⊂ ∪i∈I B(xi, ri) and ∑

i∈I
rm+k

i 6 ε.

Moreover, since W is open in R`, for all y ∈ J ⊂W there exists a ry > 0
such that B(y, 2ry) ⊂ B(y, 2ry) ⊂W.
Given that J ⊂ ∪y∈J B(y, ry) and since J is compact, there exist a finite
covering (B(yj, ryj))j=1,m satisfying J ⊂ ∪m

j=1B(yj, ryj), yj ∈ J for all
j = 1, m. Consider r = infi=1,m ryj and C the compact set defined as
C = ∪m

j=1B(yj, 2ryj) ⊂W.
Let set Rε,η = in f (δε, r/2, µ

2η ) where µ is the constant defining the neigh-
borhood of z0, where the density of Z is bounded. This last neighbor-
hood satisfies that for all t ∈ J the random vector Z(t) has a density
pZ(t)(v) satisfying pZ(t)(v) 6 C, for v such that ||v− z0||m+k 6 µ.
Thus there exists a numerable set I and (ri)i∈I , 0 < ri 6 Rε,η for all i ∈ I
satisfying J ⊂ ∪i∈I B(xi, ri) and ∑

i∈I
rm+k

i 6 ε. We have

P(Rz0(J)) 6 P(sup
t∈C
||∇Z(t)|| > η)

+∑
i∈I

P

({
sup
t∈C
||∇Z(t)|| 6 η

}
∩ Rz0(B(xi, ri) ∩ J)

)
.

Set i fixed in I. If B(xi, ri) ∩ J = ∅, then Rz0(B(xi, ri) ∩ J) = ∅ and
P
({

supt∈C ||∇Z(t)|| 6 η
}
∩ Rz0(B(xi, ri) ∩ J)

)
= 0. If B(xi, ri)∩ J 6= ∅,

let fix z ∈ B(xi, ri) ∩ J.
For ω ∈

{
supt∈C ||∇Z(t)|| 6 η

}
∩ Rz0(B(xi, ri) ∩ J) there exists x ∈

B(xi, ri) ∩ J such that Z(x)(ω) = z0.
Let us remark that there exists j = 1, m such that x and z belong to the
ball B(yj, 2ryj), this entails that for all λ ∈ [0, 1], λx + (1− λ)z ∈ C.
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Indeed, since x ∈ J there exists a j = 1, m, such that x ∈ B(yj, ryj). We
have the following inequalities

||z− yj||` 6 ||z− xi||` + ||xi − x||` + ||x− yj||`
6 2ri + ryj 6 2Rε,η + ryj 6 r + ryj 6 2ryj .

Furthermore, since Z belongs to C1 over W and then over B(yj, 2ryj)
which is an open convex set we have then

Z(z)(ω)− Z(x)(ω) = Z(z)(ω)− z0

=

[∫ 1

0
∇Z(λx + (1− λ)z)(ω) dλ

]
(z− x),

in consequence as for all λ ∈ [0, 1] we have λx + (1− λ)z ∈ C then

||Z(z)(ω)− z0||m+k 6 η ||z− x||` 6 2ηri 6 2ηRε,η 6 µ

Hence

P
({

supt∈C ||∇Z(t)|| 6 η
}
∩ Rz0(B(xi, ri) ∩ J)

)
6 P(ω, ||Z(z)(ω)− z0||m+k 6 2ηri)

=
∫

Rm+k
1{||v−z0||m+k62ηri} pZ(z)(v) dv 6 C Dm,k (ηri)

m+k.

Finally we have shown that ∀ε > 0, ∀η > 0,

P(Rz0(J)) 6 P(sup
t∈C
||∇Z(t)|| > η) + C Dm,k ηm+k ∑

i∈I
rm+k

i

6 P(sup
t∈C
||∇Z(t)|| > η) + C D`,m,k ηm+k ε

By taking limits when ε tends to zero then when η tends to infinity, in
this order, we get P(Rz0(J)) = 0. 2

We are now able of stating the second proposition.

Proposition 3.3.2 Let X : Ω× D ⊂ Ω×Rd → Rj (j 6 d) be a random
field belonging to C2(D, Rj), where D is an open set of Rd and let D0 be a
compact of Rd contained in D. Let y ∈ Rj fixed. We assume that X satisfies
the following assumption (S):
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• (S) For all (x, λ) ∈ D0 × Sj−1 the random vector

(X(x), λ · ∇X(x)),

has a density pX(x), λ·∇X(x)(u, w), such that there exists a constant C >

0, a neighborhood Vy of y and a neighborhood V~0d
of~0Rd , such that for

all x ∈ D0 and for all λ ∈ Sj−1, for all u ∈ Vy and for all w ∈ V~0d
,

pX(x), λ·∇X(x)(u, w) 6 C.

Then

P{ω ∈ Ω : ∃ x ∈ D0, X(x)(ω) = y , rank∇X(x)(ω) < j} = 0.

Proof of the Proposition 3.3.2. Let us define the random field Z by
Z : Ω× D×Rj ⊂ Ω×Rd ×Rj → Rj ×Rd such that

Z(x, λ) = (X(x), λ · ∇X(x)).

Let us consider the set W = D ×Rj that is an open set of R`, where
` = d + j. The field Z is C1 on W since X is C2 on D, and takes its
values in Rm+k where m = j + d− 1 and k = 1.
Considering J = D0 × Sj−1 a compact contained in W. Its Haussdorff
measure is less or equal to m. Set z0 = (y,~0Rd) ∈ Rm+k fixed.
Since for all (x, λ) ∈ D0× Sj−1 the random vector (X(x), λ ·∇X(x)) has
a bounded density pX(x), λ·∇X(x)(u, w), for u in a neighborhood of y and
w in a neighborhood of~0Rd then for all t ∈ J the random vector Z(t)
has a density pZ(t)(v) satisfying pZ(t)(v) 6 C, for v in a neighborhood
of z0.
By the Proposition 3.3.1,

P{ω ∈ Ω : ∃(x, λ) ∈ D0 × Sj−1, (X(x)(ω), λ · ∇X(x)(ω)) = (y,~0Rd)} = 0

then

P{ω ∈ Ω : ∃ x ∈ D0, X(x)(ω) = y , rank ∇X(x)(ω) < j} = 0.

This ends the proof of the proposition. 2

We have now all the ingredients to prove the general Rice formula for
all level.
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3.3.2 The general Rice formula

In this section the Theorem 3.3.1 provides a general Rice formula for all
level. Let us point out that Theorem 6.10 of [6] gives the same result
as that obtained in that one. However, in the aforementioned Theorem
6.10 the proofs are only sketched.
The proof of Theorem 3.3.1 will be based in the proof of the Theorem
3.2.1. Therefore, its proof will need more general conditions than those
denoted by Bi, i = 1, 4, that appear in this last theorem. Thus let us
state the following conditions Ci, i = 1, 4 with the same precedent con-
vention. That is for the three first conditions Ci, i = 1, 3 the process Y
will be expressed using (3.18).
In what follows we have the conditions.

• C1: It is the condition B1 plus the following hypothesis. For all
x ∈ D the vector (X(x),∇X(x)) has a density.

• C2: It is the condition B2 plus the following hypothesis. For all
x ∈ D, the vector (Z(x),∇Z(x)) has a density.

• C3: It is the condition B3 plus the following hypothesis. The func-
tion F would be verified assumption (FF) that is:

– (FF) For all y ∈ Rj there exists C > 0, there exists a neigh-
borhood Vy of y such that for all µ > 0 and for all u ∈ Vy we
have∫

Rj′−j

1
|JF(F−1

z (u), z)|d+1
e−µ||z||2j′−j ||∇F(F−1

z (u), z)||(j−1)d
jj′ dz

6 C.

• C4: It is the condition B4 plus the following hypothesis. The pro-
cess X verifies the assumption (S).

Let us state the general Rice formula for all level.

Theorem 3.3.1 Let X : Ω× D ⊂ Ω×Rd → Rj (j 6 d) be a random field
belonging to C2(D, Rj), where D is a bounded convex open set of Rd. We as-
sume that for almost surely ω ∈ Ω,∇X(ω) is Lipschitz of Lipschitz constant
LX(ω) such that E(LX(·))d < +∞. Let Y : Ω× D ⊂ Ω×Rd → R be a
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continuous process.
If Y satisfies the condition (3.18) and if X and Y satisfy one of the three con-
ditions Ci, i = 1, 2, 3 and the hypothesis H6 or if X and Y satisfy hypothesis
C4 then for all y ∈ Rj we have

E

[∫
CX(y)

Y(x)dσd−j(x)
]
=
∫

D
pX(x)(y)E [Y(x)H(∇X(x))|X(x) = y] dx.

Remark 3.3.1 We can replace the hypothesis “for almost surely ω ∈ Ω,
∇X(ω) is Lipschitz with Lipschitz constant LX(ω) having a d-order
moment”, by the hypothesis

“E(sup
x∈D
||∇2(X(x))||(s)j,d )

d < +∞′′.

Indeed if X is C2 on D, the Taylor formula on D convex and open set
allows concluding that almost surely

LX = sup
x∈D
||∇2(X(x))||(s)j,d < +∞,

then almost surely ∇X is Lipschitz with Lipschitz constant LX.

Remark 3.3.2 We can generalize this theorem and also the remark to
the case where D is an open set no necessarily bounded. It is enough to
conserve the same hypotheses for X adapting those of Y that is defined
on the open bounded set D1 included in D to D1 instead of the open set
D and to X/D1.
The Rice formula holds true for all y ∈ Rj and for X/D1 and Y defined
on D1.

Proof of the Theorem 3.3.1. By the Theorem 3.2.1, we already know that
∀y ∈ Rj

E

[∫
CDr

X (y)
Y(x)dσd−j(x)

]
=
∫

D
pX(x)(y)E [Y(x)H(∇X(x))|X(x) = y]dx.

Let us verify that assumption (S) holds. That is let us prove that if
D0 is a compact set contained in D and if X and Y satisfy one of the
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conditions Ci, i = 1, 3 then for all (x, λ) ∈ D0 × Sj−1 the random vec-
tor (X(x), λ · ∇X(x)) has a density pX(x), λ·∇X(x)(u, w) such that for
all y ∈ Rj there exists a constant C > 0, there exists a neighbor-
hood Vy of y and a neighborhood V~0d

of ~0Rd such that for all x ∈ D0

and for all λ ∈ Sj−1, for all u ∈ Vy and for all w ∈ V~0d
it holds

pX(x), λ·∇X(x)(u, w) 6 C.
Let us notice that this last conclusion holds true when the processes X
and Y satisfy the condition C4.
In this case by using the Proposition 3.3.2, we shall deduce that for any
compact set D0 contained in D and for all y ∈ Rj,

P{ω ∈ Ω : ∃ x ∈ D0, X(x)(ω) = y , rank∇X(x)(ω) < j} = 0.

By choosing the compact D0 = D(n) = {x ∈ Rd, d(x, Dc) > 1
n} ⊆ D

we will deduce, since D(n) tends in a nondecreasing form towards D,
when n tends to infinity, that for all y ∈ Rj,

P{ω ∈ Ω : ∃ x ∈ D, X(x)(ω) = y , rank∇X(x)(ω) < j} = 0.

We then shall have shown that for all y ∈ Rj,

E

[∫
CX(y)

Y(x)dσd−j(x)
]

= E

[∫
CDr

X (y)
Y(x)dσd−j(x)

]
=

∫
D

pX(x)(y)E [Y(x)H(∇X(x))|X(x) = y]dx,

that will end the proof of this theorem.
Thus let us verify that assumption (S) holds.
Let D0 be a compact set contained in D. For all x ∈ D0 and for all λ ∈
Sj−1, in the case where Y satisfies condition (3.18) and X and Y satisfy
one of the conditions Ci, i = 1, 3, as a first step we will study the density
pX(x), λ·∇X(x) of the vector (X(x), λ · ∇X(x)). We shall express this last
one as function of the density pX(x),∇X(x) of vector (X(x),∇X(x)) that
exists by the proof of Proposition 3.1.2 (c.f. equality (3.25)). So let us
consider λ ∈ Sj−1, λ = (λ1, · · · , λj). There exists a k ∈ {1, · · · , j} such
that |λk| > 1√

j
. We will assume for instance k = j and that |λj| > 1√

j
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this will imply 1
|λj
| 6

√
j.

If u = (u1, · · · , uj) ∈ Rj and

s = (s11, s21, · · · , sj1, s12, s22, · · · , sj2, · · · , s1d, s2d, · · · , sjd) ∈ Rjd,

let us make as in the proof of the Proposition 3.1.2 (third part) the fol-
lowing change of variables. Let K be the function defined by

K : Rj ×Rjd −→ Rj ×Rd ×R(j−1)d

(u; s) 7−→
(
u;

j

∑
i=1

λisi1,
j

∑
i=1

λisi2, · · · ,
j

∑
i=1

λisid;

s11, s21, · · · , sj−11, s12, s22, · · · , sj−12, · · · , s1d, s2d, · · · , sj−1d
)

The Jacobian JK of this transformation is such that ∀(t, s) ∈ Rj ×Rjd

|JK(u, s)| = |λj|d 6= 0,

by hypothesis.
Thus K is a bijection of class C1and also its inverse K−1 given by

K−1 : Rj ×Rd ×R(j−1)d −→ Rj ×Rjd

(u; sj1, sj2, .., sjd; s11, s21, .., sj−11, s12, s22, .., sj−12, .., s1d, s2d, .., sj−1d)

7−→
(
u; s11, s21, · · · , sj−11,

1
λj
[−

j−1

∑
i=1

λisi1 + sj1], s12, s22, · · · , sj−12,

1
λj
[−

j−1

∑
i=1

λisi2 + sj2], · · · , s1d, s2d, · · · , sj−1d,
1
λj
[−

j−1

∑
i=1

λisid + sjd]
)

For all λ ∈ Sj−1 for all x ∈ D0 we have

K(X(x);∇X(x)) = (X(x); λ · ∇X(x); (∇X(x))(j−1)d),

where if s ∈ Rjd we have denoted s(j−1)d by

s(j−1)d = (s11, s21, · · · , sj−11, s12, s22, · · · , sj−12, · · · , s1d, s2d, · · · , sj−1d).

With these notations if pX(x), λ·∇X(x),(∇X(x))(j−1)d
denotes the density of

the vector (X(x), λ · ∇X(x), (∇X(x))(j−1)d), we have: ∀λ ∈ Sj−1, ∀x ∈
D0, ∀(u, s) ∈ Rj ×Rjd,

pX(x), λ·∇X(x),(∇X(x))(j−1)d
(u, s) =

1
|λj|d

pX(x),∇X(x)(K
−1(u, s)).
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We deduce that

∀λ ∈ Sj−1, ∀x ∈ D0, ∀(u, w) ∈ Rj ×Rd, w = (w1, w2, · · · , wd),

pX(x), λ·∇X(x)(u, w) =
1
|λj|d

∫
R(j−1)d

pX(x),∇X(x)(u; s11, s21, .., sj−11,

1
λj
[−

j−1

∑
i=1

λisi1 + w1], s12, s22, .., sj−12,
1
λj
[−

j−1

∑
i=1

λisi2 + w2], .., s1d, s2d, ..,

sj−1d,
1
λj
[−

j−1

∑
i=1

λisid + wd])ds(j−1)d (3.36)

We now have to bound this density. In this aim let us consider each of
Ci, i = 1, 3 conditions.

• If X and Y satisfy the condition C1, then for all x ∈ D0 the vector
(X(x),∇X(x)) has a non singular density and since X is a process
of class C2 the covariance matrix of this vector is strictly positive
on the compact set D0 . Then there exist reals a, b > 0 such that for
all x ∈ D0, 0 < a 6 inf||z||j(d+1)=1 ||V(X(x),∇X(x))× z||j(d+1) 6 b.
In the same form that we have obtained the equality (3.27), we get
with the same notations as before that there exists a number µ > 0
and a number C > 0, such that for all (x, u, s) ∈ D0 ×Rj ×Rdj,

pX(x),∇X(x)(u, s) 6 C e−µ||(u,s)||2j(d+1) 6 C e−µ||s||2jd

6 C e−µ||s(j−1)d||2(j−1)d .

By using the equality (3.36), we obtain the following bound: ∀λ ∈
Sj−1, ∀x ∈ D0, ∀(u, w) ∈ Rj ×Rd,

pX(x), λ·∇X(x)(u, w) 6
C
|λj|d

∫
R(j−1)d

e−µ||s(j−1)d||2(j−1)d ds(j−1)d

6 C,

the last inequality comes from the fact that 1
|λj|d

6 (
√

j)d.
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• If X and Y satisfy the condition C2, then for all x ∈ D0 the vector
(Z(x),∇Z(x)) has a non-degenerate density. In the same form
that in the first part we show the existence of a number µ > 0 and
of a number C > 0 such that for all (x, u, s) ∈ D0 ×Rj ×Rdj,

pZ(x),∇Z(x)(u, s) 6 C e−µ||s||2jd .

Moreover, the equality (3.25) proved in the third part of the proof
of the Proposition 3.1.2 and applied to j = j′ shows that the den-
sity of the vector (X(x),∇X(x)) is given by: for all (x, u, s) ∈
D0 ×Rj ×Rdj,

pX(x),∇X(x)(u, s) =
1

|JF(F−1(u))|d+1 ×

pZ(x),∇Z(x)(F−1(u), (∇F(F−1(u)))−1 × s).

We deduce that there exists a constant µ > 0 such that for all
(x, u, s) ∈ D0 ×Rj ×Rdj,

pX(x),∇X(x)(u, s) 6
C

|JF(F−1(u))|d+1 × e−µ||(∇F(F−1(u)))−1×s||2jd .

Now let y be a vector fixed in Rj. Since the function F belongs to
C1 and F−1 is continuous the Jacobian JF(F−1) is continuous on Rj

and it is everywhere non zero. Let Vy a compact neighborhood of
y, then there exists a C > 0 such that for all u ∈ Vy we have

1
|JF(F−1(u))|d+1 6 C.

Moreover, for all u ∈ Rj, (∇F(F−1(u)))−1 ∈ L(Rj, Rj) and thus
for all s ∈ Rjd,

||(∇F(F−1(u)))−1 × s||jd >
||s||jd

||∇F(F−1(u))||j,j
. (3.37)

Since F belongs to C1 and F−1 is continuous, the operator
∇F(F−1(·)) is a continuous function of Rj into L(Rj, Rj). There
exists a constant C > 0, such that for all u ∈ Vy, we have

||∇F(F−1(u))||j,j 6 C.
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We deduce that for all s ∈ Rjd and for all u ∈ Vy,

||(∇F(F−1(u)))−1 × sj,d||jd > C ||s||jd.

Finally we conclude that for all y ∈ Rj, there exists a constant
C > 0, there exists a neighborhood Vy of y, there exists a constant
µ > 0 such that for all x ∈ D0, for all u ∈ Vy and for all s ∈ Rjd

we have

pX(x),∇X(x)(u, s) 6 C e−µ||s||2jd .

Then in the same form that in the first part of the proof of this
theorem we deduce that for all y ∈ Rj, there exists a constant
C > 0, there exists a neighborhood of y, let Vy, such that for all
x ∈ D0 and for all λ ∈ Sj−1, for all u ∈ Vy and for all w ∈ Rd,

pX(x), λ·∇X(x)(u, w) 6 C.

• If X and Y satisfy the condition C3, in the same form as before and
since D0 is a compact set, there exist constants µ > 0 and C > 0
such that for all (x, u, s) ∈ D0 ×Rj ×Rdj′ ,

pZ(x),∇Z(x)(u, s) 6 C e−µ||u||2j′ e−µ||s||2j′d .

The equality (3.25) proved in the third part of the proof of Propo-
sition 3.1.2, shows that the density of the random vector
(X(x),∇X(x)) exists. Using the same notations that in this proof
and by the equality given in (3.37), we can prove that this last
density is bounded in the following form, for all

(x, u, sj,d) ∈ D0 ×Rj ×Rdj,

pX(x);∇X(x)(u; sj,d) 6 C
∫

Rj′−j

∫
R(j′−j)d

1
|JF(F−1

z (u), z)|d+1
×

e−µ||z||2j′−j × e−µ||sj′−j,d||2(j′−j)d ×

e
−µ ||[∇F(F−1

z (u),z)]jj||−2
jj ×||sj,d−[∇F(F−1

z (u),z)]jj′−j
sj′−j,d||2jd dsj′−j,d dz.
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We deduce that for all (x, u, sj,d) ∈ D0 ×Rj ×Rdj,

pX(x);∇X(x)(u; sj,d) 6 C
∫

Rj′−j

∫
R(j′−j)d

1
|JF(F−1

z (u), z)|d+1
×

e−µ||z||2j′−j × e−µ||sj′−j,d||2(j′−j)d ×

e
−µ ||[∇F(F−1

z (u),z)]jj||−2
jj ×||sj−1,d−[∇F(F−1

z (u),z)]j−1j′−j
sj′−j,d||2j−1d dsj′−j,ddz,

where the matrix sj−1,d is the matrix sj,d of which we have deleted
the j-th row and

[
∇F(F−1

z (u), z)
]

j−1j′−j is the matrix[
∇F(F−1

z (u), z)
]

jj′−j of which we have deleted the j-th row.
By using the equality (3.36), we get:
∃C > 0, ∃ µ > 0, ∀x ∈ D0, ∀λ ∈ Sj−1, ∀(u, w) ∈ Rj ×Rd,

pX(x), λ·∇X(x)(u, w) 6 C
∫

R(j−1)d×Rj′−j×R(j′−j)d

1
|JF(F−1

z (u), z)|d+1

×e−µ||z||2j′−j × e−µ||sj′−j,d||2(j′−j)d ×

e
−µ ||[∇F(F−1

z (u),z)]jj||−2
jj ||sj−1,d−[∇F(F−1

z (u),z)]j−1j′−j
sj′−j,d||2j−1d

dsj′−j,ddzdsj−1,d.

We make the following change of variables in the integral over
R(j−1)d:
sj−1,d −

[
∇F(F−1

z (u), z)
]

j−1j′−j
sj′−j,d

= ||[∇F(F−1
z (u), z)]jj||jj · vj−1,d.

We get: ∃C > 0, ∃ µ > 0, ∀x ∈ D0, ∀λ ∈ Sj−1, ∀(u, w) ∈ Rj ×Rd,

pX(x), λ·∇X(x)(u, w)

6 C
∫

R(j−1)d

∫
Rj′−j

∫
R(j′−j)d

1
|JF(F−1

z (u), z)|d+1
×

e
−µ||z||2j′−j × e

−µ||sj′−j,d ||2(j′−j)d ×
e−µ ||vj−1,d ||2(j−1)d × ||[∇F(F−1

z (u), z)]jj||
(j−1)d
jj dsj′−j,ddzdvj−1,d 6

C
∫

Rj′−j

1
|JF(F−1

z (u), z)|d+1
e
−µ||z||2j′−j ||[∇F(F−1

z (u), z)]jj||
(j−1)d
jj dz

6 C
∫

Rj′−j

1
|JF(F−1

z (u), z)|d+1
e
−µ||z||2j′−j ||∇F(F−1

z (u), z)||(j−1)d
jj′ dz.
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The C3 condition allows getting that for all y ∈ Rj, there exists
C > 0, a neighborhood Vy of y, such that ∀x ∈ D0, ∀λ ∈ Sj−1,
∀u ∈ Vy and ∀w ∈ Rd, we have

pX(x), λ·∇X(x)(u, w) 6 C.

This ends the proof of the theorem.

2

In the same manner as in Theorem 3.2.2, we can free ourselves in the
Theorem 3.3.1, from the assumption E(LX(·))d < +∞. If one of the
conditions C1, C2, C3 or C4 is replaced by C?

1, C?
2, C?

3 or C?
4, the Rice’s

formula will be still true. In the three first conditions C?
1, C?

2 and C?
3, we

make the hypothesis that Y can be written under the form (3.18).
More precisely

• C?
1: It is the condition C1, plus the following hypothesis. For al-

most surely (x1, x2) ∈ D× D the density of the vector
(X(x1), X(x2)) exists.

• C?
2: It is the condition C2 plus the following hypothesis. For al-

most surely (x1, x2) ∈ D× D the density of the vector
(Z(x1), Z(x2)) exists.

• C?
3: It is the condition C3 plus the following hypothesis. For al-

most surely (x1, x2) ∈ D× D the density of the vector
(Z(x1), Z(x2)) exists.

• C?
4: It is the condition B?

4 plus the following hypothesis. The pro-
cess X verifies assumption (S).

The following theorem synthesizes all the results which we obtai-
ned previously. In a certain sense one can say that it is a new result. Let
us state it.

Theorem 3.3.2 Let X : Ω × D ⊂ Ω × Rd → Rj (j 6 d) be a random
field belonging to C2(D, Rj), where D is a convex open bounded set of Rd,
such that for almost surely ω ∈ Ω, ∇X(ω) is Lipschitz. Let Y : Ω× D ⊂
Ω×Rd → R be a continuous process. If Y satisfies the condition (3.18) and
if X and Y satisfy one of the three conditions C?

i , i = 1, 2, 3 and the hypotheses
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H6 and H?
6 or if X and Y satisfy the condition C?

4, then for all y ∈ Rj we have

E

[∫
CX(y)

Y(x)dσd−j(x)
]

=
∫

D
pX(x)(y)E [Y(x)H(∇X(x))|X(x) = y] dx.

Remark 3.3.3 In the same form as in the Remark 3.3.1, we can replace
in the theorem the hypothesis “for almost surely ω ∈ Ω, ∇X(ω) is
Lipschitz”, by the hypothesis " almost surely
LX = supx∈D ||∇2X(x)||(s)j,d < +∞ ", since almost surely the process∇X
will be Lipschitz with Lipschitz constant LX.

Remark 3.3.4 We can generalized this theorem in the case where D is a
convex open not necessarily bounded. We maintain the same hypothe-
ses for the process X adapting those of Y that is now defined on the
bounded open set D1 included in D instead of D and to X/D1.
The Rice’s formula will be still valid for all level y ∈ Rj and for X/D1
and Y defined on D1.

3.3.3 Rice formula for the k-th moment

The Theorem 3.3.1 will allow to state a general Rice formula for the
second moment.
Let us set the conditions Di, i = 1, 4, where in the three first ones D1,
D2 and D3, we will assume the hypothesis that Y can be written in the
form (3.18).
We will denote ∆ the subset of R2d, ∆ = {(x1, x2) ∈ D × D, x1 = x2},
where D is an open set of Rd. Let us state the following conditions Di,
i = 1, 4.

• D1: It is the condition E1, plus the following hypothesis. For all
x ∈ D, the vector (X(x),∇X(x)) has a density.

• D2: It is the condition E2, plus the following hypothesis. For all
x ∈ D, the vector (Z(x),∇Z(x)) has a density.

• D3: It is the condition E3, plus the following hypothesis. The
function F verifies assumption (FF) appearing in condition C3.
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• D4: It is the condition E4, plus the following hypothesis. The
process X satisfies the assumption (S).

The conditions Ei, i = 1, 4, are the following:

• E1: The process X : Ω × D ⊂ Ω × Rd → Rj (j 6 d) is Gaus-
sian of class C2 on D, such that for all (x1, x2) ∈ D × D − ∆, the
vector (X(x1), X(x2)) has a density. Moreover, for almost surely
(x1, x2) ∈ D×D, the vector (W(x1), W(x2)) is independent of the
vector
(X(x1), X(x2),∇X(x1),∇X(x2)), and ∀ n ∈N,∫

D
E(||W(x)||nk ) dx < +∞.

• E2: ∀ x ∈ D, X(x) = F(Z(x)), where F : Rj −→ Rj is a bijective
function of class C2, such that ∀ z ∈ Rj, the Jacobian of F in z,
that is JF(z) is such that JF(z) 6= 0 and the function F−1 is contin-
uous. The process Z : Ω × D ⊂ Ω ×Rd → Rj (j 6 d) is Gaus-
sian of class C2 on D, such that for all (x1, x2) ∈ D × D − ∆, the
vector (Z(x1), Z(x2)) has a density. Moreover, for almost surely
(x1, x2) ∈ D×D, the vector (W(x1), W(x2)) is independent of the
vector
(Z(x1), Z(x2),∇Z(x1),∇Z(x2)), and ∀ n ∈N,∫

D
E(||W(x)||nk ) dx < +∞.

• E3: ∀ x ∈ D, X(x) = F(Z(x)), where the process Z : Ω×D ⊂ Ω×
Rd → Rj′ is Gaussian of class C2 on D, such that for all (x1, x2) ∈
D× D− ∆, the vector

(Z(x1), Z(x2),∇Z(x1),∇Z(x2))

has a density. Moreover, for almost surely (x1, x2) ∈ D × D, the
vector (W(x1), W(x2)) is independent of the vector
(Z(x1), Z(x2),∇Z(x1),∇Z(x2)).
And, ∀ n ∈N, ∫

D
E(||W(x)||nk ) dx < +∞.

The function F verifies assumption (F) appearing in condition A3.
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• E4: For almost surely (x1, x2, y1, y2, ẋ1, ẋ2) ∈ D× D×R2 ×Rdj ×
Rdj and for all u ∈ Rj, the density

pY(x1),Y(x2),X(x1),X(x2),∇X(x1),∇X(x2)
(y1, y2, u, u, ẋ1, ẋ1),

of the joint distribution of

(Y(x1), Y(x2), X(x1), X(x2),∇X(x1),∇X(x2)),

exists and is continuous in the variable u.
Furthermore

u 7−→
∫

D×D

∫
R2×R2dj

|y1| |y2| ||ẋ1||jdj ||ẋ2||jdj×

pY(x1),Y(x2),X(x1),X(x2),∇X(x1),∇X(x2)
(y1, y2, u, u, ẋ1, ẋ1)

dẋ1dẋ2dy1dy2dx1dx2,

is continuous.

Let us state the hypothesis H7.

• H7: For all y ∈ Rj,

∫
D×D

E[|Y(x1)||Y(x2)|H(∇X(x1))H(∇X(x2))|X(x1) = X(x2) = y]

×pX(x1),X(x2)
(y, y) dx1 dx2 < +∞.

We are ready to prove the following theorem.

Theorem 3.3.3 Let X : Ω× D ⊂ Ω×Rd → Rj (j < d) be a random field
belonging to C2(D, Rj), where D is a bounded, convex open set of Rd, such
that for almost surely ω ∈ Ω, ∇X(ω) is Lipschitz with Lipschitz constant
LX(ω) such that E(LX(·))2d < +∞. Let Y : Ω × D ⊂ Ω ×Rd → R a
continuous process.
If Y satisfies the condition (3.18) and if X and Y satisfy one of the three condi-
tions Di, i = 1, 2, 3 and the hypothesis H7 or if X and Y satisfy the condition
D4, then for all y ∈ Rj we have

E

[∫
CX(y)

Y(x)dσd−j(x)
]2

=∫
D×D

E[Y(x1)Y(x2)H(∇X(x1))H(∇X(x2))|X(x1) = X(x2) = y]

×pX(x1),X(x2)
(y, y) dx1 dx2. (3.38)
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Remark 3.3.5 In the same form as in the Remark 3.3.1, we can replace
in the theorem the hypothesis “ for almost surely ω ∈ Ω, ∇X(ω) is
Lipschitz with Lipschitz constant LX(ω) such that E(LX(·))2d < +∞ ”,
by the hypothesis “ E(supx∈D ||∇2X(x)||(s)j,d )

2d < +∞”.

Remark 3.3.6 Under the same hypotheses as that of the theorem or un-
der below those of the Remark 3.3.9, for j = d, we get a result similar to
the one obtained in the equality (3.38). It is enough to replace

E

[∫
CX(y)

Y(x)dσd−j(x)
]2

,

by

E

[(∫
CX(y)

Y(x)dσd−j(x)
)2

−
∫
CX(y)

Y2(x)dσd−j(x)

]
in the equality (3.38). The right hand side remains unchanged. How-
ever, we need to point out that is this particular case σ0 is the counting
measure.

Remark 3.3.7 Under the same type of hypotheses as those given in the
theorem or farther in the Remark 3.3.9, we can propose a general Rice
formula for the k order moments of the process Y integrated on the level
set of the random field X, and this for all y ∈ Rj.

Remark 3.3.8 The Theorem 3.3.3 and also the Remarks 3.3.6, 3.3.7 and
3.3.9 can be generalized to D a convex open set Rd not necessarily
bounded.
For this mutatis mutandi we can argue as in Remark 3.3.4.

Proof of Theorem 3.3.3. The idea consists in applying the Remark 3.2.3
following the Theorem 3.2.1 for the convex and open set D×D and the
open bounded set D1 = D × D − ∆, to the processes X̃ and Ỹ defined
of the following form

X̃ : Ω× D× D ⊂ Ω×R2d −→ R2j

x = (x1, x2) 7−→ X̃(x) = (X(x1), X(x2)),
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and

Ỹ : Ω× D× D ⊂ Ω×R2d −→ R

x = (x1, x2) 7−→ Ỹ(x) = Y(x1)×Y(x2).

Since X is a random field belonging to C2(D, Rj) then X̃ is a random
field belonging to C2(D× D, R2j) and D× D is a convex and open set
of R2d. Also Ỹ/D × D − ∆ is still continuous on D × D − ∆ open and
bounded set of R2d contained in D× D.
Since for almost surely ω ∈ Ω, ∇X(ω) is Lipschitz with Lipschitz con-
stant LX(ω) such that E(LX(·))2d < +∞, then for almost surely ω ∈ Ω,
∇X̃(ω) is Lipschitz with Lipschitz constant LX̃(ω) = LX(ω), such that
E(LX̃(·))2d < +∞.
Then under one of the conditions Ci, i = 1, 3, since Y is written as a
function G of X and of ∇X and of the variable W : Ω× D ⊂ Rd → Rk,
k ∈N?, in the following form, for almost surely x ∈ D:

Y(x) = G(x, W(x), X(x),∇X(x)),

where
G : D×Rk ×Rj × L(Rd, Rj) −→ R

(x, z, u, A) 7−→ G(x, z, u, A),

is a continuous function of its variables over
D×Rk ×Rj × L(Rd, Rj) and such that ∀ (x, z, u, A) ∈ D×Rk ×Rj ×
L(Rd, Rj),

|G(x, z, u, A)| 6 P( f (x), ||z||k, h(u), ||A||j,d),

where P is a polynomial with positive coefficients and f : D −→ R+

and h : Rj −→ R+ are continuous functions, the same holds true for Ỹ.
More precisely, for almost surely x = (x1, x2) ∈ D× D,

Ỹ(x) = G̃(x, W̃(x), X̃(x),∇X̃(x)),

where
W̃ : Ω× D× D ⊂ Ω×R2d −→ R2k

x = (x1, x2) 7−→ (W(x1), W(x2)),
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G̃ : D2 ×R2k ×R2j ×B(R2d, R2j) −→ R

(x = (x1, x2), z = (z1, z2), u = (u1, u2),
(

A 0
0 B

)
)

7−→ G̃(x, z, u,
(

A 0
0 B

)
)

= G(x1, z1, u1, A)× G(x2, z2, u2, B),

where B(R2d, R2j) is the vector subspace of L(R2d, R2j) of the matrices

of the form C =

(
A 0
0 B

)
where A, B ∈ L(Rd, Rj).

It is clear that G̃ remains a continuous function defined on

D2 ×R2k ×R2j ×B(R2d, R2j),

and it is such that ∀ (x, z, u, C) ∈ D2 ×R2k ×R2j ×B(Rd, Rj),

|G̃(x, z, u, C)| 6 P( f (x1), ||z1||k, h(u1), ||A||j,d)
×P( f (x2), ||z2||k, h(u2), ||B||j,d)

6 P̃( f̃ (x), ||z||2k, h̃(u), ||C||2j,2d),

where the function f̃ is defined by

f̃ : D2 −→ R+

x = (x1, x2) 7−→ f̃ (x) = f (x1) + f (x2),

and the function h̃ is defined by

h̃ : R2j −→ R+

u = (u1, u2) 7−→ h̃(u) = h(u1) + h(u2),

that are still continuous functions and P̃ is a polynomial with positive
coefficients.

It is easy to check that X̃ and Ỹ/D×D−∆ satisfy the hypotheses Bi,
i = 1, 4, of the Remark 3.2.3 following the Theorem 3.2.1, respectively
for the convex open set D× D and for the open and bounded set D×
D− ∆ contained in D× D.
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Furthermore, if X and Y satisfy the hypothesis H7 then X̃ et Ỹ/D×D−
∆ satisfy the hypothesis H6, since ∀x ∈ D× D,

H(∇X̃(x)) = H(∇X(x1))× H(∇X(x2)). (3.39)

It holds that X̃ and Ỹ/D× D− ∆ satisfy the hypotheses of the Remark
3.2.3 following the Theorem 3.2.1.
Now the hypotheses that X and Y satisfy make that these two processes
verify hypotheses Ci, i = 1, 4, appearing in Theorem 3.3.1 and then the
ones of the Proposition 3.3.2. Hence in the same form as in this theorem
we get that for all y ∈ Rj,

P{ω ∈ Ω : ∃ x ∈ D, X(x)(ω) = y , rank∇X(x)(ω) < j} = 0. (3.40)

Deducing for all y ∈ Rj,

P{ω ∈ Ω : ∃x ∈ D× D, X̃(x)(ω) = (y, y), rank∇X̃(x)(ω) < 2j} = 0. (3.41)

Indeed by using the equality (3.39), for all y ∈ Rj,

P{ω ∈ Ω : ∃ x ∈ D× D, X̃(x)(ω) = (y, y) , rank∇X̃(x)(ω) < 2j}
6 P{ω ∈ Ω : ∃ x ∈ D, X(x)(ω) = y , rank∇X(x)(ω) < j} = 0.

The Remark 3.2.3 following the Theorem 3.2.1 applied to X̃ and
Ỹ/D× D− ∆ and the equality (3.41) allow writing for all y ∈ Rj,

E

[∫
CD×D−∆,X̃(y,y)

Ỹ(x)dσ2(d−j)(x)

]

= E

[∫
CD×D−∆,X̃(y,y)

Ỹ(x)dσ2(d−j)(x)

]
=
∫

D×D−∆
pX̃(x)(y, y)E

[
Ỹ(x)H(∇X̃(x))|X̃(x) = (y, y)

]
dx

=
∫

D×D
E[Y(x1)Y(x2)H(∇X(x1))H(∇X(x2))|X(x1) = X(x2) = y]

×pX(x1),X(x2)
(y, y) dx1 dx2,

the last equality comes from the fact that σ2d(∆) = 0.
Moreover, we know by using the Remark 3.1.2 and the equality (3.40)
that for all y ∈ Rj, almost surely CDr

X (y) = CX(y) and CDr

X (y) is a dif-
ferentiable manifold of dimension (d− j). Thus for all y ∈ Rj, almost
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surely the set A defined by A = {(x, x) ∈ D×D, X(x) = y} is a differ-
entiable manifold of dimension (d− j) then, since j < d, almost surely
σ2(d−j)(A) = 0. Thus for all y ∈ Rj,

E

[∫
CD×D−∆,X̃(y,y)

Ỹ(x)dσ2(d−j)(x)

]
= E

[∫
CD×D,X̃(y,y)

Ỹ(x)dσ2(d−j)(x)

]

= E

[∫
CX(y)

Y(x)dσd−j(x)
]2

,

the last equality comes from the fact that for all y ∈ Rj,

CD×D,X̃(y, y) = CX(y)× CX(y).

This ends the proof of this theorem. 2

Proof of the Remark 3.3.6. Under the same as that of Theorem 3.3.3, but
for j = d, we make the same proof as before. We get for all y ∈ Rj,

E

[∫
CD×D−∆,X̃(y,y)

Ỹ(x)dσ2(d−j)(x)

]

=
∫

D×D
E[Y(x1)Y(x2)H(∇X(x1))H(∇X(x2))|X(x1) = X(x2) = y]

×pX(x1),X(x2)
(y, y) dx1 dx2.

In the same form we get, for all y ∈ Rj and almost surely the set A is
still a differentiable manifold and since for all

y ∈ Rj, CD×D,X̃(y, y) = CX(y)× CX(y),

we can write recalling that in this case σd−j is the counting measure

E

[∫
CD×D−∆,X̃(y,y)

Ỹ(x)dσ2(d−j)(x)

]

= E

[∫
CD×D,X̃(y,y)

Ỹ(x)dσ2(d−j)(x)−
∫
CX(y)

Y2(x)dσd−j(x)

]

= E

[(∫
CX(y)

Y(x)dσd−j(x)
)2

−
∫
CX(y)

Y2(x)dσd−j(x)

]
,
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this ends the proof of this remark. 2

Remark 3.3.9 In the same manner as in the Theorems 3.2.2 and 3.3.2,
we can weaken the hypothesis E(LX(·))2d < +∞ in the Theorem 3.3.3.
More precisely, we can make the hypothesis that for almost surely ω ∈
Ω, ∇X(ω) is Lipschitz or as in Remark 3.3.5, asking for the almost
finiteness of
supx∈D ||∇2X(x)||(s)j,d . Then, it will be enough to replace conditions Di,
i = 1, 4 appearing in Theorem 3.3.3 by the following D?

i conditions,
i = 1, 4, conserving the hypothesis H7 and adding the following hy-
pothesis H?

7.

• D?
1: It is the condition D1, plus the following hypothesis. For

almost surely (x1, x2, x3, x4) ∈ D4, the density of the vector
(X(x1), X(x2), X(x3), X(x4)) exists.

• D?
2: It is the condition D2, plus the following hypothesis. For

almost surely (x1, x2, x3, x4) ∈ D4, the density of the vector
(Z(x1), Z(x2), Z(x3), Z(x4)) exists.

• D?
3: It is the condition D3, plus the following hypothesis. For

almost surely (x1, x2, x3, x4) ∈ D4, the density of the vector
(Z(x1), Z(x2), Z(x3), Z(x4)) exists.

• D?
4: It is the condition D4, plus the following hypothesis. The

function

(u1, u2) 7−→
∫

D×D

∫
R2×R2dj y1

2 y2
2 ||ẋ1||jdj ||ẋ2||jdj

pY(x1),Y(x2),X(x1),X(x2),∇X(x1),∇X(x2)
(y1, y2, u1, u2, ẋ1, ẋ1)

dẋ1 dẋ2 dy1 dy2 dx1 dx2,

is a continuous function.
For almost surely (x1, x2, x3, x4, ẋ1, ẋ2, ẋ3, ẋ4) ∈ D4 ×R4dj and for
all q = (u1, u2, v1, v2) ∈ R4j, the density

pX(x1),X(x2),X(x3),X(x4),∇X(x1),∇X(x2),∇X(x3),∇X(x4)
(q, ẋ1, ẋ2, ẋ3, ẋ4),
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of the vector

(X(x1), X(x2), X(x3), X(x4),∇X(x1),∇X(x2),∇X(x3),∇X(x4)),

exists. Moreover, for all y ∈ Rj, the function

q 7−→
∫

D4

∫
R4dj
||ẋ1||jdj||ẋ2||jdj||ẋ3||jdj||ẋ4||jdj

pX(x1),X(x2),X(x3),X(x4),∇X(x1),∇X(x2),∇X(x3),∇X(x4)
(q, ẋ1, ẋ2, ẋ3, ẋ4)

dẋ1 dẋ2 dx1 dx2,

is bounded in a neighborhood of q = (y, y, y, y).

Let us state the hypothesis H?
7.

• H?
7: For all y ∈ Rj, the function

q 7−→
∫

D4
pX(x1),X(x2),X(x3),X(x4),(q)×

E[H(∇X(x1))H(∇X(x2))H(∇X(x3))H(∇X(x4))|

(X(x1), X(x2), X(x3), X(x4)) = q]dx1dx2dx3dx4,

is a bounded function in a neighborhood of q = (y, y, y, y).



Chapter 4

Applications

The principal reason to have good Kac-Rice formulas is that they pro-
vide some tools to make explicitly computations that involve roots of
functions as well other level functionals. Below we will present some
of these applications. They can be classified by themes. First let us
to mention the possibility for getting conditions under which the level
functional has some moments. This is a non trivial task and it has been
completely solved only in certain particular cases. Furthermore, Rice’s
formulas have been also applied both in physical oceanography and
in the theory in dislocations of random waves propagation. Another
two applications deserve to be studied: in first place the theory of ran-
dom gravitational microlensings and in second place the study of the
zero sets of random algebraic systems invariant under the orthogonal
group, that are known in the literature as Kotlan-Shub-Smale systems.
In what follows the reader will find a brief description of all of them.

4.1 Dimensions d=j=1

Classically the study of Rice’s formula began with the seminal papers of
Kac [18] and Rice [27]. The first one considered the number of roots of
a random polynomial with standard and independent Gaussian coeffi-
cients and the second one developed formulas for studying the cross-
ings of stationary Gaussian processes. In this subsection we will revisit
these two old problems. Firstly we will give, using the formulas ob-
tained before, necessary and sufficient conditions for the existence of

113
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both the first and the second moment of the number of crossings of a
stationary Gaussian process. Secondly the research of Kac will be ex-
tended for considering random trigonometric polynomials.

4.1.1 Necessary and sufficient conditions for the first and sec-
ond moment of the number of crossings

Let X : Ω × R → R be a mean zero, real and stationary Gaussian
process. Let us denote its covariance function as r and µ the spectral
measure assumed to be not purely discrete. Thus we have

r(t) =
∫

R
eitλdµ(λ).

The p-order spectral moment is defined as

λp =
∫

R
λpdµ(λ).

For y ∈ R and t > 0 we will denote NX
[0,t](y) the number of crossings of

the level y by the process X on the interval [0, t]. We have the following
theorem

Theorem 4.1.1 • The first order Rice’s formula holds if and only if λ2 <
+∞. And we have for all y ∈ R and t > 0

E[NX
[0,t](y)] =

t
π

√
λ2

λ0
e−

y2
2λ0 .

• Moreover in this case, E[(NX
[0,t](y))

2] < +∞ if and only if for some

δ > 0 we have r”(τ)−r”(0)
τ ∈ L1([0, δ], dτ).

Remark 4.1.1 The first result was proved by K. Itô in [14]. In such a
work the author generalizes the precedent proofs providing a defini-
tive result. The second one is the famous Geman result [16]. He only
considers the case y = 0. In [20] the result was extended for all y.

Proof of Theorem 4.1.1. Remark 3.3.1 following Theorem 3.3.1 gives the
validity of the first formula whenever X belongs to C2([0, t], R). How-
ever, the result holds with a large generality as it was shown by Itô in
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[14]. For completeness we will sketch his proof. First it is proved in
[14] that if λ2 < +∞ the process has absolutely continuous trajectories.
And moreover it holds

NX
[0,t](y) 6 lim inf

δ→0

1
2δ

∫ t

0
1{|X(s)−y|<δ}|X′(s)|ds.

Then by using Fatou’s lemma and that X is Gaussian and stationary we
get by denoting ϕ for the standard Gaussian density on R

E[NX
[0,t](y)] 6 lim inf

δ→0

t
2δ

E[1{|X(0)−y|<δ}|X′(0)|]

= lim inf
δ→0

t
2δ
√

λ0λ2

∫ y+δ

y−δ

∫
R
|ż|ϕ( z√

λ0
)ϕ(

ż√
λ2

)dzdż

= lim inf
δ→0

t
2δ
√

λ0

∫ y+δ

y−δ
ϕ(

z√
λ0

)dz

√
2λ2

π

=
t
π

√
λ2

λ0
e−

y2
2λ0 .

Concerning the other inequality, in [14] it is proved that the following
inequality holds true

NX
[0,t](y) > lim

n→+∞

2n

∑
k=1

1{(X( (k−1)t
2n )−y)(X( kt

2n )−y)<0} (monotonic limit).

Therefore by using the monotone convergence theorem we obtain

E[NX
[0,t](y)] > lim

n→+∞
2nE[1{(X(0)−y)(X( t

2n )−y)<0}].

The expectation in the right hand side can be written as

E[1{(X(0)−y)(X( t
2n )−y)<0}]

= E[1( y√
λ0

,+∞)(
X(0)√

λ0
)1(−∞, y√

λ0
)(

X( t
2n )√
λ0

)]

+E[1( y√
λ0

,+∞)(
X( t

2n )√
λ0

)1(−∞, y√
λ0

)(
X(0)√

λ0
)].
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Then by ease of notation let us take above λ0 = 1. Thus if Zn stands for
a Gaussian r.v. independent of (X(0), X( t

2n )) we have

E[1(y,+∞)(X(0))1(−∞,y)(X( t
2n ))]

= E[1(y,+∞)(X(0))1(−∞,y)(r(
t

2n )X(0) +

√
1− r2(

t
2n )Zn)]

=
∫ 0

−∞
ϕ(z)dz

∫ y−
√

1−r2( t
2n )z

r( t
2n )

y
ϕ(x)dx,

thus

2n
∫ 0

−∞
ϕ(z)dz

∫ y−
√

1−r2( t
2n )z

r( t
2n )

y
ϕ(x)dx→ t

√
λ2

2π
e−

1
2 y2

.

The same process can be made for the second term. Obtaining for any
λ0 finally

E[NX
[0,t](y)] >

t
π

√
λ2

λ0
e−

1
2

y2
λ0 .

The above procedure can be used also for proving that if λ2 = +∞ then
E[NX

[0,t](y)] = +∞. And all the results hold in force.
For proving the second statement of the theorem we can use Re-

marks 3.3.5 and 3.3.6 following Theorem 3.3.3 for the case d = j = 1,
making thus the hypothesis that X belongs to C2([0, t], R). Thus the for-
mula for the second factorial moment holds providing that the integral
appearing in equation (4.1) is finite. Let us remark that the assumption
that X possesses C2-trajectories implies that the covariance r is C4 and
then λ4 < +∞. However the case λ4 = +∞ remains an interesting
case. It is the reason why we will follow the more general way given
by [12] and [16]. In [12] it is shown that

M2(y, t) := E[NX
[0,t](y)(NX

[0,t](y)− 1)]

= 2
∫ t

0
(t− τ)

∫
R2
|x′1||x′2|pτ(y, x′1, y, x′2)dx′1dx′2dτ, (4.1)

where pτ(x1, x′1, x2, x′2) is the density of the vector

(X(0), X′(0), X(τ), X′(τ)),
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that is non-singular for τ > 0, since the spectral measure µ is not purely
discrete. Furthermore it is shown that if one of the term is infinity the
same fact occurs for the other. In this way we will give a necessary and
sufficient condition for the right hand side in the formula to be finite.

Without loss of generality we can assume that r(0) = 1 and since
λ2 < +∞ that r is two times differentiable.

We will begin by showing the result for the level y = 0 that is the
Geman’s original result. Firstly let us write M2(y, t) in another fashion
by using a regression model. In first place we have

M2(y, t)

= 2
∫ t

0
(t− τ)pτ(y, y)E[|X′(0)X′(τ)| |X(0) = X(τ) = y]dτ, (4.2)

where pτ(x1, x2) stands for the density of the vector (X(0), X(τ)). The
following model will be useful

X′(0) = ξ + α1(τ)X(0) + α2(τ)X(τ)

X′(τ) = ξ? + β1(τ)X(0) + β2(τ)X(τ),

where (ξ, ξ?) is a Gaussian vector independent of (X(0), X(τ)), and

Var (ξ) = Var (ξ?) := σ2(τ) = −r”(0)− (r′(τ))2

1− r2(τ)
,

ρ(τ) :=
Cov (ξ, ξ?)

σ2(τ)
=
−r”(τ)(1− r2(τ))− (r′(τ))2r(τ)
−r”(0)(1− r2(τ))− (r′(τ))2 .

Moreover

α1(τ) =
r′(τ)r(τ)
1− r2(τ)

; α2(τ) = −
r′(τ)

1− r2(τ)

β1(τ) = −α2(τ) ; β2(τ) = −α1(τ).

In this form we have

M2(0, t) = 2
∫ t

0
(t− τ)pτ(0, 0)E[|ξ||ξ?|]dτ

=
1
π

∫ t

0
(t− τ)

σ2(τ)

(1− r2(τ))1/2 E[| ξ

σ(τ)
|| ξ?

σ(τ)
|]dτ.
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By using Cauchy-Schwarz inequality we get

M2(0, t) 6
t
π

∫ t

0

σ2(τ)

(1− r2(τ))1/2 dτ,

hence if the interval of the right hand side is finite then M2(0, t) < +∞.
But the integral is convergent if for a δ > 0 we have

∫ δ
0

σ2(τ)
(1−r2(τ))1/2 dτ <

+∞, because the integrant is continuous in [δ, t]. Reciprocally denot-
ing by a2k the coefficients of the function |x| in the Hermite basis of
L2(R, ϕ(x)dx), Mehler’s formula gives (see [10])

+∞ > M2(0, t) = 2
∫ t

0
(t− τ)

σ2(τ)

(1− r2(τ))1/2 (
∞

∑
k=0

a2
2k(2k)!ρ(τ)2k)dτ

> 2a2
0

∫ t

0
(t− τ)

σ2(τ)

(1− r2(τ))1/2 dτ

> 2a2
0(t− δ)

∫ δ

0

σ2(τ)

(1− r2(τ))1/2 dτ.

We end the proof in this case if we can prove that

r”(τ)− r”(0)
τ

∈ L1([0, δ], dτ)⇐⇒
∫ δ

0

σ2(τ)

(1− r2(τ))1/2 dτ < +∞.

But this is the matter of the Lemma 4.1.1 proved below.
Now we will consider the case where y is any real. Let us define

m(τ) =
y

1 + r(τ)
r′(τ)
σ(τ)

, and let introduce the expression

A(m, ρ, τ) = E
[
| ξ

σ(τ)
−m(τ)|| ξ?

σ(τ)
+ m(τ)|

]
.

By using (4.2) and the regression it holds

M2(y, t) = 2
∫ t

0
(t− τ)pτ(y, y)σ2(τ)A(m, ρ, τ)dτ.

Applying the Cauchy-Schwarz inequality we get

A(m, ρ, τ) 6
(

E
[ ξ

σ(τ)
−m(τ)

]2
E
[ ξ?

σ(τ)
−m(τ)

]2
) 1

2

= 1 + m2(τ). (4.3)
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Let us prove now that the function m(τ) is bounded in a neighborhood
of τ = 0. In this aim let us consider the asymptotic behavior of the
term r′(τ)

σ(τ)
. Two cases must be considered according to λ4 is finite or

not. In the former case a fourth order Taylor development of function
r′2(τ)
σ2(τ)

gives easily that r′(τ)
σ(τ)

→ 2λ2√
λ4−λ2

2

. Assume now that λ4 = +∞.

Given that r”(τ)− r”(0) = 2
∫ ∞

0
1−cos(τλ)

τ λ2dµ(λ), we have by Fatou’s
lemma

lim inf
τ→0

r”(τ)− r”(0))
τ2 >

∫ +∞

0
lim inf

τ→0

1− cos(τλ)
(τλ)2

2

λ4dµ(λ)

=
∫ ∞

0
λ4dµ(λ) = +∞.

Moreever
r′2(τ)
σ2(τ)

' λ3
2

λ2(1−r2(τ))−r′2(τ)
τ4

,

and λ2(1− r2(τ))− r′2(τ) = 2 λ2(1− r(τ))− r′2(τ) + O(τ4). Further-
more by using the l’Hospital rule

lim
τ→0

2 λ2(1− r(τ))− r′2(τ)
τ4 = lim

τ→0

(
−r′(τ)

2τ

)(
r”(τ)− r”(0))

τ2

)
= +∞,

since we know that −r′(τ)
2τ → λ2

2 . Thus r′(τ)
σ(τ)
→ 0.

Theses computations lead us to conclude that as τ → 0, m(τ) tends to
λ2y√
λ4−λ2

2

in case where λ4 < +∞ and to zero otherwise. In both cases

we then have shown that the function m(τ) is bounded.
In this form, by using the above inequality (4.3), we readily get

M2(y, t) 6 C t
∫ t

0
pτ(y, y)σ2(τ)dτ,

and by Lemma 4.1.1 this integral is finite under the Geman’s condition.
For proving the other implication assume that M2(y, t) < +∞. Thus

M2(y, t) > 2
∫ δ

0
(t− τ)pτ(y, y)σ2(τ)A(m, ρ, τ)dτ.
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We shall study A(m, ρ, τ).
As the function m(τ) is bounded the following expansion holds

|x−m(τ)| =
∞

∑
k=0

ak(m(τ))Hk(x),

where suppressing the variable τ in m, the coefficients are

a0(m) = m[2Φ(m)− 1] + 2ϕ(m)

a1(m) = 1− 2Φ(m)

a`(m) =
2
`!

H`−2(m)ϕ(m), ` > 2,

where Φ stands for the Gaussian distribution of ϕ.
Using that function ak(m) is even if k is even and odd otherwise, the
Mehler’s formula gives

A(m, ρ, τ) =
∞

∑
k=0

ak(m(τ))ak(−m(τ))k!ρk(τ)

=
∞

∑
k=0

a2
2k(m(τ))(2k)!(ρ(τ))2k −

∞

∑
k=0

a2
2k+1(m(τ))(2k + 1)!(ρ(τ))2k+1.

But by defining the odd projection as Modd(x, m) = 1
2 (|x−m| − |x+m|)

it holds

Modd(x, m) =
∞

∑
k=0

a2k+1(m)H2k+1(x).

Then

|E[Modd(
ξ

σ(τ)
, m(τ))Modd(

ξ?

σ(τ)
, m(τ))]| =

|
∞

∑
k=0

a2
2k+1(m(τ))(2k + 1)!(ρ(τ))2k+1| 6 E[M2

odd(
ξ

σ(τ)
, m(τ))] =

∫
R
(

1
2
(|x−m(τ)| − |x + m(τ)|))2ϕ(x)dx 6 m2(τ).

Thus
A(m, ρ, τ) > a2

0(m(τ))−m2(τ).
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Now it is easy to see that if −m0 6 m 6 m0, then a2
0(m) − m2 >√

2
π (a0(m0)−m0) > 0.

Since function m(τ) is bounded in a neighborhood of zero, this implies
that A(m, ρ, τ) > C for τ small enough. Then

+∞ > M2(y, t)

> C
∫ δ

0
(t− τ)pτ(y, y)σ2(τ)dτ > C

∫ δ

0

σ2(τ)

(1− r2(τ))1/2 dτ,

and we end evoking again Lemma 4.1.1. 2

Lemma 4.1.1 There exists a δ > 0 such that
r”(τ)− r”(0)

τ
∈ L1([0, δ], dτ)⇐⇒

∫ δ

0

σ2(τ)

(1− r2(τ))1/2 dτ < ∞.

Proof of Lemma 4.1.1. Let us consider the integral∫ δ

0

σ2(τ)

(1− r2(τ))1/2 dτ.

For τ small enough we have

σ2(τ)

(1− r2(τ))1/2 ' (
1

λ2
)

3
2
−r”(0)(1− r2(τ))− (r′(τ))2

τ3 ,

thus integrating by part∫ δ

0

−r”(0)(1− r2(τ))− (r′(τ))2

τ3 dτ

=
r”(0)(1− r2(τ)) + (r′(τ))2

2τ2 |δ0

+
∫ δ

0

r′(τ)
τ

( r”(0)r(τ)− r”(τ)
τ

)
dτ

=
r”(0)(1− r2(δ)) + (r′(δ))2

2δ2

+
∫ δ

0

r′(τ)
τ

r”(0)
(

r(τ)− 1
τ

)
dτ

+
∫ δ

0

−r′(τ)
τ

(
r”(τ)− r”(0)

τ

)
dτ,
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since r′(τ)
τ

(
r(τ)−1

τ

)
' λ2

2
τ
2 ∈ L1([0, δ], dτ).

Finally and since −r′(τ)
τ → λ2, the above integral is finite if and only if

∫ δ

0

r”(τ)− r”(0)
τ

dτ < +∞.

2

4.1.2 Numbers of roots of random trigonometric
polynomials

In the sequel we will study the asymptotic behavior of the random
Gaussian trigonometric polynomials. For any N ∈ N? and for two
independent sequences of i.i.d standard Gaussian random variables
{an}∞

n=1 and {bn}∞
n=1 these functions are defined as

XN(t) =
1√
N

N

∑
n=1

(an sin nt + bn cos nt).

The number of zeros of such a process have been extensively study
in the recent times (see [17] for example). Process XN is a mean zero
infinitely differentiable stationary Gaussian process. We can define as
before NXN

[0,2π)
(y) as the number of crossings of level y of these trigono-

metric polynomials on the time interval [0, 2π). The smoothness of
these polynomials implies that the Rice’s formula holds. The ingre-
dients needed for its application are

E[X2
N(0)] = 1 E[(X′N(0))

2] =
1
N

N

∑
n=1

n2 =
(N + 1)(2N + 1)

6
.

Hence

E[NXN
[0,2π)

(y)] = 2π
√

E[(X′N(0))2]

√
2
π

e−
y2
2

√
2π

=
2√
3

√
(N + 1)(2N + 1)

2
e−

y2
2 .
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Yielding

lim
N→∞

E[NXN
[0,2π)

(y)]

N
=

2√
3

e−
y2
2 .

For computing the variance and its asymptotic value we need to
consider the rescaled process: YN(t) = XN(

t
N ). Given that the covari-

ance function XN is

rXN (t) =
1
N

N

∑
n=1

cos nt =
1
N

cos(
(N + 1)t

2
)

sin(Nt
2 )

sin t
2

,

we get

rYN (t)→ rX(t) :=
sin t

t
.

Similar results can be obtained for the first and second derivative
of rYN . The above result leads us to consider the Sine cardinal process
which has as covariance the function rX. In [4] was proved that by con-
structing the processes YN and X in the same probability space and if
we define

BN

= E{
[
([NXN

[0,2π)
(0)−E[NXN

[0,2π)
(0)])− ([NX

[0,2πN)(0)−E[NX
[0,2πN)(0)])

]2},

it holds that BN
N → 0. This result entails that

lim
N→+∞

1
N

Var(NXN
[0,2π)

(0)) = lim
N→+∞

1
N

Var(NX
[0,2πN)(0)),

and the latter quantity is

=
2√
3
+ 2

∫ ∞

0
[
E[|X′(0)X′(τ)| |X(0) = X(τ) = 0]√

1− ( sin τ
τ )2

− 1
3π

]dτ.

4.2 Dimensions d>1

4.2.1 Sea modeling applications

In this subsection our results will be used to give some theoretical justi-
fications to the work of Podgórski & Rychlik [26]. This article provides
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several applications to random sea waves. Like those authors let us
consider two random fields

X : Rd → R( with d > j = 1) and V : Rd → Rd+1.

This last field is defined as V(x) = (X(x),∇X(x)). It is the argument of
the function G in (3.18) but suppressing the explicitly dependence on x
and also on the field W. That is Y(x) = G(X(x),∇X(x)).

Moreover, for sea applications either the field X is Gaussian and
models the sea surface or it is the envelope field (defined below).

We will discuss first the case where X belongs to C2(D, R), with
mean zero and is a stationary Gaussian field with σ2 = Var(X(0)) =
E[X2(0)] > 0. Then Remark 3.3.1 following Theorem 3.3.1 applies and
we have for all y ∈ R

E

[∫
CX(y)

Y(x)dσd−1(x)
]

=
∫

D
pX(x)(y)E [Y(x) ‖∇X(x)‖d |X(x) = y] dx

= σd(D)E [Y(0) ‖∇X(0)‖d |X(0) = y]
e−

1
2σ2 y2

(2π)
1
2 σ

.

The following notion is also introduced in [26]. One defines the distri-
bution of V over the level set by taking first G(z) = 1A(z) for z ∈ Rd+1

and A a Borel set of Rd+1. We have Y(x) = 1A(V(x)) and setting

P{V(x) ∈ A |X(x) = y} :=
E
[∫
CX(y)

1A(V(x))dσd−1(x)
]

E
[∫
CX(y)

dσd−1(x)
]

=
E [1A(V(0)) ‖∇X(0)‖d |X(0) = y]

E [‖∇X(0)‖d]
.

=
E [1A(y,∇X(0)) ‖∇X(0)‖d]

E [‖∇X(0)‖d]
(4.4)

For applying the formula to sea waves modeling we set d = 3. Let
us use the notation of sea modeling taken from [26]. We have a mean
zero and stationary Gaussian field X(t, p) := ζ(t, x, y), p = (x, y), that
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models the sea surface. For introducing it let M(λ1, λ2, ω) be a ran-
dom spectral Gaussian measure, restricted to the airy manifold Λ =

{
∥∥∥−→k ∥∥∥2

2
= ω4

g2 } where
−→
k = (λ1, λ2). One defines

ζ(t, x, y) =
∫

Λ
ei(λ1x+λ2y+ωt)dM(λ1, λ2, ω).

In this manner restricting the stochastic integral to the set

Λ+ = {(λ1, λ2, ω) : ω > 0 ,
∥∥∥−→k ∥∥∥

2
=

ω2

g
},

by using polar coordinates we can write

ζ(t, x, y)

= 2
∫ ∞

0

∫ π

−π
cos(

∥∥∥−→k ∥∥∥
2

cos(θ) x +
∥∥∥−→k ∥∥∥

2
sin(θ) y + ωt)dc(ω, θ),

where c is an aleatory measure with independent Gaussian increments.
The covariance function results

Γ(t, p) := E[ζ(0, 0, 0)ζ(t, x, y)]

= 2
∫ ∞

0

∫ π

−π
cos(

∥∥∥−→k ∥∥∥
2

cos(θ) x +
∥∥∥−→k ∥∥∥

2
sin(θ) y + ωt)S(ω, θ)dωdθ,

here function 2S(·, ·) is the physical spectral density.
For establishing the next results it will be necessary to give a dis-

gression about ergodic theory. The following text has been taken from
[5]. For a given subset D ⊂ R2 and for each t > 0, let us define
At = σ{X(τ, p) : τ > t , p ∈ D} and consider the σ-algebra of t-
invariant sets A =

⋂
tAt. Moreover, we assume that for all p ∈ D it

holds Γ(t, p) →t→∞ 0. It is well known that under this condition, the
σ-algebra A is trivial, that is, it only contains events having probability
zero or one (see e.g. [12] Chapter 7).

Now for each t > 0 and y ∈ R we define the level set

Cζ
D(t, y) = {p ∈ D : ζ(t, p) = y}
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and the following functional

Z(t) =
∫
Cζ

D(t,y)
Y(t, p)dσ1(p).

Furthermore, in the sequel we assume that

Y(t, p) = G(ζ(t, p),∇pζ(t, p)),

where ∇p is the gradient operator with respect to the space variables
x, y. The process {Z(t) : t ∈ R+} is strictly stationary and has a fi-
nite mean and is Riemann-integrable. The ergodic theorem gives that
almost surely as T tends to infinity

1
T

∫ T

0
Z(t)dt→ EB [Z(0)],

where B is the σ-algebra of t-invariant events associated to the process
Z(t). Since for each t, Z(t) is At- measurable, it follows that B ⊂ A so
that EB [Z(0)] = E[Z(0)]. Thus

EB [Z(0)] = E[
∫
Cζ

D(0,y) Y(0, p)dσ1(p)]

= σ2(D)E
[
Y(0, 0)

∥∥∇pζ(0, 0)
∥∥

2 |ζ(0, 0) = y
] e−

y2
2λ000

(2πλ000)
1
2

,

where λ000 = E[ζ2(0, 0)]. The above formula can be used to get the
distribution of velocities as defined in (4.4) (cf. [5]).

Next we will consider the case where the observed field, denoted as
E(t, p), is the envelope field of X(t, p). First let define the Hilbert trans-
form of ζ as the Gaussian field

ζ̂(t, x, y)

= 2
∫ ∞

0

∫ π

−π
sin(

∥∥∥−→k ∥∥∥
2

cos(θ) x +
∥∥∥−→k ∥∥∥

2
sin(θ) y + ωt)dc(ω, θ).

The real envelope E(t, x, y) is defined as

E(t, p) =
√

ζ2(t, x, y) + ζ̂2(t, x, y). (4.5)
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We can write the process E in the following form. Set

Z(t, p) = (ζ(t, x, y), ζ̂(t, x, y)).

Then if F(z) = ‖z‖2 , it holds E(t, p) = F(Z(t, p)). The function F sat-
isfies condition B3 except for z = 0, but this does not matter because
P{Z(0, 0) = 0} = 0. Furthermore a straightforward calculation shows
that the process X verifies assumption (S) in Proposition 3.3.2. We can
then apply Remark 3.3.1 following Theorem 3.3.1 with condition B3
and hypothesis (S) replacing condition C3.

Moreover, the density of E(0, 0), in the point y > 0, is the Rayleigh

density 1
σ2

ζ

ye
− y2

2σ2
ζ , that exists and is continuous if σ2

ζ = Var(ζ(0, 0)) > 0.

For each t > 0 and y > 0 we define the level set

CE
D(t, y) = {p ∈ D : E(t, p) = y} ,

and the functional

ZY
E (t) =

∫
CE

D(t,y)
Y(t, p)dσ1(p).

Invoking again the ergodic theorem we get almost surely as T tends to
infinity∫ T

0 ZY
E (t)dt∫ T

0 Z1
E(t)dt

→
E[Y(0, 0)

∥∥∇pE(0, 0)
∥∥

2 |E(0, 0) = y]
E[
∥∥∇pE(0, 0)

∥∥
2 |E(0, 0) = y]

, (4.6)

but

E[
∥∥∇pE(0, 0)

∥∥
2 |E(0, 0)y]

=
1
y

E[
∥∥ζ(0, 0)∇pζ(0, 0) + ζ̂(0, 0)∇p ζ̂(0, 0)

∥∥
2 |E(0, 0) = y],

thus conditioning and defining

f±(y, z1) = E[

∥∥∥∥z1∇pζ(0, 0)±
√

y2 − z2
1∇p ζ̂(0, 0)

∥∥∥∥
2
]
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we get

E[
∥∥∇pE(0, 0)

∥∥
2 |E(0, 0) = y]

=
1
y

∫ y

−y
( f+(y, z1) + f−(y, z1))pζ(0,0)(z1)dz1,

and given that ζ̂ has the same distribution of −ζ̂ we finally have

E[
∥∥∇pE(0, 0)

∥∥
2 |E(0, 0) = y] =

2
y

∫ y

−y
f+(y, z1)pζ(0,0)(z1)dz1.

Let us consider the numerator in the right hand side of the expression
(4.6),

E[Y(0, 0)
∥∥∇pE(0, 0)

∥∥
2 |E(0, 0) = y]

=
1
y

E[G(y,
1
y
(ζ(0, 0)∇pζ(0, 0) + ζ̂(0, 0)∇p ζ̂(0, 0)))

×||ζ(0, 0)∇pζ(0, 0) + ζ̂(0, 0)∇p ζ̂(0, 0)||2 |E(0, 0) = y].

The same argument as above yields

E[Y(0, 0)
∥∥∇pE(0, 0)

∥∥
2 |E(0, 0) = y]

=
2
y

∫ y

−y
F+(y, z1)pζ(0,0)(z1)dz1,

where

F+(y, z1) = E[G(y,
1
y
(z1∇pζ(0, 0) +

√
y2 − z2

1∇p ζ̂(0, 0)))×∥∥∥∥z1∇pζ(0, 0) +
√

y2 − z2
1∇p ζ̂(0, 0)))

∥∥∥∥
2
].

Hence the term in the right hand side of (4.6) becomes equal to∫ y
−y F+(y, z1)pζ(0,0)(z1)dz1∫ y
−y f+(y, z1)pζ(0,0)(z1)dz1

.

In certain important cases this terms can be computed explicitly using
only the spectral moments of the processes ζ, ζ̂, ∇pζ, ∇p ζ̂.
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4.2.2 Berry and Dennis dislocations

In this part of the work we will give an outline about the applications
of the Rice’s formulae to some notions in physics that are known as:
dislocations of random waves. The motivation for such a study is the
seminal paper of Berry & Dennis [9], where based on physical grounds
several novelty notions were introduced.

We will consider two independent mean zero isotropic Gaussian
random fields belonging to C2(D, R), ξ, η : Ω × R2 → R, defined
trough their spectral representation

ξ(x)

=
∫

R2 cos(< x, k >)
(Π(k)

k

) 1
2 dW1(k)−

∫
R2 sin(< x, k >)

(Π(k)
k

) 1
2 dW2(k)

η(x)

=
∫

R2 cos(< x, k >)
(Π(k)

k

) 1
2 dW2(k) +

∫
R2 sin(< x, k >)

(Π(k)
k

) 1
2 dW1(k),

where < ·, · > stands for the scalar product in R2 and k = (k1, k2),
k = ‖k‖2, Π(k) is the isotropic spectral density and W = W1 + iW2 is
a standard complex orthogonal Gaussian measure on R2. Without loss
of generality, we may assume that E[ξ(0)]2 = E[η(0)]2 = 1.
Defining the complex wave ψ(x) = ξ(x) + iη(x) the dislocations are
the ensemble of zeros of ψ. That is

Nψ
D(0) = #{x : ψ(x) = 0} = #{x : ξ(x) = η(x) = 0}.

In [9] (see formulas (2.7) and (4.6)) it is defined the expected number by
unit of area of dislocation points as

d2 =
E[#{x ∈ D : ψ(x) = 0}]

σ2(D)

=
λ2

(2π)2 E[| ξx(0)√
λ2

ηy(0)√
λ2
−

ξy(0)√
λ2

ηx(0)√
λ2
|] = λ2

2π
,

where ξx, ξy, ηx and ηy stand for the derivatives of first order of ξ and
η and λ2 = E[ξx(0)]2 = E[ξy(0)]2 = E[ηx(0)]2 = E[ηy(0)]2 .
And here we will study also the length of the set of zeros of each coor-
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dinate process (length of nodal curves)

σ1(Cξ(0))
d
= σ1(Cη(0)).

Thus we have the definition of length of nodal curves for unity of area

L =
E[σ1(Cξ(0))]

σ2(D)
=

E[σ1(Cη(0))]
σ2(D)

.

In the cited work of Berry & Dennis other notions have been defined
related to the following two integrals∫
{x∈D: ψ(x)=0}

Y(x)dσ0(x) = ∑
x∈{x∈D: ψ(x)=0}

Y(x) and
∫

Cξ (0)
Y(x)dσ1(x),

for the first integral we must recall that σ0 is the counting measure.
For instance in [9] it is introduced the dislocation curvature. In the
sequel we will consider instead the curvature of one of the nodal curve,
defined using for example ξ. The curvature of the nodal curve ξ(x) =
ξ(x, y) = 0, is the quantity

κ(x) =
|(ξxx(x)ξ2

x(x)− 2ξxy(x)ξx(x)ξy(x) + ξyy(x)ξ2
y(x))|

‖∇ξ‖3
2

.

For the interval [0, κ1] by defining Y(x) = 1[0,κ1](κ(x)) we have a partic-
ular case of a function Y(x) = G(∇ξ(x),∇2ξ(x)), where the operator
∇2 denotes the second order differential. For these functions similarly
that in Theorem 3.3.1, it can be proven a Rice’s formula obtaining

E[
∫

Cξ (0)
1[0,κ1](κ(x))dσ1(x)]

= σ2(D)E[1[0,κ1](κ(0)) ‖∇ξ(0)‖2 | ξ(0) = 0]pξ(0)(0)

=
σ2(D)√

2π
E[1[0,κ1](κ(0)) ‖∇ξ(0)‖2 | ξ(0) = 0].

The independence between ∇ξ(0) and (ξ(0),∇2ξ(0)) allows writing a
regression model that simplifies the last expression. Moreover,
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E[σ1(Cξ(0))] =
√

λ2σ2(D)√
2π

E[
√

ξ2
x(0)
λ2

+
ξ2

y(0)
λ2

]

=

√
λ2σ2(D)√

2π

1
2π

∫ ∞

0

∫ 2π

0
ρ2e−

1
2 ρ2

dθdρ =

√
λ2σ2(D)

2
,

(as a bonus we get L =
√

λ2
2 ).

Furthermore, in order to obtain an interpretation for the distribution
of κ over the level set of ξ we take the ratio of the two last expectations
obtaining

E[
∫

Cξ (0)
1[0,κ1](κ(x))dσ1(x)]

E[σ1(Cξ(0))]

=
1√
λ2

√
2
π

E[1[0,κ1](κ(0)) ‖∇ξ(0)‖2 | ξ(0) = 0].

Using the independence it can be written as

=

√
2
π

∫ ∞

0

∫ 2π

0
E[1[0,ρ

√
λ2κ1]

(|ξxx(0) cos2 θ − 2ξxy(0) cos θ sin θ

+ξyy(0) sin2 θ|) |ξ(0) = 0]× ρ2 e−
ρ2
2

2π
dρdθ. (4.7)

A regression model yields that the following relation holds true

[ξxx(0) cos2 θ − 2ξxy(0) cos θ sin θ + ξyy(0) sin2 θ| ξ(0) = 0] d
=

N(0, σ2(θ, λ4, λ22, λ2)),

where λ4 = E[ξ2
xx(0)] = E[ξ2

yy(0)],

λ22 = E[ξ2
xy(0)] and − λ2 = E[ξ(0)ξxx(0)] = E[ξ(0)ξyy(0)].

Then the expression (4.7) is equal to

= 1
2π2

∫ ∞
0

∫ 2π
0

∫ κ1
√

λ2ρ/σ(θ,λ4,λ22,λ2)

−κ1
√

λ2ρ/σ(θ,λ4,λ22,λ2)
ρ2e−

ρ2
2 e−

u2
2 dρdθdu

=
1

π2

∫ ∞

0

∫ 2π

0

∫ κ1
√

λ2ρ/σ(θ,λ4,λ22,λ2)

0
ρ2e−

ρ2
2 e−

u2
2 dρdθdu := K(κ1).
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The density of this distribution is

d
dκ1
K(κ1)

=

√
λ2

π2

∫ ∞

0

∫ 2π

0
ρ3/σ(θ, λ4, λ22, λ2)e−

ρ2
2 e−

(κ1
√

λ2ρ/σ(θ,λ4,λ22,λ2))
2

2 dρdθ

=

√
λ2

π2

∫ ∞

0

∫ 2π

0

σ3(θ, λ4, λ22, λ2)

(σ2(θ, λ4, λ22, λ2) + κ2
1λ2)2

v3e−
1
2 v2

dvdθ

=
2
√

λ2

π2

∫ 2π

0

σ3(θ, λ4, λ22, λ2)

(σ2(θ, λ4, λ22, λ2) + κ2
1λ2)2

dθ.

The last part of this subsection is aimed to compute some second
order Rice’s formulas. Let first introduce the dislocation correlation at
distance R defined as g(R) in [9]. For defining this quantity we first
consider the second factorial moment of the random variable Nψ

D(0)
that is

E[#{x ∈ D : ψ(x) = 0}(#{x ∈ D : ψ(x) = 0} − 1)]

=
∫ ∫

D×D
A(x1, x2)dx1dx2,

where by using the Rice’s formula it holds

A(x1, x2) = E[|det∇ψ(x1)||det∇ψ(x2)| |ψ(x1) = ψ(x2) = 0].

By using the invariance with respect to rotations and translations it
holds

A(x1, x2) = A((0, 0), (‖x1 − x2‖2 , 0)) := A((0, 0), (R, 0)) := g(R).

In the last equality we have set ‖x1 − x2‖2 = R.
Moreover, by dropping the absolute value of the determinant of the

Jacobian of ψ we can introduce

B(x1, x2) = E[det∇ψ(x1)det∇ψ(x2) |ψ(x1) = ψ(x2) = 0].

Thus the charge correlation function (cf. [9]) is defined as

gQ(R) := B((0, 0), (R, 0)).
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Both in [9] and [5] a closed elementary expression for g(R) was
obtained by using an expression for the absolute value function as a
Fourier integral. Nevertheless, the computation is not a trivial one. The
interested reader can consult these works. On the other hand, the func-
tion gQ(R) can be written as the conditional expectation of a sum of
products of four standard Gaussian random variables. As instance let
us consider the first term. That is

E[ξx(0, 0)ηy(0, 0)ξx(R, 0)ηy(R, 0) |ψ(0, 0) = ψ(R, 0)) = 0],

then we make the regression of the random variables representing the
derivatives with respect to the vector (ψ(0, 0), ψ(R, 0)). An elementary
Gaussian computation gives the result.

4.2.3 Gravitational stochastic microlensing

In this part we only sketch an application to gravitational cosmology.
The main reason to present it is that the used Rice’s formula is shown
for a non-Gaussian process. However, this subsection is built more as
an ilustration than a true formal mathematical development.

We must point out that all the matter corresponding to this sub-
section comes from the article of Peters et al. [25]. Moreover, for the
background this work needed to be complemented with the book [24].

Let {ξi} be g independent and identically distributed random vari-
ables uniformly distributed over the disc of radius R in R2. They will
be considered as the positions of the stars. The following random field
can be defined

ψg(x) =
κc

2
‖x‖2

2 −
γ

2
(x2

1 − x2
2) + m

g

∑
j=1

ln
∥∥x− ξ j

∥∥2
2 ,

where x = (x1, x2) and κc, γ are physical constants and m represents the
mass of the stars. Outside of the random points {ξi}

g
=1 the potential ψg

is a C∞ function. The following random function is known as the delay
function for the gravitational lens systems

Ty(x) =
‖x− y‖2

2
2

− ψg(x).
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The lensing map is defined as

η(x) = ∇Ty(x) + y = x−∇ψg(x).

Given the definitions we readily get

η(x) = ((1− κc + γ)x1, (1− κc − γ)x2)− 2m
g

∑
j=1

x− ξ j∥∥x− ξ j
∥∥2

2

.

A lensed image is a solution x∗ of the equation ∇Ty(x) = 0. Thas is

η(x∗) = y.

These images correspond to the stationary points of the function Ty
and are classified as local maximum, local minimum and saddle point
whenever the image is not degenerated. In other case we say that they
are degenerated. We are interested in computing the number of non
degenerated images having a positive parity N+ and which are defined
as N+ = Nmax + Nmin. It is plain to show that in these images the
Jacobian of η, that is det∇η(x), is always positive.

It results of interest in gravitational studies the computation of the
expected number of N+ generated for a point source y. The number of
such images on a set D ⊂ R2 is

N+(y) = #{x ∈ D : η(x) = y, det∇η(x) > 0}.

Consider f : R2 → R a continuous function with bounded support,
then by using the area formula we obtain∫

R2
f (y)E[N+(y)]dy =

∫
D

E[ f (η(x))det∇η(x)1(0,+∞)(det∇η(x))]dx

=
∫

R2
f (y)

∫
D

E[det∇η(x)1(0,+∞)(det∇η(x)) |η(x) = y]pη(x)(y)dxdy.

Although the function η has singularities in the positions of the stars ξi
these are infinite singularities. That is limx→ξi ‖η(x)‖2 = +∞. Hence if
we observe only those y that are in the bounded support of f , we have
that the domain of η for each ω is restricted to an open set that does not
contain the points ξi. This implies that the function η restricted to this
set is a C∞ function. Then the hypothesis for applying the area formula
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holds.

Moreover, we get for almost surely y

E[N+(y)] =
∫

D
E[det∇η(x)1(0,+∞)(det∇η(x)) |η(x) = y]pη(x)(y)dx.

By using the definitions plus some non trivial work, it can be shown
that the above formula holds for all y. Furthermore, in [25] the formula
is used to get its asymptotic when the number of stars g tends to infi-
nite. An interesting but still open problem is to get the same asymptotic
for the variance of N+(y).

4.2.4 Kostlan-Shub-Smale systems

Consider a rectangular system P = 0 of j polynomial equations in d > j
variables. We assume that the equations have the same degree n > 1.
Let P = (P1, . . . , Pj), we can write each polynomial P` in the form

P`(t) = ∑
|z|≤n

a(`)z tz,

where

1. z = (z1, . . . , zd) ∈Nd and |z| = ∑d
k=1 zk;

2. a(`)z = a(`)z1...zd ∈ R, ` = 1, . . . , j, |z| ≤ n;

3. t = (t1, . . . , td) and tz = ∏d
k=1 tzk

k .

We say that P has the Kostlan-Shub-Smale (KSS for short) distri-
bution if the coefficients a(`)z are independent centered normally dis-
tributed random variables with variances

Var
(

a(`)z

)
=

(
n
z

)
=

n!
z1! . . . zd!(n− |z|)! .

We are interested in the set of zeros of P. We denote by NP
n its car-

dinal if d = j or if d > j we denote this set as CP(0) and its volume as
L(CP(0)). Shub and Smale [22] proved that if d = j then E(NP

n ) = nd/2.
In chapter 12 of Azaïs & Wschebor book [6] this result was obtained
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by using the Kac-Rice formula. Letendre in [21] has tackled the case
d > j obtaining the following result firstly showed by Kostlan in [19].
It holds

E[L(CP(0))] = n
j
2

π
(d−j+1)

2

Γ[ (d−j+1)
2 ]

.

Below following Letendre’s method and some simplifications we will
obtain this result by using the Kac-Rice formula.

It is customary and convenient to homogenize the polynomials. That
is, to add an auxiliary variable t0 in order that all the monomials have
the same degree n. More precisely, we multiply the monomial in P`
corresponding to the index z by tn−|z|

0 . Let

X = (X1, . . . , Xj),

denote the resulting vector of j homogeneous polynomials in d + 1 real
variables with common degree n > 1. We have,

X`(t) = ∑
|z|=n

a(`)z tz, ` = 1, . . . , j,

where this time z = (z0, . . . , zd) ∈Nd+1;

|z| =
d

∑
k=0

zk; a(`)j = a(`)z0 ...zd ∈ R;

t = (t0, . . . , td) ∈ Rd+1 and tz = ∏d
k=0 tzk

k .

Each X` is homogeneous, and the zero set of X is the intersection
of the zero set of each X`. Then the set CX(0) is a subset of the real
projective space RPd−j.

From now on we work with the homogenized version X. Standard
multinomial formula shows that for all s, t ∈ Rd+1 we have

rd(s, t) := Γn(〈s, t〉) := E (X`(s)X`(t)) = 〈s, t〉n ,

where 〈·, ·〉 is the usual inner product in Rd+1. As a consequence, we
see that the distribution of the system X is invariant under the action of
the orthogonal group in Rd+1. We see also that the distribution depends
of course of n and this will be omitted for X for the ease of notation.
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In the sequel we need to consider the derivative of X`, ` = 1, . . . , j.
Since the parameter space is the sphere Sd, the derivative is taken in the
sense of the sphere, that is, the spherical derivative X′`(t) of X`(t) is the
orthogonal projection of the free gradient on the tangent space t⊥ of Sd

at t. The k-th component of X′`(t) at a given basis of the tangent space
is denoted by X′`k(t).

We are going to use the Rice formula with a slight modification to
make it valid on Sd. As the process X satisfies the hypotheses of Remark
3.3.1 following Theorem 3.3.1 we get

E[L(CX(0))]

=
∫

Sd
E[(det(∇X(t))(∇X(t))T)

1
2 | |X(t) = 0]pX(t)(0)γd(dt),

where γd stands for the d-dimensional geometric measure on Sd. Since
E[X(t)2] = 1, X(t) and ∇X(t) are independent, allowing to erase the
conditioning into the expectation. Furthermore as pX(t)(0) = 1

(2π)
j
2

, if

∇X(e0) stands for the matrix with generic element X′`k(0), we finally
get

E[L(CX(0))] =
σd(S

d)

(2π)
j
2

E[(det(∇X(e0))(∇X(e0))
T)

1
2 ]

= nj/2 σd(S
d)

(2π)
j
2

E[(det(∇Z(e0))(∇Z(e0))
T)

1
2 ],

where ∇Z(e0) is N(0, Ij). But a Gaussian computation (cf. [21] ) gives

E[(det(∇Z(e0))(∇Z(e0))
T)

1
2 ] = (2π)

j
2

σd−j(S
d−j)

σd(Sd)
.

Yielding

E[L(CX(0))] = nj/2σd−j(S
d−j) = nj/2 π

d−j+1
2

Γ[ d−j+1
2 ]

.

The variance of this random variable has been also computed by
Letendre and it will be interesting to prove a CLT.
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