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As Henri Poincaré once remarked, "solution of a mathematical problem" is a phrase of

inde�nite meaning. Pure mathematicians sometimes are satis�ed with showing that the

non-existence of a solution implies a logical contradiction, while engineers might consider

a numerical result as the only reasonable goal. Such one sided views seem to re�ect

human limitations rather than objective values. In itself mathematics is an indivisible

organism uniting theoretical contemplation and active application. This address will deal

with a topic in which such a synthesis of theoretical and applied mathematics has become

particularly convincing.

R. Courant, 1943
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Abstract

Space-Time Discretization of Elasto-Acoustic Wave Equations in

Polynomial Tre�tz-DG Bases

by Elvira Shishenina

Discontinuous Finite Element Methods (DG FEM) have proven �exibility and accuracy

for solving wave problems in complex media. However, they require a large number of

degrees of freedom, which increases the corresponding computational cost compared with

that of continuous �nite element methods.

Among the di�erent variational approaches to solve boundary value problems, there

exists a particular family of methods, based on the use of trial functions in the form of

exact local solutions of the governing equations. The idea was �rst proposed by Tre�tz in

1926 [103], and since then it has been further developed and generalized. A Tre�tz-DG

variational formulation applied to wave problems reduces to surface integrals that should

contribute to decreasing the computational costs.

Tre�tz-type approaches have been widely used for time-harmonic problems, while their

implementation for time-dependent simulations is still limited. The feature of Tre�tz-DG

methods applied to time-dependent problems is in the use of space-time meshes. Indeed,

standard DG methods lead to the construction of a semi-discrete system of ordinary

di�erential equations in time which are integrated by using an appropriate scheme. But

Tre�tz-DG methods applied to wave problems lead to a global matrix including time and

space discretizations which is huge and sparse. This signi�cantly hampers the deployment

of this technology for solving industrial problems.

In this work, we develop a Tre�tz-DG framework for solving mechanical wave prob-

lems including elasto-acoustic equations. We prove that the corresponding formulations

are well-posed and we address the issue of solving the global matrix by constructing

an approximate inverse obtained from the decomposition of the global matrix into a

block-diagonal one. The inversion is then justi�ed under a CFL-type condition. This

idea allows for reducing the computational costs but its accuracy is limited to small

computational domains.

According to the limitations of the method, we have investigated the potential of Tent

Pitcher algorithms following the recent works of Gopalakrishnan et al. in [51, 52]. It
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consists in constructing a space-time mesh made of patches that can be solved indepen-

dently under a causality constraint. We have obtained very promising numerical results

illustrating the potential of Tent Pitcher in particular when coupled with a Tre�tz-DG

method involving only surface terms. In this way, the space-time mesh is composed of

elements which are 3D objects at most. It is also worth noting that this framework

naturally allows for local time-stepping which is a plus to increase the accuracy while

decreasing the computational burden.
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Abstract

Discrétisation Espace-Temps d'Équations d'Ondes Élasto-Acoustiques

Formulées dans des Bases Tre�tz-DG Polynomiales

par Elvira Shishenina

Les méthodes d'éléments �nis de type Galerkine discontinu (DG FEM) ont démontré

précision et e�cacité pour résoudre des problèmes d'ondes dans des milieux complexes.

Cependant, elles nécessitent un très grand nombre de degrés de liberté, ce qui augmente

leur coût de calcul en comparaison du coût des méthodes d'éléments �nis continus.

Parmi les di�érentes approches variationnelles pour résoudre les problèmes aux limites,

se distingue une famille particulière, basée sur l'utilisation de fonctions tests qui sont

des solutions locales exactes des équations à résoudre. L'idée vient de E.Tre�tz en 1926

[103] et a depuis été largement développée et généralisée. Les méthodes variationnelles

de type Tre�tz-DG appliquées aux problèmes d'ondes se réduisent à des intégrales de

surface, ce qui devrait contribuer à réduire les coûts de calcul.

Les approches de type Tre�tz ont été largement développées pour les problèmes har-

moniques, mais leur utilisation pour des simulations en domaine transitoire est encore

limitée. Quand elles sont appliquées dans le domaine temporel, les méthodes de Tre�tz

utilisent des maillages qui recouvrent le domaine espace-temps. C'est une des paraticular-

ités de ces méthodes. En e�et, les méthodes DG standards conduisent à la construction

d'un système semi-discret d'équations di�érentielles ordinaires en temps qu'on intègre

avec un schéma en temps explicite. Mais les méthodes de Tre�tz-DG appliquées aux

problèmes d'ondes conduisent à résoudre une matrice globale, contenant la discrétisation

en espace et en temps, qui est de grande taille et creuse. Cette particularité gêne consid-

érablement le déploiement de cette technologie pour résoudre des problèmes industriels.

Dans ce travail, nous développons un environnement Tre�tz-DG pour résoudre des prob-

lèmes d'ondes mécaniques, y compris les équations couplées de l'élasto-acoustique. Nous

prouvons que les formulations obtenues sont bien posées et nous considérons la di�culté

d'inverser la matrice globale en construisant un inverse approché obtenu à partir de la

décomposition de la matrice globale en une matrice diagonale par blocs. Cette idée

permet de réduire les coûts de calcul mais sa précision est limitée à de petits domaines

de calcul. Etant données les limitations de la méthode, nous nous sommes intéressés au

potentiel du "Tent Pitcher", en suivant les travaux récents de Gopalakrishnan et al. dans
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[51, 52]. Il s'agit de construire un maillage espace-temps composé de macro-éléments qui

peuvent être traités indépendamment en faisant une hypothèse de causalité. Nous avons

obtenu des résultats préliminaires très encourageants qui illustrent bien l'intérêt du Tent

Pitcher, en particulier quand il est couplé à une méthode de Tre�tz-DG formulée à par-

tir d'intégrales de surface seulement. Dans ce cas, le maillage espace-temps est composé

d'éléments qui sont au plus de dimension 3. Il est aussi important de noter que ce cadre

se prête à l'utilisation de pas de temps locaux ce qui est un plus pour gagner en précision

avec des coûts de calcul réduits.
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Chapter 1

Introduction

The systematic collection and analysis of geophysical data is called geophysical survey.

Geophysical signals transmitted into the Earth interior are the main tool used by geo-

physicists. Detection and analysis of these signals are the core parts of geophysical signal

processing. In industrial applications they permit a �ne mapping of the Earth's structure

and serve as a workhorse of the search for natural resources, such as oil, gas, or minerals.

1.1 Seismic survey

The main form of geophysical survey is the seismic survey. This method is in fact very

close to the ultrasound techniques used in medicine and in a number of other applications.

Sea�oor

Geological strata

GPS navigation

Source Receiver array

Figure 1.1: Ocean Bottom Seismic Data Acquisition (OBSDA).

The sources of pressure waves can be di�erent, depending on the surrounding media:

for example, compressed air in �uid, and a vibrator, or explosive in solid media. Waves

1
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created by those techniques are re�ected at the interfaces between media layers with

di�erent geological properties and recorded by a grid of on-surface detectors: the receiver

array (�gure 1.1). The acquired data is subjected to numerical analysis, that converts

it into a seismic image. This image can be two, three, or four dimensional (in the later

case the fourth dimension traces �uid distribution as a function of survey data) [6].

Both the processing and analysis require not only big computational power, but also

very sophisticated software that brings together knowledge in mathematics, physics and

numerical methods

1.1.1 Seismic wave classi�cation

Depending on the propagation type, the seismic waves are grouped into the direct, re-

�ected, refracted and surface waves. The �rst three types form body waves, which

propagate through the entire body, while the surface waves travel only along the surface

of the medium. According to the relative direction of local disturbance, the body waves

can be of P - or S - type (�gure 1.2).

P -wave propagation

Particle motion

S-wave propagation

Particle motion

Figure 1.2: Two di�erent types of body waves: P - and S-waves.

P - motion corresponds to compression and dilation which are directed in the same

direction as the wave propagation (along the raypath). This special type of elastic waves

is called also an acoustic or pressure wave [6, 25]. It travels faster in materials, so the P

- wave is the �rst-arriving energy on a seismogram. The P - wave is generally of higher

frequency than S - and surface waves.

S - motion corresponds to a transverse motion (perpendicular to the direction of propa-

gation, and the raypath). S - waves do not travel through �uids, so do not exist in air

or water.

The velocities of P - and S - waves (VP and VS respectively) are determined by the

material properties called elastic constants (or modulus) [25].

The surface waves also include several di�erent types including Love and Rayleigh waves

(�gure 1.3).
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Love wave propagation

Particle motion

Rayleigh wave propagation

Particle motion

Figure 1.3: Two di�erent types of surface waves: Love and Rayleigh waves.

Love waves are characterized by a transverse horizontal motion, perpendicular to the

direction of propagation and, generally, parallel to the Earth's surface. Their amplitude is

maximum at the surface and decreases as a function of depth. Love waves are dispersive,

that is, the wave velocity is dependent on frequency, with low frequencies normally

propagating at higher velocity. The depth of penetration of Love waves is also dependent

on frequency: lower frequencies correspond to greater depths [25].

Rayleigh motion goes in both directions: direction of propagation and perpendicular to

it (in a vertical plane). Rayleigh waves are also dispersive and the amplitudes generally

decrease with depth in the Earth [25].

1.1.2 Basic numerical methods

Seismic imaging is a classical example of an inverse problem in mathematics. It is

called an inverse problem because it starts with the results (receiver data) and then

calculates the causes (medium parameters). Mathematically, the inverse problems are

usually ill-posed, and their solution is based on iterative reconstruction, with multiple

solutions of the corresponding forward problem at each iteration. Thus the performance

of inverse problem solvers depend signi�cantly on the e�ciency of the solver used for the

corresponding forward problem.

Modern computing e�ciency has increased to a state where we can compute wave �eld

simulations for realistic 3D models described by parameters of interest provided by seis-

mologists and engineers. Nevertheless, at this stage it is still important to have a good

mathematical interpretation of the physical mechanism. A proper method will not only

improve the modelling accuracy, but also would give a better mastery of the characteri-

zation of the mechanism itself.

Currently, the most popular numerical methods are the grid-based techniques, which

interpolate the wave �eld on a grid of 3D points, for example: Finite Di�erence Method

(FDM), Finite Volume Method (FVM), Finite Element Method (FEM), Spectral Method
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(SM) and others. In general, the main di�erences between the methods lay in the way

they represent the exact solution by an approximate one, and in the way this approximate

solution satis�es the Partial Di�erential Equation (PDE). The most widely known FDM,

FEM and FVM are all techniques used to derive discrete representation of the spatial

derivative operators. Moreover, when adding a time variable, we can address a wide

variety of methods for integrating the ordinary di�erential equations [58].

For a more general description and a better understanding of the construction of a

method we provide below some common steps of a standard approximation procedure.

We consider an Initial Boundary Value Problem (IBVP) in a bounded Lipschitz domain

Q as follows: Lv = f in Q,

Dv = g on ∂Q,
(1.1)

where the linear operator L can be decomposed into a product of matrices L ≡ STOS,

and O is a symmetric, positively de�ned matrix.

We suppose the solution v of the problem (1.1) can be approximated by the linear

combination of basis functions φi,i=1,n in Q as vh =
∑n

i=1 aiφi. The coe�cients ai,i=1,n

remain unknown, and computing them requires building a special weighted residual form

for the initial problem. Thanks to this form, all the unknown parameters can be obtained

by solving a system of algebraic equations [112].

Replacing v in the (1.1) by its approximate expression, we obtain volume and boundary

integrals - residuals, which can be written using the weighting or "test" functions ωi,i=1,n

in Q and ωi,i=1,n at the boundaries ∂Q in the following form:∫
Q
W T (L(aΦ)− f)dQ+

∫
∂Q
W

T
(D(aΦ)− g)d ∂Q = 0, (1.2)

or after regrouping:

Λa = b. (1.3)

Here Λ =
∑

K ΛK possesses the �nite element properties (K represents the domain

discretization).

Thus, considering a di�erent choice of the trial basis Φ ≡ φi,i=1,n and test basis W ≡
ωi,i=1,n functions provides the multiple approximation procedures [7, 112].

Table 1.1 represents the choice of basis and test functions for some widely-known numer-

ical methods.
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Numerical Basis function Test function
method Φ ≡ φi,i=1,n W ≡ ωi,i=1,n

de�ned on a local basis (small support);
FEM W = Φ = −W symmetric Λ is obtained by integration by

(Galerkin) parts, thus, continuity requirements for
self-adjoint problem are reduced

SM as in FEM de�ned by series of trigonometric functions
or hierarchical polynomials, etc.

FDM φi = δi(ai), i = 1, n often discontinuous and needs high-order
δ - is Dirac function di�erentiability; collocation process

FVM as in FDM ωi = I in Qi; ωi = 0 elsewhere (i = 1, n);
subdomain collocation

variational formulation:∫
∂I
WT (t− t)d ∂I +

∫
∂Ω
WT (v − v)d ∂Ω) = 0,

LΦ = 0 - satisfy v and t are prescribed on ∂Ω and ∂I,
the governing equation where ∂Ω ∪ ∂I = ∂Q;

Tre�tz-DG in homogeneous sense; �exible choice for W ≡ ωi,i=1,n

variational formulation can be used in applications with:
remain on boundary (a) collocation point or subdomain

(non-symmetric Λ);
(b) least squares (symmetric Λ);
(c) Galerkin (symmetric Λ)

Table 1.1: Basis and test function choice in widely-used numerical methods [112].

We can see from the table 1.1 that Tre�tz methods result in a reduction of the number

of integration terms in a variational formulation as they must be computed only at

the boundaries. However, the global matrices are full, since the functions Φ need to be

de�ned over the whole domain. We will return in details to the de�nition and application

of the Tre�tz type approximations in chapter 3.

Table 1.2 summarizes general properties of these methods underlining their advantages

and drawbacks. Here, "+" represents success, "-" indicates a weakness in the method,

and "(+)" re�ects that the method with modi�cations is capable of solving such problems

but remains a less natural choice [19].

In the context of the collaborative research program Depth Imaging Partnership (DIP)

between Inria and Total, the team-project Magique-3D and the Prospective Lab of Hous-

ton develop high-order numerical schemes based mostly on discontinuous �nite element
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Numerical Complex High-order Explicit semi- Conservation Elliptic
method geometries accuracy and discrete form laws problems

hp-adaptivity

FDM - + + + +
FVM + - + + (+)
FEM + + - (+) +
DG FEM + + + + (+)

Table 1.2: Generic properties of the most widely used numerical methods [58].

approximation of wave �elds. The Discontinuous Galerkin (DG) technique is preferred

because it can take into account geometrical and physical features of the environment,

and it is well-adapted for parallel computation [11, 58] (see table 1.2). Recently it has

been implemented for coupled elasto-acoustic problems, which led to the development of

new propagators in time and frequency domains [14, 108].

As was previously mentioned, when compared to the conventional methods based on

conforming approximation, the number of degrees of freedom required for achieving a

given level of accuracy is higher for DG methods than for conforming ones.

To reduce the cost gap between continuous and discontinuous methods, Hybridizable

Discontinuous Galerkin (HDG) methods have been developed and their integration into

DIP is under way for both acoustic and elastic domains, with the possibility of numerical

coupling (see [70] and references therein).

Another idea to explore consists in using Tre�tz approximation space, whose elements

are themselves discrete local solutions of the Acoustic System (AS) and Elastodynamic

System (ES) [57, 103].

By its construction, the Tre�tz method reduces degrees of freedom, since it requires

computing only surface integrals to build a variational formulation. We may consider

the following advantages of Tre�tz method compared to the standard ones: better order

of convergence, �exibility in the choice of basis functions, low dispersion, adaptivity and

local space-time mesh re�nement [57, 103].

It is worth mentioning that most of the studies involving Tre�tz approximations consider

stationary problems. Time-dependent equations raise a additional di�culty related to

the time integration. The use of space-time meshes is then required, easing the imple-

mentation of Tre�tz approximation in the time-domain.
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1.2 Plan of the thesis

This work contains four main parts.

Chapter 2 deals with the history of the development of numerical methods for physical

systems, addressing the ideas and techniques in the context of increasing computer per-

formance since the Rayleigh-Ritz variational technique, the Tre�tz approach and the rise

of discontinuous �nite element methods.

Chapter 3 is devoted to the development and theoretical analysis of Tre�tz-DG method

applied to the acoustic, elastodynamic and elasto-acoustic wave propagation systems. A

priori error estimates in mesh-dependent norms proves the well-posedness of the acoustic,

elastodynamic and elasto-acoustic variational problems, con�rming, thus, the existence

and uniqueness of the numerical solution. In this chapter we also provide the details of

numerical implementation of the algorithm, discuss the choice of basis functions and the

optimization techniques corresponding to the global sparse matrix inversion.

The results of numerical tests are presented in chapter 5. We validate the numeri-

cal method thanks to some comparisons with analytical solutions obtained with the

Gar6more2D code [1].

In chapter 6 we investigate the implementation of the variational formulation in tent-

pitching meshes following the approach proposed by Gopalakrishnan et al. in [51, 52].

In conclusion we review our results and discuss the possible perspectives of this work.
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Chapter 2

Overview of Tre�tz-DG methods

The last twenty years have seen tremendous progresses in scienti�c computing which has

certainly boosted the development of advanced numerical methods for solving PDEs.

Regarding the solution of wave problems set in real domains, the use of high-order

methods allows accurate wave�elds to be obtained. In the framework of this thesis, we

focus on numerical methods based on discontinuous �nite element formulations set in

Tre�tz approximation spaces. The objective is to develop software for solving elasto-

acoustic wave problems with the same accuracy as when using standard DG methods

but involving less computational burden.

Modern numerical analysis, as well as the practical use of the variational techniques

for realistic models, can be credibly said to have been stimulated by the increasing

performance of computers. Moreover these methods have a much longer and richer

history.

In this chapter we provide a historical account of the development of what we call a

Tre�tz-DG method and its application to the di�erent classes of problems of numerical

analysis.

It is worth noting that this chapter is inspired by the work of Martin J. Gander et al.

[48] and Bernardo Cockburn [28] in which we have found very interesting information

on Tre�tz methods. In the following, we present Tre�tz approximation methodology

in the framework of DG �nite elements. Moreover, as a preamble, we summarize the

main achievements leading to the �nite element methodology that is widely employed by

engineers for solving real problems.

9
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2.1 Rayleigh - Ritz method: the origin of �nite elements

Lord Rayleigh and Walter Ritz, who independently presented the early results on what

will be later known as the �nite element method, are nowadays considered as the founders

of the subject. In the "Theory of sound" [91], Lord Rayleigh formulated the premises of

the �nite element method including its implementation. This work was followed by two

publications of Walter Ritz [95, 96] in 1908 - 1909, where the method was applied to the

calculation of nodal lines of a vibrating plate. These works have a clear practical interest

and are based on theoretical works formerly carried out by Gauss and Thompson who

highlighted the fundamental link between the variational calculus and the solution of a

boundary value problem governed by PDEs.

The �rst half of the 20th century saw the rapid development of the �nite element method

which was triggered by breakthrough methodologies of Ritz in [94] and [48] meant for

solving the longstanding engineering problem of calculating Balmer series.

The only comment that probably has to be added on this �rst stage of the history of

FEM evolution is the story of the founders themselves, in particular of Walter Ritz. It is

di�cult not to notice that till the recent times there was a huge imbalance between his

contribution and the appearance of his name in citations of the main scienti�c publica-

tions of the area. Moreover, the name of the method, "Rayleigh-Ritz", dates back only

to the 2000's, while the earlier articles cites it as the "Rayleigh" method.

This evident silencing of Ritz's name is easy to understand by recalling the non-scienti�c

part of the history that went in parallel with the evolution of FEM: since the �rst

publications, he was accused by Rayleigh of plagiarism [92] and these accusations were

widely supported by the scienti�c community. Only in 2005, Leissa showed in his study

[74] that Walter Ritz carried out his studies independently and the huge mistake was

corrected. From that time, even though the �rst article was that of Rayleigh, the method

is named after both scientists so as to honor the author who dedicated his life to the

subject but found very little recognition during his life [48].

2.2 The dawn of variational methods: the impact of Timo-

shenko, Bubnov and Galerkin

As the theory introduced and developed by Rayleigh and Ritz had direct applications, it

has attracted the interest not only of pure academics, but even at a bigger scale that of

engineers, who were looking for more convenient mathematical tools for solving practical

problems that had arisen in the beginning of the 20th century. The implementation of
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FEM has made huge progress thanks to the works of engineers during the pre-revolution

Russian Empire.

2.2.1 Stephen Timoshenko

Stephen Timoshenko, a professor of Kyiv Politechnic Institut, was probably the �rst

to realize the importance of the Rayleigh-Ritz method. While giving courses in the

institute, he actively explored the Rayleigh-Ritz approach, and applied it later to the

buckling problem in his famous textbook "Strength of materials" [102].

It is interesting to note that, while he was inspirited initially by Rayleigh's "Theory of

sound" [91], he was however one of few researchers who gave credit to Walter Ritz citing

him in [101] as a reference for the mathematical description of the method.

Later on, Timoshenko was �red from the institute by the minister of education because of

his political activity. Then he moved to Saint-Petersburg where he continued his work on

the buckling problem and he developed the theory of elasticity and the theory of beam

de�ection. In Saint-Petersburg he met other colleagues-engineers: Bubnov, Galerkin,

Krylov and Kuteinikov. During these years, in his publications which addressed common

engineering problems, he continued to exploit and develop the Rayleigh-Ritz method thus

promoting it even further as a powerful tool for engineering calculations.

2.2.2 Ivan Bubnov

The works of Timoshenko had inspired a lot of engineers to implement the Rayleigh-Ritz

method in their domains of application. One of them, Ivan Bubnov, a naval engineer

who earlier participated in the construction of the �rst Russian submarine, decided to

apply the method to ship building.

In 1908, after achieving the position of head of the Institute of Marine Research in Saint-

Petersburg, he started to work on the design of the military ships. In 1911, in his work

"Structural mechanics applied to ships" [24], he applied for the �rst time the modi�ed

Rayleigh-Ritz approach to considerably simplify the calculation procedure: he directly

substituted the expansion for the solution into the di�erential equation, then multiplied

the obtained expression by φidx and then integrated over the domain [23, 48]. While he

proposed to use a set of orthogonal trigonometric functions φi, still it was a great step

forward in the development of the FEM.
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2.2.3 Boris Galerkin

Boris Galerkin, an experienced railway engineer, has followed an industrial career path

from an engineer on a plant in Kharkov to a position of a steam machine plant director.

However, his political activities, notably the labor rights movement, resulted in an arrest

in 1906, which has completely changed his life. While in prison, Galerkin decided to

abandon his political activities and to dedicate his life to the research. At that time

the legal system favored such decisions and during the sentence Galerkin managed to

continue the work as an engineer and even to publish his scienti�c works.

After his imprisonment, Galerkin went on to explore the ongoing research in Europe,

in particular visiting Switzerland where he probably met Walter Ritz, as later he cited

his publications and even preferred to refer to the Rayleigh-Ritz method as the "Ritz

method" [48].

In his famous publication of 1915 [46], that is now cited every time when referring to

the Galerkin or Ritz-Galerkin method, he used a similar approach as Bubnov, and he

introduced the notion of a mass matrix showing that the chosen set of basis functions

do not have to be orthogonal and mentioning that the minimization principle applied by

Bubnov can be omitted.

Gathering each of the contributions of Raileigh, Ritz, Timoshenko, Bubnov and Galerkin

leads to the statement of the Galerkin method. According to the large number of con-

tributors, it is quite surprising that only the name of Galerkin has been kept. It is very

likely that the method has been baptized Galerkin after it had been disseminated in

the engineering comunity by Galerkin who delivered a document, including a simpli�ed

setting, on the methodology illustrated by numerous application showcases.

2.3 Tre�tz approach

The Tre�tz approach provides an alternative to the variational approach proposed by

Rayleigh and Ritz. The original idea was published in 1926 [103] by Erich Tre�tz, a

German mathematician and a professor in engineering mechanics of TH Dresden. In his

article, the author proposed to use a basis composed of continuous functions which satisfy

the homogeneous PDE of interest. Later, this formulation was modi�ed as to search the

solution in the form of a boundary integral with the use of the Green functions of the

corresponding partial di�erential equation. The later formulation leads to the solution

of a singular-kernel integral [112], that is, as it was pointed out in [113], very similar to

the Boundary Element Method (BEM).
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The Tre�tz method consists in using a basis of Green functions which is very convenient as

it easily overcomes the di�culties that may arise for other similar techniques, notably the

need to deal with complex operations and non-symmetric linear systems [113]. Moreover,

as the trial functions do not need to satisfy the boundary conditions, there is naturally

more freedom in their choice.

The further achievements that linked the Tre�tz method with the conventional �nite

element schemes were introduced by Quinlan [89, 90] and Jirousek [64�66]. The resulting

approach initially called the "hybrid Tre�tz method", nowadays appears under the name

of the "Tre�tz method" and becoming a promising branch of modern numerical methods

[112].

Many authors have worked on the Tre�tz approach and on the choice of the corresponding

basis functions (see [56, 57] and references therein). The most recent developments were

concentrated mainly on the practical aspects of its coupling with the FEM [112].

2.4 Discontinuous Galerkin method

The Discontinuous Galerkin Method, or simply DG method, is a technique that was

developed in the 1970s in the global context of ensuring energy and moment conservation

for the Galerkin approach. For hyperbolic equations, the DG method was applied �rst

in 1973 by Reed and Hill in [93], while for elliptic problems, it was introduced step by

step in the works of Babu²ka, Lions, Zlámal [9] and others. The global idea of the DG

method lies in the transformation of the original description of the problem into a set

of coupled sub-problems. The DG formulation is obtained after summing up each local

formulation set on a single element. The sub-problems are connected by the numerical

�uxes which obey certain rules so as for instance to assure conservation laws. During this

procedure, the physical characteristics inside each element are considered as constant.

While the DG method had been already well known in other application domains, it

has been recently applied to numerous problems of wave dynamics: Maxwell equations

[30, 32, 53, 58], vibroacoustic systems, shallow water equations [33, 41, 50], compressible

and incompressible Navier-Stokes equations [17, 31, 97], plasma physics [75, 76], and,

of course, complex elastic problems [67]. Regarding elastic wave problems, a special

extension of the DG method was developed in several papers and among them, important

contributions have been carried out by Käser et al. [67, 69], Dumbser et al. [37, 38], and

de la Puente et al. [34]. In all these publications, the time dependency of the equations

was treated with a global time integration approach, while [38] speci�cally addressed

the local time stepping strategy. In particular, the authors discussed the main issues
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of elastic wave problems such as the viscoelastic attenuation, the propagation in the

anisotropic media. The arbitrary high-order derivative scheme was also extended to the

coupled problem of elasto-acoustics (see [36, 68] and references therein).

Nowadays, the DG method is considered as the cutting-edge method for industrial codes

in many application domains. The advantageous position of the DG method is based on

multiple factors:

- its overall high-order accuracy for the space discretization along with its ability to

account for complicated geometries [28, 58];

- the absence of the continuity restrictions that simpli�es the implementation of adaptive

mesh strategies [28];

- the degree of the approximating polynomials becomes a local parameter and can be

handled easily to take into account the problem features [58];

- the resulting mass matrix has a block-diagonal form and can be inverted block by block

allowing the use of highly parallelizable time-domain algorithms [58].

2.5 Tre�tz-DG method: recent developments

As discussed in the previous section, DG methods are prefered among the scienti�c com-

munity, because they can take into account not only geological and geometrical features

of the environment, but also they are well-adapted for parallel computing. Even though

DG methods have proven numerical accuracy and �exibility, they are still criticized for

requiring a higher number of degrees of freedom compared to the standard methods

providing conforming approximations, mostly because they require twice as many more

degrees of freedom at element interfaces. The idea to explore the DG type discretization

while operating the Tre�tz approach seems to be a solution to overcome this computa-

tional di�culty [57].

Recently, Tre�tz type methods have been widely used with time-harmonic formulations

by Farhat, Tezaur, Harari, Hetmaniuk (2003 - 2006) [43, 98], Gabard (2007) [45], Badics

(2014) [10], Hiptmair, Moiola, Perugia (2011 - 2016) [59�61, 83], Barucq, Bendali, Diaz,

Tordeux, Fares, Mattesi (2017) [15], [13], and others, while studies are still limited for

computing transient phenomena. Only few papers are interested in Maxwell equations in

time [39, 71, 72, 88], but they are mostly devoted to a theoretical analysis of the method,

showing the convergence and stability, and numerical tests with plane waves approxi-

mation are restricted to 1D+time dimensional cases. Space-time Tre�tz approximation

by Lagrange multipliers for the second order formulation of the transient wave equation
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was explored in [12, 107]. Recently, Moiola and Perugia (2017) [82] have proposed a

Tre�tz-DG formulation of the �rst-order transient acoustic wave equation extending the

one-dimensional scheme of Kretzschmar et al. [72] to arbitrary space dimension. In par-

ticular, the authors propose a complete a priori error analysis in both mesh-dependent

and mesh-independent norms.

2.6 Conclusion

This PhD thesis falls under the research program DIP between Inria and Total for the

development of advanced numerical methods in geophysical exploration. The background

technology is the DG methodology which has a record of accurately approximating wave

problems in heterogeneous domains in high-performing computing environment. In this

work, we investigate the interest of using DG technology in a Tre�tz framework which

provides a way to limit the computations on the interfaces of the elements. By this way,

we should decrease the computational burden of standard DG approximations. The next

chapter deals with the coupling of Tre�tz approximations with DG �nite elements for

solving the �rst order acoustic, elastodynamic and coupled elasto-acoustic systems.



Chapter 3

Tre�tz method: theory and

application to elasto-acoustics

In this chapter, we apply the Tre�tz-DG method for solving �rst-order acoustic and

elastodynamic systems. Then, we couple numerically the two formulations through �uid-

solid transmission conditions. We study the well-posedness of the acoustic, elastodynamic

and elasto-acoustic Tre�tz-DG problems based on mesh-dependent error estimates.

Here and later in this thesis, the subscript F corresponds to "Fluid" - acoustic medium

indicator and S corresponds to "Solid" - elastic medium indicator.
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3.1 Application to acoustics

In physics, the acoustic wave equation de�nes the propagation of acoustic waves through

a �uid medium. It is usually formulated as a second order equation representing the

evolution of the pressure �eld, or in this work we deal with the �rst order system which

describes the evolution of the acoustic pressure p and the particle velocity v as functions

of coordinates in physical space x and time t. The latter choice is conditioned by the mo-

tivation of further numerical coupling of the acoustic formulation with the elastodynamic

one, employing the transmission conditions written in terms of velocity and stress.

In the following, we introduce the �rst order Acoustic System (AS) and build a discrete

DG formulation. We describe the associated Tre�tz space and derive a Tre�tz-DG for-

mulation for the acoustic problem. The analysis of well-posedness of the �nal Tre�tz-DG

formulation, based on the coercivity and continuity estimates in mesh-dependent norms,

is then presented at the end of this section.

3.1.1 First order formulation of the acoustic system

We introduce a global space-time domain QF ≡ ΩF × I, where ΩF ⊂ Rd is a bounded

Lipschitz space domain of dimension d and I ≡ [0, T ] is a time interval. The �uid

parameters cF ≡ cF (x) and ρF ≡ ρF (x), standing for the acoustic wave propagation

velocity and �uid density respectively, are assumed to be piecewise constant and positive.

We consider the �rst order acoustic system in terms of velocity vF ≡ vF (x, t) and

pressure p ≡ p(x, t) �elds:

1

c2
FρF

∂p

∂t
+ divvF = f in QF ,

ρF
∂vF
∂t

+ ∇p = 0 in QF ,

vF (·, 0) = vF 0, p(·, 0) = p0 in ΩF ,

vF · nxKF = gDF in ∂ΩF × I,

(3.1)

The source term f ≡ f(x, t), the Dirichlet boundary data gDF , and the velocity vF 0 and

the pressure p0 are given data.

3.1.2 Space-time DG formulation for the acoustic system

We introduce a non-overlapping space-time mesh TFh composed of Lipschitz smooth

elements KF ⊂ QF . One additional remark is that, compared to the classical DG
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method, where the mesh consists of space elements only, the Tre�tz-DG approach requires

a space-time mesh on QF composed of space-time elements KF ⊂ ΩF × I. Let nKF ≡
(nxKF , n

t
KF

) be the outward pointed unit normal vector on ∂KF . We assume that all

media parameters are constant in KF .

We introduce the space V h(TFh) as a subspace of L2(QF ) de�ned by V h(TFh) =
{
φ ∈

L2(QF ), φ|KF ∈ H1(KF )
}
. The discrete unknowns vF and p are supposed to be in

V h(TFh)d and V h(TFh) respectively.

Multiplying both equations of (3.1) by the test functions q ∈ V h(TFh) and ωF ∈ V h(Th)d

respectively, and integrating by part in time and space, we obtain:

−
∫
KF

[
p(

1

c2
FρF

∂q

∂t
+ divωF ) + vF · (ρF

∂ωF
∂t

+ ∇q)
]
dv (3.2)

+

∫
∂KF

[ 1

c2
FρF

pq ntKF + qvF · nxKF + ρF vF · ωF ntKF + pωF · nxKF
]
ds =

∫
KF

fqdv.

Now that the space-time mesh has been introduced, the mesh skeleton FFh = ∪KF∈TFh∂KF

can be decomposed into several families of element faces as follows (see �gure 3.1):

· · · FQFh internal element faces

− FDFh boundary element faces (∂ΩF × [0, T ])

= F0F
h initial time element faces (ΩF × {0})

−− FTFh �nal time element faces (ΩF × {T})

0

T

KF

space domain ΩF

ti
m
e
I

Figure 3.1: Example of 1D+time mesh TFh on QF .

The local space-time DG formulation of (3.1) consists in �nding (vFh, ph) ∈ V h(TFh)d×
V h(TFh) such that, for all (ωF , q) ∈ V h(TFh)d × V h(TFh) and for all KF ∈ TFh it holds

true:
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−
∫
KF

[
ph(

1

c2
FρF

∂q

∂t
+ divωF ) + vFh · (ρF

∂ωF
∂t

+ ∇q)
]
dv (3.3)

+

∫
∂KF

[ 1

c2
FρF

p̆hq n
t
KF

+ qv̂Fh · nxKF + ρF v̆Fh · ωF ntKF + p̂hωF · nxKF
]
ds =

∫
KF

fqdv.

To specify the numerical �uxes v̂Fh, v̆Fh, p̂h and p̆h, we introduce notation mimicking

the standard DG �uxes. We de�ne the average {{·}}, the space normal jump [[·]]x and

the time jump [[·]]t between two elements for piecewise-continuous scalar p and vector vF

�elds. The indexes "| K−F " and "| K+
F " refer respectively to the interior and the exterior

traces for a given element KF :

{{p}} ≡ 1

2
(p|K−F

+ p|K+
F

) on ∂K−F ∩ ∂K
+
F ∈ F

QF
h ,

[[p]]x ≡ p|K−F n
x
K−F

+ p|K+
F
nx
K+
F

on ∂K−F ∩ ∂K
+
F ∈ F

QF
h ,

[[p]]t ≡ p|K−F n
t
K−F

+ p|K+
F
nt
K+
F

on ∂K−F ∩ ∂K
+
F ∈ F

QF
h ,

{{vF }} ≡
1

2
(vF |K−F

+ vF |K+
F

) on ∂K−F ∩ ∂K
+
F ∈ F

QF
h ,

[[vF ]]x ≡ vF |K−F · n
x
K−F

+ vF |K+
F
· nx

K+
F

on ∂K−F ∩ ∂K
+
F ∈ F

QF
h ,

[[vF ]]t ≡ vF |K−F n
t
K−F

+ vF |K+
F
nt
K+
F

on ∂K−F ∩ ∂K
+
F ∈ F

QF
h .

The numerical �uxes v̂Fh, v̆Fh, p̂h and p̆h on the mesh skeleton FFh =
⋃

KF∈TFh
∂KF are

de�ned as follows:(
v̂Fh
p̂h

)
≡

(
{{vFh}}+ β1[[ph]]x
{{ph}}+ α1[[vFh]]x

)
on FQFh ,

(
v̆Fh
p̆h

)
≡

(
{{vFh}}+ α2[[vFh]]t
{{ph}}+ β2[[ph]]t

)
on FQFh ,

(
v̂Fh · nxKF
p̂h

)
≡

(
gDF
ph + α1(vFh · nxKF − gDF )

)
on FDFh ,

(
v̆Fh
p̆h

)
≡

(
vFh
ph

)
on FTFh ,

(
v̆Fh
p̆h

)
≡

(
1

2
− α2)vFh + (

1

2
+ α2)vF0

(
1

2
− β2)ph + (

1

2
+ β2)p0

 on F0F
h .
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Here, α1, α2, β1 and β2 are positive penalty parameters. The additional terms α1[[vFh]]x,

α2[[vFh]]t, and β1[[ph]]x, β2[[ph]]t called penalty functions, consist of a penalty parameter

multiplied by a measure of violation of the constraints. Regarding standard DG methods,

they have been shown to be necessary for numerical stability of the scheme [17, 18].

Actually, it will be shown in section 3.1.4 that the choice of non-zero penalty terms will

improve the accuracy and convergence results (see chapter 5). Alternative choices of

penalty terms are discussed in [9, 17, 18, 22] for standard DG approximations. Herein,

because of a lack of literature in Tre�tz-DG, we use the most common for standard DG

methods penalty terms [30, 84]. It is worth noting that if (vF , p) is solution of (3.1), all

the jump terms in de�nitions of v̂F , p̂, v̆F , p̆ vanish, and v̂F = v̆F = vF and p̂ = p̆ = p,

showing the consistency of the numerical �uxes.

Summing the contribution (3.3) of all elements KF ∈ TFh, we obtain the DG formulation

for (3.1):

Seek (vFh, ph) ∈ V h(TFh)d × V h(TFh) such that, for all (ωF , q) ∈ V h(TFh)d × V h(TFh),

it holds true:

−
∑

KF∈TFh

∫
KF

[
ph(

1

c2
FρF

∂q

∂t
+ divωF ) + vFh · (ρF

∂ωF
∂t

+ ∇q)
]
dv (3.4)

+

∫
FQFh

[ 1

c2
FρF
{{ph}}[[q]]t + ρF {{vFh}} · [[ωF ]]t + {{ph}}[[ωF ]]x + {{vFh}} · [[q]]x

]
ds

+

∫
FQFh

[
α1[[vFh]]x[[ωF ]]x + β1[[ph]]x · [[q]]x + α2ρF [[vFh]]t · [[ωF ]]t +

β2

c2
FρF

[[ph]]t[[q]]t

]
ds

+

∫
FTFh

[ 1

c2
FρF

phq + ρFvFh · ωF
]
ds− (

1

2
− β2)

∫
F0F
h

1

c2
FρF

phq ds− (
1

2
− α2)

∫
F0F
h

ρFvFh · ωF ds

+

∫
FDFh

[
phωF · nxKF + α1(vFh · nxKF )(ωF · nxKF )

]
ds =

∫
FDFh

[
α1 gDFωF · n

x
KF
− qgDF

]
ds

+ (
1

2
+ β2)

∫
F0F
h

1

c2
FρF

p0q ds + (
1

2
+ α2)

∫
F0F
h

ρFvF 0 · ωF ds +
∑

KF∈TFh

∫
KF

fqdv.

In the following, we restrict the problem to the homogeneous system of equations with

a zero source term f ≡ 0 and "free-surface" boundary condition gDF ≡ 0, in order

to simplify the presentation. We do not lose the generality of approach in this case,

because both terms appear only in the right-hand side of formulation, and can always be

bounded above, provided they are regular enough. However, the numerical applications

will involve non-zero source term, periodical and "free-surface" boundaries (see chapter

5).
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3.1.3 Tre�tz-DG formulation for the acoustic system

We introduce a Tre�tz space de�ned by:

TF (TFh) ≡
{

(ωF , q) ∈ V h(TFh)d × V h(TFh) such that, ρF
∂ωF
∂t

+ ∇q = 0 and

1

c2
FρF

∂q

∂t
+ divωF = 0 in all KF ∈ TFh

}
.

This space is of Tre�tz type since it is a subspace of the regular space V h(TFh)d×V h(TFh)

composed of local solutions of the governing equations in the volume under study set in

each element KF . We consider a discrete Tre�tz space Tp
F (TFh) de�ned by:

Tp
F (TFh) ≡

{
(ωF , q) ∈ TF (TFh), (ωF , q) |KF∈ Pp(KF )d × Pp(KF ), for all KF ∈ TFh

}
.

According to (3.4), this choice of basis functions leads to remove all volume integral

terms in the DG formulation. The corresponding Tre�tz-DG formulation for acoustic

system reduces then to:

Seek (vFh, ph) ∈ Tp
F (TFh) such that, for all (ωF , q) ∈ Tp

F (TFh), it holds true:∫
FQFh

[ 1

c2
FρF
{{ph}}[[q]]t + ρF {{vFh}} · [[ωF ]]t + {{ph}}[[ωF ]]x + {{vFh}} · [[q]]x

]
ds

+

∫
FQFh

[
α1[[vFh]]x[[ωF ]]x + β1[[ph]]x · [[q]]x + α2ρF [[vFh]]t · [[ωF ]]t +

β2

c2
FρF

[[ph]]t[[q]]
]
ds

+

∫
FTFh

[ 1

c2
FρF

phq + ρFvFh · ωF
]
ds− (

1

2
− β2)

∫
F0F
h

1

c2
FρF

phq ds− (
1

2
− α2)

∫
F0F
h

ρFvFh · ωF ds

+

∫
FDFh

[
phωF · nxKF + α1(vFh · nxKF )(ωF · nxKF )

]
ds =

∫
FDFh

[
α1 gDFωF · n

x
KF
− qgDF

]
ds

+ (
1

2
+ β2)

∫
F0F
h

1

c2
FρF

p0q ds + (
1

2
+ α2)

∫
F0F
h

ρFvF 0 · ωF ds.

Compared to the Tre�tz-DG formulation developed by Kretzschmar et al. for Maxwell's

equation in [72], we can use arbitrary convex elements, we do not have to discriminate

"time" and "space" faces, and we obtain the coercivity more straightforwardly as shown

in section 3.1.4. It is also worth mentioning that, compared to the classical space DG

formulation (3.4), Tre�tz-DG formulation (3.5) does not contain any di�erential opera-

tor (except for a speci�c choice of boundary conditions, such as higher-order absorbing

boundaries).
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We introduce the bilinear form ATDGF (· ; ·) de�ned by:

ATDGF ((vFh, ph); (ωF , q)) ≡ (3.5)∫
FQFh

[ 1

c2
FρF
{{ph}}[[q]]t + ρF {{vFh}} · [[ωF ]]t + {{ph}}[[ωF ]]x + {{vFh}} · [[q]]x

]
ds

+

∫
FQFh

[
α1[[vFh]]x[[ωF ]]x + β1[[ph]]x · [[q]]x + α2ρF [[vFh]]t · [[ωF ]]t +

β2

c2
FρF

[[ph]]t[[q]]
]
ds

+

∫
FDFh

[
phωF · nxKF + α1(vFh · nxKF )(ωF · nxKF )

]
ds +

∫
FTFh

[ 1

c2
FρF

phq + ρFvFh · ωF
]
ds

−(
1

2
− β2)

∫
F0F
h

1

c2
FρF

phq ds− (
1

2
− α2)

∫
F0F
h

ρFvFh · ωF ds,

and the linear form `TDGF (·) de�ned by:

`TDGF (ωF , q) ≡ (
1

2
+ β2)

∫
F0F
h

1

c2
FρF

p0q ds + (
1

2
+ α2)

∫
F0F
h

ρFvF 0 · ωF ds. (3.6)

It is worth noting that, if (vF , p) is solution of (3.1), then ATDGF ((vF , p); (ωF , q)) =

ATDGF ((vFh, ph); (ωF , q)) thanks to the consistency of the numerical �uxes. Regarding

the above notations, the Tre�tz-DG formulation (3.5) can be rewritten as follows:

Seek (vFh, ph) ∈ Tp
F (TFh) such that, for all (ωF , q) ∈ Tp

F (TFh), it holds true:

ATDGF ((vFh, ph); (ωF , q)) = `TDGF (ωF , q). (3.7)

If we replace the unknown functions by their decomposition onto the Tre�tz basis, the

variational problem (3.7) can be solved as a global algebraic linear system whose unknown

is the set of coe�cients of the Tre�tz expansion. This will be done in chapter 4).

In the next section, we analyze the well-posedness of problem (3.7) using estimates in

mesh-dependent L2-norms.

3.1.4 Well-posedness of the Tre�tz-DG formulation for the acoustic

system

The analysis of well-posedness of the Tre�tz-DG problem (3.7) is based on coercivity

and continuity estimates. This study is carried out in the framework developed in [72]

for the time-dependent Maxwell's problem.



Chapter 3. Tre�tz method: theory and application to elasto-acoustics 29

We set ph = q and vFh = ωF , so that the bilinear form ATDGF (·; ·) reads as:

ATDGF ((ωF , q); (ωF , q)) ≡∫
FQFh

[ 1

c2
FρF
{{q}}[[q]]t + ρF {{ωF }} · [[ωF ]]t + {{q}}[[ωF ]]x + {{ωF }} · [[q]]x

]
ds

+

∫
FQFh

[
α1[[ωF ]]x[[ωF ]]x + β1[[q]]x · [[q]]x + α2ρF [[ωF ]]t · [[ωF ]]t +

β2

c2
FρF

[[q]]t[[q]]t

]
ds

+

∫
FDFh

[
phωF · nxKF + α1(ωF · nxKF )(ωF · nxKF )

]
ds +

∫
FTFh

[ 1

c2
FρF

q2 + ρFωF · ωF
]
ds

−(
1

2
− β2)

∫
F0F
h

1

c2
FρF

q2 ds− (
1

2
− α2)

∫
F0F
h

ρFωF · ωF ds =

[5]︷ ︸︸ ︷∫
FQFh

[ 1

c2
FρF
{{q}}[[q]]t + ρF {{ωF }} · [[ωF ]]t

]
ds +

[3]︷ ︸︸ ︷
β2

∫
F0F
h

1

c2
FρF

q2 ds + α2

∫
F0F
h

ρFωF · ωFds

+

[6]︷ ︸︸ ︷∫
FQFh

[
{{q}}[[ωF ]]x + {{ωF }} · [[q]]x

]
ds +

∫
FDFh

qωF · nxKF ds

+

[1]︷ ︸︸ ︷∫
FQFh

[
α1[[ωF ]]x[[ωF ]]x + β1[[q]]x · [[q]]x + α2ρF [[ωF ]]t · [[ωF ]]t +

β2

c2
FρF

[[q]]t[[q]]t

]
ds

+

[7]︷ ︸︸ ︷
1

2

∫
FTFh

[ 1

c2
FρF

q2 + ρFωF · ωF
]
ds− 1

2

∫
F0
h

[ 1

c2
FρF

q2 + ρFωF · ωF
]
ds

+

[2]︷ ︸︸ ︷
1

2

∫
FTFh

[ 1

c2
FρF

q2 + ρFωF · ωF
]
ds +

[4]︷ ︸︸ ︷∫
FDFh

α1(ωF · nxKF )(ωF · nxKF )ds .

We estimate each term on the right-hand side in mesh-dependent L2-norms as follows:

[1] ≡
∫
FQFh

[
α1[[ωF ]]x[[ωF ]]x + β1[[q]]x · [[q]]x + α2ρF [[ωF ]]t · [[ωF ]]t +

β2

c2
FρF

[[q]]t[[q]]t

]
ds =

∥∥∥α1/2

1 [[ωF ]]x

∥∥∥2

L2(FQFh )
+
∥∥∥β1/2

1 [[q]]x

∥∥∥2

L2(FQFh )
+
∥∥∥α1/2

2 ρF
1/2 [[ωF ]]t

∥∥∥2

L2(FQFh )

+
∥∥∥β1/2

2 (
1

c2
FρF

)
1/2 [[q]]t

∥∥∥2

L2(FQFh )
;
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[2] ≡ 1

2

∫
FTFh

[ 1

c2
FρF

q2 + ρFωF · ωF
]
ds =

1

2

∥∥∥(
1

c2
FρF

)
1/2q

∥∥∥2

L2(FTFh )
+

1

2

∥∥∥ρ1/2

F ωF

∥∥∥2

L2(FTFh )
;

[3] ≡β2

∫
F0F
h

1

c2
FρF

q2 ds + α2

∫
F0F
h

ρFωF · ωFds =
∥∥∥β1/2

2 (
1

c2
FρF

)
1/2q

∥∥∥2

L2(F0F
h )

+
∥∥∥α1/2

2 ρ
1/2

F ωF

∥∥∥2

L2(F0F
h )

;

[4] ≡
∫
FDFh

α1(ωF · nxKF )(ωF · nxKF )ds =
∥∥∥α1/2

1 (ωF · nxKF )
∥∥∥2

L2(FDFh )
;

[5] ≡
∫
FQFh

[ 1

c2
FρF
{{q}}[[q]]t + ρF {{ωF }} · [[ωF ]]t

]
ds

(A.1),(A.2)
=

1

2

∫
FQFh

1

c2
FρF

[[q2]]tds

+
1

2

∫
FQFh

ρF [[ωF · ωF ]]tds;

[6] ≡
∫
FQFh

[
{{q}}[[ωF ]]x + {{ωF }} · [[q]]x

]
ds +

∫
FDFh

qωF · nxKF ds
(A.4)
=

∫
FQFh

[[qωF ]]xds +

∫
FDFh

qωF · nxKF ds
(A.9)
=

∑
KF∈Th

∫
KF

(
ωF ·∇q + q divωF

)
dv;

[7]+[5] ≡ 1

2

∫
FTFh

[ 1

c2
FρF

q2 + ρFωF · ωF
]
ds− 1

2

∫
F0F
h

[ 1

c2
FρF

q2 + ρFωF · ωF
]
ds

+
1

2

∫
FQFh

[ 1

c2
FρF

[[q2]]t + ρF [[ωF · ωF ]]t

]
ds

(A.6),(A.7)
=

∑
KF∈Th

∫
KF

1

c2
FρF

q
∂q

∂t
dv

+
∑

KF∈Th

∫
KF

ρFωF ·
∂ωF
∂t

dv;

[6]+[7] + [5] ≡
∑

KF∈Th

∫
KF

1

c2
FρF

q
∂q

∂t
dv +

∑
KF∈Th

∫
KF

ρFωF ·
∂ωF
∂t

dv

+
∑

KF∈Th

∫
KF

(
ωF ·∇q + q divωF

)
dv =

∑
KF∈Th

[ ∫
KF

q
( =0 inTF (TFh)︷ ︸︸ ︷

1

c2
FρF

∂q

∂t
+ divωF

)
dv +

∫
KF

ωF ·
( =0 inTF (TFh)︷ ︸︸ ︷
ρF
∂ωF
∂t

+ ∇q
)
dv
]
.
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Thus, for the bilinear form ATDGF (·; ·) we obtain:

ATDGF ((ωF , q); (ωF , q)) ≡
∥∥∥α1/2

1 [[ωF ]]x

∥∥∥2

L2(FQFh )
+
∥∥∥β1/2

1 [[q]]x

∥∥∥2

L2(FQFh )

+
∥∥∥α1/2

2 ρ
1/2

F [[ωF ]]t

∥∥∥2

L2(FQFh )
+
∥∥∥β1/2

2 (
1

c2
FρF

)
1/2 [[q]]t

∥∥∥2

L2(FQFh )
+

1

2

∥∥∥(
1

c2
FρF

)
1/2q

∥∥∥2

L2(FTFh )

+
1

2

∥∥∥ρ1/2

F ωF

∥∥∥2

L2(FTFh )
+
∥∥∥β1/2

2 (
1

c2
FρF

)
1/2q

∥∥∥2

L2(F0F
h )

+
∥∥∥α1/2

2 ρ
1/2

F ωF

∥∥∥2

L2(F0F
h )

+‖α
1/2

1 (ωF · nxKF )‖2
L2(FDFh )

.

We can see that ATDGF ((ωF , q); (ωF , q)) is positive, which leads us to introduce the

semi-norm ||| · |||TDGF given by:

|||(ωF , q)|||TDGF ≡ A
1/2

TDGF
((ωF , q); (ωF , q)) (3.8)

and de�ned as follows:

|||(ωF , q)|||2TDGF ≡
∥∥∥α1/2

1 [[ωF ]]x

∥∥∥2

L2(FQFh )
+
∥∥∥β1/2

1 [[q]]x

∥∥∥2

L2(FQFh )
+
∥∥∥α1/2

2 ρ
1/2

F [[ωF ]]t

∥∥∥2

L2(FQFh )

+
∥∥∥β1/2

2 (
1

c2
FρF

)
1/2 [[q]]t

∥∥∥2

L2(FQFh )
+
∥∥∥α1/2

1 (ωF · nxKF )
∥∥∥2

L2(FDFh )

+
1

2

∥∥∥(
1

c2
FρF

)
1/2q

∥∥∥2

L2(FTFh )
+

1

2

∥∥∥ρ1/2

F ωF

∥∥∥2

L2(FTFh )
+
∥∥∥β1/2

2 (
1

c2
FρF

)
1/2q

∥∥∥2

L2(F0F
h )

+
∥∥∥α1/2

2 ρ
1/2

F ωF

∥∥∥2

L2(F0F
h )

.

We have:

Theorem 3.1. The semi-norm ||| · |||TDGF is a norm in the Tre�tz space TF (TFh).

Proof. When |||(ωF , q)|||TDGF = 0, it automatically implies that ωF and q satisfy the

initial acoustic equations (3.1) with zero initial vF 0 = p0 = 0 and boundary conditions

gDF = 0, and also with f = 0, which follows from the fact that ωF and p are in

TF (TFh). By the existence and uniqueness theorem for the Cauchy problem (3.1), it

admits a unique solution in QF , which is ωF = 0, q = 0.

From the theorem 3.1, we straightforwardly get that ATDGF (·; ·) is coercive in TF (TFh)

equipped with the norm ||| · |||TDGF .
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Next, we address the continuity property of both ATDGF (·; ·) and `TDGF (·). For that

purpose, it is convenient to introduce the semi-norm ||| · |||TDG∗F de�ned by:

|||(ωF , q)|||2TDG∗F ≡|||(ωF , q)|||
2
TDGF

+
∥∥∥α−1/2

1 {{q}}
∥∥∥2

L2(FQFh )
+
∥∥∥β−1/2

1 {{ωF }}
∥∥∥2

L2(FQFh )
+
∥∥∥α−1/2

1 q
∥∥∥2

L2(FDFh )

+
∥∥∥α−1/2

2 {{ωF }}
∥∥∥2

L2(FQFh )
+
∥∥∥β−1/2

2 {{q}}
∥∥∥2

L2(FQFh )

+
∥∥∥(

1

2β2
+ 1)

1/2(
1

c2
FρF

)
1/2q

∥∥∥2

L2(F0F
h )

+
∥∥∥(

1

2α2
+ 1)

1/2ρ
1/2

F ωF

∥∥∥2

L2(F0F
h )

.

Regarding the de�nition of the semi-norm ||| · |||TDG∗F we have the following theorem:

Theorem 3.2. The semi-norm ||| · |||TDG∗F is a norm in TF .

Proof. Indeed, by de�nition of ||| · |||TDG∗F , the fact that |||(ωF , q)|||TDG∗F = 0 straight-

forwardly implies |||(ωF , q)|||TDGF = 0, that is a norm in TF (TFh).

Thanks to the norms ||| · |||TDGF and ||| · |||TDG∗F , and by using the weighted Cauchy-

Schwartz inequality [7], we obtain the continuity estimate for the bilinear formATDGF (· ; ·):

|ATDGF ((vF , p); (ωF , q))| ≤ C1 |||(vF , p)|||TDG∗F |||(ωF , q)|||TDGF . (3.9)

Indeed, if we consider independently each integral term ofATDGF ((vF , p); (ωF , q)), start-

ing from the �rst one
∫
FQFh

1

c2
FρF
{{p}}[[q]]t ds, we can easily verify that:

∫
FQFh

1

c2
FρF
{{p}}[[q]]tds ≤

( ∫
FQFh

(
β
−1/2

2 {{p}}
)2
ds
)1/2

( ∫
FQFh

(
β

1/2

2 (
1

c2
FρF

)
1/2 [[q]]t

)2
ds
)1/2

=

∥∥∥β−1/2

2 {{p}}
∥∥∥
L2(FQFh )

∥∥∥β1/2

2 (
1

c2
FρF

)
1/2 [[q]]t

∥∥∥
L2(FQFh )

≤|||(vF , p)|||TDG∗F |||(ωF , q)|||TDGF .

We proceed similarly for all the integrals of the bilinear form. By summing the contri-

butions of all the integrals, the inequality (3.9) can be straighforwardly deduced. Using

the same approach we can build a bound for linear form `TDGF (·), con�rming thus its

continuity with respect to the ||| · |||TDG∗F norm:

|`TDGF (ωF , q)| ≤[∥∥∥(
1

2α2
+ 1)

1/2ρ
1/2

F vF0

∥∥∥2

L2(F0F
h )

+
∥∥∥(

1

2β2
+ 1)

1/2(
1

c2
FρF

)
1/2p0

∥∥∥2

L2(F0F
h )

]1/2

|||(ωF , q)|||TDGF .
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Theorem 3.3. The Tre�tz-DG variational problem (3.7) admits a unique weak solution

(vFh, ph) ∈ Tp
F (TFh). Moreover, the following estimate holds true:

|||(vF − vFh, p− ph)|||TDGF ≤ (1 + C1) inf
(ωF ,q)∈TpF (TFh)

|||(vF − ωF , p− q)|||TDG∗F .

Proof. Supposing the zero initial and boundary conditions in (3.7), the coercivity of the

bilinear form ATDGF (·; ·) implies straightforwardly vFh = 0 and ph = 0, proving, thus,

the uniqueness of solution of (3.7). Regarding the fact that the space Tp
F (TFh) is �nite

dimensional, existence of the solution follows from the uniqueness.

Applying the triangle inequality to |||(vF − vFh, p− ph)|||TDGF , and by de�nition of the

norm ||| · |||TDG∗F , for all (ωF , q) ∈ Tp
F (TFh) we have:

|||(vF − vFh, p− ph)|||TDGF =|||(vF − ωF + ωF − vFh, p− q + q − ph)|||TDGF
≤|||(vFh − ωF , ph − q)|||TDGF + |||(vF − ωF , p− q)|||TDGF
≤|||(vFh − ωF , ph − q)|||TDGF + |||(vF − ωF , p− q)|||TDG∗F .

Taking into account the consistency of the bilinear form ATDGF (· ; ·) (3.5) due to the

consistency of the numerical �uxes, for all test functions (ωF , q) in continuous Tre�tz

space TF (TFh) we deduce:

ATDGF ((vFh − vF , ph − p); (ωF , q)) = 0.

Thus,

ATDGF ((vFh − vF , ph − p); (vFh − ωF , ph − q)) = 0

and

ATDGF ((vFh − ωF , ph − q); (vFh − ωF , ph − q)) =

ATDGF ((vFh − vF + vF − ωF , ph − p+ p− q); (vFh − ωF , ph − q)) =

ATDGF ((vF − ωF , p− q); (vFh − ωF , ph − q)).

Applying the coercivity (3.8) and continuity (3.9) estimates to the latter equality, we

obtain:

ATDGF ((vF − ωF , p− q);(vFh − ωF , ph − q)) = |||(vFh − ωF , ph − q)|||2TDGF ,

|ATDGF ((vF − ωF , p− q);(vFh − ωF , ph − q))|

≤C1|||(vF − ωF , p− q)|||TDG∗F |||(vFh − ωF , ph − q)|||TDGF .
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It gives:

|||(vFh − ωF ,ph − q)|||TDGF + |||(vF − ωF , p− q)|||TDG∗F =

ATDGF ((vF − ωF , p− q); (vFh − ωF , ph − q))/|||(vFh − ωF , ph − q)|||TDGF
+|||(vF − ωF , p− q)|||TDG∗F ≤ (1 + C1)|||(vF − ωF , p− q)|||TDG∗F ,

thus,

|||(vF − vFh, p− ph)|||TDGF ≤ (1 + C1) inf
(ωF ,q)∈TpF (TFh)

|||(vF − ωF , p− q)|||TDG∗F .

It is worth noting that, since we are working with mesh-dependent norms, we cannot

exhibit the order of convergence of the method. To obtain mesh-independent norms, we

could investigate how to extend the strategy proposed in [82] to our formulation. The

numerical results in chapters 5 and 6 will illustrate the fact that the method converges

at least as fast as classical DG methods.

3.2 Application to elastodynamics

In this part, we consider the �rst order elastodynamic system. We introduce the corre-

sponding Tre�tz approximation space and we develop a discrete Tre�tz-DG formulation

for the elastodynamic problem.

The analysis of well-posedness of the �nal Tre�tz-DG formulation is still based on the

coercivity and continuity estimates in mesh-dependent L2-norms, and it is presented in

the end of this section.

3.2.1 First order formulation of the elastodynamic system

The elastodynamic system is based on the three fundamental laws of continuum me-

chanics: motion equation, constitutive equation (Hooke's law), and geometric equation

(in�nitesimal strain tensor de�nition) [73].

As in the acoustic case, we introduce a global space-time domain QS ≡ ΩS × I, which
is the Cartesian product of a bounded Lipschitz space domain ΩS ⊂ Rd of dimension d

and a time interval I ≡ [0, T ]. The Lamé coe�cients λ ≡ λ(x), µ ≡ µ(x) and the solid

density ρS ≡ ρS(x) are the parameters representing the solid medium, assumed to be

piecewise constant and positive.
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We then consider the �rst order formulation of the elastodynamic system in terms of

velocity vS ≡ vS(x, t) and stress σ ≡ σ(x, t) �elds:

∂σ

∂t
−C ε(vS) = 0 in QS ,

ρS
∂vS
∂t
− divσ = 0 in QS ,

vS(·, 0) = vS0, σ(·, 0) = σ0 in ΩS ,

σnS = gDS in ∂ΩS × I.

(3.10)

Here, C is the elastic tensor (symmetric and positive), ε(vS) =
1

2
(∇vS + ∇vTS ) is the

in�nitesimal strain tensor, nS ≡ (nxS , n
t
S) is the outward pointed unit normal vector on

∂ΩS × I. The boundary conditions are given by gDS ≡ gDS (x, t), and the initial data

by specifying the velocity vS0 and the stress σ0.

By the symmetry and positiveness of the tensor C, the application ε 7−→ C ε is an iso-

morphism in the symmetrical tensor space [73]. Thus, we may consider the corresponding

inverse applicationA, verifying the same properties of symmetry and positiveness. Using

this notation, the elastodynamic system (3.10) can be rewritten in an equivalent way as

follows: 

A
∂ σ

∂t
− ε(vS) = 0 in QS ,

ρS
∂vS
∂t
− divσ = 0 in QS ,

vS(·, 0) = vS0, σ(·, 0) = σ0 in ΩS ,

σnS = gDS in ∂ΩS × I.

(3.11)

3.2.2 Space-time DG formulation for the elastodynamic system

We introduce a non-overlapping space-time mesh TSh on QS composed of space-time

Lipschitz elements KS ⊂ ΩS × I. Let nKS ≡ (nxKS , n
t
KS

) the outward pointed unit

normal vector on ∂KS . The elastic medium parameters are assumed to be constant in

KS . The discrete unknowns vS and σ are supposed to be in V h(TSh)d and V h(TSh)d
2

respectively. Here again V h(TSh) is the subspace of functions of L2(QS), whose restriction

on KS belongs to the Sobolev space H1(KS).

Multiplying both equations of (3.11) by the test functions ξ ∈ V h(TSh)d
2
and ωS ∈

V h(TSh)d respectively, and using Green's identities [7], we obtain:
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−
∫
KS

[
σ : (A

∂ ξ

∂t
− ε(ωS)) + vS · (ρS

∂ωS
∂t
− divξ)

]
dv

+

∫
∂KS

[
Aσ : ξ ntKS − ξvS · n

x
KS

+ ρS vS · ωS ntKS − σ : (ωS ⊗ nxKS )
]
ds = 0.

(3.12)

The mesh skeleton FSh = ∪KS∈TSh∂KS can be decomposed into several families of

element faces as follows (see �gure 3.2):

· · · FQSh internal element faces

− FDSh boundary element faces (∂ΩS × [0, T ])

= F0S
h initial time element faces (ΩS × {0})

−− FTSh �nal time element faces (ΩS × {T})

0

T

KS

space domain ΩS

ti
m
e
I

Figure 3.2: Example of 1D+time mesh TSh on QS .

The local space-time DG formulation of (3.11) consists in �nding (vSh,σh) ∈ V h(TSh)d×
V h(TSh)d

2
such that, for all (ωS , ξ) ∈ V h(TSh)d × V h(TSh)d

2
and for all KS ∈ TSh, it

holds true:

−
∫
KS

[
σh : (A

∂ ξ

∂t
− ε(ωS)) + vSh · (ρS

∂ωS
∂t
− divξ)

]
dv (3.13)

+

∫
∂KS

[
Aσ̆h : ξ ntKS − ξv̂Sh · n

x
KS

+ ρS v̆Sh · ωS ntKS − σ̂h : (ωS ⊗ nxKS )
]
ds = 0.

To specify the numerical �uxes v̂Sh, v̆Sh, σ̂h and σ̆h, we introduce the de�nitions of the

average {{·}}, space normal jumps [[[·]]]x, [[·]]x and time jump [[·]]t between two elements for
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piecewise-continuous vector vS and tensor σ �elds as follows:

{{vS}} ≡
1

2
(v|K−S

+ v|K+
F

) on ∂K−F ∩ ∂K
+
S ∈ F

QS
h ,

[[[vS ]]]x ≡ v|K−S ⊗ n
x
K−S

+ v|K+
S
⊗ nx

K+
S

on ∂K−S ∩ ∂K
+
S ∈ F

QS
h ,

[[vS ]]t ≡ v|K−S n
t
K−S

+ v|K+
S
nt
K+
S

on ∂K−S ∩ ∂K
+
S ∈ F

QS
h ,

{{σ}} ≡ 1

2
(σ|K−S

+ σ|K+
F

) on ∂K−F ∩ ∂K
+
S ∈ F

QS
h ,

[[σ]]x ≡ σ|K−S n
x
K−S

+ σ|K+
S
nx
K+
S

on ∂K−S ∩ ∂K
+
S ∈ F

QS
h ,

[[σ]]t ≡ σ|K−S n
t
K−S

+ σ|K+
S
nt
K+
S

on ∂K−S ∩ ∂K
+
S ∈ F

QS
h .

Here the symbol ⊗ represents the outer product vS⊗nxKS which is equivalent to a matrix

multiplication of vS(nxKS )>, provided that vS and nxKS are represented as a d×1 column

vectors (which makes (nxKS )> a row vector).

The numerical �uxes v̂Sh, v̆Sh, σ̂h and σ̆h are de�ned on the mesh skeleton FSh =⋃
KS∈TSh

∂KS as follows:

(
v̂Sh
σ̂h

)
≡

(
{{vSh}} − δ1[[σh]]x
{{σh}} − γ1[[[vSh]]]x

)
on FQSh ,

(
v̆Sh
σ̆h

)
≡

(
{{vSh}}+ γ2[[vSh]]t
{{σh}}+ δ2[[σh]]t

)
on FQSh ,

(
v̂Sh
σ̂hn

x
KS

)
≡

(
vSh − δ1(σhn

x
KS
− gDS )

gDS

)
on FDSh ,

(
v̆Sh
σ̆h

)
≡

(
vSh
σh

)
on FTSh ,

(
v̆Sh
σ̆h

)
≡

(
1

2
− γ2)vSh + (

1

2
+ γ2)vS0

(
1

2
− δ2)σh + (

1

2
+ δ2)σ0

 on F0S
h ,

where δ1, δ2, and γ1, γ2 are positive penalty parameters. For simplicity, herein, we

use the most common for standard DG methods penalty terms [30, 84]. We will show

in section 3.2.4 that a good choice of penalty parameters can improve accuracy and

convergence results (see chapter 5). Alternative choices of penalty terms are discussed

in [9, 17, 18, 22] for standard DG approximations. It is worth noting that if (vS ,σ)

is solution of (3.11), all the jump terms in de�nitions of v̂S , σ̂, v̆S , σ̆ vanish, and

v̂S = v̆S = vS and σ̂ = σ̆ = σ showing the consistency of the numerical �uxes.

Summing up the contributions of all elements KS ∈ TSh, we obtain a DG formulation

for (3.11):
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Seek (vSh,σh) ∈ V h(TSh)d×V h(TSh)d
2
such that, for all (ωS , ξ) ∈ V h(TSh)d×V h(TSh)d

2
,

it holds true:

−
∑

KS∈Th

∫
KS

[
σh : (A

∂ξ

∂t
− ε(ωS)) + vSh · (ρS

∂ωS
∂t
− divξ)

]
dv (3.14)

+

∫
FQSh

[
A {{σh}} : [[ξ]]t + ρS{{vSh}} · [[ωS ]]t − {{σh}} : [[[ωS ]]]x − {{vSh}} · [[ξ]]x

]
ds

+

∫
FQSh

[
γ1[[[vSh]]]x : [[[ωS ]]]x + δ1[[σh]]x · [[ξ]]x + γ2ρS [[vSh]]]t · [[ωS ]]]t + δ2A[[σh]]t : [[ξ]]t

]
ds

−
∫
FDSh

[
ξvSh · nxKS − δ1(σhn

x
KS

) · (ξnxKS )
]
ds +

∫
FTSh

[
Aσh : ξ + ρSvSh · ωS

]
ds

− (
1

2
− δ2)

∫
F0S
h

Aσh : ξds− (
1

2
− γ2)

∫
F0S
h

ρSvSh · ωSds =

(
1

2
+ δ2)

∫
F0S
h

Aσ0 : ξds + (
1

2
+ γ2)

∫
F0S
h

ρSvS0 · ωSds

+

∫
FDSh

[
δ1 ξ gDS · n

x
KS

+ gDS · ωS
]
ds.

In the following, we impose a zero source term f ≡ 0 and "free-surface" boundary con-

dition gDS ≡ 0. We do not lose the generality of approach, because both terms appear

in the right-hand side of formulation, and can always be bounded above provided they

are regular enough. The numerical applications, presented in chapter 5, will involve im-

plementation of zero and non-zero source terms, periodic and "free-surface" boundaries.

3.2.3 Tre�tz-DG formulation for the elastodynamic system

We de�ne the Tre�tz space as follows:

TS(TSh) ≡
{

(ωS , ξ) ∈ V h(TSh)d × V h(TSh)d
2
such that, A

∂ξ

∂t
− ε(ωS) = 0 and

ρS
∂ωS
∂t
− divξ = 0 in all KS ∈ TSh

}
.

This space is of Tre�tz type since it is a subspace of the regular space V h(TSh)d ×
V h(TSh)d

2
composed of local solutions of the volumic equations under study set in each

element KS . The corresponding discrete Tre�tz space Tp
S(TSh) is de�ned by:

Tp
S(TSh) ≡

{
(ωF , q) ∈ TS(TSh), (ωS , ξ) |KS∈ Pp(KS)d × Pp(KS)d

2
, for all KS ∈ TSh

}
.
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According to (3.14), this choice of basis functions leads to the removal of all volume

integral terms in the DG formulation.

The corresponding Tre�tz-DG formulation for the elastodynamic system reduces to:

Seek (vSh,σh) ∈ Tp
S(TSh) such that, for all (ωS , ξ) ∈ Tp

S(TSh), it holds true:

ATDGS ((vSh,σh); (ωS , ξ)) = `TDGS (ωS , ξ). (3.15)

Here the bilinear form ATDGS (· ; ·) is de�ned by:

ATDGS ((vSh,σh); (ωS , ξ)) ≡∫
FQSh

[
A {{σh}} : [[ξ]]t + ρS{{vSh}} · [[ωS ]]t

]
− {{σh}} : [[[ωS ]]]x − {{vSh}} · [[ξ]]x

]
ds

+

∫
FQSh

[
γ1[[[vSh]]]x : [[[ωS ]]]x + δ1[[σh]]x · [[ξ]]x + γ2ρS [[vSh]]]t · [[ωS ]]]t + δ2A[[σh]]t : [[ξ]]t

]
ds

−
∫
FDSh

[
ξvSh · nxKS − δ1(σhn

x
KS

) · (ξnxKS )
]
ds +

∫
FTSh

[
Aσh : ξ + ρSvSh · ωS

]
ds

− (
1

2
− δ2)

∫
F0S
h

Aσh : ξds− (
1

2
− γ2)

∫
F0S
h

ρSvSh · ωSds,

and the linear form `TDGS (·) is de�ned by:

`TDGS (ωS , ξ) ≡ (
1

2
+ δ2)

∫
F0S
h

Aσ0 : ξds + (
1

2
+ γ2)

∫
F0S
h

ρSvS0 · ωSds.

It is worth noting that, if (vS ,σ) is solution of (3.11), then ATDGS ((vS ,σ); (ωS , ξ)) =

ATDGS ((vSh,σh); (ωS , ξ)) thanks to the consistency of the numerical �uxes.

3.2.4 Well-posedness of the Tre�tz-DG formulation for the elastody-

namic system

The analysis of well-posedness of the Tre�tz-DG formulation (3.15) for the elastodynamic

problem is based on coercivity and continuity estimates.
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We set σh = ξ and vSh = ωS , so that the bilinear form ATDGS (·; ·) reads as:

ATDGS ((ωS , ξ); (ωS , ξ)) ≡∫
FQSh

[
A {{ξ}} : [[ξ]]t + ρS{{ωS}} · [[ωS ]]t

]
− {{ξ}} : [[[ωS ]]]x − {{ωS}} · [[ξ]]x

]
ds

+

∫
FQSh

[
γ1[[[ωS ]]]x : [[[ωS ]]]x + δ1[[ξ]]x · [[ξ]]x + γ2ρS [[ωS ]]]t · [[ωS ]]]t + δ2A[[ξ]]t : [[ξ]]t

]
ds

−
∫
FDSh

[
ξωS · nxKS − δ1(ξnxKS ) · (ξnxKS )

]
ds +

∫
FTSh

[
Aξ : ξ + ρSωS · ωS

]
ds

− (
1

2
− δ2)

∫
F0S
h

Aξ : ξds− (
1

2
− γ2)

∫
F0S
h

ρSωS · ωSds =

[5′]︷ ︸︸ ︷∫
FQSh

[
A{{ξ}} : [[ξ]]t + ρS{{ωS}} · [[ωS ]]t

]
ds +

[3′]︷ ︸︸ ︷
δ2

∫
F0S
h

Aξ : ξds + γ2

∫
F0S
h

ρSωS · ωSds

−

[6′]︷ ︸︸ ︷∫
FQSh

[
{{ξ}} : [[[ωS ]]]x + {{ωS}} · [[ξ]]x

]
ds−

∫
FDSh

ξωS · nxKSds

+

[1′]︷ ︸︸ ︷∫
FQSh

[
γ1[[[ωS ]]]x : [[[ωS ]]]x + δ1[[ξ]]x · [[ξ]]x + γ2ρS [[ωS ]]]t · [[ωS ]]]t + δ2A[[ξ]]t : [[ξ]]t

]
ds

+

[7′]︷ ︸︸ ︷
1

2

∫
FTSh

[
Aξ : ξ + ρSωS · ωS

]
ds− 1

2

∫
F0S
h

[
Aξ : ξ + ρSωS · ωS

]
ds

+

[2′]︷ ︸︸ ︷
1

2

∫
FTSh

[
Aξ : ξ + ρSωS · ωS

]
ds +

[4′]︷ ︸︸ ︷∫
FDSh

δ1(ξnxKS ) · (ξnxKS )ds .

We estimate each term on the right-hand side in mesh-dependent L2-norms as follows:

[1′] ≡
∫
FQSh

[
γ1[[[ωS ]]]x : [[[ωS ]]]x + δ1[[ξ]]x · [[ξ]]x + γ2ρS [[ωS ]]]t · [[ωS ]]]t + δ2A[[ξ]]t : [[ξ]]t

]
ds =

∥∥∥δ1/2

1 [[ξ]]x

∥∥∥2

L2(FQSh )
+
∥∥∥γ1/2

1 [[[ωS ]]]x

∥∥∥2

L2(FQSh )
+
∥∥∥δ1/2

2 | [[ξ]]t |A
∥∥∥2

L2(FQSh )

+
∥∥∥γ1/2

2 ρ
1/2

S [[ωS ]]t

∥∥∥2

L2(FQSh )
;
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[2′] ≡1

2

∫
FTSh

[
Aξ : ξ + ρSωS · ωS

]
ds =

1

2

∥∥∥ | ξ |A ∥∥∥2

L2(FTSh )
+

1

2

∥∥∥ρ1/2

S ωS

∥∥∥2

L2(FTSh )
;

[3′] ≡δ2

∫
F0S
h

Aξ : ξds + γ2

∫
F0S
h

ρSωS · ωSds =
∥∥∥δ1/2

2 | ξ |A
∥∥∥2

L2(F0S
h )

+
∥∥∥γ1/2

2 ρ
1/2

S ωS

∥∥∥2

L2(F0S
h )

;

[4′] ≡
∫
FDSh

δ1(ξnxKS ) · (ξnxKS )ds =
∥∥∥δ1/2

1 (ξnxKS )
∥∥∥2

L2(FDSh )
;

[5′] ≡
∫
FQSh

[
A{{ξ}} : [[ξ]]t + ρS{{ωS}} · [[ωS ]]t

]
ds

(A.2),(A.3)
=

1

2

∫
FQSh

[[Aξ : ξ]]tds

+
1

2

∫
FQSh

ρS [[ωS · ωS ]]tds;

[6′] ≡−
∫
FQSh

[
{{ωS}} · [[ξ]]x + {{ξ}} : [[[ωS ]]]x

]
ds−

∫
FDSh

ξωS · nxKSds
(A.5)
= −

∫
FQSh

[[ξωS ]]xds

−
∫
FDSh

ξωS · nxKSds
(A.10)

= −
∑

KS∈TSh

∫
KS

(
ωS · divξ + ξ : ε(ωS)

)
dvdv;

[7′]+[5′] ≡ 1

2

∫
FTSh

[
Aξ : ξ + ρSωS · ωS

]
ds− 1

2

∫
F0S
h

[
Aξ : ξ + ρSωS · ωS

]
ds

+
1

2

∫
FQSh

[
[[Aξ : ξ]]t + ρS [[ωS · ωS ]]t

]
ds

(A.7),(A.8)
=

∑
KS∈Th

∫
KS

ξ :
∂Aξ

∂t
dv

+
∑

KS∈TSh

∫
KS

ρSωS ·
∂ωS
∂t

dv;

[6′]+[7′] + [5′] ≡ −
∑

KS∈TSh

∫
KS

(
ωS · divξ + ξ : ε(ωS)

)
dvdv

+
∑

KS∈TSh

∫
KS

ξ :
∂Aξ

∂t
dv +

∑
KS∈TSh

∫
KS

ρSωS ·
∂ωS
∂t

dv =

∑
KS∈TSh

[ ∫
KS

ξ :
( =0 inTS(TSh)︷ ︸︸ ︷
A
∂ξ

∂t
− ε(ωS)

)
dv +

∫
KS

ωS ·
( =0 inTS(TSh)︷ ︸︸ ︷
ρS
∂ωS
∂t
− divξ

)
dv
]
.
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Similarly to the acoustic case, we introduce two mesh-dependent semi-norms in TS(TSh):

|||(ωS , ξ)|||2TDGS ≡
∥∥∥γ1/2

1 [[[ωS ]]]x

∥∥∥2

L2(FQSh )
+
∥∥∥δ1/2

1 [[ξ]]x

∥∥∥2

L2(FQSh )
+
∥∥∥γ1/2

2 ρ
1/2

S [[ωS ]]t

∥∥∥2

L2(FQSh )

+
∥∥∥δ1/2

2 | [[ξ]]t |A
∥∥∥2

L2(FQSh )
+
∥∥∥δ1/2

1 (ξnxKS )
∥∥∥2

L2(FDSh )
+

1

2

∥∥∥ | ξ |A ∥∥∥2

L2(FTSh )

+
1

2

∥∥∥ρ1/2

S ωS

∥∥∥2

L2(FTSh )
+
∥∥∥δ1/2

2 | ξ |A
∥∥∥2

L2(F0S
h )

+
∥∥∥γ1/2

2 ρ
1/2

S ωS

∥∥∥2

L2(F0S
h )
,

|||(ωS , ξ)|||2TDG∗S ≡|||(ωS , ξ)|||2TDGS

+
∥∥∥δ−1/2

1 {{ωS}}
∥∥∥2

L2(FQSh )
+
∥∥∥γ−1/2

1 {{ξ}}
∥∥∥2

L2(FQSh )
+
∥∥∥δ−1/2

1 ωS

∥∥∥2

L2(FDSh )

+
∥∥∥γ−1/2

2 {{ωS}}
∥∥∥2

L2(FQSh )
+
∥∥∥δ−1/2

2 {{ξ}}
∥∥∥2

L2(FQSh )

+
∥∥∥(

1

2δ2
+ 1)

1/2 | ξ |A
∥∥∥2

L2(F0S
h )

+
∥∥∥(

1

2γ2
+ 1)

1/2ρ
1/2

S ωS

∥∥∥2

L2(F0S
h )
.

Theorem 3.4. The semi-norms ||| · |||TDGS and ||| · |||TDG∗S are norms in the Tre�tz

space TS(TSh).

Proof. The proof is similar to those of theorems 3.1 and 3.2.

From theorem 3.4, we obtain that ATDGS (·, ·) is coercive in TS(TSh), equipped with the

norm ||| · |||TDGS .

Furthermore, using a weighted Cauchy-Schwartz inequality, we obtain the following con-

tinuity estimates with respect to the chosen norms for the bilinear form:

|ATDGS ((vS ,σ); (ωS , ξ))| ≤ C2 |||(vS ,σ)|||TDG∗S |||(ωS , ξ)|||TDGS ,

and for the linear form:

|`TDGS (ωS , ξ)| ≤ (3.16)[∥∥∥(
1

2γ2
+ 1)

1/2ρ
1/2

F vS0

∥∥∥2

L2(F0S
h )

+
∥∥∥(

1

2δ2
+ 1)

1/2A
1/2σ0

∥∥∥2

L2(F0S
h )

]1/2

|||(ωS , ξ)|||TDGS .

Theorem 3.5. The Tre�tz-DG variational problem (3.15) admits a unique weak solution

(vSh,σh) ∈ Tp
S(TSh). Moreover, the following estimate holds true:

|||(vS − vSh,σ − σh)|||TDGS ≤ (1 + C2) inf
(ωS ,ξ)∈TpS(TSh)

|||(vS − ωS ,σ − ξ)|||TDG∗S .
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Proof. The proof reproduces the steps in the proof of theorem 3.5 for acoustic problem.

It is based on the fact that the space Tp
S(TSh) is �nite dimensional, on the consistency of

the bilinear form ATDGS (·; ·), and on the above coercivity and continuity estimates.

3.3 Application to elasto-acoustics

The elasto-acoustic wave propagation could be simply modeled by considering the acous-

tic media as a limit case of elasto-isotropic media. Indeed, it might be possible to solve

the elastodynamic problem with variable coe�cients, and then, to treat the acoustic

medium as a particular region of the heterogeneous elastic medium with the shear mod-

ulus µ ≡ 0 or even in�nitely small. However, from a practical point of view, this approach

would require computing the six components of the stress tensor, instead of one actual

unknown, which corresponds to the pressure. Moreover, if the numerical code is based

on a discretization by H1 �nite elements, the consideration of the limit case µ ≡ 0 would

destroy the coercivity in H1 norms, while a choice of a very small µ would result in

numerical artifacts, due to a slow S-wave appearance. An example of this phenomena

has been described by Bossy in [21].

Taking into account the foreseen implementation of the numerical solution in the case

of inverse problem, where the goal is to reconstruct media parameters, we consider a

transmission problem between the �rst order elastodynamic and acoustic systems. This

choice is indeed seen as more adapted to the imaging conditions applied for inversion,

and provides straight-forwardly the quantities of interest for the inverse problem.

In this section, we introduce the elasto-acoustic system based on the numerical coupling

of proper acoustic (3.1) and elastodynamic (3.11) systems by transmission conditions.

We will use the results and notations introduced previously for the acoustic (section

3.1) and elastic (section 3.2) cases, to apply Tre�tz-DG approximation to the coupled

Elasto-Acoustic System (EAS) and to establish well-posedness of the problem.

3.3.1 Transmission conditions for the coupled elasto-acoustic system.

Transmission conditions impose the continuity of velocity and normal stress components

at the interface ΓFS ≡ ΩF ∩ΩS . The velocities aligned to the interface and the tangential

stress remain unconstrained [73]:vF · nΓFS = vS · nΓFS at ΓFS ,

− pnΓFS = σnΓFS at ΓFS .
(3.17)
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Here nΓFS is a unit normal vector to ΓFS .

Multiplying (3.17) by the test functions q and ωS respectively, and integrating by part

in time and space, we obtain the following identities:

∫
ΓFS

(vF · nΓFS )qds =

∫
ΓFS

(vS · nΓFS )qds,

−
∫

ΓFS

(pnΓFS ) · ωSds =

∫
ΓFS

(σnΓFS ) · ωSds.

(3.18)

We will apply (3.18) to the incoming and outgoing �ux terms at ΓFS , to couple the

previously obtained formulations for acoustic and elastodynamic systems.

3.3.2 Space-time DG formulation for the elasto-acoustic system

The space-time mesh Th on Q ≡ QF ∪ QS is composed of the meshes TFh and TSh of

space-time Liptschitz elements KF ⊂ ΩF × I and KS ⊂ ΩS × I respectively, with the

mesh skeleton Fh ≡ [∪KF∈TFh∂KF ] ∪ [∪KS∈TSh∂KS ] and its subsets (see �gure 3.3):

· · · FQFh internal element faces (acoustics)

· · · FQSh internal element faces (elastodynamics)

− FDFh boundary element faces (∂ΩF × [0, T ])

− FDSh boundary element faces (∂ΩS × [0, T ])

= F0F
h initial time element faces (ΩF × {0})

= F0S
h initial time element faces (ΩS × {0})

−− FTFh �nal time element faces (ΩF × {T})
−− FTSh �nal time element faces (ΩS × {T})
· − · FFS

h �uid-solid interface element faces (ΓFS × [0, T ])

0

T

KF KS

ΩF ΩS

ti
m
e
I

Figure 3.3: Example of 1D+time mesh Th ≡ TFh ∪ TSh on Q ≡ [ΩF ∪ ΩS ]× I.

The space-time DG formulation of the coupled problem consists in �nding

(vFh, ph,vSh,σh) ∈ V h(TFh)d × V h(TFh) × V h(TSh)d × V h(TSh)d
2
such that, for all
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KF ,KS ∈ Th and for all (ωF , q,ωS , ξ) ∈ V h(TFh)d × V h(TFh)× V h(TSh)d × V h(TSh)d
2

it holds true:

−
∫
KF

[
ph(

1

c2
FρF

∂q

∂t
+ divωF ) + vFh · (ρF

∂ωF
∂t

+ ∇q)
]
dv

+

∫
∂KF

[ 1

c2
FρF

p̆hq n
t
KF

+ qv̂Fh · nxKF + ρF v̆Fh · ωF ntKF + p̂hωF · nxKF
]
ds =

∫
KF

fqdv,

−
∫
KS

[
σh : (A

∂ ξ

∂t
− ε(ωS)) + vSh · (ρS

∂ωS
∂t
− divξ)

]
dv

+

∫
∂KS

[
Aσ̆h : ξ ntKS − ξv̂Sh · n

x
KS

+ ρS v̆Sh · ωS ntKS − σ̂h : (ωS ⊗ nxKS )
]
ds = 0.

We recall the de�nition of numerical �uxes v̂Fh, v̆Fh, p̂h, p̆h, v̂Sh, v̆Sh, σ̂h and σ̆h from

the previous sections:(
v̂Fh
p̂h

)
≡

(
{{vFh}}+ β1[[ph]]x
{{ph}}+ α1[[vFh]]x

)
on FQFh ,

(
v̆Fh
p̆h

)
≡

(
{{vFh}}+ α2[[vFh]]t
{{ph}}+ β2[[ph]]t

)
on FQFh ,

(
v̂Fh · nxKF
p̂h

)
≡

(
gDF
ph + α1(vFh · nxKF − gDF )

)
on FDFh ,

(
v̆Fh
p̆h

)
≡

(
vFh
ph

)
on FTFh ,

(
v̆Fh
p̆h

)
≡

(
1

2
− α2)vFh + (

1

2
+ α2)vF0

(
1

2
− β2)ph + (

1

2
+ β2)p0

 on F0F
h ,

(
v̂Sh
σ̂h

)
≡

(
{{vSh}} − δ1[[σh]]x
{{σh}} − γ1[[[vSh]]]x

)
on FQSh ,

(
v̆Sh
σ̆h

)
≡

(
{{vSh}}+ γ2[[vSh]]t
{{σh}}+ δ2[[[σh]]]t

)
on FQSh ,

(
v̂Sh
σ̂hn

x
KS

)
≡

(
vSh − δ1(σhn

x
KS
− gDS )

gDS

)
on FDSh ,

(
v̆Sh
σ̆h

)
≡

(
vSh
σh

)
on FTSh ,

(
v̆Sh
σ̆h

)
≡

(
1

2
− γ2)vSh + (

1

2
+ γ2)vS0

(
1

2
− δ2)σh + (

1

2
+ δ2)σ0

 on F0S
h ,
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In addition, we introduce the numerical �uxes through the �uid-solid interface by using

the transmission conditions (3.17):
v̂Fh · nxKF
p̂h
v̂Sh
σ̂hn

x
KS

 ≡


vSh · nxKF + δ1(σhn

x
KF

+ phn
x
KF

) · nxKF
ph + α1(vFh · nxKF − vSh · n

x
KF

)

vSh − δ1(σhn
x
KS

+ phn
x
KS

)

−phnxKS + α1(vFh · nxKS − vSh · n
x
KS

)nxKS

 on FFS
h .

As in the previous sections, without losing generality and in order to simplify the pre-

sentation, we restrict the model to the homogeneous system of equations with a trivial

source term f ≡ 0 and "free-surface" boundary conditions gDF ≡ 0, gDS ≡ 0.

3.3.3 Tre�tz-DG formulation for the elasto-acoustic system

We de�ne the Tre�tz space for the coupled problem. It is composed of the Tre�tz

spaces previously de�ned for acoustic and elastodynamic cases: T(Th) ≡ TF (TFh) ×
TS(TSh). Similarly to the continuous Tre�tz space, the discrete Tre�tz space is de�ned

by: Tp(Th) ≡ Tp
F (TFh)×Tp

S(TSh) Thus, the Tre�tz-DG formulation for elasto-acoustic

system reads as: Seek (vFh, ph,vSh,σh) ∈ Tp(Th) such that, for all (ωF , q,ωS , ξ) ∈
Tp(Th), it holds true:∫

FQFh

[ 1

c2
FρF
{{ph}}[[q]]t + ρF {{vFh}} · [[ωF ]]t + {{ph}}[[ωF ]]x + {{vFh}} · [[q]]x

]
ds

+

∫
FQFh

[
α1[[vFh]]x[[ωF ]]x + β1[[ph]]x · [[q]]x + α2ρF [[vFh]]t · [[ωF ]]t +

β2

c2
FρF

[[ph]]t[[q]]t

]
ds

+

∫
FTFh

[ 1

c2
FρF

phq + ρFvFh · ωF
]
ds

−(
1

2
− β2)

∫
F0F
h

1

c2
FρF

phq ds− (
1

2
− α2)

∫
F0F
h

ρFvFh · ωF ds

+

∫
FDFh

α1(vFh · nxKF )(ωF · nxKF )ds +

∫
FDFh ∪FFSh

phωF · nxKF ds

+

∫
FFSh

α1(vFh · nxKF − vSh · n
x
KF

)(ωF · nxKF )ds +

∫
FFSh

qvSh · nxKF ds

+

∫
FFSh

δ(σhn
x
KF

+ pnxKF ) · (qnxKF )ds =

(
1

2
+ β2)

∫
F0F
h

1

c2
FρF

p0q ds + (
1

2
+ α2)

∫
F0F
h

ρFvF 0 · ωF ds.
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∫
FQSh

[
A {{σh}} : [[ξ]]t + ρS{{vSh}} · [[ωS ]]t

]
− {{σh}} : [[[ωS ]]]x − {{vSh}} · [[ξ]]x

]
ds

+

∫
FQSh

[
γ1[[[vSh]]]x : [[[ωS ]]]x + δ1[[σh]]x · [[ξ]]x + γ2ρS [[vSh]]]t · [[ωS ]]]t + δ2A[[σh]]t : [[ξ]]t

]
ds

+

∫
FTSh

[
Aσh : ξ + ρSvSh · ωS

]
ds

− (
1

2
− δ2)

∫
F0S
h

Aσh : ξds− (
1

2
− γ2)

∫
F0S
h

ρSvSh · ωSds

+

∫
FDSh

δ1(σhn
x
KS

) · (ξnxKS )ds−
∫

FDSh ∪FFSh

ξvSh · nxKSds

+

∫
FFSh

δ1(σhn
x
KS

+ phn
x
KS

) · (ξnxKS )ds +

∫
FFSh

pωS · nxKSds

−
∫
FFSh

α1(vFh · nxKS − vSh · n
x
KS

)(ωS · nxKS )
]
ds =

(
1

2
+ δ2)

∫
F0S
h

Aσ0 : ξds + (
1

2
+ γ2)

∫
F0S
h

ρSvS0 · ωSds

or, by summing the two equations above:

Seek (vFh, ph,vSh,σh) ∈ Tp(Th) such that, for all (ωF , q,ωS , ξ) ∈ Tp(Th), it holds true:

ATDG((vFh, ph,vSh,σh); (ωF , q,ωS , ξ)) = `TDG(ωF , q,ωS , ξ). (3.19)

Here, the bilinear formATDG(· ; ·) can be rewritten in terms ofATDGF (· ; ·) andATDGS (· ; ·),
formerly de�ned in the acoustic and elastodynamic cases, as follows:

ATDG((vFh, ph,vSh,σh);(ωF , q,ωS , ξ)) =

ATDGF ((vFh, ph); (ωF , q)) +ATDGS ((vSh,σh); (ωS , ξ))

+

∫
FFSh

[
qvSh · nxKF − pωS · n

x
KF

]
ds

+

∫
FFSh

[
α1(vFh · nxKF − vSh · n

x
KF

)(ωF · nxKF − ωS · n
x
KF

)
]
ds

+

∫
FFSh

[
δ1(σhn

x
KS

+ phn
x
KS

) · (ξnxKS + qnxKS )
]
ds.
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Furthermore, the linear form `TDG(·) can be also represented in the terms of `TDGF (·)
and `TDGS (·):

`TDG(ωF , q,ωS , ξ) = `TDGF (ωF , q) + `TDGS (ωS , ξ).

3.3.4 Well-posedness of Tre�tz-DG formulation for the elasto-acoustic

system

We start by setting ph = q, vFh = ωF , σh = ξ and vSh = ωS , so that the form

ATDG(·; ·) reads as:

ATDG((ωF , q,ωS , ξ);(ωF , q,ωS , ξ)) =

ATDGF ((ωF , q); (ωF , q)) +ATDGS ((ωS , ξ); (ωS , ξ))

+

∫
FFSh

=0︷ ︸︸ ︷[
qωS · nxKF − qωS · n

x
KF

]
ds

+

∫
FFSh

[
α1(ωF · nxKF − ωS · n

x
KF

)(ωF · nxKF − ωS · n
x
KF

)
]
ds

+

∫
FFSh

[
δ1(ξnxKS + qnxKS ) · (ξnxKS + qnxKS )

]
ds.

We restate the previously obtained estimates for ATDGF ((ωF , q); (ωF , q)) and

ATDGS ((ωS , ξ); (ωS , ξ)). Thus, for ATDG((ωF , q,ωS , ξ); (ωF , q,ωS , ξ)) we obtain:

ATDG((ωF , q,ωS , ξ); (ωF , q,ωS , ξ)) ≡ |||(ωF , q)|||2TDGF + |||(ωS , ξ)|||2TDGS

+
∥∥∥α1/2

1 (ωF · nxKF − ωS · n
x
KF

)
∥∥∥2

L2(FFSh )

+
∥∥∥δ1/2

1 (ξnxKS + qnxKS )
∥∥∥2

L2(FFSh )
.

Thanks to the positiveness of ATDGS ((ωS , ξ); (ωS , ξ)), we consider the semi-norm

||| · |||TDG given by |||(ωF , q,ωS , ξ)|||TDG ≡ A
1/2

TDG((ωF , q,ωS , ξ); (ωF , q,ωS , ξ)), and

de�ned by:

|||(ωF , q,ωS , ξ)|||2TDG ≡ |||(ωF , q)|||2TDGF + |||(ωS , ξ)|||2TDGS

+
∥∥∥α1/2

1 (ωF · nxKF − ωS · n
x
KF

)
∥∥∥2

L2(FFSh )

+
∥∥∥δ1/2

1 (ξnxKS + qnxKS )
∥∥∥2

L2(FFSh )
.
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We have the following theorem:

Theorem 3.6. The semi-norm ||| · |||TDG is a norm in the Tre�tz space T(Th).

Proof. The proof is based on the approach proposed in the proof of theorem 3.1 for

||| · |||TDGF .

The coercivity of the bilinear form ATDG(·; ·) with respect to the chosen norm ||| · |||TDG
follows straightforwardly from theorem 3.6.

In order to prove the continuity properties of ATDG(·; ·) and `TDG(·) , we introduce the
semi-norm ||| · |||TDG∗ de�ned by:

|||(ωF , q,ωS , ξ)|||2TDG∗ ≡ |||(ωF , q)|||2TDG∗F + |||(ωS , ξ)|||2TDG∗S
+
∥∥∥q∥∥∥2

L2(FFSh )
+
∥∥∥ωS∥∥∥2

L2(FFSh )
.

Arguing similarly as for theorems 3.1 and 3.2, it can be easily shown that:

Theorem 3.7. The semi-norm ||| · |||TDG∗ is a norm in the Tre�tz space T(Th).

Proof. See the proof for theorems 3.1 and 3.2.

Using a weighted Cauchy-Schwartz inequality [7], we obtain the following continuity

estimates:

|ATDG((vF , p,vS ,σ); (ωF , q,ωS , ξ))| ≤ C1 + C2 |||(vF , p,vS ,σ)|||TDG∗ |||(ωF , q,ωS , ξ)|||TDG,

|`TDG(ωF , q,ωS , ξ)| ≤
[∥∥∥(

1

2α2
+ 1)

1/2ρ
1/2

F vF0

∥∥∥2

L2(F0F
h )

+
∥∥∥(

1

2β2
+ 1)

1/2(
1

c2
FρF

)
1/2p0

∥∥∥2

L2(F0F
h )

+
∥∥∥(

1

2γ2
+ 1)

1/2ρ
1/2

F vS0

∥∥∥2

L2(F0S
h )

+
∥∥∥(

1

2δ2
+ 1)

1/2A
1/2σ0

∥∥∥2

L2(F0S
h )

]1/2

|||(ωF , q,ωS , ξ)|||TDG,

and, as a result, the following theorem:

Theorem 3.8. The Tre�tz-DG variational problem (3.19) admits a unique weak solution

(vFh, ph,vSh,σh) ∈ Tp(Th). Moreover, the following estimate holds true:

|||(vF − vFh,p− ph,vS − vSh,σ − σh)|||TDG ≤

(1 + C1 + C2) inf
(ωF ,q,ωS ,ξ)T

p(Th)
|||(vF − ωF , p− q,vS − ωS ,σ − ξ)|||TDG∗ .

Proof. The proof follows from the ones for theorems 3.3 and 3.5.
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3.4 Conclusion

In this chapter, we have presented the theory of space-time Tre�tz-DG method applied to

the �rst-order formulations of the acoustic, elastodynamic and coupled elastic-acoustic

systems. We have established well-posedness of each formulation based on the mesh-

dependent estimates, which gave us a motivation for further numerical implementation

of the method.

In the next chapter we will discuss in details the algorithm of implementation as well as

di�erent analytical and numerical approaches for its optimization.



Chapter 4

Implementation of the Tre�tz-DG

method

In this chapter, we consider the example of a one-dimensional homogeneous medium,

in order to ease the description of the implementation and to provide a �rst proof of

concept of our algorithm. The Tre�tz-DG method allows a variety of choices of mesh

element forms, provided they are they are weakly distorted to form a regular polygon.

However, it is important to note that the matrix that represents the global linear system

in Tre�tz-DG method is only sparse, while it is a block-diagonal for the standard DG

method. The implementation is indeed very di�erent, since DG methods only consider

the space discretization leading to a semi-discrete system, while Tre�tz-DG methods

are based on a full integration both in time and space. DG formulation requires then

the combination with the time scheme and the block-diagonal structure of the DG mass

matrix allows using an explicit scheme. The computational costs are thus optimized, even

if the time step must satisfy the CFL condition. In the case of Tre�tz-DG formulation, a

direct implementation leads to invert a global but sparse matrix which tends to be huge.

Hence, to reduce the computational time, we propose to divide the global space-time Q

in thin time slabs, corresponding to the right-prism elements, with horizontal faces (Ω-

or "space" faces) parallel to the physical space domain Ω. This assumption gives us the

possibility to resolve the global problem layer by layer, considering �nal values on the top

of the current time slab as the initial data for the next slab. Thus, we naturally decrease

the size of matrix to be inverted which contributes to reduce the computational time.

This approach is similar to the one, introduced for space-time DG methods in [8, 62].

However, the inversion technique we proposed at �rst turns out to be limited when

considering large problems. That is why we derive another technique which is based

on the decomposition of the global matrix into a block-diagonal matrix representing the

51
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integration along the Ω - faces only. It amounts to separating the time and the space

under a CFL - like condition. This technique actually requires some stability conditions,

but signi�cantly accelerates the algorithm execution.
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4.1 Numerical algorithm

We choose a one-dimensional space domain ΩF ≡ [xL, xR], and a time domain I ≡ [0, T ],

so that QF ≡ ΩF × I represents a rectangle.

In order to simplify the presentation, we start with a uniform mesh TFh on QF which

is composed of non-overlapping rectangular elements Kk
F , k = 1, ..NK , NK = Nx ×Nt,

with edges parallel to the space and time axes, and equal to ∆x = (xR − xL)/Nx and

∆t = T/Nt respectively (see �gure 4.1).

xL xR
0

T
∆x

∆tKk
F

space

ti
m
e

i

j

1 2 · · · Nx

Nx + 1 · · · k

Nx

N
t

k = (j − 1)×Nx + i

Figure 4.1: Uniform rectangular mesh TFh on QF . Element numbering.

Once we have de�ned the discrete approximation space, we can solve the problem inside

each element K, communicating the corresponding values at the boundaries ∂K by

the incoming and outgoing �uxes. Thus, the variational problem is represented by a

global algebraic linear system, with a global sparse matrix M , of size equals to the total

number of elements multiplied by the number of degrees of freedom per element, that is

(Nt ×Nx ×Ndof ).

Just as was formerly discussed, the space-time formulation leads to the inversion of a

sparse but not block-diagonal matrix. The computational costs are thus increased com-

pared to standard DG formulations. In order to optimize the execution of the algorithm,

we propose to solve the problem "layer by layer", considering the �nal results, computed

in the current time layer at time t, as initial values for the next slab at time t+ ∆t (see

�gure 4.2). Inside each time slab, we solve the formulation inside each element, taking

into account incoming and outgoing �uxes.

In this example of a 1D+time rectangular mesh, each element communicates with its two

neighbours (left "L" and right "R" ones). Thus, the global matrix has a block-tridiagonal

form, of size Nt times smaller than the original one (see �gure 4.3).

We can also reduce the numerical costs by computing the space and time integrals on

faces of one reference element (unit square), and then, by projecting the computed values
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1 2 · · · Nx

Nx + 1 · · · k

t0 = 0

t = ∆t

t0 = ∆t

t = 2∆t
· · ·

t = T

Nx

N
t

CL R

t0 = 0

t = ∆t

t0 = ∆t

t = 2∆t
· · ·

t = T

Nx

N
t

Figure 4.2: Uniform rectangular mesh TFh on QF . Decomposing into layers.

C R L
· · ·
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=
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...

Figure 4.3: Global algebraic linear system with block-tridiagonal matrix.

onto all mesh elements (it is simply a multiplication by ∆x and ∆t for space and time

integration respectively in the case of rectangular mesh).

We have written a short pseudo-code, which describes the algorithm of the method im-

plementation. It is important to notice that the main loop, which represents propagation

in time, contains three fundamental stages:

1) computation of the approximation coe�cients U of the numerical solution in the cur-

rent time slab [tj−1, tj ] (step 6);

2) computation of the intermediate numerical solutions V and P thanks to the approx-

imation coe�cients U at the end of the current time slab tj , using the tsnap function,

which computes the trace of the numerical solution at time tj (steps 7 - 8).

3) update of the initial values - computation of U0 = 0.5(V0 + P0) (the right-hand side)

at the beginning tj of the next time slab [tj , tj+1], thanks to the intermediate numerical

solutions V and P from the steps 7 - 8, using the L2-projection function L2
proj (steps 9

- 11).

The idea of removing the last two stages, corresponding to the �projection� of the ap-

proximation coe�cients onto the numerical solution, is quite attractive, because it will

provide a faster implementation of the code: we could re-use directly the vector of ap-

proximate coe�cients computed in the previous slab. We will explore this possibility in

section 4.5.
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Data: V0, P0 % initial velocity and pressure �elds
c, ρ, Ω, I % domain parameters
∆x, ∆t, Nx, Nt, Ndof % mesh and DG parameters

Result: VT , PT % �nal velocity and pressure �elds
Initiate:

0 φv, φp % initiation of the polynomial basis

Compute:

1 Vaux0 = L2
proj(V0, φ

v) % velocity and pressure linear terms at t = 0

2 Paux0 = L2
proj(P0, φ

p)

3 U0 = 0.5(Vaux0 + Paux0) % the initial condition vector (right-hand side)

4 M % computing the global matrix M

5 invM = M−1 % inversion of the global matrix M

for j = 1 : Nt do

Compute:

6 U = invM U0 % vector of the coe�cients for approximate

% solution in the time slab [(j − 1)∆t, j∆t]

7 V = tsnap(U, φv, tj) % intermediate approximate solutions for velocity

8 P = tsnap(U, φp, tj) % and pressure �elds at tj = j∆t

9 Vaux0 = L2
proj(V, φ

v) % intermediate velocity and pressure linear

10 Paux0 = L2
proj(P, φ

p) % terms at tj = j∆t

11 U0 = 0.5(Vaux0 + Paux0) % update of the right-hand side
end

Compute:

12 VT = tsnap(U, φv, tNt
) % �nal approximate solutions for velocity and

13 PT = tsnap(U, φp, tNt
) % pressure �elds at tNt

= Nt∆t

In the next sections, we detail the important steps of the algorithm, such as the construc-

tion of the Tre�tz space-time polynomial basis, the computation of the global matrix M

and its inversion, and also both the update of the initial data and change-over between

the time slabs.

4.2 Polynomial basis

As discussed in the previous chapter, one of the advantages of Tre�tz-type methods is the

�exibility in the choice of basis functions. The main constraint is to satisfy the Tre�tz

property inside each element. Tre�tz - or "T"-functions for non-stationary problems were

discussed in many papers by Zieli«ski et al. in [111], Cialkovski et al. in [27], Maciag in

[79], Grysa et al. in [54], Kretzchmar et al. in [72], Moiola et al. in [82], Banjai et al. in

[12] and their references therein.

To perform the numerical simulations, we have computed a polynomial basis, de�ned in

the reference element, using Taylor expansions of generating exponential functions which

are local solutions of the initial system of equations. We have extended the algorithm
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for computing wave polynomials, solutions of the second order transient wave equation,

proposed by Maciag in [78], to the �rst order AS and ES of dimension one and higher.

To explain our approach, we consider the example of a 1D acoustic problem:
∂p

∂t
+ c2

F

∂vF
∂x

= 0,

∂vF
∂t

+
∂p

∂x
= 0.

Using Fourier method of separation of variables (see [49]) we obtain two solutions

gv(a, b, x, t) = ei(ax+bcF t), gp(a, b, x, t) = −cF ei(bx+acF t),

for vF and p respectively, which satisfy the initial acoustic equations if a2 = b2 (we

consider them as the generating functions of wave polynomials for velocity and pressure).

We decompose both generating functions in Taylor expansions as follows:

ei(ax+bcF t) =
∞∑
n=0

n∑
k=0

Svn−k,k(x, t)a
n−kbk,

−cF ei(bx+acF t) =
∞∑
n=0

n∑
k=0

Spn−k,k(x, t)a
n−kbk,

where Svn−k,k(x, t) and S
p
n−k,k(x, t) are polynomials of variables x, t involving the medium

parameter cF . Replacing b2 by a2 in both series we obtain:

ei(ax+bcF t) =
∞∑
n=0

n∑
k=0,k<2

Qvn−k,k(x, t)a
n−kbk,

−cF ei(bx+acF t) =
∞∑
n=0

n∑
k=0,k<2

Qpn−k,k(x, t)a
n−kbk.

The real (Rv and Rp) and imaginary (Iv and Ip) parts of polynomials Qv and Qp satisfy

the initial acoustic equations:

Rvn−k,k(x, t) = <(Qvn−k,k(x, t)), Ivn−k,k(x, t) = =(Qvn−k,k(x, t)),

Rpn−k,k(x, t) = <(Qpn−k,k(x, t)), Ipn−k,k(x, t) = =(Qpn−k,k(x, t)).

By varying the parameters k and n in the above formulation we obtain:
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Rv
00 = 1 Iv00 = 0 Rp

00 = −cF Ip00 = 0
Rv

10 = 0 Iv10 = x Rp
10 = 0 Ip10 = −c2F t

Rv
01 = 0 Iv01 = cF t Rp

01 = 0 Ip01 = −cFx
Rv

20 = −x2

2 −
c2
F t2

2 Iv20 = 0 Rp
20 = cF (x2

2 +
c2
F t2

2 ) Ip20 = 0
Rv

11 = −cFxt Iv11 = 0 Rp
11 = c2Fxt Ip11 = 0

Rv
02 = 0 Iv02 = 0 Rp

02 = 0 Ip02 = 0

Rv
30 = 0 Iv30 = −x3

6 −
xc2

F t2

2 Rp
30 = 0 Ip30 = cF (

c3
F t3

6 + x2cF t
2 )

Rv
21 = 0 Iv21 = − c3

F t3

6 − x2cF t
2 Rp

21 = 0 Ip21 = cF (x3

6 +
xc2

F t2

2 )
Rv

12 = 0 Iv12 = 0 Rp
12 = 0 Iv12 = 0

Rv
03 = 0 Iv03 = 0 Rp

03 = 0 Iv03 = 0

Thus, a space-time wave polynomial basis for the �rst-order acoustic wave equation can

be written as follows (approximation degree p=3):

φ̂v1 = 0 φ̂v2 = 1 φ̂v3 = x φ̂v4 = cF t

φ̂p1 = −cF φ̂p2 = 0 φ̂p3 = −c2F t φ̂p4 = −cFx

φ̂v5 = −x2

2 −
c2
F t2

2 φ̂v6 = −cFxt φ̂v7 = −x3

6 −
xc2

F t2

2 φ̂v8 = − c3
F t3

6 − x2cF t
2

φ̂p5 = c2Fxt φ̂p6 = cF (x2

2 +
c2
F t2

2 ) φ̂p5 = cF (
c3
F t3

6 + x2cF t
2 ) φ̂p6 = cF (x3

6 +
xc2

F t2

2 )

This basis contains the pairs of polynomial functions (φ̂v· , φ̂
p
· ), corresponding to the veloc-

ity and pressure respectively, which are locally de�ned on the mesh element and satisfying

the Tre�tz property inside this element, and of degrees less or equal to p (p = 0, 1, 2, 3),

to provide an approximation of order p.

By their construction, the Tre�tz basis functions are not attached to the coordinates of

the degrees of freedom inside the element, contrary to the Lagrange polynomials. Even

if we compute only surface integrals, we can evaluate the �nal approximation solution in

any point of the whole element re�nement. We refer the reader to appendix B for bases

we use in 2D acoustics and elastodynamics.

4.3 Computation of the global matrix M

In this section, we detail the computation of the global matrix M of the system. We

introduce the reference element and the transformation operator between the points of

the reference and local mesh element. It is worth noting that we use basis functions

that are de�ned in the whole element even if we only need their trace on the faces of

the element. Indeed as we have explained in the previous section the basis functions are

constructed as local solutions of the wave equation into an element, while the variational

formulation involves only their traces on the faces of the element. We compare two

approaches for computing the integral terms that constitute the global matrix M , with

respect to the choice of system of coordinates.
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4.3.1 The reference element

We consider the reference element K̂F with its vertices ŝi(x̂i, t̂i), i = 1, Nver.

For a 1D+time model, K̂F is a unit square with vertices ŝ1(0, 0), ŝ2(1, 0), ŝ3(1, 1), ŝ4(0, 1)

in the case of rectangular meshes (�gure 4.4(a)), and a right unit triangle with vertices

ŝ1(0, 0), ŝ2(1, 0), ŝ3(0, 1) in the case of triangular meshes (�gure 4.4(b)).

t

x

K̂F

ŝ1 ŝ2

ŝ3ŝ4

0

t

x

K̂F

ŝ1 ŝ2

ŝ3

0

(a) Rectangular mesh (b) Triangular mesh

Figure 4.4: 1D+time reference element

For a 2D+time model, K̂F is a unit cube with vertices ŝ1(0, 0, 0), ŝ2(1, 0, 0), ŝ3(1, 1, 0),

ŝ4(0, 1, 0), ŝ5(0, 0, 1), ŝ6(1, 0, 1), ŝ7(1, 1, 1), ŝ8(0, 1, 1) in the case of rectangular meshes

in space (�gure 4.5(a)), and a right prism with vertices ŝ1(0, 0, 0), ŝ2(1, 0, 0), ŝ3(0, 1, 0),

ŝ4(0, 0, 1), ŝ5(1, 0, 1), ŝ6(0, 1, 1) in the case of triangular meshes in space (�gure 4.5(b)).

0

t

y

x

K̂F

ŝ8ŝ5

ŝ1 ŝ4

ŝ7ŝ6

ŝ2 ŝ3

0

t

y

x

K̂F

ŝ6ŝ4

ŝ1 ŝ3

ŝ5

ŝ2

(a) Rectangular mesh in space (b) Triangular mesh in space

Figure 4.5: 2D+time reference element

For a 3D+time model, K̂F is a unit 4D cube with vertices ŝ1(0, 0, 0, 0), ŝ2(1, 0, 0, 0),

ŝ3(1, 1, 0, 0), ŝ4(0, 1, 0, 0), ŝ5(0, 0, 1, 0), ŝ6(1, 0, 1, 0), ŝ7(1, 1, 1, 0), ŝ8(0, 1, 1, 0), ŝ9(0, 0, 0, 1),

ŝ10(1, 0, 0, 1), ŝ11(1, 1, 0, 1), ŝ12(0, 1, 0, 1), ŝ13(0, 0, 1, 1), ŝ14(1, 0, 1, 1), ŝ15(1, 1, 1, 1), ŝ16(0, 1, 1, 1)

in the case of cubic meshes in space (�gure 4.6(a)), and a 4D right prism with vertices

ŝ1(0, 0, 0, 0), ŝ2(1, 0, 0, 0), ŝ3(0, 1, 0, 0), ŝ4(0, 0, 1, 0), ŝ5(0, 0, 0, 1), ŝ6(1, 0, 0, 1), ŝ7(0, 1, 0, 1),

ŝ8(0, 0, 1, 1) in the case of tetrahedral meshes in space (�gure 4.6(b)).
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ŝ1 ŝ4
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(a) Cubic mesh in space (b) Tetrahedral mesh in space

Figure 4.6: 3D+time reference element (in section t = 0)

For each local element KF of the mesh, it exists a linear transformation FK : (x̂, t̂) →
(x, t) which transforms any point (x̂, t̂) in the element of reference K̂F into the point

(x, t) in the local element KF (see �gure 4.7).
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ŝ6ŝ4

ŝ1 ŝ3

ŝ5

ŝ2
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s1

Figure 4.7: A�ne map FK . Element transformation examples

We de�ne the operator FK(x̂, t̂) as follows:

..... 1D+time meshes:

FK(x̂, t̂) =

(
x1

t1

)
+

(
x2 − x1 0

0 t3 − t1

)(
x̂

t̂

)
(rectangular cells),

FK(x̂, t̂) =

(
x1

t1

)
+

(
x2 − x1 x3 − x1

t2 − t1 t3 − t1

)(
x̂

t̂

)
(triangular cells),

.....

..... 2D+time meshes:

FK(x̂, ŷ, t̂) =


x1

y1

t1

+


x2 − x1 0 0

0 y3 − y1 0

0 0 t5 − t1



x̂

ŷ

t̂

 (cubic cells),
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FK(x̂, ŷ, t̂) =


x1

y1

t1

+


x2 − x1 x3 − x1 0

y2 − y1 y3 − y1 0

0 0 t4 − t1



x̂

ŷ

t̂

 (prism cells),

.

..... and 3D+time meshes:

FK(x̂, ŷ, ẑ, t̂) =


x1

y1

z1

t1

+


x2 − x1 0 0 0

0 y3 − y1 0 0

0 0 z5 − z1 0

0 0 0 t9 − t1




x̂

ŷ

ẑ

t̂

 (4D cubic cells);

FK(x̂, ŷ, ẑ, t̂) =


x1

y1

z1

t1

+


x2 − x1 x3 − x1 x4 − x1 0

y2 − y1 y3 − y1 y4 − y1 0

z2 − z1 z3 − z1 z4 − z1 0

0 0 0 t5 − t1




x̂

ŷ

ẑ

t̂

 (4D prism cells),

or, in vector-matrix form FK(x̂, t̂) ≡ AK

(
x̂

t̂

)
+ bK .

For each reference element K̂F we introduce the following notation:

- we denote by K̂+
Ω and K̂−Ω faces - the reference faces at the top and at the bottom of

the time slab, where the time variable t̂ is �xed and equal to 1 and 0 respectively. In

particular, we denote by K̂Ω the projection of K̂±Ω on Rd such that K̂Ω = {x̂ | (x̂, 0) ∈
K̂−Ω } = {x̂ | (x̂, 1) ∈ K+

Ω };
- we denote by K̂I faces - the reference faces in ∂K̂Ω × [0, 1].

In �gure 4.5 (b) K̂+
Ω and K̂−Ω are the triangular faces on the top and bottom respectively,

while K̂I is the set of vertical rectangular faces.

Taking into account the above notation, we introduce the operators FK±Ω
and FKI that

transform any point (x̂, t̂) of the reference face K̂±Ω and K̂I to the point (x, t) of the

corresponding local element faceK±Ω andKI respectively. These operators can be written

in the terms of a formerly de�ned operator FK as follows:

FK+
Ω

(x̂) = FK(x̂, 1), x̂ ∈ K̂Ω,

FK−Ω
(x̂) = FK(x̂, 0), x̂ ∈ K̂Ω,

FKI (x̂, t̂) = FK(x̂, t̂), (x̂, t̂) ∈ ∂K̂Ω × [0, 1].

The Jacobian JFK of the transformation FK corresponds to the matrix AK where |JFK | =
|det(AK)| is the volume of the local element. The Jacobian JF−1

K
of the inverse trans-

formation F−1
K satis�es |JF−1

K
| = |det(AK)|−1. In particular, for the Jacobian JF

K±
Ω

of
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transformation FK±Ω
we have: |JF

K±
Ω

| = ∆Ω ∝ (∆x)d - surface of the local K±Ω face. For

the Jacobian JFKI of transformation FKI we have: |JFKI | = ∆I ∝ (∆x)d−1∆t - surface

of the local KI face

Thanks to this "reference-to-local" transformation and its inverse, we have di�erent pos-

sibilities of choice of coordinate system to calculate the global matrix M . The use of the

reference or local basis has its speci�c advantages, regarding the numerical implementa-

tion, and it will be discussed in the next section.

4.3.2 The "local-to-reference" approach.

The global matrixM consists of integrals of basis function products on the local element

faces. Generally speaking, it reduces to the computation of the following surface integrals:

Ii,j
K±Ω

=

∫
K±Ω

φiφjdx, i, j = 1, Ndof ,

Ii,jKI =

∫
KI

φiφjd(x, t), i, j = 1, Ndof .

In the above formulas, the notation dx stands for the elementary measure of the face

K±Ω and d(x, t) denotes the elementary measure of KI .

As we have mentioned previously, there exist the linear transformation FK±Ω
and FKI

that transforms the reference (or global) basis functions into the local ones. Thus, the

integrals Ii,j
K±Ω

and Ii,jKI can be written as follows:

Ii,j
K±Ω

=

∫
K±Ω

φiφj dx =

∫
K±Ω

[φ̂i ◦ F−1

K±Ω
][φ̂j ◦ F−1

K±Ω
] dx = |JF

K±
Ω

|
∫
K̂±Ω

φ̂iφ̂j dx̂ =

∆Ω

∫
K̂±Ω

φ̂iφ̂j dx̂,

Ii,jKI =

∫
KI

φiφj d(x, t) =

∫
KI

[φ̂i ◦ F−1
KI

][φ̂j ◦ F−1
KI

] d(x, t) = |JFKI |
∫
K̂I

φ̂iφ̂j d(x̂, t̂) =

∆I

∫
K̂Ω

φ̂iφ̂j d(x̂, t̂).

We then obtain:

Ii,j
K±Ω

= ∆Ω Ii,jK̂±Ω
and Ii,jKI = ∆I Ii,jK̂I ,
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It means that once we have de�ned the basis functions in the reference element (unit

square, right triangle or right prism etc.), we can compute all the integral terms on the

reference faces, and then "re-project" the obtained integral values on the local element

multiplying by ∆Ω ∝ (∆x)d or ∆I ∝ (∆x)d−1∆t.

The advantage of this approach is that, in the case of homogeneous medium with regular

mesh, instead of computing the integrals NK times, we compute them once for all inside

the reference element. To turn to the reference element for de�ning its basis functions

allows to compute all the integrals analytically. This technique is commonly used for

the classical DG methods. For the Tre�tz-DG methods, the basis functions depend on

the parameters of the medium, thus the "reference-to-local" approach can be used in the

case of homogeneous media only. In heterogeneous medium, since the basis functions

have to be recomputed on each element, it is preferable to use the technique described

in the next section.

4.3.3 The "reference-to-local" approach.

When we consider the Tre�tz approximation space, the "local-to-reference" approach

becomes less useful, because the Tre�tz basis functions inside the local element depends

on the medium parameters inside this element (see section 4.2). Thus, the number of

di�erent projections of local basis functions to the reference element is the total number

of elements, so we can lose the advantage of an analytical integration.

That is why we turn to an approximation procedure, such as a Gaussian quadrature, to

compute the surface integrals straightforwardly on each local element face. it is worth

noting that this process can be easily parallelized.

Let (x̂, t̂)Gl be the Gaussian nodes inside the reference element, and wGl the corresponding

weights (l = 1, NG). We obtain the following formulations:

Ii,j
K±Ω

=

∫
K±Ω

φiφj dx =

NG∑
l=1

[φiφj ](x)Gl w
G
l = |JF

K±
Ω

|
NG∑
l=1

[[φiφj ] ◦ FK±Ω ](FK±Ω
(x̂))Gl w

G
l =

∆Ω

NG∑
l=1

[φiφj ](FK±Ω
(x̂))Gl w

G
l ,

Ii,jKI =

∫
KI

φiφj d(x, t) =

NG∑
l=1

[φiφj ](x, t)
G
l w

G
l = |JFKI |

NG∑
l=1

[[φiφj ] ◦ FKI ](FKI (x̂, t̂))
G
l w

G
l =

∆I

NG∑
l=1

[φiφj ](FKI (x̂, t̂))
G
l w

G
l ,

and the corresponding algorithm steps:
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for i = 1 : Ndof do

for j = 1 : Ndof do

IKΩ(i, j) = 0

IKI
(i, j) = 0

for l = 1 : NG do

Compute:

(x)Gl = FK±
Ω

(x̂)Gl

(x, t)Gl = FKI
(x̂, t̂)Gl

IK±
Ω

(i, j) = IK±
Ω
i, j + [φiφj ](x)Gl w

G
l

IKI
(i, j) = IKI

i, j + [φiφj ](x, t)
G
l w

G
l

end

IK±
Ω

(i, j) = ∆ΩIK±
Ω

(i, j)

IKI
(i, j) = ∆IIKI

(i, j)
end

end

The Gaussian nodes and the corresponding weights for a quadrangle and a triangle are

given in appendix C.

To summarize, the "reference-to-local" approach requires computing Nx ×Nt matrices,

while the "local-to-reference" one calls for the computation of a single matrix. We can

decrease this number of operations to Nx by combining both approaches. Indeed, since

the physical parameters only depend on the space variables, we can compute the global

matrix M into the interval [0,∆t] and use it for the next time slabs.

4.4 Inversion of the global matrix

Once we have computed the global matrix M , the next step in the algorithm is its

inversion. The model described in section 4.1 shows that the method can be e�ciently

applied to examples of structured meshes of smaller dimensions. However, for higher

dimensions, with more general meshes inside each time slab, we are faced with the

inversion of a sparse matrix (contrary to the classical DG method where the mass-matrix

is block-diagonal), which is really challenging for further applications of the method to

real data in industry. Indeed, we could reach the memory limitations of the computers

as occurs currently when solving harmonic problems.

We consider the Tre�tz-DG formulation of AS previously introduced in section 3.1. We

refer to the section 3.1.2 of previous chapter for the notation regarding the mesh skeleton

FFh = ∪KF∈TFh∂KF and its subsets. In particular we divide the family of internal

element faces into two subsets FQFh ≡ FΩF
h ∪F

IF
h , where FΩF

h corresponds to the "space"
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or KΩ-faces (parallel to the physical space domain), and FIFh corresponds to the "time"

or KI -faces (parallel to the time axis). The Tre�tz-DG formulation reads as:

Seek (vFh, ph) ⊂ V h(TFh)d × V h(TFh) such that, for all (ωF , q) ⊂ TF (TFh), it holds

true:

ATDGF ((vFh, ph); (ωF , q)) = `TDGF (ωF , q).

Here the bilinear form ATDGF (·; ·) is de�ned by:

ATDGF ((vFh, ph); (ωF , q)) ≡∫
FIFh

[
{{ph}}[[ωF ]]x + {{vFh}} · [[q]]x + α1[[vFh]]x[[ωF ]]x + β1[[ph]]x · [[q]]x

]
ds

+

∫
FTFh

[ 1

c2
FρF

phq + ρFvFh · ωF
]
ds− 1

2

∫
F0F
h

[ 1

c2
FρF

phq + ρFvFh · ωF
]
ds

+

∫
FDFh

[
pωF · nxKF + α1(vFh · nxKF )(ωF · nxKF )

]
ds,

and the linear form `TDGF (·) is de�ned by:

`TDGF (ωF , q) ≡
1

2

∫
F0F
h

[ 1

c2
FρF

phq + ρFvFh · ωF
]
ds.

The bilinear form ATDGF (·; ·) consists of two terms AΩ
TDGF

(·; ·) and AITDGF (·; ·) de�ned
as follows:

ATDGF ((vFh, ph); (ωf , q)) ≡
∫
FTFh

+

∫
F0F
h︸ ︷︷ ︸

AΩ
TDGF

+

∫
FIFh

+

∫
FDFh︸ ︷︷ ︸

AITDGF

.

The global matrix M , which corresponds to ATDGF , can be represented by the sum of

two matrices ∆ΩMΩ and ∆IMI corresponding to AΩ
TDGF

and AITDGF respectively, as

follows:

M = ∆ΩMΩ + ∆IMI .

Here, ∆Ω ∝ (∆x)d and ∆I ∝ (∆x)d−1∆t correspond to the surfaces of the local "space"

(K+,−
Ω ) and "time" (KI) faces respectively (see section 4.3 for more details). This de-

composition is of particular interest since MΩ is block-diagonal. Indeed, we have:

∆ΩMΩ + ∆IMI =
(

∆ΩMΩ

)(
I +

∆I

∆Ω
M−1

Ω MI

)
=
(

∆ΩMΩ

)(
I + κP

)
,

Here I is the identity matrix, κ ≡ ∆Ω
∆I
∝ ∆t

∆x , and P ≡M
−1
Ω MI .
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If ‖κP‖ is su�ciently small, we can apply the Maclaurin formula in order to obtain the

polynomial expansion for M−1 as follows:

M−1 ≡
(
I + κP

)−1(
∆ΩMΩ

)−1
=
( ∞∑
n=0

(−1)nκnPn
)(

∆ΩMΩ

)−1
.

This representation reduces the inversion of the sparse matrix M to the inversion of its

block-diagonal component M−1
Ω and the multiplication of the inverted block-diagonal

"space" matrix MΩ by the sparse "time" matrix MI .

We now detail step by step the algorithm for constructing the approximate inverse of

M . At �rst, we compute the diagonal blocks MK
Ω and MK

I of the matrices MΩ and

MI respectively, which corresponds to the local integration at the faces of the element

K, taking into account the outgoing internal numerical �uxes. Then we compute the

extra-diagonal blocksMKL
I of the matrixMI , that correspond to the integration at local

element faces K, taking into account the �uxes between the element K and its NKL

neighbors L.

for K = 1 : NK do

Compute:

4.1 MK
Ω

4.2 MK
I

for L = 1 : NKL do

Compute:

4.3 MKL
I

end

end

Then, we proceed to the numerical inversion ofMK
Ω block by block, and to the computing

of the products (MK
Ω )−1MK

I and (MK
Ω )−1MKL

I .

for K = 1 : NK do

Compute:

5.1 invMK
Ω = (MK

Ω )−1

5.2 invMK
ΩI = (MK

Ω )−1MK
I

for L = 1 : NKL do

Compute:

5.3 invMKL
ΩI = (MK

Ω )−1MKL
I

end

end

Once we have computed all the necessary terms, we can explicitly update block by block

the initial solution UK0 at time t. We describe the number of auxiliary intermediate

stages, corresponding to the number of the Taylor expansion terms, as follows:
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% 0 : Uaux0 = M−1
Ω U0

for K = 1 : NK do

Compute:

5.4 UK
aux0 = invMK

Ω UK
0

end

% 1 : Uaux1 = Uaux0 − (M−1
Ω MI)Uaux0

for K = 1 : NK do
Compute:

5.5 UKaux1 = invMK
Ω UKaux0 − invMK

ΩI invM
K
Ω UKaux0

for L = 1 : NKL do
Compute:

5.6 UKaux1 = UKaux1 − invMKL
ΩI ULaux0

end
end

% 2 : Uaux2 = Uaux0 − (M−1
Ω MI)Uaux0 + (M−1

Ω MI)2 Uaux0 = Uaux0 − (M−1
Ω MI)Uaux1

for K = 1 : NK do

Compute:

5.7 UK
aux2 = invMK

Ω UK
aux0 − invMK

ΩI U
K
aux1

for L = 1 : NKL do

Compute:

5.8 UK
aux2 = UK

aux2 − invMKL
ΩI UL

aux1

end

end

and so on. Furthermore, after the second stage we can reuse the allocated arrays for the

auxiliary variables Uaux1 and Uaux2, increasing the number of Taylor expansion terms

for achieving the necessary accuracy level. The last auxiliary solution is considered as

the updated solution at time t+ ∆t

The proposed approach provides an explicit way for solving the initial linear system ap-

proximately. Even though it requires a CFL - type condition, justifying the approximate

solution of the system, it signi�cantly accelerates the algorithm execution.

In table 4.1 we compare the numerical accuracy of the Tre�tz-DG method in a 2D

homogeneous acoustic case for both the exact and approximate matrix inversions as a

function of the mesh size and of the number n of terms in the Taylor expansion. We use

the space-time polynomial basis of degree p=3 for approximation. We can see that, by

choosing n = 5 in the approximate algorithm, we achieve the same accuracy as in the

exact inversion case, while the maximal time of run is reduced by a factor 18.
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The approximate inversion (κ = 10−2). Accelerating factor ≈18 times.

n ∆x = 10−2 ∆x = 2 · 10−2 ∆x = 5 · 10−2 ∆x = 10−1

3 1.4166e-05 4.3741e-05 2.8780e-04 2.5772e-03
4 3.1623e-07 1.2656e-06 5.3868e-05 1.2674e-03
5 2.8903e-07 9.1744e-07 4.1029e-05 1.3010e-03

CPU time 2.59 · 102 1.14 · 102 0.39 · 102 0.16 · 102

The exact inversion (κ = 10−2).

n ∆x = 10−2 ∆x = 2 · 10−2 ∆x = 5 · 10−2 ∆x = 10−1

· 2.2540e-07 8.9583e-07 5.5811e-05 1.3004e-03
CPU time 4.75 · 103 2.02 · 103 5.51 · 102 1.97 · 102

Table 4.1: Numerical accuracy regarding the inversion process.

4.5 Change-over between the time slabs

As it was discussed in section 4.1, once we have obtained the vector U of the coe�cients

of the intermediate numerical solution at time tj = j∆t of the time slab [tj−1, tj ] (step

6), we must update the initial data U0 in order to perform the computation in the next

time slab [tj , tj+1]. Basically, it consists in building the intermediate numerical solutions

V and P (steps 7-8) at time tj as follows:

V =

Ndof∑
i=1

Uiφ
v
i (·, tj), P =

Ndof∑
i=1

Uiφ
p
i (·, tj),

then, in computing the L2-projections Vaux0 and Paux0 of the intermediate solutions V

and P respectively (steps 9-10) as follows:

Vaux0 =

∫
∂K

Ndof∑
k=1

V φvk(·, tj)dx, Paux0 =

∫
∂K

Ndof∑
k=1

P φpk(·, tj)dx,

and then, in updating the right-hand side U0 = 1/2(Vaux0 + Paux0) (step 11).

By the linearity of the integrals, we can combine all the above steps into one as follows:

UK0 =
1

2
(V K
aux0 + PKaux0) =

1

2

∫
∂K

Ndof∑
k=1

V K φvk(·, tj)dx+

∫
∂K

Ndof∑
k=1

PK φpk(·, tj))dx =

1

2

(∫
∂K

Ndof∑
k=1

[Ndof∑
i=1

UKi φ
v
i (·, tj)

]
φvk(·, tj)dx+

∫
∂K

Ndof∑
k=1

[Ndof∑
i=1

UKi φ
p
i (·, tj)

]
φpk(·, tj)dx

)
=

1

2

(∫
∂K

Ndof∑
i,k=1

UKi

(
φvi (·, tj)φvk(·, tj) + φpi (·, tj)φ

p
k(·, tj)

)
dx =

1

2
(UK)TMK

0 ,
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where

[MK
0 ]i,k(·, t) =

∫
∂K

φvi (·, tj)φvk(·, tj) + φpi (·, tj)φ
p
k(·, tj)dx. (4.1)

It means that the procedures tsnap and L2
proj (steps 7 - 10 of the initial algorithm) can

be replaced byM0U , whereM0 is the block-diagonal matrix whose blocks are de�ned by

(4.1), and U is the vector of coe�cients de�ning the intermediate numerical solution.

Furthermore, we can include this step into the explicit procedure of matrix inversion as

follows:

for K = 1 : NK do

Compute:

4.1 MK
Ω

4.2 MK
I

4.3 0.5MK
0

4.4 invMK
Ω = (MK

Ω )−1

4.5 invMK
ΩI = (MK

Ω )−1MK
I

4.6 invMK
Ω0 = 0.5invMK

Ω MK
0

for L = 1 : NKL do

Compute:

4.7 invMKL
ΩI = (MK

Ω )−1MKL
I

end

end

% 0 : Uaux0 = 0.5(M−1
Ω M0)U0

for K = 1 : NK do

Compute:

5.1 UK
aux0 = invMK

Ω0 U
K
0

end

% 1 : Uaux1 = Uaux0 − (M−1
Ω MI)Uaux0

for K = 1 : NK do

Compute:

5.2 UK
aux1 = invMK

Ω0 U
K
aux0 − invMK

ΩI U
K
aux0

for L = 1 : NKL do

Compute:

5.3 UK
aux1 = UK

aux1 − invMKL
ΩI UL

aux0

end

end
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% 2 : Uaux2 = Uaux0 − (M−1
Ω MI)Uaux0 + (M−1

Ω MI)2 Uaux0 = Uaux0 − (M−1
Ω MI)Uaux1

for K = 1 : NK do

Compute:

5.4 UK
aux2 = invMK

Ω0 U
K
aux0 − invMK

ΩI U
K
aux1

for L = 1 : NKL do

Compute:

5.5 UK
aux2 = UK

aux2 − invMKL
ΩI UL

aux1

end

end

We introduce also the function L2
coeff , which computes the coe�cients of the decompo-

sition of the initial data 1/2(V0 + P0) in the basis (φv, φp):

L2
coeff (V0, P0, φ

v, φp) =
1

2

(
L2
proj(V0, φ

v) + L2
proj(P0, φ

p)
)
M−1

0 . (4.2)

Thus, the global algorithm reduces to the following one:

Data: V0, P0 % initial velocity and pressure �elds
c, ρ, Ω, I % domain parameters
∆x, ∆t, Nx, Nt, Ndof % mesh and DG parameters

Result: VT , PT % �nal velocity and pressure �elds
Initiate:

0 φv, φp % initiation of the polynomial basis

Compute:

1 U0 = L2
coeff (V0, P0, φ

v, φp) % the initial condition vector (second member)

4 MΩ, MI , M0, % computing the components of matrix M

4 invMΩ, invMΩI , invMΩ0

for j = 1 : Nt do

Compute:

5 U = invM U0 % vector of the coe�cients for approximate

% solution in the time slab [(j − 1)∆t, j∆t]

11 U0 = U % update of the right-hand side
end

Compute:

12 VT = tsnap(U, φv, tNt
) % �nal approximate solutions for velocity and

13 PT = tsnap(U, φp, tNt
) % pressure �elds at tNt

= Nt∆t

where L2
coeff is a function, that computes the coe�cients of decomposition of the initial

data 0.5(V0 + P0) in basis (φv, φp).

4.6 Conclusion

We have developed an algorithm for solving the Tre�tz-DG formulation described in the

previous chapter, and we have detailed the most important points for its implementation
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on the example of an acoustic model with mesh composed of parallel in time slabs.

We have proposed some analytical approaches for reducing the numerical cost and op-

timizing the memory resources de�ned as the optimization of the change-over between

the time slabs, and the approximate inversion of the global sparse matrix. The ap-

proximative was validated by comparison with exact inversion, showing better numerical

performance.

The next step is the development of the code and validation of the algorithm numerically.

In chapter 5 we propose some numerical tests for 1D+time and 2D+time acoustic, elas-

todynamic and elasto-acoustic models. We compare the numerical solutions to analytical

ones, and develop a numerical convergence analysis.



Chapter 5

Numerical results

This chapter contains numerical results obtained when solving the 1D+time and 2D+time

wave equations previously introduced in chapter 3. We have started by developing a

prototype MATLAB R© code using the algorithm based on the exact inversion of the

global matrix, to provide some numerical tests quickly and understand how the method

could work for larger problems. The validation of the numerical experiments has been

done thanks to the code Gar6more2D [1] which has been developed by Magique-3D.

Ga6more2D computes analytical solutions in various bi-layerd media including the

elasto-acoustic case. It employs the method of Cagniard - de Hoop [36].

In this chapter, we deliver a series of numerical experiments in the case of an elasto-

acoustic domain. In each case, we study the impact of the penalty terms on the accuracy

of the solution. It turns out that the convergence curves demonstrate a property of

superconvergence in 1D+time tests.

We have also implemented the method based on the approximate inversion of the global

matrix into the HPC software Elasticus. The implementation has been validated with

some comparisons with analytical solutions provided by Gar6more2D. We illustrate this

with the 2D acoustic example at the end of this chapter.
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5.1 1D Acoustic simulations

In this section we provide some numerical tests for 1D+time homogeneous and heteroge-

neous acoustic modelings with periodic and free-surface boundary conditions, computed

with the method based on the exact inversion of the global matrix. We assess the nu-

merical accuracy of the method with respect to the choice of penalty parameters, and

we compare convergence curves for di�erent degrees of approximation.

Here and in the remainder of the thesis, all the parameters are dimensionless.

5.1.1 Homogeneous medium with periodical boundary conditions

We start with an example of wave propagation, induced by initial velocity and pressure, in

the absence of external forces. The global space QF is represented by the acoustic domain

ΩF = [0, 1] and the time interval I = [0, 1]. Periodical boundary conditions are imposed

at the boundaries. We consider a uniform rectangular mesh with ∆t = ∆x = 0.01. We

set the media parameters ρF = cF = 1. The space-time approximation degree is p=3.

As initial conditions, we consider two periodic functions: the "sine" function: vF0 =

sin(2πx) and p0 = −cF vF0, and the "hat" function: vF0(x) = 0, x ∈ [0, 1/3) ∪ [2/3, 1],

vF0(x) = x− 1/3, x ∈ [1/3, 1/2), vF0(x) = −x+ 2/3, x ∈ [1/2, 2/3) and p0 = −cF vF0.

Figures 5.1 - 5.3 show the propagation of the velocity vF for initial "sine" (�gure 5.1)

and "hat" (�gures 5.2 - 5.3) conditions, with di�erent values of the penalty parameters

α1 and β1. Figures 5.1 - 5.3 (a) correspond to the propagation in time of the numerical

velocity. Figures 5.1 - 5.3 (b) compare the numerical and exact velocities at the �nal

time t = 1.
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Figure 5.1: Propagation of the exact and numerical velocities vF (x, t) in a homoge-
neous 1D �uid domain (α1 = β1 = 0).
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Figure 5.2: Propagation of the exact and numerical velocities vF (x, t) in a homoge-
neous 1D �uid domain (α1 = β1 = 0).
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Figure 5.3: Propagation of the exact and numerical velocities vF (x, t) in a homoge-
neous 1D �uid domain (α1 = β1 = 0.5).

We can observe that in the "sine" test case, where the initial wave is regular enough,

the approximation works well even with zero penalty parameters (α1 = β1 = 0) (�gure

5.1).

However, if we choose a less regular initial condition ("hat" case), the numerical solution

with zero penalty becomes less stable at the end of propagation (�gure 5.2), compared

to the case with α1 = β1 = 0.5 (�gure 5.3).

We have studied the dependency of the numerical accuracy on the mesh size and penalty

coe�cients. For this, we have �xed four di�erent values of ∆x from 0.006 to 0.03, and

for each ∆x, we have varied the value of ∆t. In �gure 5.4, we represent the numerical

accuracy as a function of ratio ∆t/∆x for four di�erent values of ∆x. We can observe

that in all the four cases, the minimum of the numerical error for velocity vF corresponds

to the ratio ∆t/∆x = 1/(1 + α1).

Figure 5.5 shows the results of convergence of the velocity for zero (a) and non-zero (b)
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Figure 5.4: Numerical accuracy as a function of ∆t/∆x in a homogeneous 1D �uid
domain.

penalty parameters. The convergence curves have been computed for di�erent approxi-

mation degrees p=0, 1, 2, 3, and they depict the L2-norm in time and space of numerical

error as a function of cell size ∆x = ∆t.
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Figure 5.5: Convergence of numerical velocity vF as a function of cell size ∆x = ∆t
in a homogeneous 1D �uid domain.

We can see that the convergence rate is of order p+1 or higher, which is conform to the

theoretical estimates of [82]. In �gure 5.5 (a), the numerical solution diverges when p=3

and ∆x = ∆t is very small. The convergence can be achieved by adding penalty terms

(α1 = β1 = 0.5) into the scheme (see �gure 5.5 (b)).

As formerly seen in chapter 3.1.4, the stability of the variational formulation does not

depend on the penalty terms from the theoretical point of view. However, the numerical

tests show that a non-zero penalization improves the convergence rate. The question of

an optimal choice of penalty parameters is still open.
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5.1.2 Heterogeneous medium with "free-surface" boundary conditions

We consider a bi-layered acoustic domain ΩF = [0, 0.6) ∪ [0.6, 1], and a time interval

I = [0, 1]. We set the following medium and mesh parameters: ∆x1 = 0.01, ∆t1 =

0.01, cF1 = 1, ∆x2 = 0.02, ∆t2 = 0.01, cF2 = 2. The space-time approximation degree

is p=3. To generate the propagation phenomenon, we choose a Gaussian function as

the initial condition for velocity vF0(x) = exp(−40π2(x − 0.2)2) and pressure p0(x) =

−cF vF0. The "free-surface" boundary conditions are imposed in this model.

Figure 5.6 (a) shows the propagation of the numerical velocity in bi-layered medium,

while �gure 5.6 (b) represents the numerical solution at time t = 0.45.
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Figure 5.6: Propagation of the numerical velocity vF (x, t) in a heterogeneous 1D �uid
domain (α1 = β1 = 0.5).

The propagation of the numerical solution through the interface between the two layers

�ts well to the physics of the model, based on the values of the re�ection coe�cients

r1 and r2. They can be analytically computed using the medium parameters as follows:

r1 = (cF1 − cF2)(cF1 + cF2)−1 = −0.33 and r2 = 2cF1(cF1 + cF2)−1 = 0.67. We can

observe in �gure 5.6 (b) that the amplitude of the incident and re�ected waves are

bounded by the values of r1 (blue dashed line) and r2 (red dashed line) respectively, thus

validating the propagation of the numerical solution.

5.2 2D Simulations

In this section, we present results obtained when applying the Tre�tz-DG algorithm to

the 2D acoustic, elastic, and elasto-acoustic problems. The code we use at �rst is a

prototype MATLAB R© version. It is based on the exact inversion of the global matrix,

thus, technically speaking, it is quite limited. This version has been created in order to

investigate the method and its algorithm in general, and to perform some basic numerical

tests for its validation.
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We choose the penalty parameters α1 = β1 = 0.5 for 2D acoustic tests, and δ1 = γ1 = 0.5

for 2D elastodynamic tests (full upwind �uxes).

5.2.1 2D Acoustics

In this section, we test the Tre�tz-DG formulation applied to the 2D+time acoustic

model. We validate the numerical results by comparison with analytical solutions, and we

analyze the convergence of the numerical solution for di�erent degrees of approximation.

5.2.1.1 Homogeneous acoustic medium. Initial conditions

We consider a 2D homogeneous acoustic medium ΩF ≡ [0, 1] × [0, 1] with periodic

boundary conditions and the time interval I ≡ [0, 1]. We set the medium parameters

cF = 1, ρF = 1 in ΩF × I. We consider the uniform rectangular mesh with parameters
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Figure 5.7: Propagation of the numerical velocity vF ≡ (vxF , v
y
F ) and pressure p in a

homogeneous 2D �uid domain at time t = 0.3, 0.4, 0.5.
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∆t = 0.01, ∆x = ∆y = 0.02. The space-time approximation degree is p=2. We

choose vxF0(x, y) = vyF0(x, y) = sin(2π(x + y)) and p0(x, y) = −
√

2cF sin(2π(x + y)) as

the initial data. Figure 5.7 depicts the propagation of the components vxF , v
y
F of the

numerical velocity vF ≡ (vxF , v
y
F ), and pressure p.

We have computed the exact solutions to validate the numerical ones. In �gure 5.8 we

show the snapshots for the components vxF , v
y
F of the exact and numerical velocities and

pressure p taken at time t = 0.3 (a), t = 0.5 (b) when y = 0.5 is �xed. We can see

that the exact solutions are well-approximated by the numerical solutions in all the test

examples.
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Figure 5.8: The exact and numerical velocities vF ≡ (vxF , v
y
F ) and pressure p in a

homogeneous 2D �uid domain.



Chapter 5. Numerical results 83

5.2.1.2 Homogeneous acoustic medium. Source term

We consider a 2D homogeneous acoustic medium ΩF ≡ [0, 1]× [0, 1] with "free-surface"

boundary conditions and a time interval I ≡ [0, 1]. We retain the medium and mesh

parameters from the previous test. The space-time approximation degree is p=2. The

source term at the point (0.5, 0.5) is represented by the function f(t) = −50π2(t− 0.2) ·
exp
(
− 25π2(t− 0.2)2

)
.

Figure 5.9 depicts the propagation of the components vxF , v
y
F of numerical velocity vF ≡

(vxF , v
y
F ), and pressure p.
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Figure 5.9: Propagation of the numerical velocity vF ≡ (vxF , v
y
F ) and pressure p in a

homogeneous 2D �uid domain at time t = 0.3, 0.4, 0.5.

The numerical seismograms have been computed at point (0.25, 0.25). They have been

validated by the analytical solutions, computed with Gar6more2D [1] (�gure 5.10).
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Figure 5.10: The seismograms for exact and numerical velocities vF ≡ (vxF , v
y
F ) in a

homogeneous 2D �uid domain.

Figure 5.11 shows the convergence curves computed for di�erent degrees of approximation

p=0, 1, 2, 3. They represent the L2-norm in time and space of numerical error as a

function of cell size ∆x = ∆y = ∆t.

10−1.6 10−1.4 10−1.2 10−1
10−7

10−5

10−3

10−1

101

∆x

L
2
-e
rr
o
r

p=0 (slope=0.5)

p=1 (slope=1.4)

p=2 (slope=2.9)

p=3 (slope=4.1)

Figure 5.11: Convergence of the numerical velocity vF as a function of cell size
∆x = ∆y = ∆t.

In all the cases, the convergence is at least of order p, and for p = 2, 3, we obtain the

optimal order of convergence p+1, as predicted by [82], though we use a source point

that does not satisfy all regularity requiremnets.

5.2.2 2D Elastodynamics

In this section, we implement numerically the Tre�tz-DG formulation for the 2D elasto-

dynamic problem developed in chapter 3.2. We consider two homogeneous examples of

elastic domain with periodic (section 5.2.2.1) and "free-surface" (section 5.2.2.2) bound-

ary conditions. The source term is imposed in the last case. We compare the numerical
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and analytical solutions, and we provide convergence results for di�erent degrees of ap-

proximation.

5.2.2.1 Homogeneous elastic medium. Initial conditions

We consider a 2D homogeneous elastic medium ΩS ≡ [0, 1]×[0, 1] with periodic boundary

conditions and a time interval I ≡ [0, 1]. The medium parameters µ = 1, λ = 1, ρS =

1, VP =
√

λ+2µ
ρS

=
√

3, VS =
√

µ
ρS

= 1 are set to be constant in ΩS × I. We consider

a uniform rectangular mesh with parameters ∆t = 0.03, ∆x = ∆y = 0.03. The degree

of approximation in space and time is p=2. We perform two numerical simulations in

order to test the propagation of P - and S-waves separately.

P -wave propagation.
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Figure 5.12: Propagation of the components vyS of velocity and σxx, σyy of stress
tensor in a homogeneous 2D solid domain at time t = 0.3, 0.4, 0.5.
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We choose vyS0(x, y) = sin(2πy), σxx0 (x, y) = −
√

3sin(2πy), σyy0 (x, y) = −1/
√

3sin(2πy)

and vxS0(x, y) = σxy0 (x, y) = 0 as initial data. In this case, we expect to observe the

propagation in the y - direction of the components vyS and σxx, σyy, with a speed given

by VP , while vxS and σxy remain inactive.

Figure 5.12 shows the propagation of the components vyS(x, y, t) of the numerical velocity

and σxx(x, y, t), σyy(x, y, t) of the stress tensor at times t = 0.3, t = 0.4, t = 0.5. The

pattern of the propagation perfectly corresponds to the physics of the initial model.
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Figure 5.13: The exact and numerical components vyS of velocity and σxx, σyy of
stress tensor in a homogeneous 2D solid domain.

We have validated the computed numerical solutions by comparison with the exact so-

lutions. Figure 5.13 represents the time snaps for the components vyS of the exact and
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numerical velocities and σxx, σyy of the exact and numerical stress tensor taken at time

t = 0.3, t = 0.5 with a �xed x = 0.5. We can observe that the exact and approximate

solutions match well.

S-wave propagation.

To test the S-wave propagation, we consider the following initial velocity and stress

tensor: vxS0(x, y) = sin(2πy), σxy0 (x, y) = −sin(2πy), and vyS0(x, y) = σxx0 (x, y) =

σyy0 (x, y) = 0.

The propagation of the components vxS(x, y, t) of the velocity and σxy(x, y, t) of the stress

tensor at times t = 0.3, t = 0.4, t = 0.5 is represented in �gure 5.14. Compared to the

previous P -wave case, we observe the propagation in the y - direction of the components

vxS and σxy with the speed equal to VS , while the others vxS and σxx, σyy remain inactive.
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Figure 5.14: Propagation of the components vxS of velocity and σxy of stress tensor
in a homogeneous 2D solid domain at time t = 0.3, 0.4, 0.5.

In �gure 5.15, the exact and approximate solutions of the components vyS of the velocity,

and σxy of the stress tensor taken at time t = 0.3, t = 0.5 (x = 0.5 is �xed) are compared.

Since both solutions match well, the numerical results are thus validated by the exact

ones.
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Figure 5.15: The exact and numerical components vxS of velocity and σxy of stress
tensor in a homogeneous 2D solid domain.

5.2.2.2 Homogeneous elastic medium. Source term

We consider a 2D homogeneous elastic medium ΩS ≡ [0, 1] × [0, 1] with "free-surface"

boundary conditions and a time interval I ≡ [0, 1]. We set the medium parameters

µ = 1, λ = 1, ρS = 1 in ΩS × I. We consider a uniform rectangular mesh with ∆t =

∆x = ∆y = 0.03. The space-time approximation degree is p=2. The source term

f(t) = −502π2(t− 0.2) · exp
(
− 25π2(t− 0.2)2

)
is set at the point (0.5, 0.5).

Figure 5.16 shows the propagation of the components vxS , v
y
S of the numerical velocity vS

in a homogeneous 2D elastc medium. The propagation of the components σxx, σyy, σxy

of the numerical stress tensor σ is represented in �gure 5.18. Due to the limits of our

prototype code, we were not able to consider a larger domain. In order to avoid the

re�ections from the "free-surface" boundaries, and to obtain the proper seismograms,

the propagation was stopped at an early stage, that is before the S - wave appears. The

numerical artifacts in �gure 5.18 are caused by the source point in the elastodynamic

domain. Similar e�ects are also observed while simulating the numerical stress propa-

gation in a solid medium by a standard DG method. This side e�ect is localized in the

zone of the source and does not impact the computed seismograms. However, we have to

improve the implementation of the source term in order to get rid of these artifacts. The
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numerical solutions are validated by analytical solutions computed with Gar6more2D

[1]. In �gure 5.17, we observe a correct match between the analytical and approximate

curves. Furthermore, it gives a clear motivation for developing e�cient software, suited

to more realistic physical models. The results of convergence of the numerical velocity

computed for di�erent approximation degrees p=0, 1, 2, 3 are given in �gure 5.19. They

represent the L2-norm in time and space of numerical error as a function of cell size

∆x = ∆y = ∆t. The convergence is at least of order p and for p = 3 we recover the

optimal order of convergence of classical DG methods even though we use a source point

which does not satisfy the regularity requirements.
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Figure 5.16: Propagation of the components vxS , v
y
S of velocity in a homogeneous 2D

solid domain at time t = 0.3, 0.4, 0.5.
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Figure 5.17: The seismograms for exact and numerical velocities vS ≡ (vxS , v
y
S) in a

homogeneous 2D solid domain.
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Figure 5.18: Propagation of the components vxS , v
y
S of velocity and σxx, σyy, σxy of

stress tensor in a homogeneous 2D solid domain at time t = 0.3, 0.4, 0.5.
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Figure 5.19: Convergence of the numerical velocity vS as a function of cell size
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Chapter 5. Numerical results 91

5.2.3 2D Elasto-acoustics

Once we have developed the acoustic and elastodynamic propagators, we can proceed to

their numerical coupling by imposing appropriate numerical �uxes, as was explained in

chapter 3.3.

The coupled �uid-solid medium is a unit square, and it contains two identical in form

rectangular layers: [0, 0.5)× [0, 1] �lled by a �uid and [0.5, 1]× [0, 1] corresponding to the

solid part of the medium. The simulation is performed along the time interval I = [0, 1].

We consider a uniform rectangular mesh with steps ∆t = ∆x = ∆y = 0.03 over the

whole domain. The medium parameters are ρF = 1.0, cF = 2.0 in the acoustic medium,

ρS = 1.0, λ = 1.0, µ = 2.0 in the elastic medium. The space-time approximation degree

is p=3. We consider zero initial conditions, and introduce a source term in the acoustic

layer. The source signal emitted at the point (0.5, 0.25) is represented by the function

f(t) = 40π2(t− 0.3) · exp(−40π2(t− 0.3)2), so that we have approximately �ve elements

per wavelength.

The snapshots depicting the numerical velocity at time t = 0.5, 0.6, 0.7 are represented

in �gure 5.20.
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Figure 5.20: Propagation of numerical velocity v = (vx, vy) in a 2D �uid-solid domain
at time t = 0.5, 0.6, , 0.7.

The pattern of propagation corresponds perfectly to physical predictions. Even if the

model is limited (large mesh of 30× 30 rectangles in space, Dirichlet boundaries, which
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causes many re�ections), we can observe all type of waves (P , S - waves, incident,

re�ected waves and waves of P , S - head waves).
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Figure 5.21: The seismograms for exact and numerical velocities v ≡ (vx, vy) in a 2D
�uid-solid domain.

In order to validate this test case, we have compared the numerical signals with the ana-

lytical ones, computed by using the Gar6more2D [1] code. We show an example at the

receiver (0.35, 0.70) in �gure 5.21. We can observe that the signals match well, regard-

ing both the frequencies and amplitudes. There are still some imperfections, which are

caused by the large discretization and the re�ections from the "free-surface" boundaries.

5.3 Fortran 2D simulations

The prototype MATLAB R© implementation based on the exact matrix inverion has

been developed to perform fast proof of concept of the method. We have obtained

convincing preliminary results which led us to consider the implementation of our method

into an HPC environment.

Elasticus is a Magique-3D in-house platform for solving wave propagation problems in

acoustic, elastic and mixed media of spatial dimensions one up to three, which employs

the DG and Spectral Method (SM) for space integration, di�erent time-schemes for time

integration (Runge-Kutta, Leap-Frog). It allows di�erent types of structured and non-

structured meshes (triangles, rectangles, tetrahedrons, cubes). Elasticus is written in

Fortran, and it has a parallel structure.

We have integrated the space-time Tre�tz-DG propagators based on the approximate

matrix inversion for 1D and 2D acoustic problems in the framework of the Elasticus

code.
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In this section we provide some numerical tests, illustrating this implementation for 2D

acoustics with structured and non-structured triangular in space meshes.

0 0.5 1

0

0.5

1

x

y

0 0.5 1

0

0.5

1

x

(a) vxF (x, y, t = 0.5) (b) vxF (x, y, t = 0.5)

0 0.5 1

0

0.5

1

x

y

0 0.5 1

0

0.5

1

x

(a) vyF (x, y, t = 0.5) (b) vyF (x, y, t = 0.5)

0 0.5 1

0

0.5

1

x

y

0 0.5 1

0

0.5

1

x

(a) p(x, y, t = 0.5) (b) p(x, y, t = 0.5)

Figure 5.22: Propagation of the components vxF , v
y
F of numerical velocity and pressure

p in a homogeneous 2D �uid domain.
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5.3.1 2D Acoustic simulation

The acoustic medium is represented by a unit square ΩF = [0, 1] × [0, 1], and the time

propagation is I = [0, 1]. We consider two examples of triangular meshes: a structured

mesh with 3200 elements, and an unstructured mesh with 3100 elements. The medium

parameters are ρF = 1.0, cF = 1.0. The degree of approximation in space and time

is p=3. The penalty parameters are α1 = β1 = δ1 = γ1 = 0.5. We consider zero

initial conditions, and introduce a source term in the middle of the space domain. The

source signal is emitted at the point (0.5, 0.5) and is de�ned by f(t) = 200π2(t − 0.2) ·
exp(−100π2(t− 0.2)2).

In �gure 5.22, we display the components vxF , v
y
F of the numerical velocity and the

pressure p at time t = 0.5 in the case of structured (a) and unstructured (b) meshes.

Elasticus code includes many routines and functions that we could have reused for

the implementation of the Tre�tz-DG propagator. However, some speci�c features of

the Tre�tz-DG method, in particular the dependency of the basis functions on medium

parameters and the space-time integration (see chapter 4 and sections 4.3-4.4), have

implied the creation of new Fortran modules to construct the global matrix to be solved.

Moreover, the change-over algorithm has required the construction from scratch of a

speci�c routine. Some routines have also been developed for delivering the snapshots

and the seismograms.

The parallelization of the new Tre�tz-DG propagator is still in progress, as well as the

analysis of performance involving comparisons with standard DG and SM propagators

based on a semi-discrete formulation coupled with the time integration schemes.

5.4 Conclusion

We have developed new numerical propagators for the acoustic, elastodynamic and cou-

pled elasto-acoustic problems in one and two dimensions. We have considered di�erent

examples of homogeneous and heterogeneous media with periodic and "free-surface"

boundary conditions. The numerical results have been validated by analytical solutions

computed with the Gar6more2D code [1]. The solution methodology has demonstrated

some limitations. This arise because it applies a space-time integration leading to the

representation of the discrete system by a huge sparse matrix whose straightforward in-

version is expensive. We �nd ourselves in a situation of using an implicit scheme which

tends to be unpopular with geophysical exploration engineers who use the solution of

wave problems inside an iterative process of inversion for reconstructing very large propa-

gation domains. Thus, the computational costs for solving the forward problems must be
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as low as possible and the space-time integration that we have proposed at �rst does not

take the main feature of DG formulation that is basically to favor a solution methodol-

ogy element-by-element. Fortunately, we have observed that it is possible to decompose

the global matrix by separating the time variable from the space ones. By this way,

we can bene�t from the block diagonal structure of the standard DG formulation and

we end up with an explicit scheme. We have then performed numerical experiments

which clearly illustrate the advantages of the split version of the discrete problem but we

acknowledge that our approach still has computational limits as shown by some of the

numerical experiments where the accuracy may drop because of computational resource

limitation. In the next chapter, we propose to overcome this limitation by coupling the

Tre�tz-DG approach with the so-called Tent Pitcher algorithm in order to provide a

naturally explicit scheme without decomposing the global matrix.
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Chapter 6

Explicit Tre�tz-DG method on

tent-pitching meshes

The previous chapters have been devoted to the development of a Tre�tz-DG formulation

for mechanical wave problems, inspired by theoretical work carried out for acoustic and

electromagnetic waves [72, 82]. We have shown that the resulting scheme was implicit

and required the inversion of a huge matrix. Using an approximation of the inverse of

this matrix, we have been able to derive an explicit scheme, but we still had to face to

computational resource limitations.

To reduce the computational cost, we propose now to use the fact that space-time DG

formulation can be solved element-by-element, provided the space-time mesh conforms

to certain causality constraints [29, 77, 86, 100, 109, 110]. The corresponding algorithm,

called the Tent-Pitcher algorithm, was originally proposed by Üngör et al. in 2000

[104, 105] and generalized by Erickson et al. in 2005 [40]. It consists in meshing the

space-time domain by using an advancing front method limited in time by the �nite

speed of propagation principle. In this way, the mesh is composed of patches which are

connected by causality only. Each patch contains a certain number of elements and the

patches that do not share any causal property are solved independently. The Tent Pitcher

is thus well adapted for a parallel implementation [99]. Moreover, it has been shown in

[2] that the original Tent Pitcher can be improved as an adaptive algorithm which confers

the algorithm interesting features for solving industrial wave problems. The beginning

of the 21th has seen the publication of a series of very interesting papers addressing the

space-time discretization of hyperbolic problems [2�5, 84]. In particular, P. Monk and G.

Richter [84] have proposed a semi-explicit scheme for acoustics and electromagnetism that

results from the inversion of the matrices obtained from a patch of elements. However

it requires the uses of dD+time volumic elements whose implementation is not obvious

97
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and could discourage practitioners. This could explain why this approach has not been

followed. However, some papers have recently reconsidered the Tent Pitcher [51, 52, 85].

In this chapter, we propose to follow their ideas by extending the Tre�tz-DG formulation

to Tent Pitcher. It is worth noting that our formulation avoids dD+time elements thanks

to the Tre�tz framework. This is an important feature that deserves to be underlined in

the perspective of an industrial porting of our algorithm.
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6.1 Preliminaries

The Tent Pitcher algorithm has been introduced for solving hyperbolic problems in the

context of space-time integration. It consists in making use of the �nite speed of wave

propagation to deploy an element-by-element solution methodology for hyperbolic equa-

tions. To explain the implementation of the Tent Pitcher, let us consider the pressure

�eld governed by the 1D acoustic wave equation. We have decided to consider this case

to simplify the presentation of the algorithm, but the generalization to higher dimen-

sions and to the �rst order formulation can be done thanks to representation formulas

[42]. Indeed, the key point for the Tent Pitcher implementation is the propagation of the

compact support of the data.

Let p be the solution to the 1D wave equation:

1

c2
F

∂2p

∂t2
− ∂2p

∂x2
= 0,

with initial data:

p(0, x) = p0(x),
∂

∂t
p(0, x) = p1(x).

We assume that p0 and p1 are given in an interval, that is for instance [0, R]. Then the

pressure �eld admits the representation:

p(t, x) =
1

2
(p0(x− cF t) + p0(x+ cF t)) +

1

2cF

x+cF t∫
x−cF t

p1(s)ds.

Then, we can see that from the knowledge of p0 and p1 in [0, R], we get the values of p in

the triangle depicted in �gure 6.1(a). This triangle is obtained by joining the line of slope

1/cF from point (0, 0) to the line of slope 1/cF from point (0, R). This construction can

be replicated with any set of data as long as they are compactly supported, which uni�es

the �rst stage of the tent pitching mesh construction as a set of triangles (see �gure

6.1(b)). We have considered the possibility of having a velocity cF that is piecewise

constant and a set of initial data de�ned locally in a set of segments covering the space

interval. The shape of the di�erent triangles di�ers because of di�erent values both of

the velocity and the size of the support of the initial data. At this stage, we have the

solution de�ned inside the �rst layer of the tent pitching mesh. We plot in green the

edges where the solution is known, either because it has been computed at previous step,

or because the edge is on the boundary, and we plot in blue the edges where the solution

is unknown. The next steps consist in continuing the construction of the solution layer by

layer with the same principle by using the values of the pressure �eld on the boundaries
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Figure 6.1: General construction of a tent-pitching mesh in 1D.

of the elements de�ning the �rst level of the mesh. That leads to building the second

level of the tent pitching mesh as depicted in �gure 6.1(c)-(f).

Figure 6.1(c)-(f) shows that the variety of elements of level 2 is larger. Figure 6.1(c)

shows the case of an element on the (left) boundary. In this case, it is obtained by

simply connecting the line of slope 1/cF1 from the right vertex to the vertical boundary.

In �gure 6.1(d), we present the case of a regular homogeneous cell, which is obtained

by joining the line of slope −1/cF1 from the right vertex to the line of slope 1/cF1 from

the left vertex. In �gure 6.1(e), we present the case of an heterogeneous cell. Here, we
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have to account for the fact that we use a Tre�tz basis which has been constructed for

homogeneous domains. Hence, we have to split the cell into two sub-cells, thanks to

the vertical red line which is drawn at the interface between the two media. This line

is vertical because we assume that the physical parameters do not vary in time. It is

worth noting that the blue line has no common point with the line of slope 1/cF1 from

the left vertex and the line of slope 1/cF2 coming from the right vertex. Thus we use the

lowest point of the triangle formed by these three lines to construct the cell of level 2. In

�gure 6.1(f), we have a non-regular homogeneous elements obtained by joining the line

of slope 1/cF2 from the right vertex to the line of slope 1/cF2 from the left vertex. The

only di�erence with regular element is that the resulting cell is not diamond-shaped.

Now, we address the question of whether or not the solution to the 1D wave equation

can be computed at a given point (x0, t0). In order to simplify the presentation we

assume here that the domain is homogeneous. Let Cx0,t0 be the lower part of the cone

de�ned by the two lines of slope 1/cF and 1/cF coming from x0, t0. We say that Cx0,t0

is the dependence cone. The solution to the 1D wave equation can be computed at point

(x0, t0) if and only if there exists a line, or a broken line, that connects the two lines of

the cone (see �gure 6.2).
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x
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(a) The solution to the 1D
wave equation can be com-
puted at point (x0, t0)

(b) The solution to the 1D
wave equation can be com-
puted at point (x0, t0)

(c) The solution to the 1D
wave equation cannot be
computed at point (x0, t0)

Figure 6.2: Determination of the solvability of the wave equation at point (x0, t0)
when the solution is known on the green line

Using this characterization, we can now determine whether or not the solution can be

computed on a given cell. We consider a convex polygonal cell and we split its edges

in three categories: the in�ow edges, such that the temporal part of the outwardly

directed normal is negative (nt < 0), the out�ow edges, such that the temporal part

of the outwardly directed normal is positive (nt > 0) and the vertical edges which are

parallel to the time axis. We assume that the vertical edges are only edges on the

boundary or internal edges that split the cell into two sub-cells (for instance in the case

of heterogeneity). We adopt the same terminology as in [84] where the Tent Pitcher is

coupled with a standard DG formulation involving both volume and surface integrals.

We say that a cell is self-contained if the solution of the wave equation can be computed

at any point of the cell as soon as the solution is known on the in�ow boundaries. A



Chapter 6. Explicit Tre�tz-DG method on tent-pitching meshes 104

x

t

•x0, t0

x

t •x0, t0

(a) The cell is not "self-contained". It
exists x0, t0 such that the cone Cx0,t0

intersects the "out�ow" edges

(b) The cell is "self-contained". There
is no x0, t0 such that the cone Cx0,t0

intersects the "out�ow" edges
.

x

t

•x0, t0

x

t

cF
2cF

1/cF

−1/2cF

(c) The cell is "optimal". There is no
bigger self-contained cells. It is ob-
tained by joining the line of slope 1/cF
from the top left point to the line of
slope −1/cF from the top right point

(d) Case of an heterogeneity

Figure 6.3: self-contained cells and optimal cells

cell is self-contained if and only if there is no point (x0, t0) such that the cone Cx0,t0

intersects the out�ow boundary. In �gure 6.3(a), the cell is not self-contained since there

exists a point where Cx0,t0 intersects the blue out�ow boundary. In �gure 6.3(b), the

cell is self-contained but its size is not optimal, since there exists points outside the cell

where the solution of the wave equation can be computed from the in�ow boundary. In

�gure 6.3(c), the cell is both self-contained and optimal-shaped. We can easily show that

a cell is self-contained if and only if the absolute value of the slope of all the segments

of the out�ow boundary is smaller than 1/cF (in order to avoid intersection with the

dependence cone. In other word, the normal of the out�ow boundary should satisfy

|nx|/nt < 1/cF everywhere. The cell is optimal is and only if the out�ow boundary is

composed of only two edges, one of slope 1/cF , the other one of slope −1/cF .

In the case of a heterogeneous cell, we have to introduce an internal edge at the discon-

tinuity, parallel to the time axis. We assume here that the velocity is cF in the left, and

2cF in the right. To build an optimal cell from the in�ow edges, (1) we compute the
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intersection of the line of slope 1/cF starting from the top left point and of the verti-

cal edge; (2) we compute the intersection of the line of slope −1/2cF starting from the

top right point and of the vertical edge; (3) we keep the lowest point; (4) we join this

last point with the top left point and with the top right point (see �gure 6.3(d)). The

implementation in the elasto-acoustic case is similar, hence we do not detail it.

In the previous chapter, we proposed to mesh the domain with time slabs orthogonal to

the time axis and to solve each time slab explicitly. It is actually possible to revisit this

strategy in the Tent Pitcher framework. In �gure 6.4(a), we consider each cell of the

slab independently. In this case, the vertical edges are considered as out�ow edges since

we do not know the solution on these edges at time step n. Obviously, these edges do

not satisfy the condition |nx|/nt < 1/cF and the cells are not self-contained. Now, if we

consider the macro-element containing all the cells of the time slabs, the vertical edges

become internal edges, except the external edges that are part of the in�ow set thanks

to the boundary condition. Hence, the only out�ow edges are the top horizontal ones,

which clearly satisfy the condition |nx|/nt < 1/cF , and the time slab is self-contained.

x
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x0, t0

x

t
•

x0, t0

(a) The cells of the time slab are not
"self-contained"

(b) The time slab itself is "self-
contained"

Figure 6.4: The case of the time slab

We can now describe typical meshes that could be used to solve wave equation problems.

Four of these meshes are depicted in �gure 6.5. In each �gure, the number inside a

given cell corresponds to the stage at which the cell has to be involved. Figure 6.5(a)

represents the case of a homogeneous media (with cF = 2) with an initial mesh that

is regular. In this case, we begin with computing the solution inside the triangles (1),

then we can compute the solution inside the diamond-shaped (2), then (3), and so on.

Here, every edge satis�es exactly the condition |nx|/nt = 1/cF . In �gures 6.5(b) and

6.5(c), we assume that two cells of the mesh have been re�ned by a factor 2. In practice,

this could be done for instance to capture strong variations of the initial conditions, or

to represent faithfully the geometry of an obstacle or of a topography. In �gure 6.5(b),

each cell is optimal. In this case, we observe that the re�nement propagates with the

wave front. This is very useful in order to follow some particular behaviors of the wave,

but it is not convenient if the re�nement is just to model the geometry of the medium
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Figure 6.5: 1D+time tent-pitching mesh examples

(which is not supposed to move with the wavefront). In this latter con�guration, it is

possible to prevent the re�nement from following the wavefront by adding a constraint

on the nodes of the mesh imposing that each node is either aligned with the nodes of

the grid de�ned at t = 0 or aligned with the center of the cells de�ned at t = 0 (see

�gure 6.5(c)). Of course, in return, we may use cells whose shape is not optimal. At

last, in �gure 6.5(d), we consider the case of an heterogeneous medium with cF = 2 on

the left and cF = 1 on the right. We assume that the size of the cells covering the right

part of the mesh is halved in order to keep the same number of points per wavelength

everywhere. At the interface between the two media, we glue the right element and the

left element thanks to a vertical edge (the dashed line in the picture). Hence, in this

case (�gure 6.5(d)) the two elements constitute a macro-element, that will give rise to a

linear system involving the unknowns of both elements. Although, in the case of higher

dimension, we can obtain several sub-cells connecting into one macro-cell through the

interface of heterogeneity.
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6.2 Tent-pitching Tre�tz-DG formulation

In this section, we couple a Tent Pitcher algorithm with the Tre�tz-DG formulation for

acoustic, elastodynamic and elasto-acoustic equations. We study well-posedness of the

problem, showing a conditional stability.

6.2.1 Tent-pitching Tre�tz-DG formulation for the acoustic system

As it was discussed previously, the tent strategy consists in progressively constructing a

conforming space-time mesh T tpFh on QF ≡ ΩF × I of arbitrarily shaped non-overlapping

space-time elements KF , and in solving element-by-element the space-time Tre�tz-DG

formulation locally on the out�ow edges, using as initial data the results on the in�ow

edges obtained previously for the neighbour tents. Thus, instead of considering a global

mesh skeleton FFh = ∪KF∈T tpFh∂KF over the whole space-time domainQF , it is preferable

to focus locally on each macro-cell KF of the tent along with its boundaries.

The cell edges can be categorized with respect to the component ntKF of the outwardly

directed unit normal vector nKF ≡ (nxKF , n
t
KF

), as follows:

FInh (KF ) in�ow boundaries of KF (ntKF < 0)

FOuth (KF ) out�ow boundaries of KF (ntKF > 0)

FV erth (KF ) vertical boundaries of KF (ntKF = 0)

In particular, the family FV erth (KF ) of vertical boundaries includes external vertical

edges FExth (KF ) that correspond to the physical domain boundaries, and internal edges

FInth (KF ) introduced to split heterogeneous macro-cells into homogeneous sub-cells. In

the following, we omit the dependency on KF , in order to simplify the notation.

Figure 6.6 illustrates the di�erent tent types that, by the way, have been previously

introduced in �gure 6.1 when introducing the Tent Pitcher.

t

x

KF

KF

KF KF1 KF2

(a) homogeneous cell (b) boundary cell (c) heterogeneous macro-cell

Figure 6.6: Three types of space-time tents.
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The tent of homogeneous type 6.6(a) represents a regular homogeneous single cell KF

connected with the previously involved neighbour tents through the in�ow edge FInh (dou-

ble line). The dotted boundary corresponds to the out�ow edge FOuth (�gure 6.1(a),(d)).

The tent of boundary type 6.6(b) corresponds to the case of an element at the boundary

(�gure 6.1(c)). It is also a homogeneous single cell KF connected with the previously

computed neighbour tents through the in�ow edge FInh (double line), and bounded by the

external vertical edge FExth (thick line) on ∂ΩF × I. The out�ow edge FOuth is pictured

with a dotted line.

In the end, according to the examples (e) and (f) in �gure 6.1, we consider the tent

of heterogeneous type 6.6(c) representing the heterogeneous macro-cell, which is split

thanks to internal vertical edges FInth (dashed line) into homogeneous sub-cells KF1 and

KF2. Once again, these sub-cells are connected to the previously involved neighbour

tents through the in�ow edge (double line). The dotted boundary corresponds to the

out�ow edge.

We introduce the local Tre�tz space TF (KF ) of the test functions ωF and q de�ned by:

TF (KF ) ≡
{

(ωF , q) ∈ V h(KF )d × V h(KF ) such that, ρF
∂ωF
∂t

+ ∇q = 0 and

1

c2
FρF

∂q

∂t
+ divωF = 0 in KF ∈ T tpFh

}
,

and the corresponding discrete Tre�tz space TpF (KF ) de�ned by:

TpF (KF ) ≡
{

(ωF , q) ∈ TF (KF ), (ωF , q) ∈ Pp(KF )d × Pp(KF )
}
.

The local Tre�tz-DG formulation for the acoustic system (3.1) in KF reads as follows:

Seek (vFh, ph) ∈ TpF (KF ) such that, for all KF ∈ T tpFh and for all(ωF , q) ∈ TpF (KF ) it

holds true:

atpKF ((vFh, ph); (ωF , q)) = ltpKF (ωF , q), (6.1)

where the linear form ltpKF (·) is de�ned by:

ltpKF (ωF , q) ≡

−(
1

2
+ β2)

∫
FInh

1

c2
FρF

ph
inqntKF ds− (

1

2
+ α2)

∫
FInh

ρFvFh
in · ωFntKF ds

−1

2

∫
FInh

[
ph
inωF · nxKF + qvFh

in · nxKF
]
ds +

∫
FExth

[
α1gDFωF · n

x
KF
− qgDF

]
ds.
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and the bilinear form atpKF (· ; ·) is de�ned by:

atpKF ((vFh, ph); (ωF , q)) ≡∫
FOuth

[ 1

c2
FρF

phqn
t
KF

+ ρFvFh · ωFntKF + phωF · nxKF + qvFh · nxKF
]
ds

+(
1

2
− β2)

∫
FInh

1

c2
FρF

phqn
t
KF
ds + (

1

2
− α2)

∫
FInh

ρFvFh · ωFntKF ds

+
1

2

∫
FInh

[
phωF · nxKF + qvFh · nxKF

]
ds

+

∫
FExth

[
phωF · nxKF + α1(vFh · nxKF )(ωF · nxKF )

]
ds

+

∫
FInth

[
{{ph}}[[ωF ]]x + {{vFh}} · [[q]]x + α1[[vFh]]x[[ωF ]]x + β1[[ph]]x · [[q]]x

]
ds.

The superscript in corresponds to the in�ow data previously computed on the neighbour

tents.

It is worth mentioning that, by regrouping all the terms with respect to the factors ntKF
and nxKF respectively, we can rewrite the local bilinear form atpKF (· ; ·) in vector-matrix

form as follows:

MKF = M t
KF
ntKF +

d∑
i=1

Mxi
KF
nxiKF . (6.2)

Equation (6.2) is restricted to polygonal cells where nxKF and ntKF are constant on each

edge. We get an expression of MKF that is similar to the one in [84], corresponding to

the surface terms of the proposed space-time formulation of wave equations involving

standard DG elements.

As in chapter 3, we restrict the problem to the homogeneous system with gDF ≡ 0, in

order to simplify the presentation. Then, our approach does not lose generality since

this term appears on the right-hand side of the formulation, and can be easily bounded

above provided gDF is regular enough.

To establish the well-posedness of the local variational formulation (6.1) we proceed in

similar way as in chapter 3. The analysis is carried out in the framework of [72] for

acoustic wave equation.
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We introduce the following quantities:

|||(ωF , q)|||tpKF ≡
[ 1− θF

2

∥∥∥(
1

c2
FρF

)
1/2q(ntKF )

1/2

∥∥∥2

L2(FOuth )
+

1− θF
2

∥∥∥ρ1/2

F ωF (ntKF )
1/2

∥∥∥2

L2(FOuth )

+
θF
2

∥∥∥(
1

c2
FρF

)
1/2q(ntKF )

1/2 + ρ
1/2

F ωF (ntKF )
1/2

∥∥∥2

L2(FOuth )

+
∥∥∥β1/2

2 (
1

c2
FρF

)
1/2q|ntKF |

1/2

∥∥∥2

L2(FInh )
+
∥∥∥α1/2

2 ρ
1/2

F ωF |ntKF |
1/2

∥∥∥2

L2(FInh )

+
∥∥∥α1/2

1 (ωF · nxKF )‖2
L2(FExth )

+
∥∥∥α1/2

1 [[ωF ]]x

∥∥∥2

L2(FInth )
+
∥∥∥β1/2

1 [[q]]x

∥∥∥2

L2(FInth )

]1/2

,

|||(ωF , q)|||tpK∗F ≡
[
|||(ωF , q)|||tp

2

KF

+
1

1− θF
‖ρ

1/2

F ωF (ntKF )
1/2‖2

L2(FOuth )
+

1

1− θF
‖( 1

c2
FρF

)
1/2q(ntKF )

1/2‖2
L2(FOuth )

+
∥∥∥(

1

2β2
+ 1)

1/2(
1

c2
FρF

)
1/2q

∥∥∥2

FInh
+
∥∥∥(

1

2α2
+ 1)

1/2ρ
1/2

F ωF

∥∥∥2

FInh

+ ‖α−
1/2

1 q‖2
L2(FExth )

+ ‖β−
1/2

1 {{ωF }}‖2L2(FInth )
+ ‖α−

1/2

1 {{q}}‖2
L2(FInth )

]1/2

.

Remark: By de�nition, ntKF is positive in FOuth , while it is negative in FInh .

The parameter θF is assumed to be in [0, 1) so that, similarly to the theorem 3.1, we can

prove that ||| · |||tpKF and ||| · |||tpK∗F de�ne norms in TF (KF ). We then have that:

atpKF ((ωF , q);(ωF , q)) ≡∫
FOuth

[ 1

c2
FρF

q2ntKF + ρFωF · ωFntKF + 2qωF · nxKF
]
ds

+
1

2

∫
FInh

[ 1

c2
FρF

q2ntKF + ρFωF · ωFntKF + 2qωF · nxKF
]
ds

−β2

∫
FInh

1

c2
FρF

q2ntKF ds− α2

∫
FInh

ρFωF · ωFntKF ds

+

∫
FExth

[
qωF · nxKF + α1(ωF · nxKF )(ωF · nxKF )

]
ds

+

∫
FInth

[
{{q}}[[ωF ]]x + {{ωF }} · [[q]]x + α1[[ωF ]]x[[ωF ]]x + β1[[q]]x · [[q]]x

]
ds =
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[6]︷ ︸︸ ︷∫
FOuth

1

2ntKF

[ 1

c2
FρF

(qntKF )2 + ρF (ωFn
t
KF

) · (ωFntKF ) + 2(qntKF )(ωF · nxKF )
]
ds

+

[4]︷ ︸︸ ︷
1

2

∫
FOuth ∪FInh

[ 1

c2
FρF

qqntKF + ρFωF · ωFntKF
]
ds +

[1]︷ ︸︸ ︷∫
FInth

[
α1[[ωF ]]x[[ωF ]]x + β1[[q]]x · [[q]]x

]
ds

+

[2]︷ ︸︸ ︷∫
FInh

β2
1

c2
FρF

(q|ntKF |
1/2)2ds +

∫
FInh

α2 ρF (ωF |ntKF |
1/2) · (ωF |ntKF |

1/2)ds

+

[5]︷ ︸︸ ︷∫
FOuth ∪FInh ∪F

Ext
h

qωF · nxKF ds +

∫
FInth

[
{{q}}[[ωF ]]x + {{ωF }} · [[q]]x

]
ds

+

[3]︷ ︸︸ ︷∫
FExth

α1(ωF · nxKF )(ωF · nxKF )ds .

Each term of the above equality is estimated in mesh-dependent L2-norms as follows:

[1] ≡
∫
FInth

[
α1[[ωF ]][[ωF ]] + β1[[q]]x · [[q]]x

]
ds =

∥∥∥α1/2

1 [[ωF ]]x

∥∥∥2

L2(FInth )
+
∥∥∥β1/2

1 [[q]]x

∥∥∥2

L2(FInth )
;

[2] ≡
∫
FInh

β2
1

c2
FρF

(q|ntKF |
1/2)2ds +

∫
FInh

α2 ρF (ωF |ntKF |
1/2) · (ωF |ntKF |

1/2)ds =

∥∥∥β1/2

2 (
1

c2
FρF

)
1/2q|ntKF |

1/2

∥∥∥2

L2(FInh )
+
∥∥∥α1/2

2 ρ
1/2

F ωF |ntKF |
1/2

∥∥∥2

L2(FInh )

[3] ≡
∫
FExth

α1(ωF · nxKF )(ωF · nxKF )ds =
∥∥∥α1/2(ωF · nxKF )

∥∥∥2

L2(FExth )
;

[4] ≡1

2

∫
FOuth ∪FInh

[ 1

c2
FρF

qqntKF + ρFωF · ωFntKF
]
ds =

∫
KF

[ 1

c2
FρF

q
∂q

∂t
+ ρFωF ·

∂ωF
∂t

]
dv;

[5] ≡
∫
FInth

[
{{q}}[[ωF ]]x + {{ωF }} · [[q]]x

]
ds +

∫
FOuth ∪FInh ∪F

Ext
h

qωF · nxKF ds =

∫
FInth

[[qωF ]]xds +

∫
FOuth ∪FInh ∪F

Ext
h

qωF · nxKF ds =

∫
KF

[
ωF ·∇q + q divωF

]
dv;
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[4] + [5] ≡
∫
KF

[
ωF ·∇q + q divωF +

1

c2
FρF

q
∂q

∂t
+ ρFωF ·

∂ωF
∂t

]
dv =

∫
KF

q
( =0 inTF (KF )︷ ︸︸ ︷

1

c2
FρF

∂q

∂t
+ divωF

)
dv +

∫
KF

ωF ·
( =0 inTF (KF )︷ ︸︸ ︷
ρF
∂ωF
∂t

+ ∇q
)
dv.

Thus, for the bilinear form atpKF (·; ·) we obtain:

atpKF ((ωF , q); (ωF , q)) =∥∥∥α1/2

1 [[ωF ]]x

∥∥∥2

L2(FInth )
+
∥∥∥β1/2

1 [[q]]x

∥∥∥2

L2(FInth )
+
∥∥∥α1/2

1 (ωF · nxKF )
∥∥∥2

L2(FExth )

+
∥∥∥β1/2

2 (
1

c2
FρF

)
1/2q|ntKF |

1/2

∥∥∥2

L2(FInh )
+
∥∥∥α1/2

2 ρ
1/2

F ωF |ntKF |
1/2

∥∥∥2

L2(FInh )

+

∫
FOuth

1

2ntKF

[ 1

c2
FρF

(qntKF )2 + ρF (ωFn
t
KF

) · (ωFntKF ) + 2(qntKF )(ωF · nxKF )
]
ds.

It is worth noting that, by de�nition of the out�ow edges, ntKF is positive at FOuth .

Moreover, both values ntKF and nxKF stay constant at any point of the edge FOuth of the

macro-cell KF due to its polygonal shape.

If we consider θF = max
FOuth (KF )

cF |nxKF |
|ntKF |

∈ [0, 1) the following coercivity estimate:

atpKF ((ωF , q); (ωF , q)) ≥ |||(ωF , q)|||tp
2

KF
, ∀(ωF , q) ∈ TF (KF ).

To establish the continuity property we bound above each term of the bilinear and linear

forms using weighted Cauchy-Schwartz inequality. Summing the contribution of each

term, we obtain the following continuity estimates:

|atpKF ((vF , p); (ωF , q))| ≤ Ctp1 |||(vF , p)|||
tp
K∗F
|||(ωF , q)|||tpKF ,

|ltpKF (ωF , q)| ≤[∥∥∥(
1

2α2
+ 1)

1/2ρ
1/2

F vF
in
∥∥∥2

L2(FInh )
+
∥∥∥(

1

2β2
+ 1)

1/2(
1

c2
FρF

)
1/2pin

∥∥∥2

L2(FInh )

]1/2

|||(ωF , q)|||tpKF ,

.

We retain from chapter 3 de�nitions of the global continuous Tre�tz space TF (T tpFh) and

the corresponding descrete Tre�tz space Tp
F (T tpFh). The global tent-pitching Tre�tz-DG

formulation can be obtained by summing the local results (6.1) over all elements KF :
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Seek (vFh, ph) ∈ Tp
F (T tpFh) such that, for all (ωF , q) ∈ Tp

F (T tpFh), it holds true:

AtpTDGF ((vFh, ph); (ωF , q)) = `tpTDGF (ωF , q), (6.3)

where

AtpTDGF ((vFh, ph); (ωF , q)) =
∑

KF∈T tpFh

atpKF ((vFh|KF
, ph|KF

); (ωF |KF
, q|KF

)),

`tpTDGF (ωF , q) =
∑

KF∈T tpFh

ltpKF (ωF |KF
, q|KF

).

The norms ||| · |||tpTDGF and ||| · |||tpTDG∗F in TF (T tpFh) can be de�ned by summing the

corresponding local norms ||| · |||tpKF and ||| · |||tpK∗F over all elements KF .

The coercivity and continuity properties of the global bilinear and linear forms (6.3), as

well as the consistency of AtpTDGF (·; ·) follows from the ones for each local bilinear and

linear forms.

Theorem 6.1. Let θF = max
FOuth (KF )

cF |nxKF |
|ntKF |

. Then if θF ∈ [0, 1), the global variational

problem (6.3) admits a unique weak solution (vFh, ph) ∈ Tp
F (T tpFh). Moreover, the fol-

lowing estimate holds true:

|||(vF − vFh, p− ph)|||tpTDGF ≤ (1 + Ctp1 ) inf
(ωF ,q)∈TpF (T tpFh)

|||(vF − ωF , p− q)|||tpTDG∗F .

Proof. The well-posedness of the global problem (6.3) follows straightforwardly from the

coercivity and continuity estimations, the consistency of the global bilinear form, and

from the fact that Tp
F (T tpFh) is a �nite dimensional space.

With respect to the di�erent cell types (see �gure 6.6), the local linear system (6.1) can

be rewritten in vector-matrix form.

Tent of a homogeneous type:

MKFUKF = BIn1
KF

U In1
KF

+BIn2
KF

U In2
KF

. (6.4)

Here,MKF is the matrix that corresponds to the left-hand side bilinear operator atpKF (· ; ·),
computed inside the element KF , and acting on the vector UKF of unknowns, BIn1

KF
and

BIn2
KF

are the right-hand side linear form, computed inside the cell KF , and acting on

the vectors U In1
KF

and U In2
KF

, that correspond to the numerical solution set on the in�ow

edge of KF and computed previously in the neighbour to KF tents (double line in �gure

6.6(a).
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Tent of a regular boundary type:

MKFUKF = BIn
KF
U InKF +BExt

KF
UExtKF

. (6.5)

Compared to the previous case, this formulation involves the right-hand side linear oper-

ator BExt
KF

which corresponds to the integration at the external vertical edges (thick line

in �gure 6.6(b)).

Tent of the regular and irregular heterogeneous type:

MKF [UKF1
, UKF2

] = BIn
KF1

U InKF1
+BIn

KF2
U InKF2

. (6.6)

This formulation couples two sub-cells KF1 KF2 with di�erent parameters through the

internal vertical edge (dashed line in �gure 6.6(c)). It is worth noting that in this case

the matrix MKF represents the left-hand side bilinear form for the macro-cell composed

of elementary sub-cells.

It is important to mention that the stability condition cF |nxKF | ≤ |n
t
KF
| can be considered

as a CFL condition.

6.2.2 Tent-pitching Tre�tz-DG formulation for the elastodynamic sys-

tem

As in the acoustic case (section 6.2.1), we introduce a conforming space-time mesh T tpSh
on QS ≡ ΩS × I of non-overlapping arbitrarily-shaped space-time elements KS ∈ T tpSh,
whose edges belong to the classes: FInh , FOuth , FInth or FExth (see section 6.2.1).

Similarly to the previous section, we introduce the the local Tre�tz space TS(KS) is

de�ned in each KS by:

TS(KS) ≡
{

(ωS , ξ) ∈ V h(KS)d × V h(KS)d
2
such that, A

∂ξ

∂t
− ε(ωS) = 0 and

ρS
∂ωS
∂t
− divξ = 0 inKS ∈ T tpSh

}
,

and the corresponding discrete Tre�tz space TpS(T tpSh) de�ned by:

TpS(KS) ≡
{

(ωS , ξ) ∈ TS(KS), (ωS , ξ) ∈ Pp(KS)d × Pp(KS)d
2
}
.

The local Tre�tz-DG formulation for the �rst order ES (3.11) in the element KS reads

as follows:
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Seek (vSh,σh) ∈ Tp
S(KS) such that, for all KS ∈ T tpSh and for all (ωS , ξ) ∈ Tp

S(KS), it

holds true:

atpKS ((vSh,σh); (ωS , ξ)) = ltpKS (ωS , ξ). (6.7)

The bilinear form atpKS (· ; ·) is de�ned by:

atpKS ((vSh,σh); (ωS , ξ)) ≡∫
FOuth

[
Aσh : ξntKS + ρSvSh · ωSntKS − σh : (ωS ⊗ nxKS )− ξvSh · nxKS

]
ds

+ (
1

2
− δ2)

∫
FInh

Aσh : ξntKSds + (
1

2
− γ2)

∫
FInh

ρSvSh · ωSntKSds

− 1

2

∫
FInh

[
σh : (ωS ⊗ nxKS )− ξvSh · nxKS

]
ds

−
∫
FExth

[
ξvSh · nxKS − δ1(σhn

x
KS

) · (ξnxKS )
]
ds

−
∫
FInth

[
{{σh}} : [[[ωS ]]]x + {{vSh}} · [[ξ]]x − γ1[[[vSh]]]x : [[[ωS ]]]x − δ1[[σh]]x · [[ξ]]x

]
ds,

and the linear form ltpKS (·) is de�ned by:

ltpKS (ωS , ξ) ≡

−(
1

2
+ δ2)

∫
FInh

Aσh
in : ξntKSds− (

1

2
+ γ2)

∫
FInh

ρSvSh
in · ωSntKSds

−1

2

∫
FInh

[
σh

in : (ωS ⊗ nxKS )− ξvShin · nxKS
]
ds +

∫
FExth

[
δ1ξgDS · n

x
KS

+ gDS · ωS
]
ds.

Here again, we restrict the problem to the homogeneous system with gDS ≡ 0, since this

term appears in the right-hand side of formulation, and can always be bounded above,

provided gDS is regular enough.

The study of elastodynamic formulation requires exactly the same steps as the acoustic

case. Hence, we only provide the results without detailing the calculations. We introduce

parameter θS ≡ max
FOuth (KS)

|nxKF |√
ρS |A||ntKF |

, and we de�ne two quantities:
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|||(ωS , ξ)|||tpKS ≡
[ 1− θS

2

∥∥∥ | ξ |A (ntKS )
1/2

∥∥∥2

L2(FOuth )
+

1− θS
2

∥∥∥ρ1/2

S ωS(ntKS )
1/2

∥∥∥2

L2(FOuth )

+
θS
2

∥∥∥ | ξ |A (ntKS )
1/2 + ρ

1/2

S ωS(ntKS )
1/2

∥∥∥2

L2(FOuth )

+
∥∥∥δ1/2

2 | ξ |A |ntKS |
1/2

∥∥∥2

L2(FInh )
+
∥∥∥γ1/2

2 ρ
1/2

S ωS |ntKS |
1/2

∥∥∥2

L2(FInh )

+
∥∥∥δ1/2

1 (ξnxKS )
∥∥∥2

L2(FExth )
+
∥∥∥γ1/2

1 [[[ωS ]]]x

∥∥∥2

L2(FInth )
+
∥∥∥δ1/2

1 [[ξ]]x

∥∥∥2

L2(FInth )

]1/2

,

|||(ωS , ξ)|||tpK∗S ≡
[ (
|||(ωS , ξ)|||tpKS

)2
+

1

1− θS

∥∥∥ρ1/2

S ωS(ntKS )
1/2

∥∥∥2

L2(FOuth )
+

1

1− θS

∥∥∥ | ξ |A (ntKS )
1/2

∥∥∥2

L2(FOuth )

+
∥∥∥(

1

2δ2
+ 1)

1/2 | ξ |A
∥∥∥2

FInh
+
∥∥∥(

1

2γ2
+ 1)

1/2ρ
1/2

S ωS

∥∥∥2

FInh

+
∥∥∥δ−1/2

1 ξ
∥∥∥2

L2(FExth )
+
∥∥∥δ−1/2

1 {{ωS}}
∥∥∥2

L2(FInth )
+
∥∥∥γ−1/2

1 {{ξ}}
∥∥∥2

L2(FInth )

]1/2

.

If θS ∈ [0, 1), ||| · |||tpK∗S and ||| · |||tpK∗S de�ne two norms in TS(KS). Moreover, if θS ∈ [0, 1)

we have

atpKS ((ωS , ξ); (ωS , ξ)) ≥ |||(ωS , ξ)|||tp
2

KS
,

and

|atpKS ((vS ,σ); (ωS , ξ))| ≤ Ctp2 |||(vS ,σ)|||tpK∗S |||(ωS , ξ)|||tpKS ,

|ltpKS (ωS , ξ)| ≤[∥∥∥(
1

γ2
+ 1)

1/2ρ
1/2

S vS
in
∥∥∥2

L2(FInh )
+
∥∥∥(

1

δ2
+ 1)

1/2 | σin |A ntKS

∥∥∥2

L2(FInh )

]1/2

|||(ωS , ξ)|||tpKS ,

which says that atpKS (·; ·) is coercive and continuous, and ltpKS (·) is continuous.

Summing the local results (6.7) over all elements KS , we obtain the global tent-pitching

Tre�tz-DG problem, de�ned in the global discrete Tre�tz space Tp
S(T tpSh) by:

Seek (vSh,σh) ∈ Tp
S(T tpSh) such that, for all (ωS , ξ) ∈ Tp

S(T tpSh), it holds true:

AtpTDGS ((vSh,σh); (ωS , ξ)) = `tpTDGS (ωS , ξ), (6.8)
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where

AtpTDGS ((vSh,σh); (ωS , ξ)) ≡
∑

KS∈T tpSh

atpKS ((vSh|KS
, σh|KS

); (ωS |KS
, ξ|KS

)),

`tpTDGS (ωS , ξ) ≡
∑

KS∈T tpSh

ltpKS (ωS |KS
, ξ|KS

).

If θS ∈ [0, 1), the consistency of each atpKS (·, ·), the coercivity and continuity properties

of the bilinear and linear forms of each local problem (6.7) provide the consistency of

AtpTDGS (·; ·), as well as the coercivity and the continuity properties of the global bilinear

and linear forms with respect to the norms de�ned by:

|||(ωS , ξ)|||tpTDGS ≡
∑

KS∈T tpSh

|||(ωS |KS , ξ|KS
))|||tpKS ,

|||(ωS , ξ)|||tpTDG∗S ≡
∑

KS∈T tpSh

|||(ωS |KS , ξ|KS
))|||tpK∗S .

Theorem 6.2. If θS ∈ [0, 1), the global variational problem (6.8) admits a unique weak

solution (vSh,σh) ∈ Tp
S(T tpSh). Moreover, the following estimate holds true:

|||(vS − vSh,σ − σh)|||tpTDGS ≤ (1 + Ctp2 ) inf
(ωS ,ξ)∈TpS(T tpSh)

|||(vS − ωS ,σ − ξ)|||tpTDG∗S .

Proof. The well-posedness of the global problem (6.3) follows straightforwardly from the

coercivity and continuity estimations, the consistency of the global bilinear form, and

from the fact that Tp
S(T tpSh) is a �nite dimensional space.

We refer to section 6.2.1 for the vector-matrix formulations of the linear system (6.7)

with respect to the di�erent tent types. The same conclusions hold true.

6.2.3 Tent-pitching Tre�tz-DG formulation for the elasto-acoustic sys-

tem

We retain the de�nitions from the previous sections 6.2.1 and 6.2.2. We introduce a

conforming space-time mesh T tph on Q ≡ QF ∪QS of non-overlapping arbitrarily-shaped

space-time elements:

KFF - element in �uid with no neighbours in solid

KSS - element in solid with no neighbours in �uid

KFS - element in �uid with a neighbour in solid

KSF - element in solid with a neighbour in �uid
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For any element KFS and its neighbour in solid KFS , we de�ne the macro-element

K = KFS ∪ KSF . The elasto-acoustic coupling leads us to introduce a fourth type of

tent, which corresponds to the numerical coupling of elementary sub-cells through the

�uid-solid interface inside one macro-cell K = KFS ∪KSF (see �gure 6.7).

KFS KSF

Figure 6.7: Fourth type of space-time tents (heterogeneous �uid-solid macro-cell).

The local Tre�tz-DG formulation for the �rst order Elasto-Acoustic System (EAS) in

macro-element K ∈ T tph reads as follows:

Seek (vFh, ph,vSh,σh) ∈ TpF (KFS)×TpS(KSF ) ≡ Tp(K) such that, for all (ωF , q,ωS , ξ) ∈
Tp(K), it holds true:

atpK((vFh, ph,vSh,σh); (ωF , q,ωS , ξ)) = ltpK(ωF , q,ωS , ξ). (6.9)

Herein, the linear form ltpK(·) is de�ned in the terms of: ltpKF (·) and ltpKS (·) by:

ltpK(ωF , q,ωS , ξ) = ltpKF (ωF , q) + ltpKS (ωS , ξ),

and the bilinear form atpK(· ; ·) is de�ned by:

atpK((vFh, ph,vSh,σh); (ωF , q,ωS , ξ)) ≡∫
FOuth

[ 1

c2
FρF

phqn
t
KF

+ ρFvFh · ωFntKF + phωF · nxKF + qvFh · nxKF
]
ds

∫
FOuth

[
Aσh : ξntKS + ρSvSh · ωSntKS − σh : (ωS ⊗ nxKS )− ξvSh · nxKS

]
ds

+
1

2

∫
FInh

[ 1

c2
FρF

phqn
t
KF

+ ρFvFh · ωFntKF + phωF · nxKF + qvFh · nxKF
]
ds

+
1

2

∫
FInh

[
Aσh : ξntKS + ρSvSh · ωSntKS − σh : (ωS ⊗ nxKS )− ξvSh · nxKS

]
ds
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+β2

∫
FInh

1

c2
FρF

phqn
t
KF
ds + α2

∫
FInh

+ρFvFh · ωFntKF ds

+δ2

∫
FInh

Aσh : ξntKS + ds + γ2

∫
FInh

ρSvSh · ωSntKS − ds

+

∫
FExth

[
pωF · nxKF + α1(vFh · nxKF )(ωF · nxKF )

]
ds

−
∫
FExth

[
ξvSh · nxKS − δ1(σhn

x
KS

) · (ξnxKS )
]
ds

+

∫
FInth

[
qvSh · nxKF − pωS · n

x
KF

]
ds

+

∫
FInth

[
α1(vFh · nxKF − vSh · n

x
KF

)(ωF · nxKF − ωS · n
x
KF

)
]
ds

+

∫
FInth

[
δ1(σhn

x
KS

+ phn
x
KS

) · (ξnxKS + qnxKS )
]
ds,

Taking into account the de�nitions and notations given in the previous sections, we

de�ne the stability parameter θ = max
{
θF , θS

}
and, assuming that θ ∈ [0, 1), we equip

the continuous Tre�tz space T(K) ≡ TF (KFS) × TS(KSF ) with two norms de�ned as

follows:

|||(ωF , q,ωS , ξ))|||tpK ≡
[
|||(ωF , q)|||tp

2

KF
+ |||(ωS , ξ)|||tp

2

KS

+
∥∥∥α1/2

1 (ωF · nxKF − ωS · n
x
KF

)
∥∥∥2

L2(FInth )

+
∥∥∥δ1/2

1 (ξnxKS + qnxKS )
∥∥∥2

L2(FInth )

]1/2

,

|||(ωF , q,ωS , ξ)|||tpK∗ ≡
[ (
|||(ωF , q)|||tpK∗F

)2
+
(
|||(ωS , ξ)|||tpK∗S

)2
+
∥∥∥q∥∥∥2

L2(FInth )
+
∥∥∥ωS∥∥∥2

L2(FInth )

]1/2

.

If θ ∈ [0, 1), we have

atpK((ωF , q,ωS , ξ); (ωF , q,ωS , ξ)) ≥ |||(ωF , q,ωS , ξ)|||tp
2

K ,

and

|atpK((vF , p,vS ,σ); (ωF , q,ωS , ξ))| ≤ (Ctp1 + Ctp2 )|||(vF , p,vS ,σ)|||tpK∗ |||(ωF , q,ωS , ξ)|||tpK ,
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|ltpK(ωF , q,ωS , ξ)| ≤
[∥∥∥(

1

2α2
+ 1)

1/2ρ
1/2

F vF
in
∥∥∥2

L2(FInh )
+
∥∥∥(

1

2β2
+ 1)

1/2(
1

c2
FρF

)
1/2pin

∥∥∥2

L2(FInh )∥∥∥(
1

γ2
+ 1)

1/2ρ
1/2

S vS
in
∥∥∥2

L2(FInh )
+
∥∥∥(

1

δ2
+ 1)

1/2 | σin |A ntKS

∥∥∥2

L2(FInh )

]1/2

|||(ωF , q,ωS , ξ)|||tpK .

The global tent-pitching Tre�tz-DG problem can then be de�ned by summing the local

formulations (6.1) over all elements KFF ∈ T tph , the local formulations (6.7) over all

elements KSS ∈ T tph , and the local formulations (6.9) over all macro-elements K ∈ T tph .

We obtain:

Seek (vFh, ph,vSh,σh) ∈ Tp(T tph ) such that, for all (ωF , q,ωS , ξ) ∈ Tp(T tph ), it holds

true:

AtpTDG((vFh, ph,vSh,σh); (ωF , q,ωS , ξ)) = `tpTDG(ωF , q,ωS , ξ), (6.10)

where

`tpTDG(ωF , q,ωS , ξ) ≡
∑

KFF∈T tph

ltpKF (ωF |KFF
, q|KFF

) +
∑

KSS∈T tph

ltpKS (ωS |KSS
, ξ|KSS

)

+
∑

K∈T tph

ltpK(ωF |KFS
, q|KFS

, ωS |KSF
, ξ|KSF

)

and

AtpTDG((vFh, ph,vSh,σh); (ωF , q,ωS , ξ)) ≡∑
KFF∈T tph

atpKF ((vFh|KFF
, ph|KFF

); (ωF |KFF
, q|KFF

))

+
∑

KSS∈T tph

atpKS ((vSh|KSS
, σh|KSS

); (ωS |KSS
, ξ|KSS

))

+
∑

K∈T tph

atpK((vFh|KFS
, ph|KFS

, vSh|KSF
, σh|KSF

); (ωF |KFS
, q|KFS

, ωS |KSF
, ξ|KSF

)).

By the analogy with previous cases, if θ ∈ [0, 1), based on the coercivity and continuity

estimates, and the consistency of the bilinear forms atpKF (·, ·), atpKS (·, ·), atpK(·, ·) we derive
the same properties for the global bilinear form AtpTDG(·; ·) with respect to the norms

||| · |||tpTDG and ||| · |||tpTDG∗ that are de�ned by summing the local norms ||| · |||tpKF and

||| · |||tpK∗F over all elements KFF , the local norms ||| · |||tpKS and ||| · |||tpK∗S over all elements

KSS , and the local norms ||| · |||tpK and ||| · |||tpK∗ over all macro-elements K.
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Theorem 6.3. If θ ∈ [0, 1), the global variational problem (6.10) admits a unique weak

solution (vFh, ph,vSh,σh) ∈ Tp(T tph ). Moreover, the following estimate holds true:

|||(vF − vFh,p− ph,vS − vSh,σ − σh)|||tpTDG ≤

(1 + Ctp1 + Ctp2 ) inf
(ωF ,q,ωS ,ξ)∈Tp(T tph )

|||(vF − ωF , p− q,vS − ωS ,σ − ξ)|||tpTDG∗ .

Proof. The well-posedness of the global problem (6.10) follows straightforwardly from

the coercivity and continuity estimations, the consistency of the global bilinear form,

and from the fact that Tp(T tph ) is a �nite dimensional space.

In a vector-matrix form, the local linear system (6.9) can be represented similarly to the

vector-matrix formulation written for the tent of heterogeneous type (6.6).

6.3 Space-time tent mesh examples

In this section, we give some 1D+time and 2D+time examples of space-time tent mesh

construction which will be used for further numerical tests (see section 6.4).

6.3.1 1D+time homogeneous and heterogeneous tent meshes

We consider three examples of 1D+time tent meshes. Figures 6.8 describe the construc-

tion of a uniform tent (a) with ∆x �xed and a non-uniform tent (b) with twice smaller

∆x and ∆t in the middle zone. The mesh 6.8(b) is typically what is needed to follow the

geometrical properties of a heterogeneous medium. The special feature of these meshes

is the special type of element connection: we must solve the formulation in the entire

element for each new tent.

In �gure 6.9, we consider a heterogeneous medium, which is composed of two layers,

with twice smaller ∆x in the right layer compared to the left one. Compared to the

previous example, here the restriction on tent construction imposes the coupling of two

formulations with di�erent medium parameters in two neighbour elements at the interface

between two medium layers.

6.3.2 2D+time homogeneous tent mesh

The 2D+time example of space-time tent meshes is given in �gure 6.10. Even though

the mesh elements are now pyramids and tetrahedra, we can consider the same three

types of element connections as in the 1D+time case.
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Figure 6.8: Space-time tent meshes for 1D+time homogeneous medium.
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Figure 6.9: Space-time tent meshes for 1D+time heterogeneous medium (re�nement
∆x/2 in the right zone)
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Figure 6.10: Space-time uniform tent meshes for 2D+time homogeneous medium.

6.4 Numerical results

In this section, we display some numerical results obtained from the implementation of

the Tent Pitcher algorithm for solving Tre�tz-DG acoustic and elastodynamic formula-

tions in 1D+time and 2D+time dimensions. Here and further, the penalty parameters
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are α1 = β1 = 0.5 for 1D and 2D acoustic tests, and δ1 = γ1 = 0.5 for 2D elastodynamic

tests. All parameters are dimensionless.

6.4.1 1D Acoustics

We address the problem of solving the acoustic wave equation in a homogeneous and a

heterogeneous domain. The objective is to validate the numerical method based on the

tent strategy by comparison with the analytical solutions. The convergence pro�le is

also considered.

6.4.1.1 Homogeneous acoustic medium with periodical boundary conditions

We consider a 1D homogeneous acoustic medium ΩF ≡ [0, 1] with periodic boundary con-

ditions and a time interval I ≡ [0, 0.5]. We set the medium parameters cF = 1, ρF = 1

to be constant in ΩF × I. We retain the uniform tent mesh example 6.8(a), and we

reproduce the same tent construction by choosing 2cF∆t = ∆x = 0.01. The ap-

proximation degree is p=3. Initial conditions are imposed on the velocity, vF0(x) =

10(x− 0.2) · exp(−π2(x− 0.2)2/0.22), and the pressure, p0(x) = cF vF0.
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(a) vF (x, t) (b) vF (x, t = 0.17)

Figure 6.11: Propagation of the numerical velocity vF (x, t) in a homogeneous 1D
�uid domain.

Figure 6.11(a) shows the propagation of the numerical velocity vF (x, t). In �gure 6.11(b),

we compare the exact and numerical velocities at time t = 0.17. We can see that both

signals match well, thus, validating the implementation.

The results of a convergence study for the numerical velocity vF (x, t) are given in �gure

6.12. It shows the L2-norm in time and space of numerical error as a function of cell

size ∆x = 2cF∆t. In all the cases, the convergence rate is of order p+1 or higher. Here

again, we observe a superconvergence phenomenon as for the 1D standard Tre�tz-DG

case.
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Figure 6.12: Convergence of the numerical velocity vF as a function of cell size
∆x = 2cF ∆t.

6.4.1.2 Heterogeneous acoustic medium with periodic boundary conditions

We consider a 1D heterogeneous acoustic medium which is composed of three homoge-

neous layers ΩF ≡ [0, 0.4)∪ [0.4, 0.6)∪ [0.6, 1], and the time interval is I ≡ [0, 0.5]. The

medium parameters are cF = 1, ρF = 1 in the left-hand side and right-hand side layers

and cF = 2, ρF = 1 in the middle one. We reproduce the same tent construction as

in �gure 6.9 by choosing 2cF∆t = ∆x = 0.01. The approximation degree is p=3. To

generate the wave, we take vF0(x) = 10(x− 0.2) · exp(−π2(x− 0.2)2/0.22) as an initial

condition for the velocity, and p0(x) = −cF vF0 for the pressure. Periodic boundary

conditions are imposed at ∂ΩF .

Figure 6.13(a) pictures the propagation of the numerical velocity in the three-layered

medium, while �gure 6.13(b) displays the numerical solution at time t = 0.17.
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Figure 6.13: Propagation of the numerical velocity vF (x, t) in a heterogeneous 1D
�uid domain.

The propagation of the numerical solution through the interface x = 0.4 between two

layers properly reproduces the physics of the model, based on values of the re�ection
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coe�cients r1 and r2. They can be analytically computed using the medium parameters

as follows: r1 = (cF1 − cF2)(cF1 + cF2)−1 = 0.33 and r2 = (2cF1)(cF1 + cF2)−1 = 1.33,

de�ning the amplitudes of the re�ected r∗1 = r1 · max
x∈(0,1]

vF0 = 0.09 and incident r∗2 =

r2 · max
x∈(0,1]

vF0 = 0.36 waves (blue and red dashed lines respectively in �gure 6.13(b)).

6.4.2 Homogeneous 2D acoustics

In this section we test the tent Tre�tz-DG formulation applied to the 2D+time acoustic

model. We consider a 2D homogeneous acoustic medium ΩF ≡ [0, 1]×[0, 1] with periodic

boundary conditions and the time interval is I ≡ [0, 0.7]. The medium parameters

cF = 1, ρF = 1 are constant in ΩF × I. We retain the uniform tent mesh example as in

�gure 6.10, and we reproduce the same tent construction by choosing
√

2cF∆t = ∆x =

∆y = 0.01. The degree of approximationin space and time is p=3. We have a Gaussian
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Figure 6.14: Propagation of the numerical velocity vF ≡ (vxF , v
y
F ) and the pressure p

in a homogeneous 2D �uid domain at time t = 0.3, 0.4, 0.5.
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source term f(t) = −50π2(t−0.2) · exp(−25π2(t−0.2)2) at the point (0.5, 0.5)) and zero

initial conditions.

Figure 6.14 shows the propagation of the components vxF , v
y
F of the numerical velocity

vF ≡ (vxF , v
y
F ), and the pressure p as well.

In �gure 6.15, we compare the seismograms of vxS and vyS , computed at the point

(0.25, 0.25) with analytical solutions computed with Gar6more2D [1]. Both the curves

match well, validating thus the numerical formulation.
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Figure 6.15: The seismograms for the exact and numerical velocities vF ≡ (vxF , v
y
F )

in a homogeneous 2D �uid domain.

The convergence of the numerical velocity vF (x, t) for di�erent approximation degrees

p=0, 1, 2, 3 is shown in �gure 6.16. It represents the L2-norm in space and time of

numerical error as a function of cell size ∆x = ∆y =
√

2cF∆t. In all the cases, the

convergence is at least of order p and reaches p+1 for p = 2, 3. Hence, the Tent Pitcher

algorithm converges as well as standard Tre�tz-DG methods, even with a source point.
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Figure 6.16: Convergence of the numerical velocity vF as a function of cell size
∆x = ∆y =

√
2cF ∆t.
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6.4.3 Homogeneous 2D elastodynamics

We consider a 2D homogeneous elastic medium ΩS ≡ [0, 2] × [0, 2] and a time interval

I ≡ [0, 0.9]. We choose the following medium parameters: λ = µ = 1, ρS = 1 in ΩS × I.
We use the same tent pitching mesh as in �gure 6.10 by choosing

√
2VP∆t = ∆x = ∆y =

0.01. The degree of approximation in space and time is p=3. At point (1, 1), we impose

a Gaussian source term f(t) = −50π2(t − 0.2) · exp(−25π2(t − 0.2)2) and we have zero

initial conditions.

Figures 6.17 and 6.18 show the propagation of the numerical velocity vS and the stress

tensor σ at times t = 0.3, 0.4, 0.5. Even if we observe the same numerical artifacts

caused by the source point emitted in the elastic medium in the case of the stress prop-

agation (see chapter 5), we can clearly see that the P - and S - wave propagation is well

reproduced. The numerical results are validated through comparisons with analytical

solutions computed with Gar6more2D [1] as depicted in �gure 6.19.

The convergence of the numerical velocity vS(x, t) for di�erent approximation degrees

p=0, 1, 2, 3 is shown in �gure 6.20. It represents the L2-norm in space and time of

numerical error as a function of cell size ∆x = ∆y =
√

2VP∆t. We can see that the

convergence is at least of order p and reaches approximately p+1 for p = 2, 3. Once

again, the Tent Pitcher algorithm converges as well as standard Tre�tz-DG methods,

even with a source point.
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Figure 6.17: Propagation of the numerical velocity vS ≡ (vxS , v
y
S) in a homogeneous

2D solid domain at time t = 0.6, 0.7, 0.9.
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Figure 6.18: Propagation of the numerical stress tensor in a homogeneous 2D solid
domain.
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in a homogeneous 2D solid domain at time t = 0.3, 0.4, 0.5.
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6.4.4 2D Elasto-acoustics

In this section, we illustrate the tent Tre�tz-DG formulation of the 2D+time elasto-

acoustic problem.

We consider a 2D elasto-acoustic medium composed of two homogeneous layers: the

acoustic one ΩF ≡ [0, 2]× [0, 1] and the elastic one ΩS ≡ [0, 2]× [1, 2]. The time interval

is I ≡ [0, 0.8]. The medium parameters λ = µ = 1, ρS = 1 are constant in ΩS × I.The
approximation degree in space and time is p=3. We retain the uniform 2D+time tent
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Figure 6.21: Propagation of the numerical velocity v ≡ (vx, vy) in a 2D �uid-solid
domain at time t = 0.3, 0.4, 0.6.
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mesh example as in �gure 6.10 and we reproduce the same tent construction by choosing

min{VP , cF }∆t = ∆x/
√

2 = ∆y/
√

2 = 0.007. The source term is a Gaussian function

f(t) = 10exp(−40π2(t − 0.2)2) emitted at point (1, 0.75) in the acoustic layer, and we

have zero initial conditions.

Figure 6.21 shows the propagation of the numerical velocity v ≡ (vx, vy) at times t =

0.3, 0.4, 0.6. We can clearly observe all the types of waves (incident, re�ected P -, S -

waves).

The numerical solutions are validated thanks to analytical seismograms at the point

(1.5, 1.5) and computed with Gar6more2D [1] as displayed in �gure 6.22.
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Figure 6.22: The sieismograms for the exact and numerical velocities v ≡ (vx, vy) in
a 2D �uid-solid domain.

6.4.5 Test of performance

In the previous sections, we have checked that the Tent Pitcher coupled with the Tre�tz-

DG approach delivers accurate wave solutions. Here, we compare the three Tre�tz-DG

solution methodologies that are proposed in this manuscript. These tests of performance

are obviously preliminary and will reuire a deeper study after the codes are parallelized.

Nevertheless these tests are informative for the future which consists in applying the

Tre�tz-DG method to industrial problems.

In �gure 6.23, we depict the computational times as a function of the cell number used

for the space discretization. We compare the two �rst Tre�tz-DG algorithms involving an

exact inversion (TDG2Dei) or an approximate (iterative) one (TDG2Dai) of the global

space-time discrete matrix with the Tre�tz-DG solution obtained on the tent pitching

mesh (TDG2Dtp). The histogram clearly indicates that the Tent Pitcher largely improves

the capabilities of the Tre�tz-DG algorithm. It is worth noting that the initial approach,

involving the exact inversion of the global matrix, is not even able to deliver a solution
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Figure 6.23: Speedup of using three algorithms for di�erent model sizes

when the number of cells exceeds 3000. It means that this solution methodology, we

proposed at �rst, should not be used for tackling large problems and even more so in

industry.

6.5 Conclusion

We have implemented the Tre�tz-DG method in a tent pitching mesh which contributes

to accelerate the computations by avoiding the (exact or approximate) inversion of the

global matrix. We have seen that the convergence properties of the Tre�tz-DG algorithm

are kept. The Tent Pitcher is adapted to the parallelization and it accounts for local-time

steps easily. This is a very promising algorithm which encourages us to carry on in this

way for solving realistic problems suggested by the geophysical industry.
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Chapter 7

Conclusion

This PhD thesis has been prepared in the framework of an industrial research program

gathering researchers of Inria and research engineers of Total. Our joint objective is

the development of advanced numerical methods for solving wave problems in very large

domains with numerous source terms. The propagation domain is the subsurface of the

Earth including heterogeneities and topography e�ects. It is thus a challenging problem,

in particular because it requires a huge computational power which needs a proper uti-

lization to avoid reaching the limits of the computing capacities. Regarding this domain

of research, some key words arise quite naturally: high-order approximation and hp-

adaptivity for accuracy and e�ciency, discontinuous �nite elements for parallelization,

fast time integration for limiting the computational duration, optimal sparsity for reduc-

ing the memory storage and also making the computations faster. In this PhD thesis,

we have addressed all these features by proposing to develop a Tre�tz approximation

of transient wave problems involving discontinuous basis functions. Tre�tz-DG solution

methodologies are now popular and their implementation has mainly been donein the

time-harmonic domain. Very few papers have been devoted to the case of transient wave

problems and, to the best of our knowledge, they only deal with the case of acoustic

and electromagnetic waves with some numerical experiments in 1D+time dimensions.

Hence this thesis provides some contributions to the implementation of new algorithms

for solving wave problems in geophysics.

This thesis aimed at assessing the potential of Tre�tz-DG formulations in an industrial

framework provided by Total and based on DG technologies for solving wave problems.

We have thus developed a space-time Tre�tz-DG formulation of the elastic wave equations

and later on of the elasto-acoustic problem using space-time polynomial Tre�tz basis. We

have constructed a polynomial basis of discontinuous functions that are solution to the

elastic and elasto-acoustic wave equations from the approximation of space-time plane
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waves. They are displayed in the appendix of this manuscript. Thanks to former work by

A. Moiola and his co-authors, we have proven that the proposed formulation is well posed

and we have validated the corresponding numerical method for toy problems allowing

the computing of analytical solutions. We have also performed a numerical convergence

analysis which shows that the order of the method is optimal. At this stage in the thesis

work, it is worth noting that we have implemented a prototype code which highlighted

some di�culties for a use in an industrial environment according to the di�erent con-

straints regarding the size of the problems to be solved and the time of execution. In

particular, we have implemented a slab-by-slab change-over in time procedure and pro-

pose to invert the global space-time matrix thanks to an explicit representation of the

wave�eld providing a stability condition. The corresponding computational costs have

been considerably reduced, but the method did not exploit fully the physical properties

of the wave�elds. This led us to investigate Tent Pitcher algorithm which consists in con-

structing the numerical solution by following the wave fronts. It results in covering the

space-time domain by tent-like elements respecting the propagation cone inherited from

the �nite propagation speed principle. We have obtained preliminary results showing

very promising directions for investigation. But the optimization and the parallelization

of the code is still on-going, general boundary conditions must also be implemented to

provide software adapted to geophysical exploration involving regional computations.

We would like to analyze the in�uence of the penalty terms on the performance of the

code. It would be interesting to compare di�erent basis functions to possibly de�ne an

optimal set. This work is the �rst step of the development of a branch of DIP DG tech-

nologies coupling DG with Tre�tz methodology. It will be followed by further studies

including the parallelization in time of our numerical methods and their extension to

3D problems which is far from being obvious. In this regard, the report [106] deserves

a particular attention providing a parallel mesh generator in 4D. As far as the paral-

lelization is concerned, we would like to consider the ideas recently developed in [47]

where the parallelization is based on the diagonalization of the time stepping matrix

proposed in [80]. We also have to consider the implementation of more complex bound-

ary conditions. Indeed, in this work, we have restricted ourselves to the case of Dirichlet

boundary conditions, which do not involve any di�erential operator. This kind of condi-

tions are thus well-suited to Tre�tz formulations, where the variational formulation do

not contain di�erential operators. We now wish to adress the case of high-order absorb-

ing boundary conditions requiring the introduction of high-order di�erential operators

in the formulation.

The literature on Tre�tz-DG approach shows that, even if the principal ideas and the

algorithms have been known since the beginning of the 20th century, their practical ap-

plication has been delayed because of a lack of computer performance. Thus, even in the
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beginning of the 21st, discontinuous discretizations were deemed to be less competitive

or even impossible to employ for solving industrial problems, because of una�ordable

numerical overcosts, when compared to the popular �nite di�erence method, for exam-

ple. Even if the growth of performance of computers resulted in a tendency to prefer

more accurate and stable numerical methods instead of the cheaper, but less robust ones,

in practice, the choice of a numerical method is still dictated by the balance between

numerical cost and accuracy.

The initial formulation of Tre�tz-DG method provides a highly accurate and uncon-

ditionally stable algorithm, but it requires inverting a sparse matrix which increases

signi�cantly the computational burden. Now the implementation of Tre�tz-DG in a

tent pitching mesh opens new possibilities for this DG technology. Nevertheless, we are

aware of the role of the computer capabilities which is still crucial, even if the numerical

method is optimized. Computer scientists will surely have to consider new technologies

and among them, the quantum computing could have an important in�uence.

According to the Moore's law, the performance of computers doubles every one and a half

year. It suggests that the problem of optimization of the existing variational algorithms

will stay actual for the next few years. However, Moore's law has a natural limit: the

size of the modern transistors is already comparable to the size of viruses, and the more

we decrease it, the less it is possible to maintain classical physics principles, because the

particles start to behave as waves, revealing quantum properties.

Quantum computing uses the principles of quantum mechanics to perform the calcula-

tions, following the ideas of Richard Feynman displayed in the lecture of 1959 "There's

Plenty of Room at the Bottom". Later this idea was explored by Paul Benio� [19] and

Yuri Manin in 1980 [81], Richard Feynman in 1982 [44], and David Deutsch in 1985 [35].

A digital computer uses bits as a binary form of information as either a 1 or a 0 while

a quantum computer uses quantum bits or q-bits which can utilize data in a variety of

states due to the quantum mechanical principles of superposition and entanglement.

These principles allow multiple states to exist at the same time which helps the q-bit to

operate with the utmost e�ciency. Quantum computing opens thus the route for large

scale computations by providing a way for accelerating signi�cantly the computations.

Currently, the �eld of quantum computing is a new-born discipline of scienti�c computing

but a proof of concept is already available using a very small number of q-bits. For

example, a small 20 q-bit quantum computer exists and is available for experiments via

the IBM quantum experience project. Furthermore, in 2017-2018 the IBM, Intel and

Google companies reported about tests of quantum processors containing 50, 49, and 72

q-bits, respectively, all realized using superconducting circuits.
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Even though, the use of quantum computers for solving physical problems stays glob-

ally unavailable from the engineering point of view, there already exist many analytical

algorithms, whose concept and theory have already been proved. One of them is the

quantum algorithm for linear systems of equations or "HHL algorithm" [55], developed

by Harrow, Hassidim and Lloyd in 2009. The algorithm estimates the result of a scalar

measurement on the solution to a given linear system of equations. From a numerical

point of view, linear equations play an important role in all the �elds of science and

engineering. In particular, the Tre�tz-DG formulation of a wave problem described in

this thesis also reduces to solving a linear system with a global sparse matrix. Moreover,

when applied to real models, the data sets as well as the matrix size grow rapidly over the

time. The HHL algorithm is expected to provide a speedup over the classical ones, when

applied to sparse linear systems of N variables with a low condition number κ (which

is the case for the Tre�tz-DG problem). The algorithm has a run time of O(log(N)κ2),

which is exponentially faster than the best classical ones (O(Nκ) or O(N
√
κ) for posi-

tive semi-de�ned matrices)[55]. An implementation of the quantum algorithm for linear

systems of equations was demonstrated later on by Cai et al. [26], Braz et al. [16]. and

Pan et al. [87] in 2013 - 2014.

To conclude and according to the discussion in [20], the upcoming years will be exciting

since the practical testing of quantum algorithms will become more and more feasible.

Thus, the great hope of modern numerical analysis, is that the development of the quan-

tum computing will create the possibility of using algorithms advanced enough to tackle

realistic physical problems, but still computationally intensive in the existing computing

environment.



Appendix A

Some useful identities for the

standard DG terms

The demonstration of coercivity and continuity properties proposed in chapter 3 is based

on de�nitions and properties of the average and space and time normal jump notations

for scalar q, vector ω and tensor ξ �elds. Herein, we consider some useful identities for

the standard DG terms, including the formulas of space and time elementwise integration

by parts.
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A.1 Jump and average identities

Based on the de�nitions and properties of the space and time normal jumps and average

between elements (see chapter 3), we consider the following proposition:

Proposition A.1. For scalar q, vector ω and tensor ξ �elds the following identities hold

true:

{{q}}[[q]]t =
1

2
[[q2]]t; (A.1)

{{ω}} · [[ω]]t =
1

2
[[ω · ω]]t; (A.2)

{{Aξ}} : [[ξ]]t =
1

2
[[Aξ : ξ]]t; (A.3)

{{q}}[[ω]]x + {{ω}} · [[q]]x = [[qω]]x; (A.4)

{{ξ}} : [[[ω]]]x + {{ω}} · [[ξ]]x = [[ξω]]x. (A.5)

Proof.

(A.1) :

{{q}}[[q]]t =
1

2

(
q|K−F

+ q|K+
F

)(
q|K−F

nt
K−F

+ q|K+
F
nt
K+
F

)
=

1

2

(
q2
|K−F

nt
K−F

+ q2
|K+
F
nt
K+
F

)
=

1

2
[[q2]]t;

(A.2) :

{{ω}} · [[ω]]t =
1

2

(
(ω · ω)|K−F

+ (ω · ω)|K+
F

)(
(ω · ω)|K−F

nt
K−F

+ (ω · ω)|K+
F
nt
K+
F

)
=

1

2

(
(ω · ω)|K−F

nt
K−F

+ (ω · ω)|K+
F
nt
K+
F

)
=

1

2
[[ω · ω]]t;

(A.3) :

{{Aξ}} : [[ξ]]t =
1

2

(
(Aξ : ξ)|K−F

+ (Aξ : ξ)|K+
F

)(
(Aξ : ξ)|K−F

nt
K−F

+ (Aξ : ξ)|K+
F
nt
K+
F

)
=

1

2

(
(Aξ : ξ)|K−F

nt
K−F

+ (Aξ : ξ)|K+
F
nt
K+
F

)
=

1

2
[[Aξ : ξ]]t;

(A.4) :

{{q}}[[ω]]x + {{ω}} · [[q]]x =
(
(qω)|K−F

· nx
K−F

+ (qω)|K+
F
· nx

K+
F

)
+

1

2

(
q|K−F

ω|K+
F
· nx

K+
F

+ q|K+
F
ω|K−F

· nx
K−F

+ q|K−F
ω|K+

F
· nx

K−F
+ q|K+

F
ω|K−F

· nx
K+
F

)
=

[[qω]]x;
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(A.5) :

{{ξ}} : [[[ω]]]x + {{ω}} · [[ξ]]x =
(
(ξω)|K−F

· nx
K−F

+ (ξω)|K+
F
· nx

K+
F

)
+

1

2

(
(ξ|K−F

ω|K+
F

) · nx
K+
F

+ (ξ|K+
F

ω|K−F
) · nx

K−F
+ (ξ|K−F

ω|K+
F

) · nx
K−F

+ (ξ|K+
F

ω|K−F
) · nx

K+
F

)
=

[[ξω]]x.

�

A.2 Space and time elementwise integration by parts

Some formulas of the space and time elementwise integration by parts are given below:

Proposition A.2. For scalar q, vector ω and tensor ξ �elds the following integral

identities hold true:

∑
KF∈Th

2

∫
KF

q
∂q

∂t
dv =

∫
FΩF
h

[[q2]]tds +

∫
FTFh

q2ds−
∫
F0F
h

q2ds; (A.6)

∑
KF∈Th

2

∫
KF

ω · ∂ω
∂t
dv =

∫
FΩF
h

[[ω · ω]]tds +

∫
FTFh

ω · ωds−
∫
F0F
h

ω · ωds; (A.7)

∑
KS∈Th

2

∫
KS

ξ :
∂Aξ

∂t
dv =

∫
FΩS
h

[[Aξ : ξ]]tds +

∫
FTSh

Aξ : ξds−
∫
F0S
h

Aξ : ξds; (A.8)

∑
KF∈Th

∫
KF

(
ω ·∇q + q divω

)
dv =

∫
FQFh

[[qω]]xds +

∫
FDFh ∪FFSh

qω · nxKds; (A.9)

∑
KS∈Th

∫
KS

(
ω · divξ + ξ : ε(ω)

)
dv =

∫
FQSh

[[ξω]]xds +

∫
FDSh ∪FFSh

ξω · nxKds. (A.10)

Proof. The above identities follows straightforwardly from the Green's formulas of inte-

gration by parts [7], and the symmetry and positiveness of the considered tensor �elds.

�



Appendix B

Tre�tz-DG polynomial basis

We provide the examples of 2D+time Tre�tz-DG polynomial bases for acoustic B.1 and

elastodynamic B.2 problems. They represent the couples of polynomial functions (φv, φp)

for velocity and pressure respectively in the acoustic case, and (φv, φσ) for velocity and

stress respectively in the elastodynamic case. The considered approximation degrees are

p = 0, 1, 2, 3.
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B.1 2D Acoustic system

p=0 Ndof=3

φvx1 = 0 φvy1 = 0 φp1 = −cF
φvx2 = 1 φvy2 = 0 φp2 = 0

φvx3 = 0 φvy3 = 1 φp3 = 0

p=1 Ndof=9

φvx4 = −t φvy4 = 0 φp4 = x

φvx5 = x φvy5 = 0 φp5 = −c2F t
φvx6 = 0 φvy6 = x φp6 = 0

φvx7 = 0 φvy7 = −t φp7 = y

φvx8 = y φvy8 = 0 φp8 = 0

φvx9 = 0 φvy9 = y φp9 = −c2F t

p=2 Ndof=18

φvx10 = −2xt φvy10 = 0 φp10 = x2 + c2F t
2

φvx11 = 0 φvy11 = −2yt φp11 = y2 + c2F t
2

φvx12 = −yt φvy12 = −xt φp12 = xy

φvx13 = − xy

c2
F

φvy13 = − t2

2
φp13 = yt

φvx14 = − t2

2
φvy14 = − xy

c2
F

φp14 = xt

φvx15 = x2 φvy15 = −2xy φp15 = 0

φvx16 = y2 φvy16 = 0 φp16 = 0

φvx17 = 0 φvy17 = x2 φp17 = 0

φvx18 = −2xy φvy18 = y2 φp18 = 0

p=3 Ndof=30

φvx19 = −c2F t3 − 3x2t φvy19 = 0 φp19 = x3 + 3c2Fxt
2

φvx20 = 0 φvy20 = −c2F t3 − 3y2t φp20 = y3 + 3c2F yt
2

φvx21 = −2xyt φvy21 = − c2F t
3

3
− x2t φp21 = x2y + c2F yt

2

φvx22 = −xt2 φvy22 = −x2y

c2
F

φp22 =
c2F t

3

3
+ x2t

φvx23 = − c2F t
3

3
− y2t φvy23 = −2xyt φp23 = y2x+ c2Fxt

2

φvx24 = 0 φvy24 = − y3

3c2
F
− y2t φp24 =

c2F t
3

3
+ y2t

φvx25 = − yt2

2
φvy25 = − xy2

2c2
F
− xt2

2
φp25 = xyt

φvx26 = x3 φvy26 = −3x2y φp26 = 0

φvx27 = y3 φvy27 = 0 φp27 = 0

φvx28 = x2y φvy28 = −xy2 φp28 = 0

φvx29 = xy2 φvy29 = − y3

3
φp29 = 0

φvx30 = 0 φvy30 = x3 φp30 = 0

Table B.1: Tre�tz-DG polynomial basis for velocity vF = (vxF (x, y, t); vyF (x, y, t))T

and pressure p = p(x, y, t) �elds (degree p=0,1,2,3).
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B.2 2D Elastodynamic system

p=0 Ndof=5

φvx1 = 1 φvy1 = 0 φσxx1 = 0 φσyy1 = 0 φσxy1 = 0

φvx2 = 0 φvy2 = 1 φσxx2 = 0 φσyy2 = 0 φσxy2 = 0

φvx3 = 0 φvy3 = 0 φσxx3 = 1 φσyy3 = 0 φσxy3 = 0

φvx4 = 0 φvy4 = 0 φσxx4 = 0 φσyy4 = 1 φσxy4 = 0

φvx5 = 0 φvy5 = 0 φσxx5 = 0 φσyy5 = 0 φσxy5 = 0

p=1 Ndof=15

φvx6 = −y φvy6 = x φσxx6 = 0 φσyy6 = 0 φσxy6 = 0

φvx7 = t φvy7 = 0 φσxx7 = x φσyy7 = 0 φσxy7 = 0

φvx8 = 0 φvy8 = 0 φσxx8 = y φσyy8 = 0 φσxy8 = 0

φvx9 = a11x+ 2a13y φvy9 = a12y φσxx9 = t φσyy9 = 0 φσxy9 = 0

φvx10 = 0 φvy10 = 0 φσxx10 = 0 φσyy10 = x φσxy10 = 0

φvx11 = 0 φvy11 = t φσxx11 = 0 φσyy11 = y φσxy11 = 0

φvx12 = a12x+ 2a23y φvy12 = a22y φσxx12 = 0 φσyy12 = t φσxy12 = 0

φvx13 = 0 φvy13 = 0 φσxx13 = 0 φσyy13 = 0 φσxy13 = x

φvx14 = t φvy14 = 0 φσxx14 = 0 φσyy14 = 0 φσxy14 = y

φvx15 = a13x+ 2a33y φvy15 = a23y φσxx15 = 0 φσyy15 = 0 φσxy15 = t

Table B.2: Tre�tz-DG polynomial basis for velocity vS = (vxS(x, y, t); vyS(x, y, t))T and
stress σ = (σxx(x, y, t), σyy(x, y, t), σxy(x, y, t)) �elds (degree p=0,1).
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Table B.3: Tre�tz-DG polynomial basis for velocity vS = (vxS(x, y, t); vyS(x, y, t))T and
stress σ = (σxx(x, y, t), σyy(x, y, t), σxy(x, y, t)) �elds (degree p=2).
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Table B.4: Tre�tz-DG polynomial basis for velocity vS = (vxS(x, y, t); vyS(x, y, t))T and
stress σ = (σxx(x, y, t), σyy(x, y, t), σxy(x, y, t)) �elds (degree p=3).



Appendix C

Gaussian quadrature

Mathematicians and scientists are sometime confronted with de�nite integrals which are

not easily evaluated analytically, even a function f(x) is known completely. To overcome

this di�culty numerical methods are used. Numerical integration involves replacing an

integral by a sum. The term quadrature is used as a synonym for numerical integration

in one dimension. Let f(x) be a function which is de�ned on some interval [a, b] and on

the set of distinct points x0, x1, .., xn) Then the numerical integration for approximation

can be de�ned as ∫ b

a
f(x)dx '

n∑
l=1

f(xGl )wGl ,

where wi are the quadrature weights, and xi are the quadrature points.

There are a number of numerical integration methods for evaluation of de�nite inte-

grals. The most commonly used methods are the Newton-Cotes formulas and Gaussian

quadrature rules. The numerical integration methods that are derived by integrating the

Newton interpolation formulas are termed as Newton-Cotes integration formulas. The

Trapezoidal rule and Simpson's rule are members of this family.

The speci�c of these methods is in a simple choice of points to evaluate a function f(x)

in a known interval [a, b]. These methods are based on equally space points.

When we have freedom of choice regarding evaluation points, then more accuracy can

be achieved. Gaussian quadrature is a powerful tool for approximating integrals. The

quadrature rules are all based on special values of weights and abscissas. Abscissas are

commonly called evaluation points or "Gauss points", which are normally pre-computed

and available in most standard mathematics tables. Algorithms and computer codes are

also available to compute them.
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For the numerical tests we have computed the surface integrals on the segments (1e+time

simulations), and on the triangular and rectangular faces (2e+time simulations).



Appendix C. Gaussian quadrature 149

C.1 Integration over the unit segment and square

For the approximate integration over the unit segment [0, 1], we have computed the

following Gaussian points and weights:

n wG xG

1.5376620998e-02 6.0037409897e-03
15 3.5183023744e-02 3.1363303799e-02

5.3579610233e-02 7.5896708294e-02
6.9785338963e-02 1.3779113431e-01

8.3134602908e-02 2.1451391369e-01
9.3080500007e-02 3.0292432646e-01
9.9215742663e-02 3.9940295300e-01
1.0128912096e-01 5.e-1
9.9215742663e-02 1-3.9940295300e-01
9.3080500007e-02 1-3.0292432646e-01
8.3134602908e-02 1-2.1451391369e-01
6.9785338963e-02 1-1.3779113431e-01
5.3579610233e-02 1-7.5896708294e-02
3.5183023744e-02 1-3.1363303799e-02
1.5376620998e-02 1-6.0037409897e-03

Table C.1: Computed weights wG and corresponding Gauss points xG for 15 point
integration over the unit segment.

The 2D integration over the unit square can be represented as a successive 1D integration

in each of both directions. Thus, we can recall the Gaussian nodes and weights for 1D

integration over the unit segment.
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C.2 Integration over the unit triangle

The Gaussian points and weights for unit triangles computed by Hussain et al. in [63]

are presented here. The authors develop di�erent strategies, one of them is the Gaussian

quadrature formula for unit triangles (GQUTS), and they provide the numerical experi-

ments comparing the accuracy. In the tables C.2 and C.3 we give the computed Gauss

points (xG, yG) and weights wG for n× n point method CQUTS (n = 2, 3, 7).

n wG xG yG

0.5283121635e-01 0.1666666667e+00 0.7886751346e+00
2 0.1971687836e+00 0.6220084679e+00 0.2113248654e+00

0.5283121635e-01 0.4465819874e-01 0.7886751346e+00
0.1971687836e+00 0.1666666667e+00 0.2113248654e+00

0.9876542474e-01 0.2500000000e+00 0.5000000000e+00
3 0.1391378575e-01 0.5635083269e-01 0.8872983346e+00

0.1095430035e+00 0.4436491673e+00 0.1127016654e+00
0.6172839460e-01 0.4436491673e+00 0.5000000000e+00
0.8696116674e-02 0.1000000000e+00 0.8872983346e+00
0.6846438175e-01 0.7872983346e+00 0.1127016654e+00
0.6172839460e-01 0.5635083269e-01 0.5000000000e+00
0.8696116674e-02 0.1270166538e-01 0.8872983346e+00
0.6846438175e-01 0.1000000000e+00 0.1127016654e+00

Table C.2: Computed weights wG and corresponding Gauss points (xG, yG) for n×n
point GQUTS (n = 2, 3) [63].
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n wG xG yG

0.2183621219e-01 0.2500000000e+00 0.5000000000e+00
7 0.1185259869e-01 0.1485387122e+00 0.7029225757e+00

0.2804474024e-01 0.3514612878e+00 0.2970774243e+00
0.3777048400e-02 0.6461720360e-01 0.8707655928e+00
0.2544928909e-01 0.4353827964e+00 0.1292344072e+00
0.3442812316e-03 0.1272302191e-01 0.9745539562e+00
0.1318557174e-01 0.4872769781e+00 0.2544604383e-01
0.1994866947e-01 0.3514612878e+00 0.5000000000e+00
0.1082804890e-01 0.2088224283e+00 0.7029225757e+00
0.2562052651e-01 0.4941001474e+00 0.2970774243e+00
0.3450556783e-02 0.9084178238e-01 0.8707655928e+00
0.2324942860e-01 0.6120807933e+00 0.1292344072e+00
0.3145212381e-03 0.1788659867e-01 0.9745539562e+00
0.1204579851e-01 0.6850359770e+00 0.2544604383e-01
0.1994866947e-01 0.1485387122e+00 0.5000000000e+00
0.1082804890e-01 0.8825499604e-01 0.7029225757e+00
0.2562052651e-01 0.2088224283e+00 0.2970774243e+00
0.3450556783e-02 0.3839262482e-01 0.8707655928e+00
0.2324942860e-01 0.2586847995e+00 0.1292344072e+00
0.3145212381e-03 0.7559445160e-02 0.9745539562e+00
0.1204579851e-01 0.2895179792e+00 0.2544604383e-01
0.1461316874e-01 0.4353827964e+00 0.5000000000e+00
0.7931962886e-02 0.2586847995e+00 0.7029225757e+00
0.1876802249e-01 0.6120807933e+00 0.2970774243e+00
0.2527665748e-02 0.1125328752e+00 0.8707655928e+00
0.1703110194e-01 0.7582327176e+00 0.1292344072e+00
0.2303989213e-03 0.2215753944e-01 0.9745539562e+00
0.8824011376e-02 0.8486080534e+00 0.2544604383e-01
0.1461316874e-01 0.6461720360e-01 0.5000000000e+00
0.7931962886e-02 0.3839262482e-01 0.7029225757e+00
0.1876802249e-01 0.9084178238e-01 0.2970774243e+00
0.2527665748e-02 0.1670153200e-01 0.8707655928e+00
0.1703110194e-01 0.1125328752e+00 0.1292344072e+00
0.2303989213e-03 0.3288504390e-02 0.9745539562e+00
0.8824011376e-02 0.1259459028e+00 0.2544604383e-01
0.6764926484e-02 0.4872769781e+00 0.5000000000e+00
0.3671971955e-02 0.2895179792e+00 0.7029225757e+00
0.8688347794e-02 0.6850359770e+00 0.2970774243e+00
0.1170141347e-02 0.1259459028e+00 0.8707655928e+00
0.7884268950e-02 0.8486080534e+00 0.1292344072e+00
0.1066593969e-03 0.2479854268e-01 0.9745539562e+00
0.4084931154e-02 0.9497554135e+00 0.2544604383e-01
0.6764926484e-02 0.1272302191e-01 0.5000000000e+00
0.3671971955e-02 0.7559445160e-02 0.7029225757e+00
0.8688347794e-02 0.1788659867e-01 0.2970774243e+00
0.1170141347e-02 0.3288504390e-02 0.8707655928e+00
0.7884268950e-02 0.2215753944e-01 0.1292344072e+00
0.1066593969e-03 0.6475011465e-03 0.9745539562e+00
0.4084931154e-02 0.2479854268e-01 0.2544604383e-01

Table C.3: Computed weights wG and corresponding Gauss points (xG, yG) for n×n
point GQUTS (n = 7) [63].
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