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Symmetric Cryptography



Classical Cryptography

Enable secure communications even in the presence of

malicious adversaries.

Asymmetric (e.g. RSA) (no key exchange/computationally costly)

Security based on well-known hard mathematical

problems (e.g. factorization).

Symmetric (e.g. AES) (key exchange needed/efficient)

Ideal security defined by generic attacks (2|K|).

Need of continuous security evaluation (cryptanalysis).

⇒ Hybrid systems! (e.g. in SSH)
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Symmetric primitives

▶ Block ciphers, (stream ciphers, hash functions..)

Message decomposed into blocks, each transformed by the

same function EK.

EK
- -

?

P C

K

EK is composed of a round transform repeated through

several similar rounds.
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Generic Attacks on Ciphers

▶ Security provided by an ideal block cipher defined by

the best generic attack:

exhaustive search for the key in 2|K|.

▶ Recovering the key from a secure cipher must be

infeasible.

⇒ typical key sizes |K| = 128 to 256 bits.
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Cryptanalysis: Foundation of Confidence

Any attack better than the generic one

is considered a “break”.

▶ Proofs on symmetric primitives need to make

unrealistic assumptions.

▶ We are often left with an empirical measure of the

security: cryptanalysis.

▶ Security redefinition when a new generic attack is found

(e.g. accelerated key search with bicliques [BKR 12])
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Current scenario

▶ Competitions (AES, SHA-3, eSTREAM, CAESAR).

▶ New needs: lightweight, FHE-friendly, easy-masking.

⇒ Many good proposals/candidates.

▶ How to choose?

▶ How to be ahead of possible weaknesses?

▶ How to keep on trusting the chosen ones?
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Cryptanalysis: Foundation of Confidence

When can we consider a primitive as secure?

• A primitive is secure as far as no attack on it is known.
• The more we analyze a primitive without finding any

weaknesses, the more reliable it is.

Design new attacks + improvement of existing ones:

▶ essential to keep on trusting the primitives,

▶ or to stop using the insecure ones!
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On weakened versions

If no attack is found on a given cipher, what can we say

about its robustness, security margin?

The security of a cipher is not a 1-bit information:
• Round-reduced attacks.
• Analysis of components.

⇒ determine and adapt the security margin.
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On high complexities

When considering large keys, sometimes attacks breaking

the ciphers might have a very high complexity far from

practical e.g.. 2120 for a key of 128 bits.

Still dangerous because:
• Weak properties not expected by the designers.
• Experience shows us that attacks only get better.
• Other existing ciphers without the ”ugly”properties.

▶ When determining the security margin: find the highest

number of rounds reached.
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Post-Quantum
Symmetric Cryptography



Post-Quantum Cryptography

Adversaries have access to quantum computers.

Asymmetric (e.g. RSA):

Shor’s algorithm: Factorization in polynomial time

⇒ current systems not secure!

Solutions: lattice-based, code-based cryptography...

Symmetric (e.g. AES):

Grover’s algorithm: Exhaustive search from 2|K| to 2|K|/2.

Double the key length for equivalent ideal security.

We don’t know much about cryptanalysis of current

ciphers when having quantum computing available.
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Post-Quantum Cryptography

Problem for present existing long-term secrets.

⇒ start using quantum-safe primitives NOW.

Important tasks:

▶ Conceive the cryptanalysis algorithms for evaluating

the security of symmetric primitives in the P-Q world.

▶ Use them to evaluate and design symmetric primitives

for the P-Q world.
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Quantum Symmetric Cryptanalysis

Some recent results on Q-symmetric cryptanalysis:

3-R Feistel [Kuwakado-Morii10], Even-Mansour [Kuwakado-

Morii12], Mitm [Kaplan14], Related-Key [Roetteler-

Steinwandt15], Diff-lin [Kaplan-Leurent-Leverrier-NP16],

Simon on modes/slides [Kaplan-Leurent-Leverrier-NP16],

FX [Leander-May17], parallel multi-preim. [Banegas-

Bernstein17], Multicollision [Hosoyamada-Sasaki-Xagawa17],

AEZ [Bonnetain17], DS-MITM [Hosoyamada-Sasaki18],

Modular additons [Bonnetain-NP18]...
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Quantum Symmetric Cryptanalysis

Two main models used:

▶ Q1:

classical queries and access to a quantum computer.

▶ Q2:

+superposition queries to a quantum cryptog. oracle.

Very powerful, BUT...
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Q2: Superposition Model

Many good reasons to study security in this scenario:

▶ Simple

▶ Non-trivial: Many constructions still seem resistant:

AES, SALSA20, NMAC, HMAC...

▶ Inclusive of all intermediate scenarios

Defined and used in: [Zhandry12], [Boneh-Zhandry13],

[Damg̊ard-Funder-Nielsen-Salvail13], [Mossayebi-Schack16],

[Song-Yun17], Simon’s attacks, FX, AEZ...

An attack in this model ⇒ might not be safe to implement

the primitive in a quantum computer.
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On Quantum attacks

▶ Compare to best generic attack,

▶ generic attack is accelerated, so

▶ broken classical primitive might be unbroken in a

quantum setting.
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Collision Search
w. A. Chailloux & A. Schrottenloher



Collision Search Problem

Given a random function H :{0, 1}n → {0, 1}n, find

x, y ∈ {0, 1}n with x ̸= y such that H(x) = H(y).

Many applications: i.e. generic attacks on hash functions.

(Multi-preimage search can be seen as a particular case).
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Best known algorithms

Time Queries Memory

Pollard’s rho 2n/2 2n/2 poly(n)

Parallelization (2s) 2n/2−s 2n/2 2s

Time Queries Qubits

Grover 2n/2 2n/2 poly(n)

BHT 22n/3∗ 2n/3 poly(n)∗
Ambainis 2n/3 2n/3 2n/3
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Considered Model

▶ The same one as in all the previous quantum algorithms

BUT we limit the amout of quantum memory available

to a small amount poly(n).

▶ Available small quantum computers seems like the most

plausible scenario.

▶ We are interested in the theoretical algorithm and

we did not take into account implementation aspects.
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Starting Point: BHT Algorithm

▶ Optimal number of queries,

▶ poly(n) qbits,

▶ But time?
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BHT: Summarized procedure

▶ Build a list L of size 2n/3 elements (classic memory),

▶ Exhaustive search for finding one element that collides:

With AA, the number of iterations is ( 2n

2n/3
)1/2 = 2n/3.

Testing the membership with L for the superposition

of states costs 2n/3 with n qbits:

Time: 2n/3 + 2n/3(1 + 2n/3) ≈ 22n/3
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Can we improve this?

Lets build the list L with distinguished points

e.g. H(xi) = 0u||z, for z ∈ {0, 1}n−u.

The cost of building the list is bigger: 2n/3+u/2.

The setup of AA is bigger: 2u/2

The membership test stays the same: |L| = 2n/3

BUT The number of iterations is smaller: 2n/3−u/2

Time: 2n/3+u/2+2n/3−u/2(2u/2+2n/3) ≈ 22n/3−u/2 + 2n/3+u/2
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With optimal parameters

The cost will be optimized for a certain size of L: 2v ̸= 2n/3.

Time: 2v+u/2 + 2
n−v−u

2 (2u/2 + 2v)

For v = n/5, u = 2n/5: Time: Õ(22n/5)

For multiple preimage search, the algorithm is similar, but

we only keep in L the distinguished points amongst the

already given ones.
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Comparison

Time Queries Qubits Classic Memory

Pollard 2n/2 2n/2 0 poly(n)

Grover 2n/2 2n/2 poly(n) 0

BHT 22n/3 2n/3 poly(n) 2n/3

Ambainis 2n/3 2n/3 2n/3 0

New algorithm 22n/5 22n/5 poly(n) 2n/5
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Parallelization

With 2s n-qbit registers and ”external” parallelization we

can achieve:

Time: 2v+u/2−s + 2
n−v−u

2 −s/2(2u/2 + 2v)

Our theoretical algorithm seems more efficient than classical

parallelization/Beal up to s = n/4
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Comparison example: n=128
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Example of Applications (1)

▶ 1. Hash functions: Collision and Multi-preimages time

from 2n/2 to 22n/5 and 23n/7 (Q1).

Ex.- time and queries for n = 128:

rho= 264, ours= 251.2 (with less than 1GB classical)

▶ 2. Multi-user setting: Recover Ctxt, from same Ptxt,

2t different keys: apply multi-preimage algorithm (Q1).

Depending on the value of t different gain.
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Example of Applications (2)

▶ 3. Operation modes: Collision attacks on CBC:

2t Ctxt, find one preimage ⇒ Ptxt. (Q2). If frequent

rekeying (Q1).

▶ 4. Bricks for Cryptanalysis: Collision, multi-preimage

search: often bricks of more technical cryptanalysis:

improve the steps.
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Conclusion 1

New efficient collision search algorithm with small quantum

memory.

Many applications in symmetric cryptograhy.

Open question: is it possible to meet the optimal 2n/3

in time with small quantum memory? (Quantum random

walks, quantum learning graphs...?)
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Quantum Efficient Algorithms for
the k-XOR Problem

w. L. Grassi & A. Schrottenloher



k-XOR problem with random functions

Given query access to a random function

H : {0, 1}n → {0, 1}n, find x1, . . . , xk such that

H(x1)⊕ . . .⊕H(xk) = 0.

For us, equivalent to the case with k different random

functions.

Many applications (with k-SUM, similar algorithms apply),

ex.: attacks on FSB, XLS, SWIFFT; correlation attacks.
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The 3-XOR problem

Find 3 elements that XOR to 0: not much better than

collision in classical setting.

Classically, no exponential acceleration, only logarithmic

factors:

Complexity of about 2n/2 with out this factors.
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3-XOR: Low Quantum Memory Algorithm

▶ 1st approach, distinguished point: 2v = 2n/8, T = 23n/8

u n-u u n-u

0...0 0...0

: :

0...0 0...0

:
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▶ Intuition: With a memory of 2v + 2v

we obtain 22v potential collisions.
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3-XOR: Low Quantum Memory Algorithm

▶ 1st approach, distinguished point: 2v = 2n/8, T = 23n/8

▶ 2nd approach, techniques linked to ”list merging”:

n-2u-t   u      u      t n-2u-t   u      u      t
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Improved time= 25n/14, with 2v = 2n/7.

▶ More efficient than collision, contrary to classical!
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3-XOR: High Quantum Memory Algorithm

▶ Same technique as before, but no need for the positions

to ’0’ in both lists.

▶ Complexity of:

2v+u/2 + 2
n−2v

2 (2v−u).

▶ This becomes optimal for

QM= 2n/5 and Time= 23n/10.
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The k-XOR algorithms

Similar algorithms can be applied to other values of k
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The k-XOR algorithms

Similar algorithms can be applied to other values of k
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Conclusion 2

▶ We have shown that quantum 3-xor problem is

exponentially easier that the quantum collision problem

(in both settings), contrary to classical.

▶ The complexity of solving the 3-xor problem with

allowed quantum memory beats the lower bound for

quantum collision of 2n/3

▶ For generic k, low quantum memory improves Wagner

up to k = 8, and allowed quantum memory for all k.
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Final Conclusion



Open problems

▶ Optimal collision time 2n/3?.

▶ Algebraic attacks

▶ Boomerang attacks

▶ FSE Stevens: Quantum cryptanalysis of SHA-2?

▶ AES quantum evaluation- on going work.

▶ Generic key-length extensions?

▶ What about state size? ...
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Symmetric Quantum Cryptanalysis

Lots of things to do !
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