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Definition (CCZ-Equivalence)

F : Fn
2 → Fm

2 and G : Fn
2 → Fm

2 are C(arlet)-C(harpin)-Z(inoviev) equivalent if

ΓG =
{
(x, G(x)), ∀x ∈ Fn

2

}
= L

({
(x, F(x)), ∀x ∈ Fn

2

})
= L(ΓF) ,

where L : Fn+m
2 → Fn+m

2 is an affine permutation.

Definition (EA-Equivalence; EA-mapping)

F and G are E(xtented) A(ffine) equivalent if G(x) = (B ◦ F ◦ A)(x) + C(x), where
A, B, C are affine and A, B are permutations; so that

{
(x, G(x)), ∀x ∈ Fn

2

}
=

[
A−1 0
CA−1 B

] ({
(x, F(x)), ∀x ∈ Fn

2

})
.

Affine permutations with such linear part are EA-mappings; their transposes are
TEA-mappings

What is the relation between functions that are CCZ- but not EA-equivalent?
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Admissible Mapping

For F : Fn
2 → Fm

2 , the affine permutation L is admissible for F if

L
(
{(x, F(x)) , ∀x ∈ Fn

2}
)
= {(x, G(x)) ,∀x ∈ Fn

2}

for a well defined function G : Fn
2 → Fm

2 .

Definition (LAT/Walsh Spectrum)

The L(inear) A(pproximation) T(able) of F : Fn
2 → Fm

2 is

WF(α, β) =
∑
x∈Fn

2

(−1)α·x+β·F(x) .
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Structure of this talk

0 - CCZ-Equivalence ; Bijectivity

1.1 - Vector spaces of zeroes
in LAT

1.2 - Partition CCZ-class
into EA-classes

2.1 -
t-twist

⊞

3.3 - Revisiting
known results

4.1 - CCZ-Equivalence
to a permutation

4.2 - Application
to APN functions
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Walsh Zeroes

For all F : Fn
2 → Fm

2 , we have

WF(α, 0) =
∑
x∈Fn

2

(−1)α·x+0·F(x) = 0.

Definition (Walsh Zeroes)

TheWalsh zeroes of F : Fn
2 → Fm

2 is the set

ZF = {u ∈ Fn
2 × Fm

2 ,WF(u) = 0} ∪ {0} .

With V = {(x, 0), ∀x ∈ Fn
2} ⊂ Fn+m

2 , we have V ⊂ ZF.

Note that if ΓG = L(ΓF), thenZG = (LT)−1(ZF).
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CCZ-Equivalence and Vector Spaces of 0
Function Twisting

Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
Conclusion

Vector Spaces of Zeroes
Partitioning a CCZ-Class into EA-Classes

Admissibility for F

Lemma
Let L : Fn+m

2 → Fn+m
2 be a linear permutation. It is admissible for F : Fn

2 → Fm
2

if and only if
LT(V) ⊆ ZF
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CCZ-Equivalence and Vector Spaces of 0
Function Twisting

Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
Conclusion

Vector Spaces of Zeroes
Partitioning a CCZ-Class into EA-Classes

Admissibility of EA-mappings

EA-mappings are admissible for all F : Fn
2 → Fm

2 :[
A 0
C B

]T

(V) =

[
AT CT

0 BT

]({[
x
0

]
, ∀x ∈ Fn

2

})
= V .

Theorem (Budaghyan, Carlet (2011))

The CCZ-class of a bent function contains only its EA-class.

Proof.

A function is bent

=⇒ no zeroes outside of V
=⇒ no vector spaces of zeroes other than V
=⇒ only 1 EA-class
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CCZ-Equivalence and Vector Spaces of 0
Function Twisting

Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
Conclusion

Vector Spaces of Zeroes
Partitioning a CCZ-Class into EA-Classes

Permutations

We define
V⊥ = {(0, y), ∀y ∈ Fm

2 } ⊂ Fn+m
2 .

Lemma
F : Fn

2 → Fm
2 is a permutation if and only if

V⊥ ⊂ ZF .

7 / 32



CCZ-Equivalence and Vector Spaces of 0
Function Twisting

Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
Conclusion

Vector Spaces of Zeroes
Partitioning a CCZ-Class into EA-Classes

EA-classes imply vector spaces

Lemma
let F, G and G′ be such that ΓG = L(ΓF) and ΓG′ = L′(ΓF).
If L(V) = L′(V), then G and G′ are EA-equivalent.

Can we use this knowledge to partition a CCZ-class into its EA-classes?

The Lemma gives us hope!

1 EA-class =⇒ 1 vector space of zeroes of dimension n inZn

Reality takes it back...

The converse of the lemma is wrong.
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CCZ-Equivalence and Vector Spaces of 0
Function Twisting

Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
Conclusion

Vector Spaces of Zeroes
Partitioning a CCZ-Class into EA-Classes

Counter-example

Let F : Fn
2 → Fn

2 be a permutation and let

Mn =

[
0 In
In 0

]
.

It holds that

ΓF−1 =
{
(x, F(x)) ,∀x ∈ Fn

2

}
=

{ (
F−1(y), (F ◦ F−1)(y)

)
, ∀y ∈ Fn

2

}
=

{ (
F−1(y), y

)
, ∀y ∈ Fn

2

}
= Mn(ΓF) .

The contradiction

If F is an involution then ΓF = ΓF−1 = Mn(ΓF)

=⇒ Mn(V) = V⊥ ̸= In(V)
... butMn and In send ΓF in the same EA-class

(namely that of F).
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Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
Conclusion

Vector Spaces of Zeroes
Partitioning a CCZ-Class into EA-Classes

Making the converse work (1/2)

Definition (CCZ-invariants)

The CCZ-invariants of F : Fn
2 → Fn

2 are the affine permutations L ofFn+n
2 such that

L(ΓF) = ΓF .

Examples

For an involution,Mn is a CCZ-invariant.

For a quadratic function q, there are CCZ-invariants with the following linear
parts: [

In 0
∆αq In

]
.
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2 , let:
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cF be the number of CCZ-invariants of F

eF be the number of EA-classes in the CCZ-class of F.

Then sF
cF

≤ eF ≤ sF .

Corollary

If cF = 1, then we do have a bijection between EA-classes and vector spaces of 0
of dimension n inZF.
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Definition of the Twist

Any function F : Fn
2 → Fm

2 can be projected on Ft
2 × Fm−t

2 .

T U

t n− t

t m− t

F

T−1

U

t n− t

t m− t

G

If T is a permutation for all secondary inputs, then we define the t-twist equivalent
of F as G, where

G(x, y) =
(
T−1
y (x),UT−1

y (x)(y)
)

for all (x, y) ∈ Ft
2 × Fn−t

2 .
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Examples of Twisting

Inversion is an n-twist.

Open and closed butterflies operating on n bits are obtained from another
with an (n/2)-twist.

Some degenerate cases exist for t = m and n = n.

T

m; n− m

m

t = m (start)

T−1

m n− m

m

t = m (end)

T U

n

m− nn

t = n (start)

T−1

U

n

m− nn

t = n (end)
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Swap Matrices

The swap matrix permuting Fn+m
2 is defined for t ≤ min(n,m) as

Mt =


0 0 It 0
0 In−t 0 0
It 0 0 0
0 0 0 Im−t

 .

It has a simple interpretation:

t n− t t m− t

For all t ≤ min(n,m),Mt is an orthogonal and symmetric involution.
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Swap Matrices and Twisting

F : Fn
2 → Fm

2

T U

t n− t

t m− t

t-twist

G : Fn
2 → Fm

2

T−1

U

t n− t

t m− t

ΓF =
{
(x, F(x)) ,∀x ∈ Fn

2

} Mt
ΓG =

{
(x, G(x)) ,∀x ∈ Fn

2

}
WF(u) = WG (Mt(u))
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Lemma
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CCZ = EA + Twist
Revisiting some Results

Main Result

Theorem
If F : Fn

2 → Fm
2 and G : Fn

2 → Fm
2 are CCZ-equivalent, then

ΓG = (B× Mt × A)(ΓF) ,

where A and B are EA-mappings and where

t = dim
(
projV⊥

(
(AT × Mt × BT)(V)

))
.

In other words, EA-equivalence and twists are sufficient to fully describe
CCZ-equivalence!

Corollary

If a function is CCZ-equivalent but not EA-equivalent to another function, then
they have to be EA-equivalent to functions for which a t-twist is possible.
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Proof sketch

1. As F is CCZ-equivalent to G, there is a linear permutation L : Fn+m
2 → Fn+m

2

such that
ΓG = L(ΓF) and L

T(V) ⊂ ZF .

2. Any vector space V of dimension n such that dim(projV⊥(V)) = t can be
written as

V = (AT × Mt)(V) ,

where A is an EA-mapping.
1+2. We deduce that LT(V) = (AT × Mt)(V) ⊂ ZF.

1+2+lem. As LT(V) = (AT × Mt)(V), the functions G and G′ such that ΓG = L(ΓF) and
ΓG′ = (AT × Mt)(ΓF) are EA-equivalent.
We conclude that

ΓG = (B× Mt × A)(ΓF) .
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Usage?

What can we do with this knowledge?
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The Twist
CCZ = EA + Twist
Revisiting some Results

Boolean Functions

Theorem (Budaghyan, Carlet (2011))

The CCZ-class of F : Fn
2 → F2 is limited to its EA-class.

Proof.

F is CCZ- but not EA-equivalent to some G

=⇒ F(x||y) = Ty(x), ∀(x, y) ∈ F2 × Fn−1
2 , where Ty is always a permutation ofF2

=⇒ F(x||y) = x⊕ f(y), ∀(x, y) ∈ F2 × Fn−1
2 ,

=⇒ 1-twisting F does not change the EA-class

=⇒ it is impossible to leave the EA-class of F
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The Twist
CCZ = EA + Twist
Revisiting some Results

Modular Addition (1/2)

Theorem (Schulte-Geers’13)

Addition modulo 2m is CCZ-equivalent to

q(x, y) = (0, x0y0, x0y0 + x1y1, ..., x0y0 + ...+ xn2yn2) ,

where Γ⊞ = L(Γq) with

L =

 Im 0 Im
0 Im Im
Im Im Im

 .

It holds that

L−1 =

 Im 0 0
Im Im 0
Im 0 Im


︸ ︷︷ ︸

A1

×

 0 0 Im
0 Im 0
Im 0 0


︸ ︷︷ ︸

Mm

×

 Im 0 0
Im Im 0
0 Im Im


︸ ︷︷ ︸

A2

.
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Modular Addition (2/2)

Lemma
Let T⊞z : Fm

2 → Fm
2 be defined by

T⊞z (x) =
(
x⊞ (x⊕ z)

)
⊕ (x⊕ z) .

T⊞z is a permutation for all z;

it is EA-equivalent to (x, y) 7→ x⊞ y;

(x, z) 7→ T⊞z (x) has algebraic degree m;

(x, z) 7→ (T⊞z )
−1(x) is quadratic!

Let v = T⊞z (x). Then:{
v0 = x0
vi+1 = xi + xi+1 + vizi

and, convertly,

{
x0 = v0
xi+1 = xi + vi+1 + vizi .
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Another Problem

How do we know if a function is CCZ-equivalent to a permutation?
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Remainder

Recall that F is a permutation if and only if V ⊂ ZF and V⊥ ⊂ ZF.

Lemma
G is CCZ-equivalent to a permutation if and only if

V = L(V) ⊂ ZG and V′ = L(V⊥) ⊂ ZG

for some linear permutation L. Note that

span
(
V ∪ V′

)
= Fn

2 × Fm
2 .
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3-Spaces Criteria

3-space criteria

Let F : Fn
2 → Fm

2 , not be a permutation. If it is CCZ-equivalent to a permutation
thenZF must contain at least 3 vector spaces of zeroes of dimension n.
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Projected Spaces Criteria

Key observation

The projections
p : (x, y) 7→ x and p′ : (x, y) 7→ y

mapping Fn
2 × Fm

2 to Fn
2 and Fm

2 respectively are linear.

Thus, If G is CCZ-equivalent to a permutation then p(V) and p(V′) are subspaces of
Fn
2 whose span is Fn

2 .

We deduce that dim (p(V)) + dim (p(V′)) ≥ n

Projected Spaces Criteria

If F : Fn
2 → Fm

2 is CCZ-equivalent to a permutation, then there are at least two
subspaces of dimension n/2 in p(ZF) and in p′(ZF).
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QAM

Yu et al. (DCC’14) generated 8180 8-APN quadratic functions from
“QAM” (matrices).

None of them are CCZ-equivalent to a permutation
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Göloğlu’s Candidates (1/2)

Göloğlu’s introduced APN functions

fk : x 7→ x2
k+1 + (x+ x2

n/2

)2
k+1

for n = 4t. They have the subspace property of the Kimmapping.

Unfortunately, fk are not equivalent to permutations on n = 4, 8 and
does not seem to be equivalent to one on n = 12 (we say “it does not
seem to be equivalent to a permutation” since checking the existence
of CCZ-equivalent permutations requires huge amount of computing
and is infeasible on n = 12; our program was still running at the time
of writing).
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Göloğlu’s Candidates (2/2)

n cardinal proj. time proj. (s) time BasesExtraction (s)

12 1365 0.066 0.0012

16 21845 16.79 0.084

20 349525 10096.00 37.48

Time needed to show that fk is not CCZ-equivalent to a permutation.
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Conclusion

CCZ = EA+ Twist, both of which have a simple interpretation.

Efficient criteria to know if a function is CCZ-equivalent to a permutation...

... implemented using a very efficient vector space extraction algorithm (not
presented)

The Fourier transform solves everything!
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Open Problems

EA-equivalence

How can we efficiently check the EA-equivalence of two functions?

Conjecture

If the CCZ-class of a permutation P is not reduced to the EA-classes of P and P−1,
then P has the following decomposition

T

U

t n− t

t n− t

where both T and U are keyed permutations.

32 / 32



CCZ-Equivalence and Vector Spaces of 0
Function Twisting

Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
Conclusion

Summary
Open Problems

Open Problems

EA-equivalence

How can we efficiently check the EA-equivalence of two functions?

Conjecture

If the CCZ-class of a permutation P is not reduced to the EA-classes of P and P−1,
then P has the following decomposition

T

U

t n− t

t n− t

where both T and U are keyed permutations.

32 / 32


	CCZ-Equivalence and Vector Spaces of 0
	Vector Spaces of Zeroes
	Partitioning a CCZ-Class into EA-Classes

	Function Twisting
	The Twist
	CCZ = EA + Twist
	Revisiting some Results

	Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
	Efficient Criteria
	Applications to APN Functions

	Conclusion
	Summary
	Open Problems


