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Definition (CCZ-Equivalence)
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where L : F)™™ — FJ%™ is an affine permutation.
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Definition (CCZ-Equivalence)

F:F) — FJ and G : F5 — 3 are C(arlet)-C(harpin)-Z(inoviev) equivalent if
M= {(x, G(x)),VxeF3} =1L ({(x, F(x)),Vx € F3}) = L(TF),

where L : T3 — 5™ is an affine permutation.

Definition (EA-Equivalence; EA-mapping)

Fand G are E(xtented) A(ffine) equivalent if G(x) = (B o F o A)(x) + C(x), where
A, B, Care affine and A, B are permutations; so that

{(x6(x)),¥x € F1} = { A0 } ({(x F(x)), vx € F2}) .

Affine permutations with such linear part are EA-mappings; their transposes are
TEA-mappings

What is the relation between functions that are CCZ- but not EA-equivalent?



Admissible Mapping

For F : ) — 7, the affine permutation L is admissible for F if

L( {(x,F(x)) ,Vx € IF;}) ={(x,6(x)),vx € F5}

for a well defined function G : F§ — FJ'.



Admissible Mapping
For F : ) — 7, the affine permutation L is admissible for F if
L({(x,F(x)),Vx € F3}) = {(x, 6(x)) ,Vx € F3}

for a well defined function G : F§ — FJ'.

Definition (LAT/Walsh Spectrum)

The L(inear) A(pproximation) T(able) of F : ] — 7' is

WF(Q7¢53) _ Z(_.I)uwx«h’i-F(x) )

XEF;
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Structure of this talk

0 - CCZ-Equivalence; Bijectivity

!

11 - Vector spaces of zeroes

CCZ = EA + twist

into EA-classes

21- in LAT
t-twist
EEH—/ H
32- 1.2 - Partition CCZ-class 41 - CCZ-Equivalence

to a permutation

!

3.3 - Revisiting
known results

!

4.2 - Application
to APN functions
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Outline

CCZ-Equivalence and Vector Spaces of 0
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Walsh Zeroes
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Wi(,0) = 3 (=1)"*7) = o.

XGF;
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Walsh Zeroes

Forall F: F — F7', we have

Vector Spaces of Zeroes

Wi(0,0) = 3 (=) = o,

x€IF)

Definition (Walsh Zeroes)

The Walsh zeroes of F : ] — 7' is the set

Z; = {ueFl x F?, Wx(u) = 0} U {0}

WithV = {(x,0),Vx € F3} C F;*", wehaveV C Z;.
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CCZ-Equivalence and Vector Spaces of 0

Vector Spaces of Zeroes

Walsh Zeroes

Forall F: F — F7', we have

Wi(0,0) = 3 (=) = o,

x€IF)

Definition (Walsh Zeroes)

The Walsh zeroes of F : ] — 7' is the set

Z; = {ueFl x F?, Wx(u) = 0} U {0}

WithV = {(x,0),Vx € F3} C F;*", wehaveV C Z;.

Note that if ' = L(I'), then Z5 = (L7)7(Z¢).

4/32



CCZ-Equivalence and Vector Spaces of 0

Vector Spaces of Zeroes

Admissibility for F

Lemma

LetL : F5™™ — 5™ be a linear permutation. It is admissible for F : T} — FT'
if and only if
L'(V) C 2¢
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EA-mappings are admissible forall F : ] — F7":

(oo [ 51 ({[a]wem)) -
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Admissibility of EA-mappings

EA-mappings are admissible forall F : ] — F7":
T
A0 AT T X "
o= s ({8 em)) -

Theorem (Budaghyan, Carlet (2011))
The CCZ-class of a bent function contains only its EA-class.
Proof.

A function is bent
— no zeroes outside of V

—> no vector spaces of zeroes other than VV
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CCZ-Equivalence and Vector Spaces of 0

ing Vector Spaces of Zeroes
Necessary and Efficient Conditions

Admissibility of EA-mappings

EA-mappings are admissible forall F : ] — F7":
T
A0 AT T X "
o= s ({8 em)) -

Theorem (Budaghyan, Carlet (2011))
The CCZ-class of a bent function contains only its EA-class.
Proof.

A function is bent
no zeroes outside of YV

no vector spaces of zeroes other than V

Ll

only 1 EA-class
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Vector Spaces of Zeroes

Permutations

We define
Vvt = {(0,y).Vy € Fy} C F3.

Lemma

F: F3 — F3 is a permutation if and only if

vicz.
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EA-classes imply vector spaces

Lemma

let F, Gand G’ be such that T = L(T'f) and Ty = L'(T¢).
IfL(V) = L'(V), then G and G’ are EA-equivalent.
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EA-classes imply vector spaces

Lemma
let F, Gand G’ be such that T = L(T'f) and Ty = L'(T¢).

IFL(V) = L/(V), then G and G’ are EA-equivalent.
Can we use this knowledge to partition a CCZ-class into its EA-classes?

The Lemma gives us hope!

1EA-class = 1vector space of zeroes of dimension nin Z,

Reality takes it back...

The converse of the lemma is wrong.



CCZ-Equivalence and Vector Spaces of 0

Function Twisting
CCZ-Equivalence to a Permutatior Partitioning a CCZ-Class into EA-Classes
onclusion

Counter-example

Let F : I} — I} be a permutation and let
0 I,
M, = .

(x, F(x)), VXGIF}

(F'(y), (Fo F)(y)),Vy € F3}
(F (y), ) VyGF”}

n(rF)

It holds that

{
{
{
M
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CCZ-Equivalence and Vector Spaces of 0

Partitioning a CCZ-Class into EA-Classes

Counter-example

Let F : I} — I} be a permutation and let
To
o]0 8]
(x,F(x)),Vx € F3}
—1

(F'(y), (Fo F)(y)),Vy € F3}
(F(y),y), Wy € FS}
).

It holds that

The contradiction

If Fisan involution then I'r = - = M, (Tf)
— M,(V) =V #1,(V)
.. but M, and I, send ¢ in the same EA-class
(namely that of F).
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Making the converse work (1/2)

Definition (CCZ-invariants)

The CCZ-invariants of F : F — [FJ are the affine permutations L of F5 ™" such that

L(Fe) =Tk.
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Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

Partitioning a CCZ-Class into EA-Classes

Making the converse work (1/2)

Definition (CCZ-invariants)

The CCZ-invariants of F : F — [FJ are the affine permutations L of F5 ™" such that

L(Fe) =Tk.

Examples

m Foraninvolution, M, is a CCZ-invariant.

m For a quadratic function g, there are CCZ-invariants with the following linear
parts:
I, 0
AV I P I
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Partitioning a CCZ-Class into EA-Classes

Making the converse work (2/2)

Theorem (Number of EA-classes)

For F : I} — FZ, let:
m sr be the number of vector spaces of dimension n in Z¢
m cr be the number of CCZ-invariants of F

m e bethe number of EA-classes in the CCZ-class of F.
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Partitioning a CCZ-Class into EA-Classes

Making the converse work (2/2)

Theorem (Number of EA-classes)

For F : I} — FZ, let:
m sr be the number of vector spaces of dimension n in Z¢
m cr be the number of CCZ-invariants of F

m e bethe number of EA-classes in the CCZ-class of F.

Then

— < e <sF.
Cr
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Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation Partitioning a CCZ-Class into EA-Classes

Making the converse work (2/2)

Theorem (Number of EA-classes)

For F : F5 — 7, let:
m sr be the number of vector spaces of dimension n in Z¢
m cr be the number of CCZ-invariants of F

m e bethe number of EA-classes in the CCZ-class of F.

Then

SF
— < e <sF.
Cr

Corollary

If c¢ = 1, then we do have a bijection between EA-classes and vector spaces of O
of dimension n in Zp.

n/32
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m The Twist
m CCZ = EA + Twist
m Revisiting some Results
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EA-equivalence is a simple sub-case of CCZ-Equivalence...
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The Twist

Necessary and Efficient Conditi

EA-equivalence is a simple sub-case of CCZ-Equivalence...

What must we add to EA-equivalence to fully describe CCZ-Equivalence?
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Definition of the Twist

Any function F : F; — " can be projected on IF5 x Y.

t n—t :I:t T n—t

71
> U V)
it —Iv—m—t Pt im—t
4
F G

If Tis a permutation for all secondary inputs, then we define the t-twist equivalent
of Fas G, where

JERY

G(Xay) = (T;1(X)7 UTY*W(X)(y))
forall (x,y) € F5 x F5~".
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cessary and Efficient Conditions for (

Examples of Twisting

m Inversion is an n-twist.
m Open and closed butterflies operating on n bits are obtained from another
with an (n/2)-twist.

m Some degenerate cases exist fort = mandn = n.

9 T4 T U
im im in im—n n im—n

t = m (start) t = m(end) t = n(start) t = n(end)

14/32
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Swap Matrices

The swap matrix permuting IB‘g“" is defined for t < min(n, m) as

0 I, 0 O
M =
t I, 0 0 ©
0 0 0 In
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The Twist

cessary and Efficient Conditions for

Swap Matrices

The swap matrix permuting IB‘;’“" is defined for t < min(n, m) as

0 I,. 0 O
M =
t I, 0 0 ©
0 0 Iyt

It has a simple interpretation:

Forall t < min(n, m), M; is an orthogonal and symmetric involution.

15/32
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cessary and Efficient Conditions for

Swap Matrices and Twisting

F:F} —FY

t-twist

G:F} —» FY
J:t + n—t
T—1
U

“—
3
|
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Swap Matrices and Twisting

Fil3 = F7 G:F) - Fp
t n—t it +n—t
t-twist
T—1
T < > U U
it im—t +t imit
£ 4
M,

Fe={(xFx),WeF}  ——  To={(x6(x),xeF}
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Swap Matrices and Twisting

F:F} —FY G:F} —» FY
t n—t J:t + n—t
t-twist
T—1
T < > U U

“—
“—
3
|
“—
3
|
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Necessary and Efficient Conditions for CCZ-Equivalen ) €Cz = EA+ Twist

Main Result

Theorem
IfF:F5 — F5 and G : FS — F4' are CCZ-equivalent, then

e = (Bx M, xA)TF),
where A and B are EA-mappings and where

t = dim (proj,. ((AT x M, x B)(V))) .

In other words, EA-equivalence and twists are sufficient to fully describe
CCZ-equivalence!
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CCZ = EA + Twist

cessary and Efficient Conditions for CCZ

Main Result

Theorem
IfF:F5 — F5 and G : FS — F4' are CCZ-equivalent, then

e = (Bx M, xA)TF),
where A and B are EA-mappings and where

t = dim (proj,. ((AT x M, x B)(V))) .

In other words, EA-equivalence and twists are sufficient to fully describe
CCZ-equivalence!

Corollary

If a function is CCZ-equivalent but not EA-equivalent to another function, then
they have to be EA-equivalent to functions for which a t-twist is possible.

18/32
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Proof sketch

1. As Fis CCZ-equivalent to G, there is a linear permutation L : F; ™" — T+
such that
rG = L(r;:) and LT(V) C ZF .
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CCZ = EA + Twist

Necessary and Efficient Conditions

Proof sketch

1. As Fis CCZ-equivalent to G, there is a linear permutation L : F; ™" — T+
such that
|_G = L(r;:) and LT(V) C ZF .

2. Any vector space V of dimension n such that dim(projy,. (V)) = t can be
written as
V= (ATxM)(V),

where A is an EA-mapping.
1+2. We deduce that L(V) = (AT x M,)(V) C Z-.
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CCZ = EA + Twist

Proof sketch

1+2.
1+2+lem.

As F is CCZ-equivalent to G, there is a linear permutation L : F; ™" — T+
such that
|_G = L(r;:) and LT(V) C ZF .

Any vector space V of dimension n such that dim(proj,, . (V)) = t can be
written as

V= (ATxM)(V),

where A is an EA-mapping.
We deduce that LT(V) = (A7 x M;)(V) C Z-
AsLT(V) = (AT x M;)(V), the functions G and G’ such that ['; = L(I'¢) and
M = (AT x M,)(T¢) are EA-equivalent.
We conclude that
e =(8x M xA)TF).
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and Efficient Conditi CCZ-Equivalence to a Permutatior

elucion Revisiting some Results

Usage?

What can we do with this knowledge?
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The CCZ-class of F : F} — IF; is limited to its EA-class.
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Function Twisting

Necessary and Efficient Conditions for CCZ-Equivale T

Revisiting some Results

Boolean Functions

Theorem (Budaghyan, Carlet (2011))

The CCZ-class of F : F] — TF; is limited to its EA-class.

Proof.

Fis CCZ- but not EA-equivalent to some G
— F(x|ly) = T,(x),V(x,y) € F> x F3~", where T, is always a permutation of IF;
= F(xlly) = x®f(y),¥(x,y) € F x F3 ",
— T-twisting F does not change the EA-class
—> itisimpossible to leave the EA-class of F
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to a Permutatior
onclusion

Revisiting some Results

Modular Addition (1/2)

Theorem (Schulte-Geers'13)
Addition modulo 2™ is CCZ-equivalent to

g(x,y) = (0, xoy0, XoYo + X1¥1, ..., XoYo +

where ['g = L([) with

+Xn2yn2) bl
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Revisiting some Results

Modular Addition (1/2)

Theorem (Schulte-Geers'13)

Addition modulo 2™ is CCZ-equivalent to

Q(X»Y) = (07X0y07X0y0 +X'Iy1u .-+, X0Yo + +Xn2yn2) )

where ['g = L([) with

It holds that
lnm 0 O 0 0 Iy Ilm 0 O
L7'=1| 1y I, O |x| 0 1, 0 |x| Iy In O
lm 0 Inp ln, 0 O 0 In In
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Modular Addition (2/2)

Lemma
Let TP : F7' — Y be defined by

T2(x) = xBExa2)e(xaz).
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Lemma
Let TP : F7' — Y be defined by

T2(x) = xBExa2)e(xaz).

[ TZEa is a permutation for all z;

m itis EA-equivalent to (x,y) — x B y;
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Lemma
Let TP : F7' — Y be defined by

T2(x) = xBExa2)e(xaz).

[ TEB is a permutation for all z;

m itis EA-equivalentto (x,y) — xBy;

m (x,2) — TH(x) has algebraic degree m;
w (x,2) = (T8)7"(x) is quadratic!
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Modular Addition (2/2)

Lemma
Let TP : F7' — Y be defined by

T2(x) = xBExa2)e(xaz).

[ TEB is a permutation for all z;

m itis EA-equivalentto (x,y) — xBy;

m (x,2) — TH(x) has algebraic degree m;
w (x,2) = (T8)7"(x) is quadratic!

z

Let v = T3 (x). Then:

Vo = Xo Xo = Vo
and, convertly,
Vigr = X + Xip + Vizi Xit1 = Xj + Vi1 + Vviz; .
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Another Problem

How do we know if a function is CCZ-equivalent to a permutation?
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Remainder

Recall that F is a permutation if and only if V C Zrand V*+ C Z;.
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Function T Efficient Criteria

Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
Conclusion

Remainder

Recall that F is a permutation if and only if V C Zrand V*+ C Z;.

Lemma

G is CCZ-equivalent to a permutation if and only if
V=L(V)C Z;and V = L(V!) C Z;

for some linear permutation L. Note that

span(VU V') =T} x Fy'.
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Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
Conclusion

3-Spaces Criteria

3-space criteria

Let F : F] — 7", not be a permutation. If it is CCZ-equivalent to a permutation
then Z; must contain at least 3 vector spaces of zeroes of dimension n.
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onclusion

Projected Spaces Criteria

Key observation

The projections
p:(xy)—xandp :(xy)—y

mapping F7 x 3" to F5 and 3’ respectively are linear.
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The projections
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mapping F7 x 3" to F5 and 3’ respectively are linear.
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Necessary and Efficient Conditions for CCZ-Equivalence to a Permutat

Projected Spaces Criteria

Key observation

The projections
p:(xy)—xandp :(xy)—y

mapping F7 x 3" to F5 and 3’ respectively are linear.

Thus, If G is CCZ-equivalent to a permutation then p(V) and p(V’) are subspaces of
F3 whose span is 5.

We deduce that dim (p(V)) 4 dim (p(V)) > n

Projected Spaces Criteria

If F: F) — IF7" is CCZ-equivalent to a permutation, then there are at least two
subspaces of dimension n/2 in p(Z¢) and in p’(Z5).
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QAM

Yu et al. (DCC'14) generated 8180 8-APN quadratic functions from
“QAM” (matrices).
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Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation Applications to APN Functions

QAM

Yu et al. (DCC'14) generated 8180 8-APN quadratic functions from
“QAM” (matrices).

None of them are CCZ-equivalent to a permutation
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Gologlu's Candidates (1/2)
Go6loglu's introduced APN functions

k n/2 . 5k
foox= X4 (x+ 27 )2

for n = 4t. They have the subspace property of the Kim mapping.

29/32



Applications to APN Functions

Gologlu's Candidates (1/2)

Go6loglu's introduced APN functions
) 241 2"/2\2 1
foox—=x T+ (x+x)
for n = 4t. They have the subspace property of the Kim mapping.

Unfortunately, f, are not equivalent to permutations on n = 4, 8 and
does not seem to be equivalent to one on n = 12 (we say "“it does not
seem to be equivalent to a permutation” since checking the existence
of CCZ-equivalent permutations requires huge amount of computing
and is infeasible on n = 12; our program was still running at the time
of writing).
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Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

Applications to APN Functions

Gologlu's Candidates (2/2)

n  cardinal proj. time proj. (s) timeBasesExtraction (s)

12 1365 0.066 0.0012
16 21845 16.79 0.084
20 349525 10096.00 3748

Time needed to show that f; is not CCZ-equivalent to a permutation.
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Conclusion

m CCZ = EA + Twist, both of which have a simple interpretation.
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Summary

cessary and Efficient Conditions for CCZ-Equivale 0 a Permutation
Conclusion

Conclusion

m CCZ = EA + Twist, both of which have a simple interpretation.
m Efficient criteria to know if a function is CCZ-equivalent to a permutation...

m .. implemented using a very efficient vector space extraction algorithm (not
presented)

The Fourier transform solves everything!
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Open Problems

Conclusion

Open Problems

EA-equivalence

How can we efficiently check the EA-equivalence of two functions?
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Conclusion

Open Problems

EA-equivalence

How can we efficiently check the EA-equivalence of two functions?

Conjecture

If the CCZ-class of a permutation P is not reduced to the EA-classes of Pand P,
then P has the following decomposition

:I:t I+ n—t

V)
Tt in—t
Vv

where both Tand U are keyed permutations.
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