On CCZ-Equivalence, Extended-Affine Equivalence and Function Twisting

Anne Canteaut, Léo Perrin

To cite this version:

Anne Canteaut, Léo Perrin. On CCZ-Equivalence, Extended-Affine Equivalence and Function Twisting. BFA 2018 - 3rd International Workshop on Boolean Functions and their Applications, Jun 2018, Loen, Norway. hal-01953349

HAL Id: hal-01953349

https://hal.inria.fr/hal-01953349

Submitted on 12 Dec 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On CCZ-Equivalence, Extended-Affine Equivalence and Function Twisting

Anne Canteaut, Léo Perrin

June 18, 2018
BFA'2018

Definition (CCZ-Equivalence)

$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ are $C($ arlet $)-C($ harpin)-Z(inoviev) equivalent if

$$
\Gamma_{G}=\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}=L\left(\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=L\left(\Gamma_{F}\right),
$$

where $L: \mathbb{F}_{2}^{n+m} \rightarrow \mathbb{F}_{2}^{n+m}$ is an affine permutation.

Definition (CCZ-Equivalence)

$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ are $C($ arlet $)-C($ harpin)-Z(inoviev) equivalent if

$$
\Gamma_{G}=\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}=L\left(\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=L\left(\Gamma_{F}\right),
$$

where $L: \mathbb{F}_{2}^{n+m} \rightarrow \mathbb{F}_{2}^{n+m}$ is an affine permutation.

Definition (EA-Equivalence; EA-mapping)

F and G are $E(x$ tented) $A(f f i n e)$ equivalent if $G(x)=(B \circ F \circ A)(x)+C(x)$, where A, B, C are affine and A, B are permutations; so that

$$
\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}=\left[\begin{array}{cc}
A^{-1} & 0 \\
C A^{-1} & B
\end{array}\right]\left(\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}\right) .
$$

Definition (CCZ-Equivalence)

$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ are $C($ arlet $)-C($ harpin)-Z(inoviev) equivalent if

$$
\Gamma_{G}=\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}=L\left(\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=L\left(\Gamma_{F}\right),
$$

where $L: \mathbb{F}_{2}^{n+m} \rightarrow \mathbb{F}_{2}^{n+m}$ is an affine permutation.

Definition (EA-Equivalence; EA-mapping)

F and G are $E(x$ tented) A (ffine) equivalent if $G(x)=(B \circ F \circ A)(x)+C(x)$, where A, B, C are affine and A, B are permutations; so that

$$
\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}=\left[\begin{array}{cc}
A^{-1} & 0 \\
C A^{-1} & B
\end{array}\right]\left(\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}\right) .
$$

Affine permutations with such linear part are EA-mappings; their transposes are TEA-mappings

Definition (CCZ-Equivalence)

$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ are $C($ arlet $)-C($ harpin)-Z(inoviev) equivalent if

$$
\Gamma_{G}=\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}=L\left(\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=L\left(\Gamma_{F}\right),
$$

where $L: \mathbb{F}_{2}^{n+m} \rightarrow \mathbb{F}_{2}^{n+m}$ is an affine permutation.

Definition (EA-Equivalence; EA-mapping)

F and G are $E(x$ tented) $A(f f i n e)$ equivalent if $G(x)=(B \circ F \circ A)(x)+C(x)$, where A, B, C are affine and A, B are permutations; so that

$$
\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}=\left[\begin{array}{cc}
A^{-1} & 0 \\
C A^{-1} & B
\end{array}\right]\left(\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}\right) .
$$

Affine permutations with such linear part are EA-mappings; their transposes are TEA-mappings

What is the relation between functions that are CCZ- but not EA-equivalent?

Admissible Mapping

For $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$, the affine permutation L is admissible for F if

$$
L\left(\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}
$$

for a well defined function $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$.

Admissible Mapping

For $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$, the affine permutation L is admissible for F if

$$
L\left(\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=\left\{(x, G(x)), \forall x \in \mathbb{F}_{2}^{n}\right\}
$$

for a well defined function $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$.

Definition (LAT/Walsh Spectrum)

The L (inear) A (pproximation) T (able) of $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ is

$$
\mathcal{W}_{F}(\alpha, \beta)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{\alpha \cdot x+\beta \cdot F(x)}
$$

Structure of this talk

0 - CCZ-Equivalence ; Bijectivity

Structure of this talk

Outline

1 CCZ-Equivalence and Vector Spaces of 0

2 Function Twisting

3 Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

4 Conclusion

Plan of this Section

1 CCZ-Equivalence and Vector Spaces of 0

- Vector Spaces of Zeroes
- Partitioning a CCZ-Class into EA-Classes

2 Function Twisting

3 Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

4 Conclusion

Walsh Zeroes

For all $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$, we have

$$
\mathcal{W}_{F}(\alpha, 0)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{\alpha \cdot x+0 \cdot F(x)}=0 .
$$

Walsh Zeroes

For all $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$, we have

$$
\mathcal{W}_{F}(\alpha, 0)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{\alpha \cdot x+0 \cdot F(x)}=0
$$

Definition (Walsh Zeroes)

The Walsh zeroes of $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ is the set

$$
\mathcal{Z}_{F}=\left\{u \in \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m}, \mathcal{W}_{F}(u)=0\right\} \cup\{0\}
$$

With $\mathcal{V}=\left\{(x, 0), \forall x \in \mathbb{F}_{2}^{n}\right\} \subset \mathbb{F}_{2}^{n+m}$, we have $\mathcal{V} \subset \mathcal{Z}_{F}$.

Walsh Zeroes

For all $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$, we have

$$
\mathcal{W}_{F}(\alpha, 0)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{\alpha \cdot x+0 \cdot F(x)}=0
$$

Definition (Walsh Zeroes)

The Walsh zeroes of $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ is the set

$$
\mathcal{Z}_{F}=\left\{u \in \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m}, \mathcal{W}_{F}(u)=0\right\} \cup\{0\}
$$

With $\mathcal{V}=\left\{(x, 0), \forall x \in \mathbb{F}_{2}^{n}\right\} \subset \mathbb{F}_{2}^{n+m}$, we have $\mathcal{V} \subset \mathcal{Z}_{F}$.
Note that if $\Gamma_{G}=L\left(\Gamma_{F}\right)$, then $\mathcal{Z}_{G}=\left(L^{T}\right)^{-1}\left(\mathcal{Z}_{F}\right)$.

Admissibility for F

Lemma

Let $L: \mathbb{F}_{2}^{n+m} \rightarrow \mathbb{F}_{2}^{n+m}$ be a linear permutation. It is admissible for $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ if and only if

$$
L^{\top}(\mathcal{V}) \subseteq \mathcal{Z}_{F}
$$

Admissibility of EA-mappings

EA-mappings are admissible for all $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$:

$$
\left[\begin{array}{ll}
A & 0 \\
C & B
\end{array}\right]^{T}(\mathcal{V})=\left[\begin{array}{cc}
A^{T} & C^{T} \\
0 & B^{T}
\end{array}\right]\left(\left\{\left[\begin{array}{l}
x \\
0
\end{array}\right], \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=\mathcal{V}
$$

Admissibility of EA-mappings

EA-mappings are admissible for all $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$:

$$
\left[\begin{array}{ll}
A & 0 \\
C & B
\end{array}\right]^{T}(\mathcal{V})=\left[\begin{array}{cc}
A^{T} & C^{T} \\
0 & B^{T}
\end{array}\right]\left(\left\{\left[\begin{array}{l}
x \\
0
\end{array}\right], \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=\mathcal{V}
$$

Theorem (Budaghyan, Carlet (2011))
The CCZ-class of a bent function contains only its EA-class.

Admissibility of EA-mappings

EA-mappings are admissible for all $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$:

$$
\left[\begin{array}{ll}
A & 0 \\
C & B
\end{array}\right]^{T}(\mathcal{V})=\left[\begin{array}{cc}
A^{T} & C^{T} \\
0 & B^{T}
\end{array}\right]\left(\left\{\left[\begin{array}{l}
x \\
0
\end{array}\right], \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=\mathcal{V}
$$

Theorem (Budaghyan, Carlet (2011))

The CCZ-class of a bent function contains only its EA-class.

Proof.

A function is bent

Admissibility of EA-mappings

EA-mappings are admissible for all $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$:

$$
\left[\begin{array}{ll}
A & 0 \\
C & B
\end{array}\right]^{T}(\mathcal{V})=\left[\begin{array}{cc}
A^{T} & C^{T} \\
0 & B^{T}
\end{array}\right]\left(\left\{\left[\begin{array}{l}
x \\
0
\end{array}\right], \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=\mathcal{V}
$$

Theorem (Budaghyan, Carlet (2011))

The CCZ-class of a bent function contains only its EA-class.

Proof.

A function is bent
\Longrightarrow no zeroes outside of \mathcal{V}

Admissibility of EA-mappings

EA-mappings are admissible for all $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$:

$$
\left[\begin{array}{ll}
A & 0 \\
C & B
\end{array}\right]^{T}(\mathcal{V})=\left[\begin{array}{cc}
A^{T} & C^{T} \\
0 & B^{T}
\end{array}\right]\left(\left\{\left[\begin{array}{l}
x \\
0
\end{array}\right], \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=\mathcal{V}
$$

Theorem (Budaghyan, Carlet (2011))

The CCZ-class of a bent function contains only its EA-class.

Proof.

A function is bent
\Longrightarrow no zeroes outside of \mathcal{V}
\Longrightarrow no vector spaces of zeroes other than \mathcal{V}

Admissibility of EA-mappings

EA-mappings are admissible for all $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$:

$$
\left[\begin{array}{ll}
A & 0 \\
C & B
\end{array}\right]^{T}(\mathcal{V})=\left[\begin{array}{cc}
A^{T} & C^{T} \\
0 & B^{T}
\end{array}\right]\left(\left\{\left[\begin{array}{l}
x \\
0
\end{array}\right], \forall x \in \mathbb{F}_{2}^{n}\right\}\right)=\mathcal{V}
$$

Theorem (Budaghyan, Carlet (2011))

The CCZ-class of a bent function contains only its EA-class.

Proof.

A function is bent
\Longrightarrow no zeroes outside of \mathcal{V}
\Longrightarrow no vector spaces of zeroes other than \mathcal{V}
\Longrightarrow only 1 EA-class

Permutations

We define

$$
\mathcal{V}^{\perp}=\left\{(0, y), \forall y \in \mathbb{F}_{2}^{m}\right\} \subset \mathbb{F}_{2}^{n+m} .
$$

Lemma

$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ is a permutation if and only if

$$
\mathcal{V}^{\perp} \subset \mathcal{Z}_{F}
$$

EA-classes imply vector spaces

Lemma

let F, G and G^{\prime} be such that $\Gamma_{G}=L\left(\Gamma_{F}\right)$ and $\Gamma_{G^{\prime}}=L^{\prime}\left(\Gamma_{F}\right)$. If $L(\mathcal{V})=L^{\prime}(\mathcal{V})$, then G and G^{\prime} are $E A$-equivalent.

EA-classes imply vector spaces

Lemma

let F, G and G^{\prime} be such that $\Gamma_{G}=L\left(\Gamma_{F}\right)$ and $\Gamma_{G^{\prime}}=L^{\prime}\left(\Gamma_{F}\right)$. If $L(\mathcal{V})=L^{\prime}(\mathcal{V})$, then G and G^{\prime} are $E A$-equivalent.

Can we use this knowledge to partition a CCZ-class into its EA-classes?

EA-classes imply vector spaces

Lemma

let F, G and G^{\prime} be such that $\Gamma_{G}=L\left(\Gamma_{F}\right)$ and $\Gamma_{G^{\prime}}=L^{\prime}\left(\Gamma_{F}\right)$.
If $L(\mathcal{V})=L^{\prime}(\mathcal{V})$, then G and G^{\prime} are EA-equivalent.

Can we use this knowledge to partition a CCZ-class into its EA-classes?

The Lemma gives us hope!
1 EA-class $\Longrightarrow 1$ vector space of zeroes of dimension n in \mathcal{Z}_{n}

EA-classes imply vector spaces

Lemma

let F, G and G^{\prime} be such that $\Gamma_{G}=L\left(\Gamma_{F}\right)$ and $\Gamma_{G^{\prime}}=L^{\prime}\left(\Gamma_{F}\right)$.
If $L(\mathcal{V})=L^{\prime}(\mathcal{V})$, then G and G^{\prime} are $E A$-equivalent.

Can we use this knowledge to partition a CCZ-class into its EA-classes?

The Lemma gives us hope!
1 EA-class $\Longrightarrow 1$ vector space of zeroes of dimension n in \mathcal{Z}_{n}

Reality takes it back...
The converse of the lemma is wrong.

Counter-example

Let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ be a permutation and let

$$
M_{n}=\left[\begin{array}{cc}
0 & I_{n} \\
I_{n} & 0
\end{array}\right] .
$$

It holds that

$$
\begin{aligned}
\Gamma_{F^{-1}} & =\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\} \\
& =\left\{\left(F^{-1}(y),\left(F \circ F^{-1}\right)(y)\right), \forall y \in \mathbb{F}_{2}^{n}\right\} \\
& =\left\{\left(F^{-1}(y), y\right), \forall y \in \mathbb{F}_{2}^{n}\right\} \\
& =M_{n}\left(\Gamma_{F}\right) .
\end{aligned}
$$

Counter-example

Let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ be a permutation and let

$$
M_{n}=\left[\begin{array}{cc}
0 & I_{n} \\
I_{n} & 0
\end{array}\right] .
$$

It holds that

$$
\begin{aligned}
\Gamma_{F^{-1}} & =\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\} \\
& =\left\{\left(F^{-1}(y),\left(F \circ F^{-1}\right)(y)\right), \forall y \in \mathbb{F}_{2}^{n}\right\} \\
& =\left\{\left(F^{-1}(y), y\right), \forall y \in \mathbb{F}_{2}^{n}\right\} \\
& =M_{n}\left(\Gamma_{F}\right) .
\end{aligned}
$$

The contradiction
If F is an involution then $\Gamma_{F}=\Gamma_{F^{-1}}=M_{n}\left(\Gamma_{F}\right)$

Counter-example

Let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ be a permutation and let

$$
M_{n}=\left[\begin{array}{cc}
0 & I_{n} \\
I_{n} & 0
\end{array}\right] .
$$

It holds that

$$
\begin{aligned}
\Gamma_{F^{-1}} & =\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\} \\
& =\left\{\left(F^{-1}(y),\left(F \circ F^{-1}\right)(y)\right), \forall y \in \mathbb{F}_{2}^{n}\right\} \\
& =\left\{\left(F^{-1}(y), y\right), \forall y \in \mathbb{F}_{2}^{n}\right\} \\
& =M_{n}\left(\Gamma_{F}\right) .
\end{aligned}
$$

The contradiction

If F is an involution then $\Gamma_{F}=\Gamma_{F^{-1}}=M_{n}\left(\Gamma_{F}\right)$
$\Longrightarrow M_{n}(\mathcal{V})=\mathcal{V}^{\perp} \neq I_{n}(\mathcal{V})$

Counter-example

Let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ be a permutation and let

$$
M_{n}=\left[\begin{array}{cc}
0 & I_{n} \\
I_{n} & 0
\end{array}\right] .
$$

It holds that

$$
\begin{aligned}
\Gamma_{F^{-1}} & =\left\{(x, F(x)), \forall x \in \mathbb{F}_{2}^{n}\right\} \\
& =\left\{\left(F^{-1}(y),\left(F \circ F^{-1}\right)(y)\right), \forall y \in \mathbb{F}_{2}^{n}\right\} \\
& =\left\{\left(F^{-1}(y), y\right), \forall y \in \mathbb{F}_{2}^{n}\right\} \\
& =M_{n}\left(\Gamma_{F}\right) .
\end{aligned}
$$

The contradiction

If F is an involution then $\Gamma_{F}=\Gamma_{F^{-1}}=M_{n}\left(\Gamma_{F}\right)$
$\Longrightarrow M_{n}(\mathcal{V})=\mathcal{V}^{\perp} \neq I_{n}(\mathcal{V})$
... but M_{n} and I_{n} send Γ_{F} in the same EA-class
(namely that of F).

Making the converse work (1/2)

Definition (CCZ-invariants)

The CCZ-invariants of $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ are the affine permutations L of \mathbb{F}_{2}^{n+n} such that

$$
L\left(\Gamma_{F}\right)=\Gamma_{F} .
$$

Making the converse work (1/2)

Definition (CCZ-invariants)

The CCZ-invariants of $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ are the affine permutations L of \mathbb{F}_{2}^{n+n} such that

$$
L\left(\Gamma_{F}\right)=\Gamma_{F} .
$$

Examples

- For an involution, M_{n} is a CCZ-invariant.

■ For a quadratic function q, there are CCZ-invariants with the following linear parts:

$$
\left[\begin{array}{cc}
I_{n} & 0 \\
\Delta_{\alpha} q & I_{n}
\end{array}\right] .
$$

Making the converse work (2/2)

Theorem (Number of EA-classes)
For $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$, let:

- s_{F} be the number of vector spaces of dimension n in \mathcal{Z}_{F}
- C_{F} be the number of CCZ-invariants of F
- e_{F} be the number of EA-classes in the CCZ-class of F.

Making the converse work (2/2)

Theorem (Number of EA-classes)

For $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$, let:

- s_{F} be the number of vector spaces of dimension n in \mathcal{Z}_{F}
- c_{F} be the number of CCZ-invariants of F
- e_{F} be the number of EA-classes in the CCZ-class of F.

Then

$$
\frac{s_{F}}{c_{F}} \leq e_{F} \leq s_{F}
$$

Making the converse work (2/2)

Theorem (Number of EA-classes)

For $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$, let:

- s_{F} be the number of vector spaces of dimension n in \mathcal{Z}_{F}
- c_{F} be the number of CCZ-invariants of F

■ e_{F} be the number of EA-classes in the CCZ-class of F.

Then

$$
\frac{s_{F}}{c_{F}} \leq e_{F} \leq s_{F}
$$

Corollary

If $c_{F}=1$, then we do have a bijection between EA-classes and vector spaces of 0 of dimension n in \mathcal{Z}_{F}.

Outline

1 CCZ-Equivalence and Vector Spaces of 0

2 Function Twisting

3 Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

4 Conclusion

Plan of this Section

1 CCZ-Equivalence and Vector Spaces of 0

2 Function Twisting

- The Twist
- CCZ = EA + Twist
- Revisiting some Results

3 Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

4 Conclusion

EA-equivalence is a simple sub-case of CCZ-Equivalence...

EA-equivalence is a simple sub-case of CCZ-Equivalence...

What must we add to EA-equivalence to fully describe CCZ-Equivalence?

Definition of the Twist

Any function $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ can be projected on $\mathbb{F}_{2}^{t} \times \mathbb{F}_{2}^{m-t}$.

Definition of the Twist

Any function $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ can be projected on $\mathbb{F}_{2}^{t} \times \mathbb{F}_{2}^{m-t}$.

F

G

If T is a permutation for all secondary inputs, then we define the t-twist equivalent of F as G, where

$$
G(x, y)=\left(T_{y}^{-1}(x), U_{T_{y}^{-1}(x)}(y)\right)
$$

for all $(x, y) \in \mathbb{F}_{2}^{t} \times \mathbb{F}_{2}^{n-t}$.

Examples of Twisting

- Inversion is an n-twist.

Examples of Twisting

■ Inversion is an n-twist.

- Open and closed butterflies operating on n bits are obtained from another with an (n/2)-twist.

Examples of Twisting

■ Inversion is an n-twist.

- Open and closed butterflies operating on n bits are obtained from another with an ($n / 2$)-twist.

■ Some degenerate cases exist for $t=m$ and $n=n$.

Examples of Twisting

- Inversion is an n-twist.
- Open and closed butterflies operating on n bits are obtained from another with an ($n / 2$)-twist.
- Some degenerate cases exist for $t=m$ and $n=n$.

Swap Matrices

The swap matrix permuting \mathbb{F}_{2}^{n+m} is defined for $t \leq \min (n, m)$ as

$$
M_{t}=\left[\begin{array}{cccc}
0 & 0 & I_{t} & 0 \\
0 & I_{n-t} & 0 & 0 \\
I_{t} & 0 & 0 & 0 \\
0 & 0 & 0 & I_{m-t}
\end{array}\right]
$$

Swap Matrices

The swap matrix permuting \mathbb{F}_{2}^{n+m} is defined for $t \leq \min (n, m)$ as

$$
M_{t}=\left[\begin{array}{cccc}
0 & 0 & I_{t} & 0 \\
0 & I_{n-t} & 0 & 0 \\
I_{t} & 0 & 0 & 0 \\
0 & 0 & 0 & I_{m-t}
\end{array}\right]
$$

It has a simple interpretation:

Swap Matrices

The swap matrix permuting \mathbb{F}_{2}^{n+m} is defined for $t \leq \min (n, m)$ as

$$
M_{t}=\left[\begin{array}{cccc}
0 & 0 & I_{t} & 0 \\
0 & I_{n-t} & 0 & 0 \\
I_{t} & 0 & 0 & 0 \\
0 & 0 & 0 & I_{m-t}
\end{array}\right]
$$

It has a simple interpretation:

For all $t \leq \min (n, m), M_{t}$ is an orthogonal and symmetric involution.

Swap Matrices and Twisting

Swap Matrices and Twisting

Swap Matrices and Twisting

Twisting and CCZ-Class

Lemma

Twisting preserves the CCZ-equivalence class.

Twisting and CCZ-Class

Lemma

Twisting preserves the CCZ-equivalence class.

Main Result

Theorem

If $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ are CCZ-equivalent, then

$$
\Gamma_{G}=\left(B \times M_{t} \times A\right)\left(\Gamma_{F}\right),
$$

where A and B are EA-mappings and where

$$
t=\operatorname{dim}\left(\operatorname{proj}_{\mathcal{V}^{\perp}}\left(\left(A^{T} \times M_{t} \times B^{\top}\right)(\mathcal{V})\right)\right) .
$$

In other words, EA-equivalence and twists are sufficient to fully describe CCZ-equivalence!

Main Result

Theorem

If $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and $G: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ are CCZ-equivalent, then

$$
\Gamma_{G}=\left(B \times M_{t} \times A\right)\left(\Gamma_{F}\right),
$$

where A and B are EA-mappings and where

$$
t=\operatorname{dim}\left(\operatorname{proj}_{\mathcal{V}^{\perp}}\left(\left(A^{T} \times M_{t} \times B^{\top}\right)(\mathcal{V})\right)\right) .
$$

In other words, EA-equivalence and twists are sufficient to fully describe CCZ-equivalence!

Corollary

If a function is CCZ-equivalent but not EA-equivalent to another function, then they have to be EA-equivalent to functions for which a t-twist is possible.

Proof sketch

1. As F is $C C Z$-equivalent to G, there is a linear permutation $L: \mathbb{F}_{2}^{n+m} \rightarrow \mathbb{F}_{2}^{n+m}$ such that

$$
\Gamma_{G}=L\left(\Gamma_{F}\right) \text { and } L^{\top}(\mathcal{V}) \subset \mathcal{Z}_{F} .
$$

Proof sketch

1. As F is $C C Z$-equivalent to G, there is a linear permutation $L: \mathbb{F}_{2}^{n+m} \rightarrow \mathbb{F}_{2}^{n+m}$ such that

$$
\Gamma_{G}=L\left(\Gamma_{F}\right) \text { and } L^{T}(\mathcal{V}) \subset \mathcal{Z}_{F}
$$

2. Any vector space V of dimension n such that $\operatorname{dim}\left(\operatorname{proj}_{\mathcal{V}} \perp(V)\right)=t$ can be written as

$$
V=\left(A^{T} \times M_{t}\right)(\mathcal{V})
$$

where A is an EA-mapping.

Proof sketch

1. As F is $C C Z$-equivalent to G, there is a linear permutation $L: \mathbb{F}_{2}^{n+m} \rightarrow \mathbb{F}_{2}^{n+m}$ such that

$$
\Gamma_{G}=L\left(\Gamma_{F}\right) \text { and } L^{T}(\mathcal{V}) \subset \mathcal{Z}_{F}
$$

2. Any vector space V of dimension n such that $\operatorname{dim}\left(\operatorname{proj}_{\mathcal{V}} \perp(V)\right)=t$ can be written as

$$
V=\left(A^{T} \times M_{t}\right)(\mathcal{V})
$$

where A is an EA-mapping.
1+2. We deduce that $L^{T}(\mathcal{V})=\left(A^{T} \times M_{t}\right)(\mathcal{V}) \subset \mathcal{Z}_{F}$.

Proof sketch

1. As F is CCZ-equivalent to G, there is a linear permutation $L: \mathbb{F}_{2}^{n+m} \rightarrow \mathbb{F}_{2}^{n+m}$ such that

$$
\Gamma_{G}=L\left(\Gamma_{F}\right) \text { and } L^{T}(\mathcal{V}) \subset \mathcal{Z}_{F}
$$

2. Any vector space V of dimension n such that $\operatorname{dim}\left(\operatorname{proj}_{\mathcal{V}} \perp(V)\right)=t$ can be written as

$$
V=\left(A^{T} \times M_{t}\right)(\mathcal{V})
$$

where A is an EA-mapping.
1+2. We deduce that $L^{T}(\mathcal{V})=\left(A^{T} \times M_{t}\right)(\mathcal{V}) \subset \mathcal{Z}_{F}$.
$1+2+$ lem. As $L^{T}(\mathcal{V})=\left(A^{T} \times M_{t}\right)(\mathcal{V})$, the functions G and G^{\prime} such that $\Gamma_{G}=L\left(\Gamma_{F}\right)$ and $\Gamma_{G^{\prime}}=\left(A^{T} \times M_{t}\right)\left(\Gamma_{F}\right)$ are EA-equivalent.
We conclude that

$$
\Gamma_{G}=\left(B \times M_{t} \times A\right)\left(\Gamma_{F}\right)
$$

Usage?

What can we do with this knowledge?

Boolean Functions

Theorem (Budaghyan, Carlet (2011))

The CCZ-class of $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ is limited to its EA-class.

Boolean Functions

Theorem (Budaghyan, Carlet (2011))

The CCZ-class of $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ is limited to its EA-class.

Proof.

F is CCZ- but not EA-equivalent to some G

Boolean Functions

Theorem (Budaghyan, Carlet (2011))

The CCZ-class of $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ is limited to its EA-class.

Proof.

F is CCZ- but not EA-equivalent to some G
$\Longrightarrow F(x \| y)=T_{y}(x), \forall(x, y) \in \mathbb{F}_{2} \times \mathbb{F}_{2}^{n-1}$, where T_{y} is always a permutation of \mathbb{F}_{2}

Boolean Functions

Theorem (Budaghyan, Carlet (2011))

The CCZ-class of $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ is limited to its EA-class.

Proof.

F is CCZ- but not EA-equivalent to some G
$\Longrightarrow F(x \| y)=T_{y}(x), \forall(x, y) \in \mathbb{F}_{2} \times \mathbb{F}_{2}^{n-1}$, where T_{y} is always a permutation of \mathbb{F}_{2}
$\Longrightarrow F(x \| y)=x \oplus f(y), \forall(x, y) \in \mathbb{F}_{2} \times \mathbb{F}_{2}^{n-1}$,
\Longrightarrow 1-twisting F does not change the EA-class
\Longrightarrow it is impossible to leave the EA-class of F

Modular Addition (1/2)

Theorem (Schulte-Geers'13)

Addition modulo 2^{m} is CCZ-equivalent to

$$
q(x, y)=\left(0, x_{0} y_{0}, x_{0} y_{0}+x_{1} y_{1}, \ldots, x_{0} y_{0}+\ldots+x_{n 2} y_{n 2}\right)
$$

where $\Gamma_{\boxplus}=L\left(\Gamma_{q}\right)$ with

$$
L=\left[\begin{array}{ccc}
I_{m} & 0 & I_{m} \\
0 & I_{m} & I_{m} \\
I_{m} & I_{m} & I_{m}
\end{array}\right]
$$

Modular Addition (1/2)

Theorem (Schulte-Geers'13)

Addition modulo 2^{m} is CCZ-equivalent to

$$
q(x, y)=\left(0, x_{0} y_{0}, x_{0} y_{0}+x_{1} y_{1}, \ldots, x_{0} y_{0}+\ldots+x_{n 2} y_{n 2}\right)
$$

where $\Gamma_{\boxplus}=L\left(\Gamma_{q}\right)$ with

$$
L=\left[\begin{array}{ccc}
I_{m} & 0 & I_{m} \\
0 & I_{m} & I_{m} \\
I_{m} & I_{m} & I_{m}
\end{array}\right]
$$

It holds that

$$
L^{-1}=\underbrace{\left[\begin{array}{ccc}
I_{m} & 0 & 0 \\
I_{m} & I_{m} & 0 \\
I_{m} & 0 & I_{m}
\end{array}\right]}_{A_{1}} \times \underbrace{\left[\begin{array}{ccc}
0 & 0 & I_{m} \\
0 & I_{m} & 0 \\
I_{m} & 0 & 0
\end{array}\right]}_{M_{m}} \times \underbrace{\left[\begin{array}{ccc}
I_{m} & 0 & 0 \\
I_{m} & I_{m} & 0 \\
0 & I_{m} & I_{m}
\end{array}\right]}_{A_{2}}
$$

Modular Addition (2/2)

Lemma

Let $T_{z}^{\boxplus}: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{m}$ be defined by

$$
\tau_{z}^{\boxplus}(x)=(x \boxplus(x \oplus z)) \oplus(x \oplus z) .
$$

Modular Addition (2/2)

Lemma

Let $T_{z}^{\boxplus}: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{m}$ be defined by

$$
T_{z}^{\boxplus}(x)=(x \boxplus(x \oplus z)) \oplus(x \oplus z)
$$

- T_{z}^{\boxplus} is a permutation for all z;

■ it is EA-equivalent to $(x, y) \mapsto x \boxplus y$;

Modular Addition (2/2)

Lemma

Let $T_{z}^{\boxplus}: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{m}$ be defined by

$$
T_{z}^{\boxplus}(x)=(x \boxplus(x \oplus z)) \oplus(x \oplus z) .
$$

- T_{z}^{\boxplus} is a permutation for all $z ;$
- it is EA-equivalent to $(x, y) \mapsto x \boxplus y$;
- $(x, z) \mapsto T_{z}^{\boxplus}(x)$ has algebraic degree m;
- $(x, z) \mapsto\left(T_{z}^{\boxplus}\right)^{-1}(x)$ is quadratic!

Modular Addition (2/2)

Lemma

Let $T_{z}^{\boxplus}: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{m}$ be defined by

$$
T_{z}^{\boxplus}(x)=(x \boxplus(x \oplus z)) \oplus(x \oplus z) .
$$

- T_{z}^{\boxplus} is a permutation for all $z ;$
- it is EA-equivalent to $(x, y) \mapsto x \boxplus y$;
- $(x, z) \mapsto T_{z}^{\boxplus}(x)$ has algebraic degree m;
- $(x, z) \mapsto\left(T_{z}^{\boxplus}\right)^{-1}(x)$ is quadratic!

$$
\text { Let } v=T_{z}^{\boxplus}(x) \text {. Then: }
$$

$$
\left\{\begin{array} { l l }
{ v _ { 0 } } & { = x _ { 0 } } \\
{ v _ { i + 1 } } & { = x _ { i } + x _ { i + 1 } + v _ { i } z _ { i } }
\end{array} \text { and, convertly, } \left\{\begin{array}{ll}
x_{0} & =v_{0} \\
x_{i+1} & =x_{i}+v_{i+1}+v_{i} z_{i}
\end{array}\right.\right.
$$

Outline

1 CCZ-Equivalence and Vector Spaces of 0

2 Function Twisting

3 Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

4 Conclusion

Plan of this Section

1 CCZ-Equivalence and Vector Spaces of 0

2 Function Twisting

3 Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation - Efficient Criteria

- Applications to APN Functions

4 Conclusion

Another Problem

How do we know if a function is CCZ-equivalent to a permutation?

Remainder

Recall that F is a permutation if and only if $\mathcal{V} \subset \mathcal{Z}_{F}$ and $\mathcal{V}^{\perp} \subset \mathcal{Z}_{F}$.

Remainder

Recall that F is a permutation if and only if $\mathcal{V} \subset \mathcal{Z}_{F}$ and $\mathcal{V}^{\perp} \subset \mathcal{Z}_{F}$.

Lemma

G is CCZ-equivalent to a permutation if and only if

$$
V=L(\mathcal{V}) \subset \mathcal{Z}_{G} \text { and } V^{\prime}=L\left(\mathcal{V}^{\perp}\right) \subset \mathcal{Z}_{G}
$$

for some linear permutation L. Note that

$$
\operatorname{span}\left(V \cup V^{\prime}\right)=\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m}
$$

3-Spaces Criteria

3-space criteria
Let $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$, not be a permutation. If it is CCZ-equivalent to a permutation then \mathcal{Z}_{F} must contain at least 3 vector spaces of zeroes of dimension n.

Projected Spaces Criteria

Key observation
The projections

$$
p:(x, y) \mapsto x \text { and } p^{\prime}:(x, y) \mapsto y
$$

mapping $\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m}$ to \mathbb{F}_{2}^{n} and \mathbb{F}_{2}^{m} respectively are linear.

Projected Spaces Criteria

Key observation

The projections

$$
p:(x, y) \mapsto x \text { and } p^{\prime}:(x, y) \mapsto y
$$

mapping $\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m}$ to \mathbb{F}_{2}^{n} and \mathbb{F}_{2}^{m} respectively are linear.

Thus, If G is CCZ-equivalent to a permutation then $p(V)$ and $p\left(V^{\prime}\right)$ are subspaces of \mathbb{F}_{2}^{n} whose span is \mathbb{F}_{2}^{n}.

Projected Spaces Criteria

Key observation

The projections

$$
p:(x, y) \mapsto x \text { and } p^{\prime}:(x, y) \mapsto y
$$

mapping $\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m}$ to \mathbb{F}_{2}^{n} and \mathbb{F}_{2}^{m} respectively are linear.

Thus, If G is CCZ-equivalent to a permutation then $p(V)$ and $p\left(V^{\prime}\right)$ are subspaces of \mathbb{F}_{2}^{n} whose span is \mathbb{F}_{2}^{n}.

We deduce that $\operatorname{dim}(p(V))+\operatorname{dim}\left(p\left(V^{\prime}\right)\right) \geq n$

Projected Spaces Criteria

Key observation

The projections

$$
p:(x, y) \mapsto x \text { and } p^{\prime}:(x, y) \mapsto y
$$

mapping $\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m}$ to \mathbb{F}_{2}^{n} and \mathbb{F}_{2}^{m} respectively are linear.

Thus, If G is CCZ-equivalent to a permutation then $p(V)$ and $p\left(V^{\prime}\right)$ are subspaces of \mathbb{F}_{2}^{n} whose span is \mathbb{F}_{2}^{n}.

We deduce that $\operatorname{dim}(p(v))+\operatorname{dim}\left(p\left(V^{\prime}\right)\right) \geq n$

Projected Spaces Criteria

If $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ is CCZ-equivalent to a permutation, then there are at least two subspaces of dimension $n / 2$ in $p\left(\mathcal{Z}_{F}\right)$ and in $p^{\prime}\left(\mathcal{Z}_{F}\right)$.

QAM

Yu et al. (DCC'14) generated 8180 8-APN quadratic functions from "QAM" (matrices).

QAM

Yu et al. (DCC'14) generated 8180 8-APN quadratic functions from

 "QAM" (matrices).None of them are CCZ-equivalent to a permutation

Göloğlu's Candidates (1/2)

Göloğlu's introduced APN functions

$$
f_{k}: x \mapsto x^{2^{k}+1}+\left(x+x^{2^{n / 2}}\right)^{2^{k}+1}
$$

for $n=4 t$. They have the subspace property of the Kim mapping.

Göloğlu's Candidates (1/2)

Göloğlu's introduced APN functions

$$
f_{k}: x \mapsto x^{2^{k}+1}+\left(x+x^{2^{n / 2}}\right)^{2^{k}+1}
$$

for $n=4 t$. They have the subspace property of the Kim mapping.
Unfortunately, f_{k} are not equivalent to permutations on $n=4,8$ and does not seem to be equivalent to one on $n=12$ (we say "it does not seem to be equivalent to a permutation" since checking the existence of CCZ-equivalent permutations requires huge amount of computing and is infeasible on $n=12$; our program was still running at the time of writing).

Göloğlu's Candidates (2/2)

n	cardinal proj.	time proj. (s)	time BasesExtraction (s)
12	1365	0.066	0.0012
16	21845	16.79	0.084
20	349525	10096.00	37.48

Time needed to show that f_{k} is not CCZ-equivalent to a permutation.

Outline

1 CCZ-Equivalence and Vector Spaces of 0

2 Function Twisting

3 Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

4 Conclusion

Plan of this Section

1 CCZ-Equivalence and Vector Spaces of 0

2 Function Twisting

3 Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

4 Conclusion

- Summary

■ Open Problems

Conclusion

- CCZ = EA + Twist, both of which have a simple interpretation.

Conclusion

■ CCZ $=\mathrm{EA}+$ Twist, both of which have a simple interpretation.

- Efficient criteria to know if a function is CCZ-equivalent to a permutation...

■ ... implemented using a very efficient vector space extraction algorithm (not presented)

The Fourier transform solves everything!

Open Problems

EA-equivalence

How can we efficiently check the EA-equivalence of two functions?

Open Problems

EA-equivalence

How can we efficiently check the EA-equivalence of two functions?
Conjecture
If the CCZ-class of a permutation P is not reduced to the EA-classes of P and P^{-1}, then P has the following decomposition

where both T and U are keyed permutations.

