S-Box Reverse-Engineering: Boolean Functions, American/Russian Standards, and Butterflies

Léo Perrin

To cite this version:

Léo Perrin. S-Box Reverse-Engineering: Boolean Functions, American/Russian Standards, and Butterflies. CECC 2018 - Central European Conference on Cryptology, Jun 2018, Smolenice, Slovakia. pp.1-99. hal-01953348

HAL Id: hal-01953348
https://hal.inria.fr/hal-01953348
Submitted on 12 Dec 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

S-Box Reverse-Engineering

Boolean Functions, American/Russian Standards, and Butterflies

Léo Perrin
Based on joint works with Biryukov, Canteaut, Duval and Udovenko

June 6, 2018
CECC'18

Outline

1 Building Blocks for Symmetric Cryptography

2 Statistics and Skipjack
3 TU-Decomposition and Kuznyechik

4 The Butterfly Permutations and Functions

5 Conclusion

Outline

1 Building Blocks for Symmetric Cryptography
2. Statistics and Skipjack

3 TU-Decomposition and Kuznyechik

4 The Butterfly Permutations and Functions

5 Conclusion

Symmetric Cryptography

There are many symmetric algorithms! Hash functions, MACs...

Symmetric Cryptography

There are many symmetric algorithms! Hash functions, MACs...

Definition (Block Cipher)

- Input: n-bit block x
- Parameter: k-bit key κ
- Output: n-bit block $E_{\kappa}(x)$
- Symmetry: E and E^{-1} use the same κ

Symmetric Cryptography

There are many symmetric algorithms! Hash functions, MACs...

Definition (Block Cipher)

- Input: n-bit block x
- Parameter: k-bit key κ
- Output: n-bit block $E_{\kappa}(x)$
- Symmetry: E and E^{-1} use the same κ

Properties needed:
Diffusion
Confusion
No cryptanalysis!

No Cryptanalysis?

Let us look at a typical cryptanalysis technique: the differential attack.

Differential Attacks

Differential Attack
If there are many x such that $E_{\kappa}(x) \oplus E_{\kappa}(x \oplus a)=b$, then the cipher is not secure.

Basic Block Cipher Structure

How do we build block ciphers that prevent such attacks (as well as others)?

Basic Block Cipher Structure

How do we build block ciphers that prevent such attacks (as well as others)?

Basic Block Cipher Structure

How do we build block ciphers that prevent such attacks (as well as others)?

Substitution-Permutation Network
Such a block cipher iterates the round function above several times. S is the Substitution Box (S-Box).

The S-Box (1/2)

$\pi^{\prime}=(252,238,221,17,207,110,49,22,251,196,250,218,35,197,4,77,233$,
$119,240,219,147,46,153,186,23,54,241.187,20,205,95,193,249,24,101$,
$90,226,92,239,33,129,28,60,66,139,1,142,79,5,132,2,174,227,106,143$,
$160,6,11,237,152,127,212,211,31,235,52,44,81,234,200,72,171,242,42$,
$104,162,253,58,206,204,181,112,14,86,8,12,118,18,191,114,19,71,156$,
$183,93,135,21,161,150,41,16,123,154,199,243,145,120,111,157,158,178$,
$177,50,117,25,61,255,53,138,126,109,84,198,128,195,189,13,87,223$,
$245,36,169,62,168,67,201,215,121,214,246,124,34,185,3,224,15,236$,
$222,122,148,176,188,220,232,40,80,78,51,10,74,167,151,96,115,30,0$,
$98,68,26,184,56,130,100,159,38,65,173,69,70,146,39,94,85,47,140,163$,
$165,125,105,213,149,59,7,88,179,64,134,172,29,247,48,55,107,228,136$,
$217,231,137,225,27,131,73,76,63,248,254,141,83,170,144,202,216,133$,
$97,32,113,103,164,45,43,9,91,203,155,37,208,190,229,108,82,89,166$,
$116,210,230,244,180,192,209,102,175,194,57,75,99,182)$.

The S-Box π of the latest Russian standards, Kuznyechik (BC) and Streebog (HF).

The S-Box (2/2)

Importance of the S-Box

If S is such that

$$
S(x) \oplus S(x \oplus a)=b
$$

does not have many solutions x for all (a, b) then the cipher may be proved secure against differential attacks.

The S-Box (2/2)

Importance of the S-Box

If S is such that

$$
S(x) \oplus S(x \oplus a)=b
$$

does not have many solutions x for all (a, b) then the cipher may be proved secure against differential attacks.

In academic papers presenting new block ciphers, the choice of S is carefully explained.

S-Box Design

- AES S-Box
- Inverse (other)
- Exponential
- Math (other)
\square SPN
- Misty

Feistel
■ Lai-Massey

- Pseudo-random
- Hill climbing

■ Unknown

S-Box Design

- AES S-Box
\square Inverse (other)
- Exponential
- Math (other)
\square SPN
Misty
Feistel
■ Lai-Massey
- Pseudo-random
- Hill climbing

■ Unknown

S-Box Design

- AES S-Box
\square Inverse (other)
- Exponential
- Math (other)
\square SPN
- Misty
- Feistel

■ Lai-Massey
\square Pseudo-random

- Hill climbing

■ Unknown

S-Box Reverse-Engineering

- AES S-Box

■ Inverse (other)

- Exponential
- Math (other)
\square SPN
Misty
- Feistel

■ Lai-Massey

- Pseudo-random
- Hill climbing

■ Unknown

S-Box Reverse-Engineering

- AES S-Box

■ Inverse (other)

- Exponential
- Math (other)
\square SPN
Misty
- Feistel

■ Lai-Massey

- Pseudo-random
- Hill climbing

■ Unknown

Motivation (1/3)

A malicious designer can easily hide a structure in an S-Box.

Motivation (1/3)

A malicious designer can easily hide a structure in an S-Box.

To keep an advantage in implementation (WB crypto)...

Motivation (1/3)

A malicious designer can easily hide a structure in an S-Box.

To keep an advantage in implementation (WB crypto)...
... or an advantage in cryptanalysis (backdoor).

Motivation (2/3)

Definition (Kleptography)

The study of trapdoored cryptography is called kleptography (term introduced by Jung and Young).

S-Box based backdoors in the literature

■ Rijmen, V., \& Preneel, B. (1997). A family of trapdoor ciphers. FSE'97.
■ Patterson, K. (1999). Imprimitive Permutation Groups and Trapdoors in Iterated Block Ciphers. FSE'99.

- Blondeau, C., Civino, R., \& Sala, M. (2017). Differential Attacks: Using Alternative Operations. eprint report 2017/610.

■ Bannier, A., \& Filiol, E. (2017). Partition-based trapdoor ciphers. InTech'17.

Motivation (3/3)

Even without malicious intent, an unexpected structure can be a problem.

\Longrightarrow We need tools to reverse-engineer S-Boxes!

Outline

1 Building Blocks for Symmetric Cryptography

2 Statistics and Skipjack

3 TU-Decomposition and Kuznyechik

4 The Butterfly Permutations and Functions

5 Conclusion

Summary

We can recover parts of the design process of an S-Box using some statistics.
1 The two tables (basics of Boolean functions for cryptography)
2. A satistical tool based on the two tables

3 Application to NSA's Skipjack

The Two Tables

Let $S: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ be an S-Box.

The Two Tables

Let $S: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ be an S-Box.

Definition (DDT)

The Difference Distribution Table of S is a matrix of size $2^{n} \times 2^{n}$ such that

$$
\operatorname{DDT}[a, b]=\#\left\{x \in \mathbb{F}_{2}^{n} \mid S(x \oplus a) \oplus S(x)=b\right\} .
$$

The Two Tables

Let $S: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ be an S-Box.

Definition (DDT)

The Difference Distribution Table of S is a matrix of size $2^{n} \times 2^{n}$ such that

$$
\operatorname{DDT}[a, b]=\#\left\{x \in \mathbb{F}_{2}^{n} \mid S(x \oplus a) \oplus S(x)=b\right\} .
$$

Definition (LAT)

The Linear Approximations Table of S is a matrix of size $2^{n} \times 2^{n}$ such that

$$
\operatorname{LAT}[a, b]=\#\left\{x \in \mathbb{F}_{2}^{n} \mid x \cdot a=S(x) \cdot b\right\}-2^{n-1}
$$

Example

$$
S=[4,2,1,6,0,5,7,3]
$$

The DDT of S.

$$
\left[\begin{array}{llllllll}
8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 2 & 2 & 2 \\
0 & 0 & 0 & 0 & 2 & 2 & 2 & 2 \\
0 & 0 & 4 & 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 2 & 2 & 2 \\
0 & 4 & 4 & 0 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 2 & 2 & 2
\end{array}\right]
$$

$$
\left[\begin{array}{cccccccc}
4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 2 & 0 & 0 & 2 & -2 \\
0 & 2 & 2 & 0 & 0 & 2 & -2 & 0 \\
0 & 2 & 0 & 2 & 0 & -2 & 0 & 2 \\
0 & 2 & 0 & -2 & 0 & -2 & 0 & -2 \\
0 & -2 & 2 & 0 & 0 & -2 & -2 & 0 \\
0 & 0 & -2 & 2 & 0 & 0 & -2 & -2 \\
0 & 0 & 0 & 0 & -4 & 0 & 0 & 0
\end{array}\right]
$$

Coefficient Distribution in the DDT

If an n-bit S -Box is bijective, then its DDT coefficients behave like independent and identically distributed random variables following a Poisson distribution:

$$
\operatorname{Pr}[\operatorname{DDT}[a, b]=2 z]=\frac{e^{-1 / 2}}{2^{z} z} .
$$

Coefficient Distribution in the DDT

If an n-bit S-Box is bijective, then its DDT coefficients behave like independent and identically distributed random variables following a Poisson distribution:

$$
\operatorname{Pr}[\operatorname{DDT}[a, b]=2 z]=\frac{e^{-1 / 2}}{2^{z} z} .
$$

- Always even, ≥ 0
- Typically between 0 and 16.
- Lower is better.

Coefficient Distribution in the LAT

If an n-bit S-Box is bijective, then its LAT coefficients behave like independent and identically distributed random variables following this distribution:

$$
\operatorname{Pr}[\operatorname{LAT}[a, b]=2 z]=\frac{\binom{2^{n-1}}{2^{n-2+z}}}{\binom{2^{n}}{2^{n-1}}}
$$

Coefficient Distribution in the LAT

If an n-bit S-Box is bijective, then its LAT coefficients behave like independent and identically distributed random variables following this distribution:

$$
\operatorname{Pr}[\operatorname{LAT}[a, b]=2 z]=\frac{\binom{2^{n-1}}{2^{n-2+z}}}{\binom{2^{n}}{2^{n-1}}}
$$

- Always even, signed.
- Typically between -40 and 40 .

■ Lower absolute value is better.

Looking Only at the Maximum

δ	$\log _{2}(\operatorname{Pr}[\max (\mathrm{DDT}) \leq \delta])$	ℓ	$\log _{2}(\operatorname{Pr}[\max (\mathrm{LAT}) \leq \ell])$
		38	-0.084
14	-0.006	36	-0.302
12	-0.094	34	-1.008
		32	-3.160
10	-1.329	30	-9.288
8	-16.148	28	-25.623
6	-164.466	26	-66.415
6	-164.466	24	-161.900
4	-1359.530	22	-371.609
DDT		LAT	

Probability that the maximum coefficient in the DDT/LAT of an 8-bit permutation is at most equal to a certain threshold.

Looking Only at the Maximum

δ	$\log _{2}(\operatorname{Pr}[\max (\mathrm{DDT}) \leq \delta])$	ℓ	$\log _{2}(\operatorname{Pr}[\max (\mathrm{LAT}) \leq \ell])$
		38	-0.084
14	-0.006	36	-0.302
12	-0.094	34	-1.008
		32	-3.160
10	-1.329	30	-9.288
8	-16.148	28	-25.623
6	-164.466	26	-66.415
		24	-161.900
4	-1359.530	22	-371.609
DDT		LAT	

Probability that the maximum coefficient in the DDT/LAT of an 8-bit permutation is at most equal to a certain threshold.

What is Skipjack? (1/2)

Type Block cipher
Bloc 64 bits
Key 80 bits
Authors NSA
Publication 1998

What is Skipjack? (2/2)

- Skipjack was supposed to be secret...
- ... but eventually published in 1998.

What is Skipjack? (2/2)

- Skipjack was supposed to be secret...
- ... but eventually published in 1998.
- Skipjack was to be used by the Clipper Chip,

What is Skipjack? (2/2)

- Skipjack was supposed to be secret...
- ... but eventually published in 1998.
- Skipjack was to be used by the Clipper Chip,
- It uses an $8 \times 8 \mathrm{~S}$-Box (F) specified only by its LUT.

Reverse-Engineering F

For Skipjack's F, max (LAT) $=28$ and $\# 28=3$.

Reverse-Engineering F

For Skipjack's $F, \max (L A T)=28$ and $\# 28=3$.

Reverse-Engineering F

For Skipjack's $F, \max (L A T)=28$ and $\# 28=3$.

Reverse-Engineering F

For Skipjack's $F, \max (L A T)=28$ and $\# 28=3$.

What Can We Deduce?

- F has not been picked uniformly at random.
- F has not been picked among a feasibly large set of random S-Boxes.
- Its linear properties were optimized (though poorly).

What Can We Deduce?

- F has not been picked uniformly at random.
- F has not been picked among a feasibly large set of random S-Boxes.
- Its linear properties were optimized (though poorly).

The S-Box of Skipjack was built using a dedicated algorithm.

Timeline

Jun 98 Declassification of Skipjack

Timeline

1987 Initial design of Skipjack

Jul 93 "interim report" on Skipjack published by external cryptographers

Jun 98 Declassification of Skipjack

Timeline

1987 Initial design of Skipjack

Jul 93 "interim report" on Skipjack published by external cryptographers
Aug 95 Alleged "Skipjack" (actually not) is leaked to usenet
Sep 95 Schneier published his thoughts on "alleged Skipjack", including the result of a FOIA request

Jun 98 Declassification of Skipjack

Timeline

1987 Initial design of Skipjack

Aug 92 The S-Box ("F-table") of Skipjack is changed
Jul 93 "interim report" on Skipjack published by external cryptographers
Aug 95 Alleged "Skipjack" (actually not) is leaked to usenet
Sep 95 Schneier published his thoughts on "alleged Skipjack", including the result of a FOIA request

Jun 98 Declassification of Skipjack

Timeline

1987 Initial design of Skipjack
Aug 90 (CRYPTO) Gilbert et al. use linear relations for key recovery (FEAL)
Aug 91 (CRYPTO) Attack against FEAL using linear relations between key, plaintext and ciphertext
May 92 (EUROCRYPT) Other attack against FEAL using linear relations between key, plaintext and ciphertext
Aug 92 The S-Box ("F-table") of Skipjack is changed
Jul 93 "interim report" on Skipjack published by external cryptographers
Aug 95 Alleged "Skipjack" (actually not) is leaked to usenet
Sep 95 Schneier published his thoughts on "alleged Skipjack", including the result of a FOIA request

Jun 98 Declassification of Skipjack

Conclusion on Skipjack

- AES S-Box

■ Inverse (other)

- Exponential
\square Math (other)
- SPN
- Misty

Feistel
■ Lai-Massey

- Pseudo-random
- Hill climbing

■ Unknown

Conclusion on Skipjack

- AES S-Box

■ Inverse (other)

- Exponential
\square Math (other)
- SPN

Misty
Feistel
■ Lai-Massey

- Pseudo-random
- Hill climbing

■ Unknown

Outline

1 Building Blocks for Symmetric Cryptography

2 Statistics and Skipjack

3 TU-Decomposition and Kuznyechik

4 The Butterfly Permutations and Functions

5 Conclusion

Summary

We can recover an actual decomposition using patterns in the LAT.
1 Our target, the S-Box of Kuznyechik and Streebog
2 TU-decomposition: what is it and how to apply it to Kuznyechik

Kuznyechik/Stribog

Stribog

Type Hash function Publication 2012

Kuznyechik

Type Block cipher
Publication 2015

Kuznyechik/Stribog

Stribog

Type Hash function
Publication 2012

Kuznyechik

Type Block cipher
Publication 2015

Common ground

- Both are standard symmetric primitives in Russia.
- Both were designed by the FSB (TC26).

■ Both use the same 8×8 S-Box, π.

The LAT of π

The LAT of η (reordered columns)

The LAT of $\eta \circ \pi \circ \mu$

The TU-Decomposition

Definition

The TU-decomposition is a decomposition algorithm working against S-Boxes with vector spaces of zeroes in their LAT.

T and U are mini-block ciphers ; μ and η are linear permutations.

Final Decomposition Number 1

- Multiplication in $\mathbb{F}_{2^{4}}$
α Linear permutation
I Inversion in $\mathbb{F}_{2^{4}}$
$\nu_{0}, \nu_{1}, \sigma 4 \times 4$ permutations
$\phi 4 \times 4$ function
ω Linear permutation

Hardware Performance

Structure	Area $\left(\mu \mathrm{m}^{2}\right)$	Delay (ns)
Naive implementation	3889.6	362.52
Feistel-like	1534.7	61.53
Multiplications-first	1530.3	54.01
Feistel-like (with tweaked MUX)	1530.1	46.11

Conclusion for Kuznyechik/Stribog?

The Russian S-Box was built like a strange Feistel...

Conclusion for Kuznyechik/Stribog?

The Russian S-Box was built like a strange Feistel...
... or was it?

Conclusion for Kuznyechik/Stribog?

The Russian S-Box was built like a strange Feistel...
... or was it?

Belarussian inspiration

- The last standard of Belarus (BelT) uses an 8-bit S-box,

■ somewhat similar to π...

Conclusion for Kuznyechik/Stribog?

The Russian S-Box was built like a strange Feistel...
... or was it?

Belarussian inspiration

- The last standard of Belarus (BelT) uses an 8-bit S-box,

■ somewhat similar to π...
■ ... based on a finite field exponential!

Final Decomposition Number 2 (!)

T0					3		5	6	7	8		a		c	d		
T_{1}				2	3	4	5	6	7	8	9	a			d		
T_{2}			1	2	3	4	5	6	7	8	9	a			d		
T3				2	3	4	5	6	7	8		a					
T_{4}				2	3		5	6	7	8	9	a			c		
T_{5}			1	2	3	4	5	6	7	8	9	a			c		
T6				2	3	4	5	6	7	8	9	9 f					
T_{7}			1	2	3	4	5	6	7	8		9			c		
T8				2	3	4	5	6	7	f	8	89		b	c		
T9				2	3	4	5	6	f	7		9			c		
Ta				2	3	4	5	f	6	7		9			c		
T_{b}				2	3	4	f	5	6	7		89			c		
T_{c}				2	3	f	4	5	6	7		89					
T_{d}				2	f	3	4	5	6	7		9					
T_{e}				f	2	3	4	5	6	7		9			c		
T_{f}			f		2			5				89					

Conclusion on Kuznyechik/Stribog

- AES S-Box

■ Inverse (other)

- Exponential
- Math (other)
\square SPN
Misty
Feistel
■ Lai-Massey
- Pseudo-random
- Hill climbing

■ Unknown

Conclusion on Kuznyechik/Stribog

- AES S-Box

■ Inverse (other)

- Exponential
\square Math (other)
\square SPN
Misty
Feistel
■ Lai-Massey
- Pseudo-random
- Hill climbing

■ Unknown

Conclusion on Kuznyechik/Stribog

- AES S-Box

■ Inverse (other)

- Exponential
\square Math (other)
\square SPN
Misty
Feistel
■ Lai-Massey
- Pseudo-random
- Hill climbing

■ Unknown

Conclusion on Kuznyechik/Stribog

- AES S-Box
\square Inverse (other)
- Exponential
\square Math (other)
- SPN

Misty

- Feistel

■ Lai-Massey

- Pseudo-random
- Hill climbing

■ Unknown

Outline

1 Building Blocks for Symmetric Cryptography

2 Statistics and Skipjack

3 TU-Decomposition and Kuznyechik

4 The Butterfly Permutations and Functions

5 Conclusion

Summary

We can obtain new mathematical results using reverse-engineering techniques.
1 The big APN problem and its only known solution
2 Decomposing and generalizing this solution as butterflies

NSUCRYPTO (Olympiad in Cryptography)

"Try to find an APN permutation on 8 variables or prove that it doesn't exist."
https://nsucrypto.nsu.ru/

The Big APN Problem

Definition (APN function)

A function $S: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ is Almost Perfect Non-linear (APN) if

$$
S(x \oplus a) \oplus S(x)=b
$$

has 0 or 2 solutions for all $a \neq 0$ and for all b.

The Big APN Problem

Definition (APN function)

A function $S: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ is Almost Perfect Non-linear (APN) if

$$
s(x \oplus a) \oplus S(x)=b
$$

has 0 or 2 solutions for all $a \neq 0$ and for all b.

Big APN Problem

Are there APN permutations operating on \mathbb{F}_{2}^{n} where n is even?

Dillon et al.'s Permutation

Only One Known Solution!

For $n=6$, Dillon et al. found an APN permutation.

Dillon et al.'s Permutation

Only One Known Solution!

For $n=6$, Dillon et al. found an APN permutation.

Dillon et al.'s Permutation

Only One Known Solution!

For $n=6$, Dillon et al. found an APN permutation.

Dillon et al.'s Permutation

Only One Known Solution!

For $n=6$, Dillon et al. found an APN permutation.

It is possible to make a TU-decomposition!

On the Butterfly Structure

Definition (Open Butterfly $\mathrm{H}_{\alpha, \beta}^{3}$)

This permutation is an open butterfly.

On the Butterfly Structure

Definition (Open Butterfly $\mathrm{H}_{\alpha, \beta}^{3}$)

This permutation is an open butterfly.

Lemma

Dillon's permutation is affine-equivalent to $\mathrm{H}_{w, 1}^{3}$, where $\operatorname{Tr}(w)=0$.

Closed Butterflies

Definition (Closed butterfly $\mathrm{V}_{\alpha, \beta}^{3}$)

This quadratic function is a closed butterfly.

Closed Butterflies

Definition (Closed butterfly $\mathrm{V}_{\alpha, \beta}^{3}$)

This quadratic function is a closed butterfly.
Lemma (Equivalence)
Open and closed butterflies with the same parameters are CCZ-equivalent.

Some Properties of Butterflies

Theorem (Properties of butterflies)

Let $\mathrm{V}_{\alpha, \beta}^{3}$ and $\mathrm{H}_{\alpha, \beta}^{3}$ be butterflies operating on $2 n$ bits, n odd. Then:
$\square \operatorname{deg}\left(\mathrm{V}_{\alpha, \beta}^{3}\right)=2$,

- if $n=3, \operatorname{Tr}(\alpha)=0$ and $\beta+\alpha^{3} \in\{\alpha, 1 / \alpha\}$, then

$$
\max (D D T)=2, \max (\mathcal{W})=2^{n+1} \text { and } \operatorname{deg}\left(H_{\alpha, \beta}^{3}\right)=n+1
$$

- if $\beta=(1+\alpha)^{3}$, then

$$
\max (D D T)=2^{n+1}, \max (\mathcal{W})=2^{(3 n+1) / 2} \text { and } \operatorname{deg}\left(H_{\alpha, \beta}^{3}\right)=n
$$

- otherwise,

$$
\begin{aligned}
& \max (D D T)=4, \max (\mathcal{W})=2^{n+1} \text { and } \operatorname{deg}\left(\mathrm{H}_{\alpha, \beta}^{3}\right) \in\{n, n+1\} \\
& \text { and deg }\left(\mathrm{H}_{\alpha, \beta}^{3}\right)=n \text { if and only if } \\
& 1+\alpha \beta+\alpha^{4}=\left(\beta+\alpha+\alpha^{3}\right)^{2}
\end{aligned}
$$

Outline

1 Building Blocks for Symmetric Cryptography

2 Statistics and Skipjack

3 TU-Decomposition and Kuznyechik

4 The Butterfly Permutations and Functions

5 Conclusion

Open Problem

Cellular Message Encryption Algorithm

From Wikipedia, the free encyclopedia
In cryptography, the Cellular Message Encryption Algorithm
(CMEA) is a block cipher which was used for securing mobile phones
in the United States. CMEA is one of four cryptographic primitives
specified in a Telecommunications Industry Association (TIA)
standard, and is designed to encrypt the control channel, rather than
the voice data. In 1997, a group of cryptographers published attacks
on the cipher showing it had several weaknesses which give it a
trivial effective strength of a 24-bit to 32-bit cipher. ${ }^{[1]}$

Open Problem

Cellular Message Encryption Algorithm

A hidden structure!

CMEA uses an 8-bit (non-bijective) S-Box... With a TU-decomposition!
What is its actual structure?

Conclusion

1. Cryptographers use mathematics but mathematicians could also use crypto!

Conclusion

1 Cryptographers use mathematics but mathematicians could also use crypto!
2. If you design a cipher, justify every step of your design.

Conclusion

1 Cryptographers use mathematics but mathematicians could also use crypto!
2. If you design a cipher, justify every step of your design.

3 If you choose a cipher, demand a full design explanation.

The Last S-Box

```
14 11 60 6d e9 10 e3 2 b 90 d 17 c5 b0 9f c5
d8 da be 22 8 f3 4 a9 fe f3 f5 fc bc 30 be 26
bb 88 85 46 f4 2e e fd 76 fe b0 11 4e de 35 bb
30 4b 30 d6 dd df df d4 90 7a d8 8c 6a 89 30 39
e9 1 da d2 85 87 d3 d4 ba 2b d4 9f 9c 38 8c 55
d3 86 bb db ec e0 46 48 bf 46 1b 1c d7 d9 1b e0
23 d4 d7 7f 16 3f 3 3 3 44 c3 59 10 2a da ed e9
8e d8 d1 db cb cb c3 c7 38 22 34 3d db 85 23 7c
24 d1 d8 2e fc 44 8 38 c8 c7 39 4c 5f 56 2a cf
d0 e9 d2 68 e4 e3 e9 13 e2 c c 97 e4 60 29 d7 9b
d9 16 24 94 b3 e3 4c 4c 4f 39 e0 4b bc 2c d3 94
81 96 93 84 91 d0 2e d6 d2 2b 78 ef d6 9e 7b 72
ad c4 68 92 7a d2 5 2b 1e d0 dc b1 22 3f c3 c3
88 b1 8d b5 e3 4e d7 81 3 15 17 25 4e 65 88 4e
e4 3b 81 81 fa 1 1d 4 22 0 6 6 1 27 68 27 2e
3b 83 c7 cc 25 9b d8 d5 1c 1f e5 59 7f 3f 3f ef
```

0
保

