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Abstract v

Abstract

Global dependence on efficient energy and transportation is growing. Moreover, there is

increasing pressure from the regulating authorities for a more sustainable approach to energy

than the use of fossil fuels. However, there is currently a lack of knowledge on the effect that

the use of alternative fuels have on combustion, especially in modern compression ignition

engines.

Primarily this dissertation will investigate techniques to analyse in-cylinder pressure sig-

nals from a modern, multi-cylinder, heavy-duty, common-rail, direct-injection diesel engine,

with a focus on combustion resonance. Combustion resonance is caused by the abrupt change

in in-cylinder pressure associated with auto-ignition—it is a phenomena that is not well rep-

resented in the current literature. Because the speed of sound is related to the temperature

of the medium that it is passing through, accurate isolation of the frequency information

from combustion resonance can yield insights into the in-cylinder temperature and the rate

of change of in-cylinder temperature.

Isolating the frequency information in combustion resonance is problematic. During

combustion the in-cylinder temperature is non-stationary; therefore, the resonant frequency

is also non-stationary. Many traditional spectral analysis techniques are unable to handle

non-stationary frequencies and those that do typically do not have adequate resolution for

in-depth analysis. Moreover, traditional techniques are normally very sensitive to noise, a

problem often dealt with by cycle-averaging data, which effectively eliminates the potential

for inter-cycle variability studies and can also produce potentially misleading results. This

dissertation introduces the use of Bayesian statistical modelling to over-come these issues

associated with the isolation of the resonant frequency.

Bayesian modelling is ideally suited to the problem of isolating non-stationary frequency

information. If the frequency can be modelled empirically, then each model parameter can

be accurately resolved using the Metropolis-Hastings algorithm—a special form of Markov-

chain Monte Carlo. Unlike other techniques, the Bayesian technique requires that all analysis

assumptions be explicitly stated. Whilst this may add an element of complexity to the

analysis, it ensures that the analyst is completely aware of the problem being solved.

Bayesian models for isolating the resonant frequency information are shown in this dis-

sertation. The utility of isolating the resonant frequency information is also demonstrated

by determining: the start of pre-mixed combustion, the start of diffusion combustion, the in-

cylinder temperature (as a function of crank angle) and the trapped mass. These parameters

have traditionally been difficult to investigate, owing to the challenging nature of isolating
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the resonant frequency.

Experimental campaigns were conducted to develop the in-cylinder pressure analysis tech-

niques and a campaign involving ethanol fumigation (in-take manifold injection of ethanol),

where ethanol displaced up to 40% of the diesel fuel by energy, was also done to show the

utility of the in-cylinder techniques introduced in this dissertation. In the ethanol fumigation

campaign the engine was operated at 2000 rpm on half, three quarters and full load. The

effect of fumigating ethanol on combustion was assessed by investigating the inter-cycle vari-

ability of key in-cylinder parameters: peak pressure, peak pressure timing, maximum rate of

pressure rise, ignition delay and indicated mean effective pressure. A monotonic relationship

between the absolute air to fuel ratio (on a mole basis) and inter-cycle variability was shown.

The inter-cycle variability was assessed by viewing the results from four thousand con-

secutive cycles as kernel density estimates. Visualising the data in this manner has the

advantage over using single statistical values (such as the mean, standard deviation and the

coefficient of variation) that multi-modal behaviour can be identified. Moreover, the manner

in which the data is distributed can also be determined.

Increasing the amount of diesel fuel displaced with fumigated ethanol significantly in-

creased the inter-cycle variability of the engine. However, it was shown that whilst the

absolute air to fuel ratio (on a mole basis) was maintained above 110, the increase in inter-

cycle variability associated with the fumigated ethanol was minimal. Moreover, introducing

ethanol also resulted in a systematic increase in the peak pressure and the maximum rate of

pressure rise.

Investigating the start of combustion, by analysing the combustion resonance with the

Bayesian method, found that in a heavy-duty, modern diesel engine with injection timing

close to top dead centre (TDC), ethanol fumigation could result in a decrease in ignition

delay. This result runs counter to the current literature. The current literature explains that

the ignition delay is decreased with ethanol fumigation because of the so-called “cooling

effect”—in this study the expected decrease in ignition delay is shown at low loads and

ethanol substitutions. However, at sufficiently high load and ethanol substitutions there is

potential for the ethanol to auto-ignite. This reaction prior to the introduction of the diesel

fuel causes the charge air/ethanol mixture to ignite with either a shorter ignition delay or

prior to the introduction of the diesel fuel. From a practical perspective, this result shows

the importance of assessing the effect that alternative fuels have on representative engines.

Combustion in a comparatively low pressure mechanically injected engine with injection

timing well before TDC will be fundamentally different to a modern engine with advanced

high-pressure injection timing and higher in-cylinder pressure.
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Chapter 1

Current state of knowledge

The perspective of the work in this dissertation is largely in the area of mechanical engi-

neering; however, the techniques employed are more firmly in the mathematics and physics

domains. One of the goals of this dissertation, through the published works, is to intro-

duce the use of Bayesian statistics to the engine research community. For this community,

Bayesian statistics represent a means to obtain difficult to isolate information, which is di-

rectly related to tangible engine outputs: emission and power. However, given that this

dissertation is in essence a work in mechanical engineering, this chapter will not focus on

Bayesian statistics, but rather on the engineering aspects of this work. Those who are reading

this dissertation with the intention of applying Bayesian statistics to their research problems

are encouraged to read Chapters 4, 6 and 8 and to consult the text, Bayesian Data Analysis

by Gelman et al. (2003).

1.1 Context

The context of this dissertation is at a time in Australia, and in a research environment (at

QUT), where alternative fuels are under investigation. Ethanol fumigation has been selected

as the alternative fuelling strategy employed in this work because of its immediate potential

to be a sound mid-term solution to reduce the dependence on fossil diesel fuel. Niven (2005)

in a review on ethanol in gasoline, states that a lack of vigour in studies involving ethanol

in gasoline (easily extendable to any alternative fuel and engine type) is a major problem

and that studies which omit details, or are not done in a professional manner, misinform the

public and the decision makers. Ideally, the techniques introduced in this dissertation will

be used to evaluate all manners of alternative fuels and fuelling strategies. Thus, providing

a better understanding of the implications of the use of different alternative fuels. This work

is primarily focused on in-cylinder pressure analysis and its role in modern engine research.

1.1.1 Alternative Fuel

Primary fossil fuels include a large variety of products; a primary fossil fuel is a fuel that is

non-renewable—for example: oil, coal and uranium. These fuels are often used to generate
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power, not only for transport but also for electricity, construction, industrial activities and

agriculture (Lloyd and Cackette, 2001). Unfortunately, the use of fossil fuels have negative

impacts on our planet and the health of those who occupy it (Lloyd and Cackette, 2001).

Further to the problem of harmful emissions and radiation from the use of fossil fuels, they are

also in finite supply and that supply is dwindling (Lloyd and Cackette, 2001; US Department

of Transportation, 1998; McArdle et al., 2007; Cohn et al., 2005; Kim and Dale, 2004; ICF

International, 2008; Ragauskas et al., 2006). Moreover, this supply is also only found in some

areas, creating foreign exchange problems for countries that do not have their own reserves

or still need to source fuels from foreign suppliers (Ragauskas et al., 2006; Rakopoulos et al.,

2007).

Ultimately, it would be advantageous to limit the use of fossil fuels—this work will focus

on the research effort to offset diesel fuel. Biofuels are one such alternative that are a viable

substitute to diesel fuel; some biofuels have, or can be made to have, similar characteristics

to diesel and thus their implementation can be easily made (Yusuf et al., 2011). Biodiesel

can be created out of virtually any vegetable oil, animal fat or microalgae (Yusuf et al., 2011;

Huang et al., 2010). Alternatively, whilst not renewable, fuel can be synthesised from other

more abundant fossil fuels, such as coal, via Fischer-Tropsch synthesis (Song et al., 2012;

Dalai et al., 1997; Raje et al., 1997).

Research has shown that biodiesel fuelled engines produce less carbon monoxide, un-

burned hydrocarbons, and particulate emissions compared to diesel fuel; however, this is not

the case with NOx emissions owing to the typically higher combustion temperature (Ramad-

has et al., 2005; Frassoldati et al., 2006; Demirbas, 2007). Another drawback of biodiesel

is that it is more prone to oxidation than petroleum-based diesel fuel (Monyem and Van

Gerpen, 2001). An additional issue is that different materials and processes used to create

biodiesel produce vastly different results in terms of contaminants, calorific value, viscosity

and cetane number, therefore the performance, level of engine wear and potentially harm-

ful emissions are not consistent between the various bio-derived fuels (Van Gerpen et al.,

1997). In order to avoid consumer rejection it would very important to ensure that any

bio-origined fuel is controlled with strict standards, but also understood well enough to set

those standards at an economically achievable level.

With strict future goals to have bio-origin fuels offsetting fossil fuels in the transport

sector, research into biofuels is being conducted worldwide, even by major oil companies

(Skelton, 2007). A currently implemented strategy to do this is with ethanol in terms

of gasoline/ethanol blends in the form of E10 and E85—10% ethanol and 85% ethanol

substitution respectively (Niven, 2005). However, ethanol also has the potential to offset not

only gasoline but also diesel fuel.

Offsetting diesel fuel by blending it with ethanol has a few critical issues. Firstly, ethanol

is not directly soluble in diesel and requires an emulsifying agent to make it so (Hansen et al.,
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2005; Karthikeyana and Mahalakshmib, 2007)—diesel/ethanol blends are not stable under

all conditions mostly due to their low tolerance to water (Karthikeyana and Mahalakshmib,

2007; Havemann et al., 1954). Further, ethanol also has a lower cetane number and flash

point, this makes its use in a blend with diesel without slight modification of the engine

not optimally efficient (Hansen et al., 2005). From an engine stand point, the addition

of ethanol changes the viscosity of the diesel fuel and can create wear problems with fuel

pumps—although blends up to 15% (by volume) can be considered relatively safe from an

engine durability viewpoint (Hansen et al., 2005; Demirbas and Balat, 2006; Rakopoulos

et al., 2007). A solution to avoid blending is to introduce the ethanol separately with the

intake air by a process known as fumigation.

Fumigation is the introduction of atomised fuel to the intake manifold so that it can be

mixed with air before entering the cylinder (Alperstein et al., 1958). Manifold introduction

of fuels into a compression ignition engine was experimented with at The Pennsylvania State

University in the early 1940’s (Van Overbeke, 1942; Alperstein et al., 1958); important early

recognised work was done by Alperstein et al. (1958). The idea behind the introduction of

this concept was to alleviate two of the major disadvantages of diesel engines: incomplete

mixing of air and fuel and late combustion caused by ignition delay (Alperstein et al., 1958).

As a further advantage, using alcohols in this manner also resolves the problem of separation

when water comes into contact with a diesel/alcohol blend (Havemann et al., 1954).

In diesel engines fumigation can be achieved with virtually any gaseous fuel. Although

lower alcohols, such as methanol and ethanol, are not gaseous there is still a large amount

of interest in using them as a secondary fuel in diesel engines through this method. Up to

50% of the diesel fuel demand can be displaced using ethanol fumigation (Broukhiyan and

Lestz, 1981; Hayes et al., 1988; Abu-Qudais et al., 2000). This method involves introducing

the alcohol either by carburetting, vaporising or injecting it at high pressure into the intake

air stream, or at the turbocharger (Alperstein et al., 1958; Hayes et al., 1988; Abu-Qudais

et al., 2000).

It is widely accepted that the introduction of fumigated fuels increase ignition delay,

peak pressure, and maximum rate of pressure rise (Alperstein et al., 1958; Chen et al., 1981;

Shropshire and Goering, 1982; Hayes et al., 1988; Henham and Makkar, 1998; Prakash et al.,

1999; Ajav et al., 2000). Some authors report that at lower loads there is a reduction in

peak pressure and the rate of pressure rise, although in these studies the ignition delay still

increased up to 35% (Chen et al., 1981; Hayes et al., 1988; Ajav et al., 2000). Suggested

reasons for the increase in ignition delay include, the typically lower cetane value of the

fumigated fuel and the so-called cooling effect from the increase in energy required to heat

the charge air/fuel mixture during the compression stroke (Saeed and Henein, 1989; Tsang

et al., 2010).

While this method is not completely ideal, it does have the potential to be a sound mid-
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term solution to the world fuel crisis (Rosillo-Calle and Walter, 2006; Sorda et al., 2010).

This is true not only in general transport but also in agriculture, particularly those industries

that can produce their own ethanol, and for the use in electricity generators (RIRDC, 2007).

1.1.2 Modern Diesel Engines

Engines for general transport and power generation have undergone radical changes since

their conception. At the beginning of the 19th century, there were four commercially available

types of oil engines (Secor, 1913): the Brayton engine; the Hornsby-Akroyd engine; the

Diesel engine; and,the Secor engine. The Brayton engine was a constant flame engine and

is regarded as the predecessor of the Otto (gasoline) engine. In these early days, there

was much speculation as to what was the most appropriate fuel, and hence style of engine,

which should become the norm. Early strong fuel candidates were ethanol, gasoline and

kerosene (Secor, 1913; Lucke, 1916). Ethanol was largely dismissed because at the time it

was financially prohibitive—although, even at this early stage Secor (1913) already argued

that if gasoline prices rose, ethanol would be a suitable alternative. However, oil was deemed

near limitless at the time and greatly superior in quality, comparatively, as an automotive

fuel (Secor, 1913). Diesel’s high thermal efficiency eventually made it the primary engine for

heavy-duty transport (a diesel engine uses only ∼70% of the fuel that a comparable gasoline

engine consumes for the same power output (Lloyd and Cackette, 2001)).

The diesel engine was originally patented in 1892 by Rudolf Diesel (Diesel, 1892). Origi-

nally, the brake thermal efficiency was low; but, in 1897 a form of fuel fumigation improved

this to greater than 26% (Merrion, 1994). However, this was further improved in standard

operation to 35% by as early as the 1910s (Secor, 1913). One hundred years later and al-

though there have been great improvements to diesel engines, the brake thermal efficiency

of a standard automotive diesel engine has not substantially risen from 35%—typical brake

thermal efficiencies range between 35 and 40%.

Improvements with diesel engines have often focused on meeting emission standards and

reducing noise. Typically, these improvements are in engine technology or fuel technology.

The driving force behind these advancements are the stringent demands on emission levels set

out by governing authorities (Velders et al., 2011; Shindell et al., 2011; EC, 2009; Needham

et al., 1990).

In terms of the engine technology, recent important advances include: exhaust gas recir-

culation (EGR), combustion chamber geometry, high-pressure fuel delivery with common-rail

injection and pilot and multi-stage injection (Uchida et al., 1998; Badami et al., 1999; Zam-

boni and Capobianco, 2012). High-pressure fuel delivery causes more rapid mixing of the

fuel/air mixture, compared to the traditional in-line pump system, which results in shorter

ignition delay and ignition that originates at the front of the spray (Xu-Guang et al., 2012).

Injection timing close to top dead centre (TDC) with high pressure injection has been shown
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to reduce emission levels without compromising fuel efficiency (Kanda et al., 2006).

Although the current literature has explored the effects of numerous alternative fuels

and fuelling strategies, the significant difference that the injection pressure and timing has

on combustion requires that these ideas be re-evaluated. For any alternative fuel, or new

engine technology, to be successful it will need to be proven on a modern engine with that

utilises technology that allows for advanced high pressure injection. Moreover, the effects of

alternative fuels should also be evaluated on engines that resemble those used in practice,

i.e. multi-cylinder engines with high indicated mean effective pressures.

1.2 In-cylinder Pressure Analysis

In-cylinder pressure is the means by which chemical energy is transformed during combustion

into useful work (Amann, 1986). Hence, examination of the in-cylinder pressure can give

insight into the engines ability to produce useful work; the area enclosed in a pressure vs

volume (p-V ) indicator diagram, example in Figure 1.1, is the work done by the cylinder

(Amann, 1986; Heywood, 1988):

W =

∮
p dV

However, as the greatest rate of change of pressure occurs during combustion near top dead

centre (TDC), of the piston’s motion, where the velocity of the piston is low, it is necessary

to examine the pressure vs crank angle (p-θ), or a pressure vs time, indicator diagram to

obtain the detailed characteristics of combustion (Amann, 1986).

Figure 1.1: Pressure vs Volume indicator diagram (Amann, 1986)
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Detonation is also something that can be determined from the in-cylinder pressure. In early

work different systems were used for the detection of detonation from those used to create

p-V indicator diagrams. This area was pioneered by Midgely and Boyd (1922) and had

significant early advances from Draper (1938).

Early indicator instruments produced p-V indicator diagrams via an oscillating drum

carrying a sheet of paper to record the piston stroke. Simultaneously, a small piston in direct

connection to the engine cylinder would produce a pressure trace amplified by a system of

links and levers (Greene and Lucas, 1969). Other popular early choices for obtaining pressure

information was with the use of stroboscopic, or point-by-point, instruments (Taylor and

Taylor, 1966). Kistler invented one of the first common place piezoelectric transducers to

measure in-cylinder pressure (Kistler, 1950; Sion and Atkinson, 2002), since then they have

become the standard in engine research (Lee et al., 2008).

A piezoelectric transducer does not measure absolute pressure. Rather, the measured

voltage has a linear dependency with the in-cylinder pressure (Randolph, 1990; Lee et al.,

2008):

Pabs(t) = kV (t) + Pref

where, k is a constant (typically supplied by the manufacturer), V (t) is the measured voltage

and Pref is the sensor offset. Even though this type of transducer does not measure absolute

pressure and requires the determination of an offset value, which can be inaccurate, it is ideal

because of their fast response, small size and low sensitivity to environmental conditions (Lee

et al., 2008; Brunt and Pond, 1997). This style of pressure transducer is the most commonly

used in engine research.

The importance of accurate knowledge of in-cylinder pressure has lead to many advances

in the technology to acquire it, Kistler is still a major player in the development of more

sophisticated sensors. From a p-V indicator diagram, the area between the compression and

expansion lines is the indicated work done by the piston. Therefore, in-cylinder pressure is

typically used to investigate quantities related to work, such as: the indicated power and

the indicated mean effective pressure. In-cylinder pressure data is also commonly used to

investigate: peak pressure, maximum rate of change of pressure, heat release, and thermal

efficiency (Heisey and Letsz, 1981; Amann, 1986; Heywood, 1988; Randolph, 1990; Hasegawa

et al., 2006). This information is determined by observing various aspects of pressure, volume

and crank angle data.

Lapuerta et al. (1999) states that, ‘the key to internal combustion engine optimisation

lies in understanding the process taking place in the engine combustion chamber ’. Many

important combustion related parameters can be determined from the in-cylinder pressure—

many of these parameters are determined from heat release analysis involving the first law
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of thermodynamics, Equation 1.1 (Heywood, 1988; Payri et al., 2010). As examples, in-

cylinder pressure can be useful for: air mass flow estimation (Desantes et al., 2010), on-line

combustion failure detection (Shimasaki et al., 2004), in-cylinder trapped mass estimation

(Worm, 2005; Lapuerta et al., 1999), in-cylinder temperature estimation (Hickling et al.,

1983), exhaust gas recirculation control (Sellnau et al., 2000; Hasegawa et al., 2006), torque

estimation (Shimasaki et al., 2004), emission control (Beasley et al., 2006) and noise control

(Payri et al., 2005).

dQn

dt
=

γ

γ − 1
p
dV

dt
+

1

γ − 1
V
dp

dt
, (1.1)

where, dQn

dt
is the net rate of heat release, γ is the ratio of specific heats, p is the in-cylinder

pressure, V is the in-cylinder volume and t is time. More complicated versions of Equation

1.1 exist that take into account heat loss to the walls, effects of crevice regions and other

possible sources for heat loss.

A common operating parameter which can be obtained from the in-cylinder pressure

signal is the start of combustion—coupled with knowledge of the start of injection can yield

the ignition delay. In a recent study by Rothamer and Murphy (2012), six methods of

determining the start of combustion were compared. The six methods were:

1. location of 50% of pressure rise due to premixed burn combustion;

2. extrapoliation of the peak slope of pressure rise due to combustion to the zero crossing

point;

3. location of the first peak of the second derivative of the pressure trace;

4. location of the first peak of the third derivative of the pressure trace;

5. location of 10% of the maximum heat release rate in the premixed burn; and,

6. a repeat of (5) using a low-pass (threshold 2000 Hz) filtered in-cylinder pressure trace.

Their study focused on jet fuels and diesel fuel in a heavy-duty direct-injection single-cylinder

diesel and the data analysis was performed using 250 cycles of averaged data. A conclusion

from their study found that the methods which required second or third derivatives were not

optimal owing to the presence of noise and that the ignition delay determined by the heat

release method using the low-pass filtered in-cylinder pressure signal gave a result 200-330

µs shorter than the other methods.

A common theme among in-cylinder pressure methods for determining the start of com-

bustion is differentiating (Heywood, 1988; Stone, 1999; Lata and Misra, 2011; Rothamer and

Murphy, 2012). The most typical methods are: locating the time when the heat release

slope begins increasing (Kouremenos et al., 1992; Rakopoulos et al., 2007; Shehata, 2010;

Tauzia et al., 2010), locating the time when the heat release becomes positive (Lata and

T. Bodisco (2013) PhD Thesis – In-Cylinder Pressure and Inter-Cycle Variability Analysis for a Compression Ignition Engine



12 Current state of knowledge

Misra, 2011) and locating the time when the rate of pressure rise begins increasing rapidly

(from either a first, second or third derivative of the in-cylinder pressure signal) (Stone, 1999;

Rothamer and Murphy, 2012). However, there are issues with the use of heat release curves

for the determination of the start of combustion. A few of these issues include (Heywood,

1988; Brunt and Platts, 1999; Tauzia et al., 2010):

• the difficulty in accounting for mixture nonuniformities in the air/fuel ratio and in the

burned and unburned gas nonuniformities;

• the effect of crevice regions in the combustion chamber; and,

• assuming the wrong rate of heat transfer between the cylinder charge and combustion

chamber walls (especially with the addition of a ‘cooling’ additive such as water, or a

fumigated fuel in a dual-fuel engine).

Moreover, the calculation of the heat release relies on knowledge of the in-cylinder volume,

which is sensitive to the exact knowledge of top dead centre (TDC).

Heat release diagrams are also useful for studies which involve looking at the effects of

the intensity and duration of combustion. These types of studies are often seen with com-

prehensive emission work (Rakopoulos, 2012; Valentino et al., 2012). Sections of the heat

release curve are typically split into the following phases: ignition delay period, premixed

combustion phase, mixing-controlled combustion phase and the late combustion phase (Hey-

wood, 1988). Figure 1.2 shows an example heat release rate diagram from Heywood (1988)

of a DI engine. It should be noted, however, that in a modern engine the transition from the

pre-mixed to the diffusion stage is not as clear and forms a partial motivator for the work

shown later in Chapter 8.

Figure 1.2: Typical DI engine heat release rate diagram identifying different diesel
combustion phases (Heywood, 1988)
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One valuable method for detecting the start of combustion is to examine a block vibration

signal—the band-pass filtered in-cylinder pressure signal is similar to the vibration signal

(Carlucci et al., 2006). Links between in-cylinder pressure and structure-borne sound make

it an interesting area of investigation. Antoni et al. (2002b) have shown that a p-V indicator

diagram is even obtainable from analysis of the vibration measurements. This paper by

Antoni et al. (2002b) also goes further into evaluating the combustion process phenomena,

although they admit that techniques they employ are somewhat ad hoc. Stankovic and

Bohme (1999) have also done an investigation linking in-cylinder pressure to structure-borne

sound through both simulations and experimental data.

Structure-borne sound is widely used to monitor machines (Steel and Reuben, 2005).

From an industry perspective phenomena such as wear, cavitation, plastic deformation,

cracking and fracture can be detected through the use of structure-borne sound (Carpenter

and Zhu, 1991; Miettinen and Siekkinen, 1995; Carolan et al., 1997; Neill et al., 1997; Rogers

et al., 1998; Brown et al., 1999). However, from an engine research perspective it can be

useful to detect mechanical events, processes such as: combustion, fuel efficiency, combustion

conditions, lubrication and also fault detection (Fog, 1998; El Ghamry et al., 1998, 2003).

The highly transient nature of internal combustion engines makes their vibration very

complex in nature (Antoni et al., 2002a). Therefore, the data collected from structure-

borne sensors on engines are also non-stationary making traditional techniques of analysis

non-suitable. Further, these types of sensors are sensitive to noise and that can introduce

problems in the analysis (Steel and Reuben, 2005).

Antoni et al. (2002a) state that the main sources of excitation that are likely to be

observable from the block vibration signal are associated with the following mechanisms:

(i) rocking and twisting of the engine block on its supports, due to the action of

inertial forces

(ii) impacts due to clearances at links, those at the crankshaft bearings and the so-

called piston slap being extremely noisy

(iii) closures and openings of valves

(iv) high-pressure injection of fuel in diesel engines; and

(v) rapid rising of gas pressure in the cylinders during the combustion, especially in

diesel engines where it has been compared with a hammer blow.

This dissertation has a significant focus on band-pass filtered in-cylinder pressure signals.

Band-pass filtered in-cylinder pressure signals share many common features with block-

vibration signals—including frequency content associated with combustion. Therefore, the

analysis techniques described in this work can also be applied to block-vibration signals.
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1.3 Combustion Resonance

Payri et al. (2005) decompose the in-cylinder pressure signal into three distinct parts:

pseudo-motored, combustion and resonance excitation. The pseudo-motored frequencies

are associated with the engine operating conditions: namely, engine load and speed (Payri

et al., 2005). In the work by Payri et al. (2005), in-cylinder pressure information above

the pseudo-motored frequencies are termed as ‘excess pressure’. This ‘excess pressure’ if

analysed carefully can yield valuable information about the combustion processes (Hickling

et al., 1983) and also provide useful condition monitoring information (i.e. knock detection)

(Ren et al., 1999).

The in-cylinder resonance excitation has been attributed to the sudden pressure rise as-

sociated with pre-mixed combustion (Schaberg et al., 1990; Payri et al., 2005; Torregrosa

et al., 2011). Typically, this resonance excitation, henceforth termed the combustion reso-

nance, is seen in the frequencies above 6 kHz (Payri et al., 2005; Ren et al., 1999; Schmillen

and Wolschendorf, 1989; Torregrosa et al., 2004). Of particular interest in this work is the

resonant frequency that forms the combustion resonance. Isolation of the resonant frequency

is important as it is related to the speed of sound and hence temperature (Hickling et al.,

1983; Bohme and Konig, 1994; Ren et al., 1999; Torregrosa et al., 2004; Payri et al., 2005).

If the assumption of a homogeneous composition in the combustion chamber is assumed,

then the in-cylinder temperature can be determined by the following relationships (Hickling

et al., 1983):

c(t) =
r(t)B

αmn
c2(t) = γRT (t)

∴ T (t) = (γR)−1
(
r(t)B

αmn

)2

,

where, αmn is a non-dimensional value determined by solving the equation:

J
′
m(παmn) = 0

and r(t) is the time-varying resonant frequency, B is the cylinder bore, γ is the ratio of

specific heats of the bulk modulus in the combustion chamber, R is the characteristic gas

constant and T (t) is the time-varying in-cylinder temperature. J
′
m is the derivative of the

Bessel function of the first kind and order m (Hickling et al., 1983; Morse and Ingard, 1968).

The general Bessel function of the first kind and order m can be approximated by the infinite

T. Bodisco (2013) PhD Thesis – In-Cylinder Pressure and Inter-Cycle Variability Analysis for a Compression Ignition Engine



Combustion Resonance 15

series (Kaplan, 2003):

Jm(x) =
∞∑
i=0

(−1)i

i!Γ(m+ i+ 1)

(x
2

)m+2i

and the derivative of the Bessel function of the first kind can be shown to be:

J
′
m(x)= 1

2 (Jm−1(x)−Jm+1(x)).

Hence, αmn can be solved for by:

Jm−1(παmn) = Jm+1(παmn).

The in-cylinder temperature can be an indicator of what is occurring during combus-

tion and the thermodynamic processes in the cylinder of the engine (Hickling et al., 1983).

Moreover, the in-cylinder temperature can be used inconjunction with the ideal gas law to

estimate the trapped mass present in the combustion chamber (Hickling et al., 1983).

A key issue, of which this dissertation will address, is how to isolate the resonant fre-

quency. A difficulty is that the combustion chamber is a complex environment, especially

during combustion. Most notably, there are rapid changes in in-cylinder temperature dur-

ing pre-mixed combustion, which greatly effect the speed of sound and hence the resonant

frequency. Isolating a transient frequency from a signal has many issues and the following

will briefly discuss some of the common techniques that are used for this type of signal pro-

cessing. Namely, it will discuss: fast Fourier transforms, Burg spectral density estimates,

Wigner-Ville spectral analysis and Bayesian inference. Other emerging techniques involving

wavelet transforms and Hilbert transforms are not covered in this overview as they are not

explored in this work.

1.3.1 Traditional Techniques

Fast Fourier Transforms

Since Cooley and Tukey (1965; 1969) introduced the fast Fourier transform (FFT) they have

become the standard in basic spectral analysis. Applications of FFTs are vast and present in

most fields of science and engineering—such as spectral analysis, signal processing, time series

analysis, Fourier spectroscopy, image processing, and the solution of differential equations

(Cooley et al., 1969). Typically, researchers interested in combustion resonance have used

FFTs to find the desired frequency information (Li et al., 2001; Torregrosa et al., 2004;

Payri et al., 2005). The increase in interest in digital signal processing in the 1970’s has been

attributed, by some, to the FFT (Duhamel and Vetterli, 1990; Oppenheim and Schafer, 1975;
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Rabiner and Rader, 1972).

Fast Fourier transforms are common practice in basic spectral analysis mostly because

of their ease of use and computational efficiency (Cooley et al., 1969; Duhamel and Vetterli,

1990; Huang et al., 1998; Papandreou-Suppappola, 2003). However, a significant limitation

is in the assumptions which underpin them—for example, the assumption of periodic station-

ary frequencies (Bretthorst, 1988a; Jaynes, 1987). Moreover, in order to produce any useful

results multiple periods of data are required (Gregory and Loredo, 1992)—in some applica-

tions, such as isolating the resonant frequency, analysing multiple periods simultaneously is

counter intuitive. Furthermore, the low resolution makes it impossible to resolve close to-

gether frequencies, giving the illusion of there only being a single frequency where there may

be multiple—frequencies need to be separated by at least the Nyquist step
(
|ω1 − ω2| > 2π

N

)
for a difference to be distinguishable (Dou and Hodgson, 1995).

In most real world situations that data can be derived from, the frequency content are

not stationary, free from noise or non-complex. Therefore, the FFT method may often

produce, according to Jaynes (1987) and Bretthorst (1988a), potentially misleading results.

Bretthorst (1988b) did, however, show that the FFT does give optimal frequency estimates

to a signal, with noise, if each of the following conditions are met:

(i) the number of data values N is large;

(ii) there is no constant component in the data;

(iii) there is no evidence of a low frequency;

(iv) the data contain only one frequency;

(v) that frequency is stationary; and,

(vi) the noise is white.

Moreover, the interpretation of high frequencies as low frequencies (aliasing), which can occur

when there are frequencies above half the sampling frequency, is also a potential issue if the

data is not carefully digitised (Randall, 1987). Typically any misleading results obtained

with FFTs are not incorrect because of the FFT, they are rather incorrect because the FFT

is attempting to answer a different question (Dou and Hodgson, 1995). Hence, in many

applications other methods of spectral analysis should be investigated to ensure that the

results are accurate and therefore suitable for making decisions. In data analysis, emphasis

should be given to scientific interest and less to convenience (Box and Tiao, 1992).

Burg Spectral Density Estimate

Outside of FFTs another early method of spectral analysis is that from Burg (Burg, 1972).

Burg’s method of spectral analysis uses autoregressive models (Broersen, 2000). Similar to
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the FFT, Burg’s method relies on having large amounts of data and also has low resolution.

However, the resolution is improved when compared to the FFT.

Burg’s method requires the analyst to choose the auto-regression order, of which there

is no theoretical means of selection (Bretthorst, 1988a). The issue of choosing the auto-

regressive order can sometimes shift the location of the predicted frequency (Bretthorst,

1988a). Moreover, this method is also sensitive to noise and limited data.

Wigner-Ville Spectral Analysis

In practice signals are seldom built from stationary frequencies, particularly in applications

involving machinery (Randall, 1987). Therefore, analysis of real world signals do not neces-

sarily lend themselves to basic sinusoidal decomposition. A result of this is the rise of the

concept of the instantaneous frequency (Martin and Flandrin, 1985; Boashash, 1992).

Ville showed (Ville, 1948; Boashash, 1992) that the first moment of the Wigner-Ville

distribution (WVD) with respect to frequency yields the instantaneous frequency. The WVD

can be numerically evaluated using FFT algorithms (Martin and Flandrin, 1985; Boashash,

1988, 1992). This original work was before Cooley and Tukey (1965) created the FFT, and

therefore it was a while after this concept that the use of the WVD became a fixture in

spectral analysis.

Use of the Wigner-Ville method of spectral analysis is not uncommon in engine research

(Bohme and Konig, 1994; Stankovic, 1994a,b; Samimy and Rizzoni, 1996; Ren et al., 1999).

However, it suffers from many problems, with the most noted being issues with cross talk.

Further problems associated with the use of the WVD for spectral analysis arise with sensi-

tivity to noise and the need for large amounts of data. Indeed with the numerical application

of the WVD being from the use of FFTs it is an easy conclusion to draw that it will have

many of the same limitations.

1.3.2 Bayesian Spectral Analysis

E. T. Jaynes in his 1987 paper derived the discrete Fourier transform using Bayesian prob-

ability theory. Spectral analysis of this type is directly dependent on the signal-to-noise

ratio and the resolution can be many orders of magnitude better than more conventional

Fourier analysis (Jaynes, 1987; Gregory, 2001). Jaynes’ (1987) work was the beginning of the

Bayesian revolution in spectral analysis, with much of the earlier work done by Bretthorst

(1988a; 1989).

Gregory (2001) uses examples from physics and astronomy to review the use of Bayesian

inference in spectral analysis (Gregory, 2001). He mostly focuses on phenomena with periodic

patterns, hence the strong focus on astronomy where this is especially relevant. The examples

in Figures 1.3 and 1.4 are from Gregory (2001) and Bretthorst (1988b), respectively.

Figure 1.3 shows the superiour resolution, and the resistance to noise, of the Bayesian
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Figure 1.3: Comparison of conventional
analysis (middle panel) and Bayesian anal-
ysis (lower panel) of a simulated time se-
ries (upper panel) (Gregory, 2001)

Figure 1.4: Comparison of conventional
analysis (middle panel) and Bayesian anal-
ysis (lower panel) of the two channel NMR
time series (upper two panels) (Bretthorst,
1988b; Gregory, 2001)

method compared to the Fourier one. Likewise, Figure 1.4 shows this along with demon-

strating how the Fourier method can give misleading results. In Figure 1.4 the analysis with

the Fourier method shows three clear distinct peaks, whereas the Bayesian analysis clearly

shows that there are six frequencies present in the data. Further, it also gives evidence that

the Fourier method can produce unclear and skewed results when there are close together

frequencies.

Although Bayesian inference is not a new idea it has only been in the last decade that

it has become a mainstream method in statistics and signal processing. Fitzgerald (2001)

delivers a review style tutorial on numerical Bayesian methods of inference with a focus

on signal processing applications. He also goes further to describe applications of Markov-

chain Monte Carlo (MCMC) in audio and image restoration using this as an example of how

Bayesian statistics can be exploited in applied engineering problems.

The power of Bayesian analysis, in any context, is the ability to introduce prior knowledge

into the analysis (Bretthorst, 1988b; Jaynes, 2007). Even when there is no prior knowledge,
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analysis can still be performed from a state of ignorance—this is often the case with scientific

data (Box and Tiao, 1992). Gelman et al. (2003) gave a detailed discussion on prior distribu-

tions in their book Bayesian Data Analysis. Bayesian analysis also allows the analyst to keep

track of all the assumptions and prior knowledge that is introduced. A distinct advantage

of this is that if unacceptable inferences are made then it may be a result of inappropriate

assumptions as opposed to inadequacies of the inferential system (Box and Tiao, 1992).

This dissertation will introduce, through the published works, the use of Bayesian statis-

tics to analyse in-cylinder pressure data, with a particular interest in resolving the start of

combustion and the frequency information during combustion. Moreover, it will be shown

that using statistical modelling in a Bayesian framework eliminates the need for ad hoc

methodologies, such as cycle averaging to obtain reliable results. The ability to analyse

single consecutive cycles of engine operation allows further investigation into the inter-cycle

variability. It should be noted that although a Bayesian approach has been taken for this

work, there are other methods that show promise, such as using wavelet transforms (Kim

and Min, 2008; Li et al., 2001).

1.4 Inter-cycle Variability

Kouremenos et al. (1992) investigated the cycle-by-cycle variation of key in-cylinder parame-

ters: peak pressure, peak pressure timing, maximum rate of pressure rise and maximum rate

of pressure rise timing. This study involved analysing 650 consecutive cycles of data from a

single-cylinder Lister LV1, four-stroke, direct-injection diesel engine at a variety of injection

timings and load conditions. By analysing the effect on the mean value, standard deviation,

variance, coefficient of variation, probability density functions and power spectra across an

increasing number of cycles, they concluded that for their engine setup a minimum of 400

cycles was required to ensure statistical stability. However, the required number of cycles to

produce stable results will vary from one engine setup to another (Payri et al., 2010).

A follow-on study from the early work of Kouremenos et al. (1992) was done by Rakopou-

los et al. (2008) investigating the effect on combustion cyclic variability of a diesel engine

using ethanol/diesel blends—over 480 consecutive cycles. This work investigated the in-

cylinder parameters: peak pressure, peak pressure timing, indicated mean effective pressure,

injection timing and ignition delay. Cycle-by-cycle analysis allowed them to conclude that

ethanol/diesel blends of up to 15% percent had no influence on cyclic-variability and hence

performance degradation.

Analysing the cyclic variation of combustion processes can improve combustion control,

resulting in improved: fuel economy, performance and emission (Johansson, 1996; Morey and

Seers, 2010). Increased cyclic variability can be used as an indicator of degraded performance

and emission management (Rakopoulos et al., 2008). Therefore, investigation into inter-cycle
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variability should form the norm for all in-cylinder pressure analysis.

Research into inter-cycle variability in the past, however, has mostly only focused on

spark-ignition engines, with some more recent work conducted on compression-ignition en-

gines (Sen et al., 2008). It has been well observed that with spark-ignition engines that an

increase in inter-cycle variability causes performance and noise issues and increases harmful

emissions (Heywood, 1988; Johansson, 1996). The absence of early work with compression-

ignition engines on this topic can be noted by it not being covered in John Heywood’s (1988)

comprehensive book, Internal Combustion Engine Fundamentals.

A major issue with in-cylinder pressure signals is noise (Payri et al., 2010). For many

of the standard analyses (indicated mean effective pressure, indicated power and peak pres-

sure) this noise does not overtly effect the results and therefore does not impact on the

analysts ability to performance inter-cycle variability studies. However, for more sensitive

analysis involving the first law of thermodynamics, the in-cylinder pressure signal needs to

be differentiated (Brunt et al., 1998). Differentiating a noisy signal amplifies the noise and

hence causes issues with the determination of combustion parameters, such as the start of

combustion (Payri et al., 2010).

Payri et al. (2010) describe a methodology for over-coming the issue of noise with in-

cylinder pressure signals. They outline a four step methodology which consists of: level

correction, angle referencing, cycle averaging and filtering. Cycle averaging is a standard

technique used to overcome noise in in-cylinder pressure data (Payri et al., 2010; Lujan

et al., 2010; Rothamer and Murphy, 2012; Carlucci et al., 2008). It is not uncommon for

authors to average only a relatively small number of cycles: Lujan et al. (2010) and Payri et

al. (2010) used 25 cycles and Rakopoulos et al. (2008) used only 10 cycles. However if the

engine data are cycle-averaged, then the ability to examine the data for cyclic variations or

instabilities will be either removed or greatly diminished.

This dissertation aims to introduce new techniques based on Bayesian methods, which

allow for cycle-by-cycle analysis of the data with high accuracy. If applied carefully, these

methods can resolve parameters such as: start of combustion (ignition delay), in-cylinder res-

onant frequency, in-cylinder temperature and piston blow-by—parameters that are difficult

to isolate on single cycles. Effectively, eliminating the need for cycle averaging to produce

in-depth information about combustion. It will also comment on the inter-cycle variability

of a dual-fuel ethanol diesel engine and provide new information regarding the relationship

between inter-cycle variability and the use of fumigated fuels. This dissertation should be

viewed as a step toward using more advanced analysis techniques in engine research, with

the long term goal of eliminating the need for ad hoc methods such as cycle averaging in

modern engine research.
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Chapter 2

Contribution

The principle aim of this dissertation is to introduce new techniques for the analysis of

in-cylinder pressure. To achieve this aim, several engine testing campaigns have been

undertaken—most of which involved ethanol fumigation. These engine campaigns were

performed on a modern Euro III turbo-charged, common-rail, in-line six-cylinder diesel

engine—a detailed description of the experimental setup, including a schematic, can be found

in Chapter 5. Some early work was performed on an older, direct (mechanical) injection,

four-cylinder diesel engine—Chapter 4.

Initially, a study was conducted to assess the feasibility of using Bayesian techniques on

in-cylinder pressure signals. This work was inspired by a study from Hickling et al. (1983)

that analysed combustion resonance evident in in-cylinder pressure signals, they isolated the

in-cylinder resonant frequency to infer the in-cylinder temperature and trapped mass as a

function of crank angle. The current work hypothesised that the in-cylinder pressure signal

could be statistically modelled, in the Bayesian paradigm, with the goal of isolating the

in-cylinder resonant frequency. Preliminary work to establish the feasibility of this approach

was published in Mechanical Systems and Signal Processing and is shown in Chapter 4.

A key outcome from this initial study was not only demonstrating the feasibility of using

Bayesian inference in engine research, but also highlighting the inter-cycle variability in com-

bustion in diesel engines. Previous research that has investigated resonance in diesel engines

have relied on cycle-averaging to increase the signal-to-noise ratio. However, this work has

shown that the inter-cycle variation between cycles is large and that more advanced tech-

niques capable of cycle-by-cycle analysis need to be employed in order to produce meaningful

results.

Part of the motivation for this work was to investigate the effects of ethanol fumigation

in a modern engine. Therefore, Chapter 5 (published in Energy) investigated key in-cylinder

parameters: maximum rate of pressure rise, peak pressure, peak pressure timing and ignition

delay. This chapter focused on the inter-cycle variability of these parameters and found a

relationship between the absolute air to fuel ratio (on a mole basis) and the inter-cycle

variability. Also, introduced in this chapter is a new methodology for determining the start

of combustion using a band-pass filtered in-cylinder pressure signal. This preliminary study
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showed that the ignition delay at high loads and high ethanol substitutions can be reduced.

The method for determining the start of combustion from combustion resonance shown

in Chapter 5 had the limitation that it required the analyst to perform the data analysis

manually; hence, restricting the scope of any true inter-cycle variability studies. To over-

come this issue, a Bayesian modelling approach was taken. Published in Applied Thermal

Engineering, Chapter 6 introduces a statistical model for determining the start of combustion

in a diesel engine and demonstrates its utility on a modern diesel engine operating at rated

engine speed on full, three quarters and half loads.

Chapter 7 applies the Bayesian model for determining the start of combustion from

Chapter 6 to the data set from Chapter 5. This work was done to better understand the

inter-cycle variability of the ignition delay of a modern common-rail diesel engine operated

with fumigated ethanol. The same relationship between the air to fuel ratio and the in-

cylinder parameters shown in Chapter 5 was confirmed with ignition delay.

Extending the early work shown in Chapter 4, Chapter 8 introduces a Bayesian model to

investigate the time-evolving in-cylinder resonant frequency in a modern diesel engine. This

model investigates the same parameters as Chapter 4: resonant frequency, in-cylinder tem-

perature and trapped mass. In addition to this, the model given in Chapter 8 also resolves

the timing of the start of diffusion combustion. Previously, this has been a difficult param-

eter to isolate and therefore the Bayesian modelling techniques explored in this dissertation

represent a significant advancement in-cylinder pressure analysis. Importantly, this method

of investigation allows for inter-cycle variability studies. The results of this study are shown

for rated speed (2000 rpm) at full load for 500 consecutive cycles.

This dissertation fills a key gap in modern engine research by introducing new techniques

for analysing in-cylinder pressure signals—the Bayesian modelling techniques described in

this dissertation are also applicable to engine vibration signals and hence could form a future

role in condition monitoring. Moreover, the application of these techniques, shown in this

dissertation, have shown a need for more in-depth analysis tools in modern engine research.

The method for resolving evolving frequencies, shown in this dissertation, has applica-

tions beyond engine research and alternative fuel evaluation. With only minor adjustments,

to make the assumptions applicable to the specific problem, the Bayesian techniques de-

veloped in this dissertation can be used to resolve frequency information from any signal

type. Potential applications of this can include: condition monitoring of vibrating machin-

ery, evaluating vibration in buildings and investigating turbulence and geometric effects in

fluid flow.
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Chapter 3

In Situ Calibration of a Piezoelectric

Transducer in an Internal Combustion

Engine

3.1 Introduction

Prolonged use of an internal combustion engine can cause a build-up of material on sensors

and transducers. Further, it is also possible that extreme environmental conditions (such as

those experienced in a combustion chamber) can have long term effects on the calibration of

equipment. These factors make regular calibration of equipment used in internal combustion

engines critical if reliable data is to be obtained.

Throughout an experimental campaign an unusually large discrepancy between the brake

and the indicated power motivated the calibration of the in-cylinder piezoelectric pressure

transducer. Piezoelectric transducers are often calibrated in specialist equipment, which is

external from their place of use. Removing the transducer has a few key issues, namely:

it is time-consuming, replacing the transducer after calibration could potentially offset the

calibration and previously collected data will become void. Therefore, an in situ solution

was investigated.

In situ calibration was important to account for any residue build-up on the face of the

transducer. This residue will potentially attenuate the pressure change and thus effect the

recorded pressure. As typical of piezoelectric transducers, this transducer does not measure

absolute pressure, but rather a change in pressure. Therefore, a change in pressure has a

corresponding change in frequency, which through a signal conditioning unit is converted to

a corresponding voltage, which is read by an analogue-to-digital converter. Transducers of

this type return to a ground position, of approximately zero volts, in the presence of a static

pressure.
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3.2 Experimental Configuration

Experiments were conducted on a naturally-aspirated, four-cylinder Ford direct injection

diesel engine (2701C). The engine has a capacity of 4.152 `, a bore of 108.2 mm, a stroke

length of 115 mm, a compression ratio of 15.5 and maximum power of 48 kW at 2500

RPM. The engine was coupled to a water-brake Froude D.P.X Type dynomometer. In-

cylinder pressure was measured with a PCB 112B11 piezoelectric transducer with a Data

Translation (DT9832) simultaneous analogue-to-digital converter connected to a desktop

computer running National Instruments LabView.

The calibration of the piezoelectric transducer was completed by replacing the diesel

injector with an adapter, shown in Figure 3.1, allowing a gas system to be connected to

the engine. This permitted the sensor calibration with only a minimal need to dismantle

components of the engine. A high pressure Argon cylinder was used to provide the in-cylinder

pressure and two valves were used to control the flow into the cylinder and to release the

gas, from the cylinder, to the atmosphere, as shown in Figure 3.2.

Figure 3.1: Calibration system adapter (left) and it in place in the engine (right)

Figure 3.2: Schematic of the piezoelectric transducer calibration system
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3.3 Data Collection

The piezoelectric transducer used in this engine is designed to measure the change of pressure

in the combustion chamber during the engines operation. This transducer uses a quartz

piezoelectric crystal, which responds to a change in force applied to the sensor, generating

a voltage corresponding to the change in pressure. Hence if there is no change in pressure,

the transducer will read zero volts—transducers of this type need to be utilised in a highly

dynamic environment and are, therefore, well suited to internal combustion engines.

Calibration data can be collected in one of two ways. Firstly, the combustion chamber

could be at atmospheric pressure and then increased quickly to a known pressure or secondly,

the combustion chamber could be pressurised then depressurised back to atmospheric quickly.

For this experiment the latter was chosen as it is easier to rapidly depressurise the combustion

chamber than it is to pressurise it.

For this experiment the engine was locked into a fixed position. Top dead centre (TDC)

was chosen because it requires the least amount of gas to pressurise, and hence reduces the

time to depressurise—it also has the smallest rotational force applied to the engine crank,

improving safety and allowing for a higher range of test points and at TDC the inlet and

exhaust valves will be closed. Pressures from 500 kPa (5 bar) up to 3000 kPa (30 bar) were

used for this experiment. Ideally, pressures up to the 80,000 kPa (80 bar) would have been

tested; however, the safety risk did not outweigh the potential results.

The experimental calibration procedure was undertaken as follows:

1. The crankshaft was rotated until the cylinder was at TDC.

2. Once the crankshaft was in position, the engine was locked in place to ensure the piston

would not move once filled with the compressed gas.

3. The apparatus was assembled, as shown in Figure 3.2, using components designed to

withstand the pressures being measured—in this experiment the maximum pressure

was 30 bar.

4. Argon gas was introduced into the combustion chamber by opening an inlet valve,

shown in Figure 3.2, slowly until the required pressure was reached.

5. It was confirmed that the piezoelectric transducer voltage had stabilised back to zero.

6. Once data was recording, the pressure was released from the combustion chamber by

simultaneously and quickly closing the inlet and opening the pressure valves, shown in

Figure 3.2.

7. This procedure was repeated as necessary.
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3.4 Data Analysis

Ideally the calibration data would show a sudden drop, with the corresponding voltage being

directly proportional to the change in pressure. However, in reality the gas cannot escape

the cylinder instantaneously due to a choked flow effect and drag—an example of the actual

pressure signal is shown in Figure 3.3. A method, therefore, needed to be developed to

determine what the equivalent change in voltage would have been if it were possible to have

released the gas in an instant, and hence had an instantaneous change in pressure.

It was noted, by observing the resulting pressure signals (such as is shown in Figure 3.3)

that the lag to return back to the zero state was roughly linear, as was the initial pressure

drop. Using this assumption it was possible to predict what the actual pressure change was.

Using Matlab, an algorithm that found these two linear equations was developed. The point

that these equations intercepted was taken to be the equivalent instantaneous change in

pressure, as shown in Figure 3.3. The results of this analysis are shown in Table 3.1.
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Figure 3.3: Voltage drop for a 384 kPa change in pressure

Supplied Pressure (kPa) Measured Pressure (kPa)
384 381
855 845
1345 1346
1871 1845
2392 2374
2903 2923

Table 3.1: Results of the supplied pressure values and those measured from the piezoelectric
transducer
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3.5 Results

Figure 3.4 shows the data in Table 3.1 imposed over a perfectly linear line. The Pearson’s

linear correlation, r2, as determined by a least squares method, between the supplied values

and the measured values is 0.999, indicating a highly linear dependence between the supplied

and measured values. Moreover, the measured gradient is 1.004, clearly indicating that the

piezoelectric transducer was indeed still calibrated correctly. The small deviations have been

assumed to come from the accuracy in the measurement in the supplied pressure rather than

the pressure measured by the transducer.
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Figure 3.4: Graphical comparison between the supplied pressure the measured
pressure

The largest deviation between the supplied value and the measured value was 26 kPa—

occurring when the supplied pressure was 1871 kPa, the measured pressured deviated from

the supplied pressure by 1.4%. The standard deviation, from the absolute difference, across

all of the data was 0.4% with a mean absolute deviation of 0.8%. Therefore, the pressure

transducer can be assumed to give accurate results within 1%.

3.6 Conclusion

This chapter has introduced a method for performing an in situ calibration of a piezoelectric

transducer located in an internal combustion engine. Further, this methodology allows ac-

curate calibration of piezoelectric transducers without the need to remove them from their

environment—which can be vital if data has already been collected or if removing the trans-

ducer is too costly or time-consuming to be practical.
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Abstract

A time series method for the determination of combustion chamber resonant frequencies is

outlined. This technique employs the use of Markov-chain Monte Carlo (MCMC) to infer

parameters in a chosen model of the data. The development of the model is included and

the resonant frequency is characterised as a function of time. Potential applications for

cycle-by-cycle analysis are discussed and the bulk temperature of the gas and the trapped

mass in the combustion chamber are evaluated as a function of time from resonant frequency

information.
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4.1 Introduction

Nomenclature

Posterior A probability distribution that summarises

information about a random variable, or

parameter, after information from

empirical data is obtained (Everitt, 2006).

Prior Information known about a parameter

before empirical information is obtained.

Uninformative Prior A prior that assumes no information was

known about a particular parameter before

obtaining empirical information.

Markov-chain or MCMC is a set of computational

Monte Carlo methods for sampling from probability

distributions.

Gibbs Sampler A particular MCMC method to generate

predictive distributions.

DIC The deviance information criterion, a

relative goodness of fit measure from the

posterior expectation of the deviance and

the effective number of parameters as a

measure of complexity (Berg et al., 2002).

Posterior Predictive The mean value of each modelled

Mean observations posterior distribution.

Precision A term applied to the likely spread of

estimates of a parameter in a statistical

model.

Top Dead Centre When the piston is at the highest possible

location in the cylinder. Often denoted by

a crank-angle of 0 or 360.

Calculating the resonant frequency accurately in an engine combustion chamber enables

the characterisation of resonant frequencies that are associated with the speed of sound, and

hence temperature (Hickling et al., 1983; Bohme and Konig, 1994; Ren et al., 1999; Payri

et al., 2005; Torregrosa et al., 2004). Therefore, accurate isolation of resonant frequencies

and their decay, as a function of time, or crank-angle, will allow the bulk temperature of the

gas in the combustion chamber to be determined at any point within the region of interest.

Further, an investigation into these frequencies will allow for cycle-by-cycle analysis to be

conducted to investigate inter-cycle variability. The isolation of resonant frequencies also
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has important implications in the detection of knock (Ren et al., 1999; Samimy and Rizzoni,

1996). Moreover, instantaneous resonant frequency information is of more practical use in

the elimination of knock than more easily measured factors, such as the rate of pressure rise

(Ren et al., 1999).

Conventional spectral analyses, such as those carried out a by Fourier transform, fail

to accurately interpret the resonant frequencies precisely if the resonance is non-stationary

(Ren et al., 1999). A common approach to get around non-stationary frequencies is the

use of the Wigner-Ville Spectrum (Bohme and Konig, 1994; Ren et al., 1999; Samimy and

Rizzoni, 1996; Stankovic, 1994a,b; Wang et al., 2008; Antoni, 2009). We propose, however,

the use of Bayesian statistical inference which allows us to configure precisely a model for

the observable information of interest. Markov-chain Monte Carlo (MCMC) using Gibbs

Sampling is a statistical inference technique that can be used for parameter estimation

in Bayesian statistical models and is the method employed in this paper (Tierney, 1994).

Using this methodology has the advantage that it requires the user to state explicitly any

assumptions being made in the calculation (Bretthorst and Smith, 1989). Hence, the user

always knows exactly what problem is being solved. Our models are defined and fitted using

the WinBUGS software package (Spiegelhalter et al., 1999).

Our technique for isolating resonant frequencies specifies an analytic form for the signal,

then uses MCMC to estimate each model parameter. In our example of engine data, from

in-cylinder pressure readings, we seek to obtain frequency as a function of time, and hence

observe it in terms of crank-angle.

A further advantage of Bayesian statistical inference is that unlike other techniques

(Jaynes, 1987) such as FFTs (Cooley and Tukey, 1965) or maximum entropy spectral analy-

sis (Burg, 1967, 1975), which require a battery of data, it works effectively on a single cycle.

This eliminates the need for ad hoc methods such as cycle averaging or spectrum averaging

to extract useful information – not to speak of excessive laboratory time collecting data.

Variations from cycle-to-cycle can also be explored by performing analysis on each cycle

completely independently of the others.

4.2 Experimental Configuration

Experiments were conducted on a naturally aspirated 4-cylinder Ford direct injection

diesel engine (2701C). The engine has a capacity of 4.152 `, a bore of 108.2 mm, a stroke

length of 115 mm, a compression ratio of 15.5 and maximum power of 48 kW at 2500 RPM.

The engine was coupled to a Froude DPX type Hydraulic Dynamometer with load applied by

increasing the flow rate of water inside the dynamometer housing. In-cylinder pressure was

measured with a PCB 112B11 piezoelectric transducer with a Data Translation (DT9832)

simultaneous analogue to digital converter connected to a desktop computer running National
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Instruments LabView. Data was collected at a sample rate of 200,000 samples per second.

During testing the engine was run on diesel fuel at 2000 RPM on full load. For a more detailed

overview of the experimental setup, including emissions results, refer to the corresponding

paper by Surawski et al. (Surawski et al., 2010).

4.3 Model Development

In this section we illustrate the process of model building for this problem by introducing

more complex model specifications in an orderly sequence. At each step we compare an index

of model fit, the deviance information criterion (DIC) (Spiegelhalter et al., 2002), to ensure

that over-fitting has not occurred, and that an increase in complexity results in a better

predictive model. The DIC is a relative measure of model fit; a decrease in DIC indicates an

improvement in fit from the previous model. We also compare observed data to the posterior

predictive mean to assess whether the model is capable of tracking important changes in the

observed data. Figure 4.1 shows the signal that is the subject of this investigation.
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Figure 4.1: Pressure signal with the motoring frequency information removed

Although it is not necessary to separate the analysis into the following steps it is more

convenient, and less time consuming, to fit simpler models. Starting with a very simple
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model to observe what results can be obtained, a basic three parameter model is tested:

p(t) ∼ N(µ(t), τ1)

τ1 ∼ Gamma(0.01, 0.01)

µ(t) = A sin(ωt+ φ). (4.1)

The signal, p(t), is modelled around a normally distributed time varying mean, µ, with a

sinusoidal characteristic. Here, and subsequently, we parameterise the Normal density with

a precision parameter, τ where precision = 1
variance

, and give it an uninformative Gamma

prior. This model attempts to fit a static amplitude and frequency to the signal. φ is given a

uniform prior between −π and π, A is given an uninformative Normal prior and ω is given a

uniform prior between 5000 and 7500 Hz. The output from this model gives a DIC of 9505,

and a posterior expectation of ω as 5960 Hz. Visual inspection of the posterior predictive

mean compared with the signal (Figure 4.2) tells us that this model does not adequately

explain the observed changes.
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Figure 4.2: Pressure signal from Figure 4.1 and Model 1 from Equation 4.1

Including a term to model the decay in the amplitude seems to be a logical extension. Thus,

we modify the model:

µ(t) = Ae−λt sin(ωt+ φ), (4.2)
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giving λ an uninformative Normal prior. As expected there is a significant improvement in

the model fit with a DIC now of 9362. Using this model the posterior expectation for ω is

now 5994 Hz. This is nearing our estimate, from a classical approach using FFTs (as shown

later in Figures 4.8 and 4.9) of 6000 Hz. Figure 4.3 shows the model fit.
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Figure 4.3: Pressure signal from Figure 4.1 and Model 2 from Equation 4.2

This model fails to capture significant observed behaviour. However, given that it is

known that resonant frequencies decay over time (Ren et al., 1999; Samimy and Rizzoni,

1996; Stankovic and Bohme, 1999) it seems intuitive to include a parameter that models the

frequency decay. Hence, we extend the model by defining:

µ(t) = Ae−λt sin(ω0e
−att+ φ), (4.3)

setting a to have an uninformative Normal prior. In this model, and thereafter, ω0 represents

the initial first circumferential mode resonant frequency—from here out referred to as the

resonant frequency. This model does not have a large effect on the deviance but, from

a physics perspective, it is an important parameter—particularly from the aspect of what

is desired from the model. It also stops the model from under-predicting the resonant

frequency under the assumption that it is a stationary frequency. The minimal gain in the

DIC, 9360, can be attributed to the very small decay in the resonant frequency, therefore

providing evidence that there is minimal change in the resonant frequency as the crank-angle

increases. Updated posterior expectations of our parameters are now 6107 Hz for ω0 and
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2.1962× 10−10 for a, with our estimate for the resonant frequency now:

ω(t) = 6107e−2.1962×10
−10t.
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Figure 4.4: Pressure signal from Figure 4.1 and Model 3 from Equation 4.3

However, comparing the posterior predictive mean to the observed signal (Figure 4.4) indi-

cates multiple frequencies exist. Additional terms can be added to this, making the next

model:

µ(t) =
3∑
i=1

Aie
−λit sin(Wiω0e

−aitt+ φ). (4.4)

This will fit three different frequencies to the observed data. In this particular model, W1

is set at 1 and W2 and W3 are given uniform priors between 1.5 and 2.5, and 2.5 and 3.5

respectively. These priors were chosen to represent further higher frequency information that

is present in the signal. The higher frequencies can be observed in an FFT (Figures 4.8 and

4.9). It is important that they do not overlap to avoid label switching and problems with

convergence. Running this model yields a DIC of 9114, showing a significant improvement

over the previous models. ω0 is now estimated to be 6097 Hz with the exponential decay

constant a estimated to be 2.073× 10−10. The resonant frequency is then estimated to be:

ω(t) = 6097e−2.073×10
−10t.
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Figure 4.5: Pressure signal from Figure 4.1 and Model 4 from Equation 4.4

Figure 4.5 shows that the model does not account for the sharp rise in the signal around

top dead centre. Examination of Figure 4.1 gives an indication that the higher frequencies

tend to occur somewhere around the peak. The inclusion of a step function in the non-

fundamental terms may be a possible solution. Therefore, the following model is suggested:

fi(t) = Aie
−λit sin(Wiω0e

−aitt+ φ)

µ(t) = f1(t) +H(t− δ)
∑3

i=2 fi(t), (4.5)

where H(t− δ) is a step function where H(t− δ) = 0 for t < δ and H(t− δ) = 1 for t ≥ δ.
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Figure 4.6: Pressure signal from Figure 4.1 and Model 5 from Equation 4.5

Figure 4.6 shows that this method of compensating for the start of the non-fundamental

frequencies has returned a very significant improvement in model fit (indicated by the im-

provement of the DIC to 8658). Now, ω0 is 6076 Hz with the exponential decay constant a

being 1.686× 10−10 estimating the resonant frequency as a function of time:

ω(t) = 6076e−1.686×10
−10t. (4.6)

Further parameters to fit this data are unnecessary and could be counter to the aim of

the model; the DIC penalises the use of too many parameters as there is the risk of over

fitting the data. Also, with the addition of more parameters there is an increased risk of

non-convergence, potentially leading to very multi-modal probability density functions and

hence a poor indicator of the desired result. Multi-modal pdf’s can also occur as a result of

label switching, especially with models where the parameters are heavily dependent on each

other, such as in this case. Computationally, it is also wise to avoid over fitting the data

with excessive parameters.

A posterior density plot of ω0 (Figure 4.7) and a plot of a fast Fourier transform (FFT)

(Figures 4.8 and 4.9) indicate the similarity. Note that the Bayesian method not only ac-

curately describes the resonant frequency and its decay, but also it gives us the uncertainty

in the parameter estimates, which is greatly improved when compared to the traditional
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method. Further, the FFT method assumes stationary frequency components, whereas our

approach allows for the inclusion of decaying frequency components, which physical knowl-

edge of the situation suggests are present.
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Figure 4.7: Posterior density of the initial resonant frequency obtained from
Model 5 (Equation 4.5)
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Figure 4.8: Fast Fourier transform of Figure 4.1
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Figure 4.9: Comparison between the posterior density of the initial resonant
frequency (Figure 4.7) and a fast Fourier transform of Figure 4.1

The original intention in developing this model was to determine the resonant frequency

as a function of time, or crank-angle. This relationship is given in Equation 4.6 and shown in

Figure 4.10 along with the third circumferential mode resonant frequency information that

was also calculated. Our findings support the results obtained in (Stankovic and Bohme,

1999), which show, using time-frequency analysis, that the decay in the resonant frequencies

are marginal. The similarity of the decay of both resonant frequencies is an indication that

the model is working well, from a theoretical stand-point the decay rates should be equal.

The difference is attributable to the start positions, the third circumferential term is prefixed

by a step function, and because the decay for both modes are calculated independently.
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Figure 4.10: Drop in resonant frequency as a function of crank-angle. Taken
from the final model (Model 5)

4.4 Cycle-by-cycle Analysis

Applying Model 5 across a range of cycles demonstrates the importance of using such

a powerful inferential technique in this type of data analysis. Figure 4.11 shows the pdfs

of many cycles taken from the same data set, showing the range of inter-cycle differences.

Also visible are some cycles with lower resonant frequencies - these have been attributed to

misfires and ignition delay.

The cycle-to-cycle variation that can be seen highlights the reason that ad hoc techniques

such as cycle averaging or frequency spectrum averaging are inappropriate for conducting

frequency analysis with internal combustion engines. The subtle information contained in

these higher frequencies will be skewed, or removed, by cycle averaging; hence, eliminating

the point and usefulness of spectral analysis when applied to resolving the resonant frequency

from the in-cylinder pressure.

If the assumption of a homogeneous composition of the control volume is assumed, then

the resonant frequency is related to the speed of sound and hence the temperature:

T = (γR)−1(fB/αmn)2, (4.7)
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Figure 4.11: Probability density functions of the initial resonant frequency across
a range of cycles

where T is temperature, γ is the ratio of the specific heat of the gas, R is the characteristic

gas constant, f is the resonant frequency, B is the bore size and αmn is the non-dimensional

number. This relationship between the resonant frequency and the temperature allows re-

search into another facet of combustion phenomena.

Cycle-by-cycle analysis of the resonant frequency can yield interesting insights into the

consistency of the combustion process. The relationship between frequency and temperature

(T ∝ f 2) allows us to infer changes in combustion temperature and subsequently draw

conclusions—such as attributing the lower frequency pdfs in Figure 4.11 to misfires and

changes in ignition delay. Investigating the spread of the most likely estimate of these

frequencies (the modal point) can be used both as a method to make judgments on the

similarity of each combustion and as a vehicle for comparing operating conditions of an

engine. Applications for this could be on-going condition monitoring or the evaluation of

alternative fueling strategies.

4.5 Trapped Mass

Temperature of the gas in the combustion chamber, as a function of time, gives an

indicator of what is occurring during combustion and the thermodynamic processes in the

cylinder of the engine (Hickling et al., 1983). Equation 4.7 can be used to calculate the

bulk temperature of the gas in the combustion chamber as a function of time, or crank-
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angle, using the resonance information found from Model 5. Therefore, providing a method

of determining this information from a standard engine testing laboratory. Values for γ

and R are taken from AVL Boost simulations and the non-dimensional number αmn can be

calculated by solving the equation:

J ′m(παmn) = 0, (4.8)

where J ′m is the derivative of the Bessel function of the first kind of order m (Hickling et al.,

1983; Morse and Ingard, 1968).

α1,0 = 0.5861

α3,0 = 1.3373

Temperature, which is relatively constant at 3200 K, can be used to estimate the trapped

mass in the cylinder using the ideal gas relationship PV = mRT , hence:

m(t) =
P (t)V (t)

RT (t)
, (4.9)

where P (t) and V (t) are the experimentally measured pressure and volume time-series.

Therefore, the trapped mass estimate as a function of crank-angle is shown in Figure 4.12.
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Figure 4.12: Estimated trapped mass calculated from combustion resonance and
the ideal gas law
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4.6 Limitations

The main limitation of this method is the problem of convergence. If the model used

does not fit the data well then it is possible that results will not converge. This makes

model selection very application dependent. In this instance, the desired application was

to demonstrate the use of this method to obtain very specific frequency information from a

cycle. Thus, the final model was very specific.

Having a very specific model also has a limitation in an application such as this in that

should the data present itself in a manner that deviates from the expected, the model may no

longer fit the data well and useful information may no longer be gained from it. Therefore, if

the goal is to analyse every cycle across a period of time to investigate true cyclic variability it

suggested that simpler models be used that still find the desired information. In this instance,

the use of Model 3 would be a reasonable choice. The model is simple and hence more likely

to converge with subtle changes in data, while still capturing the desired information well.

Figure 4.13 shows the pdfs for the initial resonant frequency predicted by each model.
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Figure 4.13: Probability density functions for the initial resonant frequency from
Models 1 to 5

It can be seen that Models 1 and 2 give significantly different pdfs compared to the later

models. This is to be expected as neither model allows the frequency to decay, and hence

will return a result similar to that of the FFT which makes the same assumption. However,

Models 3 and 5 return similar information, with the difference being that Model 5 has less

uncertainty due to better model fit. This makes Model 3 an ideal choice for model selection
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if many cycles in sequence are to be analysed and there are problems with cyclic changes

that cause non-convergence.

A further issue is that the location of the pressure transducer, imperfections in the

combustion chamber walls, design features of the combustion chamber and non-uniformities

in the in-cylinder temperature will influence the determination of the in-cylinder temperature

and the trapped mass calculation (Randall, 1987). This limitation can be overcome by

estimating a correction factor and is discussed in Chapter 8. However, this does not remove

the utility of this type of analysis if a correction factor cannot be resolved, especially for

inter-cycle variability studies.

4.7 Further Work

The remainder of this dissertation will focus on a modern Cummins 5.9 ` turbo-charged

diesel engine running on neat diesel fuel and also with fumigated ethanol. It is proposed

that, under various fuelling strategies the engine will exhibit different cyclic behaviour, with

respect to the resonant frequency, which will aid in the evaluation of alternative fuels and

help us to further understand the phenomena of combustion of diesel engines in dual-fuel

operation.

Applications of this method of analysis extend further than being able to identify resonant

frequency information. With more sophisticated models that capture the initial rise in

temperature at the onset of combustion investigations involving trapped mass could be done

to experimentally determine blow-by on a cycle-by-cycle basis. This type of analysis is

relevant to signals taken from accelerometers to quantify knock in a manner that would allow

comparisons between operating conditions. A further application could be the extraction of

resonant frequency information directly from an accelerometer signal. Careful filtering would

be required in this case.

4.8 Conclusion

This paper has introduced a powerful inference technique for the determination of res-

onant frequencies in a DI diesel engine which explicitly model the time dependence of the

resonant frequency. This leads to a superior characterisation of important frequency be-

havior over FFT methods, which assume frequency components are time invariant, without

introducing the complexities of other time-frequency analyses. Compared to results obtained

from FFTs our method provides superior resolution and information about the time depen-

dence of the resonant frequency. Our results provide a solid reason for the use of Bayesian

inference as a method of analysing in-cylinder pressure data.
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Abstract

The effects of ethanol fumigation on the inter-cycle variability of key in-cylinder pressure

parameters in a modern common rail diesel engine have been investigated. Specifically,

maximum rate of pressure rise, peak pressure, peak pressure timing and ignition delay were

investigated. A new methodology for investigating the start of combustion was also proposed

and demonstrated—which is particularly useful with noisy in-cylinder pressure data as it can

have a significant effect on the calculation of an accurate net rate of heat release indicator

diagram. Inter-cycle variability has been traditionally investigated using the coefficient of

variation. However, deeper insight into engine operation is given by presenting the results as

kernel density estimates; hence, allowing investigation of otherwise unnoticed phenomena,

including: multi-modal and skewed behaviour. This study has found that operation of a

common rail diesel engine with high ethanol substitutions (>20% at full load, >30% at

three quarter load) results in a significant reduction of ignition delay. Further, this study

also concluded that if the engine is operated with absolute air to fuel ratios (mole basis) less

than 80, the inter-cycle variability is substantially increased compared to normal operation.
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5.1 Introduction

The need to move away from fossil fuels was outlined in a recent study by Shafiee and Topal

(Shafiee and Topal, 2009) which showed that after 2042 it is probable the only fossil fuel

still available will be coal. Further, in Australia greenhouse gas emissions, carbon dioxide

equivalent emissions, from the transport sector make up approximately 15% of the total

green house gas emissions (Australian National Greenhouse Accounts, 2010)—this value in

the United States is considerably higher at 28% (McArdle et al., 2007). Indicators such

as these place pressure for viable, cleaner bio-origin fuels as alternatives to fossil fuels for

transport to be developed and implemented (Skelton, 2007).

Fumigation, which is the introduction of supplementary fuels into the intake air, has been

under investigation for diesel fuel substitution since the late 1920s and the first commercial

dual-fuel vehicle was built in 1939 (Sahoo et al., 2009); however, it was first mentioned

in Rudolf Diesel’s original patent for internal combustion engines in 1892 (Diesel, 1892).

Fumigation in diesel engines can be achieved with many liquid and gaseous fuels. Lower

alcohols, such as methanol or ethanol are suitable as secondary fuels (injected either as a

vapour or an atomised liquid) in diesel engines (Hayes et al., 1988; Abu-Qudais et al., 2000;

Sahoo et al., 2009; Surawski et al., 2010, 2012). This paper will focus on the effects that

ethanol fumigation has on in-cylinder pressure, and its relationship to combustion.

Ethanol fumigation represents a currently viable option for reducing diesel fuel consump-

tion (Rosillo-Calle and Walter, 2006; Sorda et al., 2010). This is true not only in general

transport but also in agriculture, particularly those industries that can produce their own

ethanol, and for the use in electricity generators (RIRDC, 2007).

This current study represents a first step in evaluating the practicality of ethanol fumi-

gation in a modern common rail diesel engine by investigating inter-cycle variability using

neat diesel fuel and with ethanol fumigation up to 40% by energy. The current literature has

only explored ethanol fumigation in older direct (mechanical) injection diesel engines which

typically have diesel injection 15 to 35 degrees before top dead centre (TDC). Whereas, this

paper investigates a modern common rail engine where injection occurs near TDC and at

a much higher pressure; thereby, completely changing the performance and emissions char-

acteristics. Moreover, most of the current work is performed on low power single-cylinder

engines; given that in-cylinder temperature is a function of engine load it is reasonable to as-

sume that different characteristics would be found in a higher capacity multi-cylinder engine

operated with fumigated fuels.

Chauhan et al. (2011) recently did an experimental study on ethanol fumigation. This

study was performed on a single-cylinder compression ignition engine with injection timing

at 26 degrees before TDC and a rated power of 7.5 kW at 1500 rpm. Their work focused

on the use of ethanol as a secondary fuel with ethanol substitutions as high as 48%. Results

from their work showed that the emission output of the engine can be improved with the
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introduction of ethanol as a fumigated fuel. However, the addition of ethanol did increase the

hydrocarbon emission and past certain ethanol percentage thresholds all emissions showed

increases. They concluded that the optimal ethanol substitution was 15%.

Lakshmanan and Nagarajan (2010) investigated dual fuel operation of a diesel engine

with timed manifold injections of acetylene. The engine used in their study was a single-

cylinder compression ignition engine with injection timing at 27 degrees before TDC and a

rated power of 4.4 kW at 1500 rpm. In their study the acetylene was introduced into the

engine intake manifold through an electronic gas injector. Acetylene was injected at 5, 10

and 15 degrees after TDC for various injection durations. They determined that the optimal

injection time was 10 degrees after TDC for 9.9 ms. The use of acetylene slightly increased

the smoke output of the engine; however, it had a positive effect on the emission output of

hydrocarbons, NOx, CO and CO2.

Sahin et al. (2008) performed an experimental investigation into gasoline fumigation. As

part of their work they have also reviewed the advantages of fumigating fuels in diesel engines

and investigated the cost effects of using gasoline as a fumigated fuel. Their main study

involved fumigating gasoline into a single-cylinder compression ignition engine with injection

timing at 22 degrees before TDC at engines powers less than 6.4 kW. They concluded that:

power increases were possible with gasoline substitutions (by volume) of 6-8%, specific fuel

consumption decreases up to gasoline substitutions of 4-6% and the most favourable gasoline

substitutions lied between 4-6% boasting both power increases (4-9%) and lower specific fuel

consumption (1.5-4%).

Carlucci et al. (2008) studied the effects of natural gas (methane) in a dual fuel single-

cylinder diesel engine. For their experiment they controlled the diesel injection timing to

force the combustion peak to occur at 10 degrees after TDC. However, for their baseline

(diesel only) testing pilot diesel injection occurred at 24 and 39 degrees before TDC for

1500 and 2000 rpm, respectively, with the main diesel injection occurring at 7.5 and 11

degrees before TDC, respectively. Results in this paper were reported on mean combustion

cycles generated by averaging 50 consecutive cycles, which were then filtered with a low-

pass numeric filter. Their research focused on investigating rate of heat release diagrams

and emission. An important conclusion from this work was that with pilot injection the jet

penetration is of the same importance as the quantity of the fuel used.

Karthikeyan and Mahalakshmi (2007) investigated the use of turpentine in a dual fuel

diesel engine. Their experiments were performed on a single-cylinder compression ignition

engine with a rated power of 4.4 kW at 1500 rpm and diesel injection timing at 26 degrees

before TDC. The use of turpentine performed well at loads less than 75%; however, above

75% load substantial increases in emission and decreases in volumetric efficiency were evident.

Kouremenos et al. (1990) performed a comparative study comparing fumigated diesel fuel

to fumigated gasoline as a supplementary fuel in a single cylinder compression ignition engine.
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The experiments conducted by Kouremenos et al. (1990) were done on a research engine

capable of being run in both Otto or four-stroke diesel mode. During their experiments

the engine was run in diesel mode with a Comet MK.V turbulence-chamber head with

diesel injection timing set at 38 degrees before TDC. Their work made use of a form of the

equivalence ratio, defined by Kouremenos et al. (1990) as:

α =
ṁg

ṁd + ṁg

where, ṁg is the supplementary diesel or gasoline mass flow rate and ṁd is the primary diesel

mass flow rate. For Kouremenos et al. (1990) this was convenient because of the similar

density and gross calorific properties of diesel and gasoline fuels. Their results showed that

knock occurred for gasoline fumigation at α ≈ 0.20 and for diesel fumigation at α ≈ 0.30. In

contrast, the present analysis does not use this approach because of the significant differences

between ethanol and diesel fuels—the approach used in this paper is outlined in Section 5.3.

Selim (2005) showed that dual-fuel operation of a single-cylinder compression ignition

engines gave rise to more inter-cycle variability. His work focused on examining combustion

noise, sound frequency around 1.6-2 kHz, by investigating the maximum rate of pressure

rise and follows on from cyclic variability work that began with Kouremenos et al. (1992)

which focused on the inter-cycle variability of the following key parameters: peak pressure,

peak pressure timing, maximum rate of pressure rise, indicated mean effective pressure and

ignition delay in a single-cylinder diesel engine. In a later work Selim (2008) investigated

the effects of changing the primary fuel from diesel to a bio-derived fuel, jojoba methyl ester,

and concluded that the properties of this bio-fuel reduced the inter-cycle variability and the

onset of knock, owing to a higher cetane number.

Fang et al. (2012) investigated the influence of pilot injection and exhaust gas recircula-

tion on combustion and emissions in a HCCI-DI combustion engine. The engine used in their

study was a heavy-duty four-cylinder engine with a common rail injection system. As part

of their study Fang et al. (2012) explored the effect of exhaust gas recirculation and pilot

injection quantity on inter-cycle variability. Inter-cycle variability was discussed in terms of

the coefficient of variation (COV) of indicated mean effective pressure (IMEP) and of peak

pressure. They show that increasing the pilot quantity decreases the inter-cycle variability

to a threshold and then further increases in pilot quantity increase the inter-variability—in

all instances exhaust gas recirculation decreased inter-cycle variability.

The current study will focus on the inter-cycle variability parameters investigated by

Kouremenos et al. (1992); however, with a modern 6-cylinder common rail diesel engine

with a rated power of 162 kW at 2000 rpm operated with neat diesel fuel and fumigated

ethanol substitutions up to 40% by energy. The higher relative capacity of the engine in this

investigation results in a mean effective pressure that is at least 30% higher than that of the
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vast majority of engines used to investigate light fuel fumigation with compression ignition

engines. This higher mean effective pressure will directly correlate to a higher in-cylinder

temperature, and hence will impact directly on the combustion of the fumigated fuel.

5.2 Terminology and Abbreviations

DXXXEYYY DXXXEYYY represents the
nominal XXX% of diesel fuel by
energy and the nominal YYY%
substitution of ethanol by energy

EMS Engine management system
IMEP Indicated mean effective pressure
Kernel density
estimate

An estimation of the probability
density function

Neat diesel Neat diesel refers to the case
where the engine is run on diesel
fuel only, no ethanol substitution

NRHR Net rate of heat release
RTD Resistance Temperature Detector
TDC Top dead centre (0 and 360 crank-

angle degrees)

5.3 Experimental Configuration and Data Acquisition

Experiments were conducted on a modern turbo-charged inline 6-cylinder Cummins diesel

engine (ISBe220 31) with common rail injection at the QUT Biofuel Engine Research Facility

(BERF) in June 2011. See Figure 5.1 for a detailed schematic of the engine setup featuring

the ethanol fumigation system and the pressure and crank angle data acquisition system. The

engine has a capacity of 5.9 `, a bore of 102 mm, a stroke length of 120 mm, a compression

ratio of 17.3:1 and maximum power of 162 kW at 2000 rpm and maximum torque of 820

Nm at 1500 rpm. Each cylinder has two inlet and two exhaust valves. Cylinders two to five

share their inlet ports with their adjacent cylinders. Whilst, cylinders one and six each have

one of their inlet valves supplied by a separate inlet port directly from the inlet manifold

because they only have one adjacent cylinder each to share with.

The engine was coupled to an electronically controlled hydraulic dynamometer with load

applied by increasing the flow rate of water inside the dynamometer housing. In-cylinder

pressure was measured by a Kistler (6053CC60) piezoelectric transducer with a Data Trans-

lation (DT9832) simultaneous analogue-to-digital converter connected to a desktop computer

running National Instruments LabView. Data was collected at a sample rate of 200 kHz for

4 minutes at each setting.
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Specific data collected was in-cylinder pressure, band-pass filtered in-cylinder pressure

(allowing 4-20 kHz, both pressure signals collected as a differential voltage signal), diesel in-

jection timing and degrees of crank angle rotation information. The band-pass filter settings

were set to capture the combustion resonance whilst minimising the effects of the knocking

frequencies (<4 kHz) and the noise from the injector signal (>28 kHz). The diesel injection

timing was controlled by the engine management system (EMS) and was unable to be ac-

tively controlled—in all test cases the diesel injection strategy was a sustained single injection

where combustion commences prior to the diesel injection completing. An impact of this is

the diesel injection retarding with increasing ethanol substitutions. The ethanol injection

system is independent of the EMS; therefore, the energy input from the ethanol is unknown

to the EMS and it will treat this energy as though it came from an operating condition such

as descending a hill. The crank angle rotation information is acquired from a Kistler crank

angle encoder set (type 2614) with a resolution of 0.5 crank angle degrees—crank angle val-

ues were interpolated between the known points. The limit of crank angle resolution, based

on the sampling frequency, 0.06 degrees per sample at 2000 rpm, this results in a maximum

uncertainty of 0.06 crank angle degrees.

The engine was run at 2000 rpm on neat automotive diesel and with ethanol fumigation

substitutions of 10%, 20%, 30%, and 40% at full load (760 Nm) and at three quarters (570

Nm) and half (380 Nm) of full load. The substitutions were performed by stabilising the

engine at the required load, then reducing the diesel energy (as inferred by the engine load)

by the substitution percentage and introducing fumigated ethanol until the original engine

load was achieved. Table 5.1 shows the exact diesel reductions and corresponding energy

distributions for each test setting. All of the flow meters were calibrated to an absolute

standard (using a known volume and stopwatch) and were found to be operating within a

2% uncertainty. Ethanol fumigation was achieved by directly introducing the ethanol as a

vapour into the air in-take at the inlet manifold directly after the turbocharger and before

the intercooler, Injector 2 in Figure 5.1, at a an injection frequency of 50 Hz. The flow

of the manifold arrangement may have an effect on combustion air supplied to the engine.

Modelling experiments in AVL Boost indicate that the mass of the charge air can vary as

great as 2% between the cylinders. In order to achieve repeatable fuel delivery at all engine

loads, the difference in pressure between the ethanol fuel rail and the post turbo-charger

manifold pressure was monitored and used as feedback to the ethanol pressure relief valve,

in the case of Ethanol Injector 2 this is Pressure Relief Valve 2 in Figure 5.1. It is assumed,

given the frequency of the ethanol injection and the feedback mechanism to regulate the

pressure relief valve, that the supply of ethanol to the cylinders was steady.
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Figure 5.1: Schematic of the ethanol injector and pressure/crank angle data
acquisition systems

Load Nominal
ethanol
substitution

Diesel
reduction

Diesel
energy

Ethanol
energy

0% 0% 100% 0%
10% 10.3% 92.1% 7.9%

Full 20% 21.1% 80.0% 20.0%
30% 29.3% 71.3% 28.7%
40% 38.1% 66.1% 33.9%
0% 0% 100% 0%
10% 9.2% 94.0% 6.0%

Three 20% 18.1% 81.7% 18.3%
Quarters 30% 26.8% 71.1% 28.9%

40% 36.2% 65.9% 34.1%
0% 0% 100% 0%
10% 6.8% 93.9% 6.1%

Half 20% 15.9% 68.3% 31.7%
30% 26.1% 66.8% 33.2%
40% 32.8% 57.2% 42.8%

Table 5.1: Ethanol substitutions at each test setting

The acquisition of temporally resolved in-cylinder pressure data from an internal combus-

tion engine provides many insights into the operation of an engine. For example, the analysis

of pressure data with respect to crank angle, and by extension volume, is able to provide
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insights into how efficiently an engine is operating; peak pressure, maximum rate of pressure

rise, heat release, indicated work, indicated power, indicated mean effective pressure, and

thermal efficiency are the most commonly investigated (Amann, 1986; Heywood, 1988; Ran-

dolph, 1990). Moreover, statistical analysis of the above mentioned engine parameters are

able to provide indicators of the reliability of engine operation (Bodisco et al., 2012). Figure

5.2 shows an example of pressure versus crank angle data. As work is related to pressure,

investigating in-cylinder pressure can yield many insights into combustion phenomena.
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Figure 5.2: Pressure vs crank angle plot at full load on neat diesel fuel

The fluctuation located at the peak of Figure 5.2 is related to the combustion of the fuel—

indicated by a box. This fluctuation can be isolated and analysed; the dominant frequency

through this area is the first circumferential mode frequency, and hence forth will be referred

to as combustion resonance. Figure 5.3 shows the combustion resonance from the in-cylinder

pressure trace in Figure 5.2, 4-20 kHz band-pass filter in-cylinder pressure data—since the

change in output voltage from the pressure transducer and the change in actual pressure

differ only by a linear scale, conversion from the voltage signal to pressure is an unnecessary

computational penalty. The box indicates the start of ignition, detailed in the next section.
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Figure 5.3: Band-pass filtered voltage in-cylinder pressure signal at full load on
neat diesel fuel

5.4 Determination of the Start of Combustion

5.4.1 Combustion Resonance

An extensive analysis of combustion resonance by the authors has been undertaken in (Bod-

isco et al., 2012)—some important early work in the area of combustion resonance was done

by Hickling et al. (1979; 1983). Interest in combustion resonance is owed to its relationship

with the speed of sound, and hence in the case of a combustion chamber, temperature (Hick-

ling et al., 1983; Bohme and Konig, 1994; Ren et al., 1999; Payri et al., 2005; Torregrosa

et al., 2004). In Bodisco (2012) the resonant frequency was isolated in a direct (mechanical)

injection diesel engine and used to estimate the in-cylinder temperature and the trapped

mass in the combustion chamber during combustion as a function of time, or crank angle.

This paper also demonstrated the large amount of cycle-to-cycle variability of combustion

in diesel engines and established a strong argument against cycle averaging. Further, the

isolation of combustion resonance also has important applications in the detection of knock

(Ren et al., 1999; Samimy and Rizzoni, 1996).

In this study the injection timing was obtained by directly interrogating the electronic

diesel injector driver signal. Unfortunately, the mechanical latency in the injector is un-
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known. However, latency would be approximately uniform across all of the cycles, a repeat-

able charge time; hence, meaningful comparisons of ignition delay can be made. Modern

injectors are designed for the dimensions of the internals to change in a highly accurate

manner, allowing for fast, precise and repeatable needle motion (Lee et al., 2006). The sig-

nal shown in Figure 5.3 starts exactly where the electronic injection signal occurs and the

observed fluctuations in in-cylinder pressure between 356 and 364 degrees crank angle are as-

sociated with interference from the electronic diesel injection signal—the increase in voltage

seen at ∼362 is attributable to a change in the electronic injection signal frequency. Fol-

lowing this, the start of combustion can be seen to commence at approximately 364 degrees

crank angle, after which a strong resonance can be seen—clearly visible on the right-hand

side of Figure 5.3. For the purposes of this investigation the ignition delay was defined as the

number of crank angle degrees from nominal injection, detected from the electronic diesel

injector driver signal, to the start of combustion which was taken to be when the signal no

longer only exhibited noise-like behaviour and the combustion resonance commenced—the

commencement of the combustion resonance has been indicated with a red box in Figure

5.3. The combustion resonance is at approximately 6 kHz. Analysis was performed in all

cases by at least 2 independent investigators, the maximum deviation in individual cycle

results was never more than 2 data points, corresponding to approximately 0.12 crank angle

degrees. Therefore, over the 200 cycles analysed at each test case, the natural variation in

interpretation between investigators showed the same mode and variability within the ex-

perimentally determined uncertainty of 0.12 crank angle degrees. Ignition delay results are

displayed relative to the modal ignition delay of the neat diesel case at each load.

5.4.2 Net Rate of Heat Release

Determination of the start of combustion by analysing the net rate of heat release (NRHR)

is standard practice in engine research. Net rate of heat release models are typically based

on the first law of thermodynamics and often provide very valuable insight into combustion

processes, an example NRHR diagram can be seen in Figure 5.4. However, this approach to

determining the start of combustion has a few short comings which are not easily overcome.

Namely, it is very difficult to account for mixture non-uniformity in the air/fuel ratio and in

the burned and unburned gas non-uniformity, the effect of crevice regions in the combustion

chamber, and assuming the wrong rate of heat transfer between the cylinder charge and

combustion chamber walls (especially with the addition of a ‘cooling’ additive such as water,

or ethanol) (Heywood, 1988; Brunt and Platts, 1999; Tauzia et al., 2010). However, under

standard operating conditions, such as running an engine with neat diesel fuel, this approach

to determine the start of combustion works very successfully, as can be seen in Figure 5.4.

In Figure 5.4 the vertical line represents the modal start of combustion as determined by the

use of combustion resonance.
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Figure 5.4: Net rate of heat release, full load, neat diesel with the modal start of
combustion marked

Calculated in-cylinder pressure parameters, such as NRHR, are typically generated from

cycle averaged data (Kouremenos et al., 1992; Rakopoulos et al., 2007; Shehata, 2010; Tauzia

et al., 2010). That is, to reduce noise and to have the ability to read off single values as repre-

sentative of the experiment many cycles are combined before the NRHR is calculated—Figure

5.4 was generated from 4000 consecutive cycles. This approach can be quite problematic if

the inter-cycle variability is high, such as is possible when the engine is run with different

fuels, or under different operating strategies. Moreover, filtering is required to be able to

interpret the NRHR because of the high frequency noise generated from differentiating al-

ready noisy data—particularly in the case of the data shown in this paper, where the diesel

injector signal has interfered with the in-cylinder pressure signal. Essentially, cycle averaging

or filtering can potentially skew the interpretation of the NRHR.

5.5 Results

In order to investigate the inter-cycle variability of the parameters of interest: peak pressure,

peak pressure timing, maximum rate of pressure rise and ignition delay, kernel density esti-

mates (probability density functions) are created (Rosenblatt, 1956; Parzen, 1962). Owing

to the discrete nature of the electronic injector signal, histograms were created to investigate
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the cycle-to-cycle variation. This was done to allow a visual representation of the inter-cycle

variability and will also avoid ambiguous interpretations, such as quoting mean values of

multi-modally distributed data—when single data values are given they are taken as the

mode of the data, defined as the peak of a kernel density estimate. For each data set the

engine was run for 4 minutes, resulting in approximately 4000 cycles at 2000 rpm. However,

the ignition delay results are derived from 200 consecutive cycles only, owing to the time

consuming nature of the analysis.

Results are presented by engine load, rather than by parameter because engine load

has the greatest influence on the parameters under consideration. Such a presentation is

also consistent with the method of ethanol substitution where x% is the amount of ethanol

required to offset x% of the diesel energy input to the engine.

5.5.1 Full Load Results

Figures 5.5 to 5.9 show the results for full load (760 Nm) as probability density functions of

the parameters of interest. Maximum rate of pressure rise results are shown in Figure 5.5, a

small decrease in maximum rate of pressure rise can be seen with low ethanol substitutions

and also a small increase in inter-cycle variability. At high ethanol substitutions (above

20%) increasing ethanol significantly increases the maximum rate of pressure rise and the

inter-cycle variability. Moreover, at these high substitution settings the engine had audible

knock.
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Figure 5.5: Maximum rate of pressure rise, full load, 0%–40% ethanol substitu-
tions
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There is a systematic increase in peak pressure and peak pressure inter-cycle variability

with increasing ethanol substitutions, shown in Figure 5.6. However, the peak pressure

timing, Figure 5.7, shows that the 10% ethanol substitution yielded the least inter-cycle

variability. The neat diesel case and the 20% ethanol substitution case are bi-modal. In the

neat diesel case, this is a result of the first peak in pressure, a motoring peak just before

TDC, being similar to the combustion peak pressure, just after TDC. The similarity of these

two pressure peaks is evident in Figure 5.6 which is showing very little inter-cycle variability

in the peak pressure result for neat diesel. Also, discounting the neat diesel case there is an

increase in the inter-cycle variability as the ethanol substitution increases.
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Figure 5.6: Peak pressure, full load, 0%–40% ethanol substitutions
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Figure 5.7: Peak pressure timing, full load, 0%–40% ethanol substitutions

With increasing ethanol substitutions, at full load the ignition delay decreases, as shown

in Figure 5.8. The diesel injection timing is shown in Figure 5.9, the small difference ob-

served in the injection timing is assumed to have had a minimal effect on ignition delay.

However, the diesel injection for the 40% substitution case was approximately a degree more

advanced than the lower substitions and may have had an impact. The ignition delay for the

10% substitution case exhibited the least inter-cycle variability with the high substitutions

exhibiting the most. At the high substitutions the very short ignition delay time and in-

creased peak pressure timing indicate that the combustion process takes place over a longer

period of time than that of neat diesel or lower ethanol substitutions. Figure 5.8 indicates

that the ignition delay period for the 30% case is shorter than that of the 40% case—going

against the trend. This is most likely an artifact of the low number of cycles analysed (200

for each case)—due to the time consuming nature of manual analysis. Had all 4000 cycles

been analysed it is likely that a more systematic trend would have been presented. However,

the value of this result is not lessened. A very obvious decrease in ignition delay and increase

in inter-cycle variability past some threshold between 20% and 30% ethanol substitution is

still shown in the results.
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Figure 5.8: Ignition delay, full load, 0%–40% ethanol substitutions
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Figure 5.9: Diesel injection timing, full load, 0%–40% ethanol substitutions
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5.5.2 Three Quarter Load Results

Figures 5.10 to 5.13 show the results for three quarter load. Results for the maximum

rate of pressure rise can be seen in Figure 5.10. Initially, increasing the ethanol substitu-

tion decreases the maximum rate of pressure rise and only slightly reduces the inter-cycle

variability. However, past some threshold substitution the maximum rate of pressure rise

inter-cycle variability significantly increases, the modal value is similar to those of the lower

substitutions; but, there is a second mode significantly higher and values lower than those

of the lower substitutions were also observed.
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Figure 5.10: Maximum rate of pressure rise, three quarter load, 0%–40% ethanol
substitutions

Similar to the maximum rate of pressure rise results, the peak pressure also decreases with

increasing ethanol substitutions, until some threshold, as shown in Figure 5.11. The 20%

substitution case yielded the least inter-cycle variability with only a small difference between

the neat diesel case and the 10% substitution case. Both the 30% and the 40% ethanol

substitutions yielded significantly greater inter-cycle variability than the lower substitutions

and the neat diesel case. Also, in both of these higher substitutions the results spread from

significantly lower to significantly higher than the those obtained with the lower substitutions,

with the greatest extremes in the 40% ethanol substitution case.

The peak pressure timing, Figure 5.12, for neat diesel and 10% ethanol substitution

were quite similar, and both exhibited a similar amount of inter-cycle variability. At the

20% substitution the predominate modal value is similar to the neat diesel and the 10%
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substitution cases. However, there is also evidence of two further modes, that are more

characteristic of the higher 30% and 40% substitutions, which occur later. The inter-cycle

variability increases from the 10% substitution to the 20% substitution and then again from

the 20% to the 30% substitution with a similar amount of inter-cycle variability present in

the 30% and 40% substitutions.

10000 10500 11000 11500 12000 12500 13000
Peak Pressure (kPa)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

p
d
f(

P
e
a
k 

P
re

ss
u
re

)

10−3

D100E000

D090E010

D080E020

D070E030

D060E040

Figure 5.11: Peak pressure, three quarter load, 0%–40% ethanol substitutions
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Figure 5.12: Peak pressure timing, three quarter load, 0%–40% ethanol substi-
tutions
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Initially, Figure 5.13 shows that the ignition delay increases as the ethanol substitution

is increased. A slight decrease in ignition delay is observed in the 30% ethanol substitution

case. This delay period is very similar for the neat diesel and 10% to 30% ethanol substitution

cases with the most consistent result coming from the 20% substitution. Interestingly, the

30% substitution result shows evidence of less inter-cycle variability than the neat diesel

case. Past some threshold substitution the ignition delay significantly decreases and the

inter-cycle variability dramatically increases. This result mirrors that of the maximum rate

of pressure rise results shown in Figure 5.10.

Figure 5.14 shows the diesel injection timing. The engine management system system-

atically retarded the diesel injection timing as the ethanol substitution increased. From the

neat diesel case to the 40% ethanol substitution there was a difference of approximately

1.5 crank angle degrees, with most jumps between settings (10% ethanol substitution incre-

ments) resulted in the timing increasing by approximately half a degree. Much the same as

the full load case, it is assumed that this change only had a small effect on the ignition delay

as the change in pressure and volume this close to TDC would only be minimal.
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Figure 5.13: Ignition delay, three quarter load, 0%–40% ethanol substitutions
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Figure 5.14: Diesel injection timing, three quarter load, 0%–40% ethanol substi-
tutions

5.5.3 Half Load Results

The maximum rate of pressure rise results in Figure 5.15 indicate that there is little difference

in the modal value or the inter-cycle variability in any of the test cases. However, there is

evidence to show that the introduction of ethanol initially increases the maximum rate of

pressure rise and that increasing the ethanol reduces the maximum rate of pressure rise—the

40% substitution case shows a result very similar to that of neat diesel. Also, although not

a significant change in inter-cycle variability Figure 5.15 does show that the introduction of

ethanol has increased the variability and that increasing the ethanol substitution increases

the inter-cycle variability.
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Figure 5.15: Maximum rate of pressure rise, half load, 0%–40% ethanol substi-
tutions

Much the same as the trend shown in Figure 5.15 with the maximum rate of pressure

rise, the peak pressure, shown in Figure 5.16, has an initial increase with the introduction of

ethanol and then decreases as the substitution increases. Also, the 40% ethanol substitution

case is similar to the neat diesel case, but with increased inter-cycle variability. However, the

20% substitution yielded the least inter-cycle variability. The peak pressure timing, Figure

5.17, shows very little difference between any of the test settings, they all exhibit multi-modal

behaviour and have a similar amount of inter-cycle variability. The neat diesel case in this

instance is showing the greatest amount of inter-cycle variability.
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Figure 5.16: Peak pressure, half load, 0%–40% ethanol substitutions
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Figure 5.17: Peak pressure timing, half load, 0%–40% ethanol substitutions

In contrast to the results shown earlier in Figures 5.8 and 5.13 for ignition delay at

full and three quarter loads, respectively, Figure 5.18 does not show any instance that the

ignition delay period is less than that of neat diesel for any ethanol substitution. At half
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load the ignition delay period increases as the ethanol substitution increases; however, at

40% ethanol substitution the ignition delay decreases from the 30% substitution—the delay

period is still longer than that of neat diesel. This result reflects that of the current literature

where it has been extensively documented that ethanol fumigation increases ignition delay

owing to the so-called cooling effect that it has on the charge air (Saeed and Henein, 1989;

Tsang et al., 2010).

The diesel injection timing at half load, much the same as the three quarter load case,

was systematically retarded with increasing ethanol substitutions. However, this increase

was much less substantial than in the three quarter load case and the neat diesel case and

the 40% ethanol substitution case were only approximately 1 degree apart from each other.
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Figure 5.18: Ignition delay, half load, 0%–40% ethanol substitutions
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Figure 5.19: Diesel injection timing, half load, 0%–40% ethanol substitutions

5.5.4 Inter-cycle Variability

The results, shown in Sections 5.5.1 to 5.5.3, indicate that a threshold ethanol substitution

may exist that causes increased inter-cycle variability. Absolute air to fuel ratios (mole

basis) were calculated for each test setting—absolute values, rather than relative values

(lambda), are shown in this section because the data collapses better allowing limits for this

test engine to be evident. A representative diesel fuel composition was determined from the

known density of the diesel fuel, this corresponded to a representative composition of C12H23

(Gupta and Demirbas, 2010). Moreover, the flow rates of both fuels, diesel and ethanol, and

the in-take air were recorded directly from flow meter sensors at a rate of 1 Hz.

The COV of IMEP, shown in Figure 5.20, is a standard used by engine researchers for

investigating inter-cycle variability. Figure 5.20 clearly indicates an increase in COV of IMEP

as the air to fuel ratio decreases. However, normalising by the mean, in this case, is also

showing a contradicting result that the general effect of ethanol is greater at lower loads.

The standard deviation alone could be considered as a more meaningful view of the inter-

cycle variability as it shows the extent of the spread only. Figure 5.21 shows the standard

deviation of the IMEP with respect to the air to fuel ratio.

Further investigation was conducted into operating parameters that have an effect on the

longevity of the engine, maximum rate of pressure rise and peak pressure. Figures 5.22 and

5.23, which are not normalised by their means, confirm the results shown earlier in the paper

in Sections 5.5.1 to 5.5.3 indicating that with increasing load the effects of ethanol, especially
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at high substitutions (low air to fuel ratios), also increase—intuitively, this makes sense as

at higher loads the in-cylinder pressure is higher and hence the ethanol is compressed to a

higher temperature prior to the diesel being injected. If the ethanol has undergone premixed

combustion then the stability of the engine would be much lower. Figures 5.20 to 5.23 all

show a monotonic trend, as the air to fuel ratio decreases the inter-cycle variability increases.

These figures also indicate that at air to fuel ratios greater than 110 the inter-cycle variability

is not significantly effected by the ethanol fumigation and that at air to fuel ratios less than

80 the effect is very significant.
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Figure 5.20: COV of IMEP Vs the Air to Fuel Ratio
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Figure 5.21: Standard Deviation of IMEP Vs the Air to Fuel Ratio
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Figure 5.23: Standard Deviation of the Peak Pressure Vs the Air to Fuel Ratio

5.5.5 Auto-ignition of Ethanol

Given that the current literature suggests that ethanol fumigation increases ignition delay,

an experiment was designed to test if combustion was possible with ethanol fumigation prior

to diesel injection. In order to investigate this the engine was setup at an extreme case, full

load with a 50% ethanol substitution. Once engine operation was established the diesel fuel

was shut off to number one cylinder, where the in-cylinder pressure transducer is located.

Figure 5.24 shows the collected data.

The top in-cylinder pressure traces, in Figure 5.24, are those of the established combustion

prior to the diesel being switched off—50% of the energy by ethanol. Combustion without

diesel can be seen in the traces after the diesel was shut off—test case denoted as D000E050.

Data from Figure 5.24 was used to investigate the decrease in indicated work. Figure 5.25

shows a plot of normalised indicated work—the indicated work at full load was 1.7 kJ,

averaged across the 15 cycles prior to shutting off the diesel, and the indicated work on the

first cycle without diesel was 0.63 kJ (37%) (the normalisation was performed by dividing

each indicated work value by 1.7 kJ). Subsequent cycles show a gradual decrease in pressure

(and therefore indicated work) throughout the relatively short experiment. It appears that

this reduction in indicated work during ethanol-only combustion is caused by a progressive
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decrease in in-cylinder temperature due to the lower total value of heat released. Importantly,

Figures 5.24 and 5.25 establish that it is possible to run a diesel engine with ethanol alone by

showing positive net work during the ethanol-only operation. Whilst this mode of operation

may not be ideal for stability, it is important in-terms of understanding the practical effects

that ethanol fumigation has in diesel engine combustion and hence the outputs of the engine:

work and emissions.

In a modern heavy duty diesel engine, such as the one described in this paper, the diesel

injection timing is typically near TDC. The advanced diesel injection allows the ethanol in

the charge air more time to undergo pre-combustion heat addition. It would be, therefore,

expected that if the ethanol in the charge air was either close to, or had already commenced

combustion when diesel fuel was introduced that the effect on in-cylinder parameters would

be significant. Moreover, because the diesel is injected from a high pressure rail it is expected

that the diesel will be more finely atomised when compared with an older engine, with

greater combustion chamber penetration. Possible effects from this would be changes to the

flame front development, potential homogeneous charge compression ignition combustion

and non-uniform combustion from the presence of hot-spots created from isolated ethanol-

only combustion. These effects result in greatly increased inter-cycle variability in in-cylinder

pressure parameters such as maximum rate of pressure rise, peak pressure and ignition delay

with relatively minimal effects to the engine work output.
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Figure 5.24: In-cylinder pressure trace, full load, 50% ethanol substitution, es-
tablished combustion and with diesel switched-off
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Figure 5.25: Normalised indicated work, full load, 50% ethanol substitution,
established combustion and with diesel switched-off

5.6 Conclusion

This paper has shown comprehensive results from an experimental campaign on a common

rail diesel engine operated with neat diesel fuel and with ethanol substitutions up to 40%

at full, three quarters and half load. The effect of the ethanol on the maximum rate of

pressure rise, peak pressure, peak pressure timing, ignition delay and inter-cycle variability

was explored. At full load ethanol substitutions of up to 20% by energy have only a min-

imal effect on the values of these parameters and the inter-cycle variability. The full load

result is similar to the three quarter load case, which indicate that substitutions near 30%

are achievable without significant negative effects. At half load the inter-cycle variability is

relatively constant; however, the ignition delay results indicate that at the 40% substitution

the ignition delay stops increasing and begins to decrease, given this information substitu-

tions above this may result in significantly increased inter-cycle variability. The correlation

between inter-cycle variability and the absolute air to fuel ratio was explored and showed a

monotonic trend with a critical ratio lying between 80 to 110. Ethanol-only combustion was

also explored and established through an experiment that involved running one cylinder of

the engine without diesel fuel. Early ignition of the fumigated ethanol was identified as a

cause for the decrease in ignition delay and the increase in inter-cycle variability with high

ethanol substitutions.
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Abstract

A novel in-cylinder pressure method for determining ignition delay has been proposed and

demonstrated. This method proposes a new Bayesian statistical model to resolve the start of

combustion, defined as being the point at which the band-pass in-cylinder pressure deviates

from background noise and the combustion resonance begins. Further, it is demonstrated

that this method is still accurate in situations where there is noise present. The start of

combustion can be resolved for each cycle without the need for ad hoc methods such as

cycle averaging. Therefore, this method allows for analysis of consecutive cycles and inter-

cycle variability studies. Ignition delay obtained by this method and by the net rate of heat

release have been shown to give good agreement. However, the use of combustion resonance

to determine the start of combustion is preferable over the net rate of heat release method

because it does not rely on knowledge of heat losses and will still function accurately in

the presence of noise. Results for a six-cylinder turbo-charged common-rail diesel engine

run with neat diesel fuel at full, three quarters and half load have been presented. Under

these conditions the ignition delay was shown to increase as the load was decreased with a

significant increase in ignition delay at half load, when compared with three quarter and full

loads.
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6.1 Introduction

Standard methods for determining the start of combustion have changed little in the last few

decades. Most current studies (Papagiannakis and Hountalas, 2003; Ren et al., 2006; Ghojel

et al., 2006; Sahoo and Das, 2009; Cinar et al., 2010; Lata and Misra, 2011; Donkerbroek

et al., 2011) that examine the start of combustion, or ignition delay, use the net rate of heat

release, with most citing the 1988 book Internal Combustion Engine Fundamentals written

by John Heywood (1988). This method is commonly used because it is considered reliable

and the net rate of heat release is simple to calculate. However, this paper will introduce

the use of a statistical model in the Bayesian paradigm to accurately determine the start of

combustion.

Calculation of the net rate of heat release comes from analysing the heat losses in an

engine from a first law of thermodynamics perspective, in its most commonly used form

(Heywood, 1988):
dQn

dt
=

γ

γ − 1
p
dV

dt
+

1

γ − 1
V
dp

dt
, (6.1)

where, dQn

dt
is the net rate of heat release, γ is the ratio of specific heats, p is the in-cylinder

pressure, V is the in-cylinder volume and t is time. More complicated versions of Equation

6.1 exist that take into account heat loss to the walls, effects of crevice regions and other

possible sources for heat loss—which are mostly engine specific and not general. The start

of combustion is defined as the point when the net rate of heat release begins increasing

rapidly—some authors use the point that the net rate of heat release becomes positive (Lata

and Misra, 2011).

From experimental in-cylinder pressure, another method for determining the start of

combustion is from the rate of pressure rise (Stone, 1999). This method locates the point

at which the rate of pressure rise begins to increase rapidly, and can be done by analysing

either the first or second derivative of the in-cylinder pressure signal. It has parallels with

the net rate of heat release, which also requires the differentiation of the in-cylinder pressure

data.

In a recent study by Rothamer and Murphy (2012), six methods of determining the

ignition delay were compared. The six methods used were:

1. location of 50% of pressure rise due to premixed burn combustion;

2. extrapoliation of the peak slope of pressure rise due to combustion to the zero crossing

point;

3. location of the first peak of the second derivative of the pressure trace;

4. location of the first peak of the third derivative of the pressure trace;

5. location of 10% of the maximum heat release rate in the premixed burn; and,
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6. a repeat of (5) using a low-pass (threshold 2000 Hz) filtered in-cylinder pressure trace.

Their study focused on jet fuels and diesel fuel in a heavy-duty direct-injection single-cylinder

diesel and the data analysis was performed using 250 cycles of averaged data. A conclusion

from their study found that the methods which required second or third derivatives were not

optimal owing to the presence of noise and that the ignition delay determined by the heat

release method using the low-pass filtered in-cylinder pressure signal gave a result 200-330

µs shorter than the other methods.

Flame luminosity is another method used by researchers for determining the start of

combustion. Heywood (1988) argues that the use of flame luminosity detectors as a means

to determine the start of combustion increases the potential for error. This is because the

first appearance of the flame occurs after the increase in pressure. However, a recent study

has argued that the first appearance of the flame coincides well with results from analysing

the net rate of heat release (Payri et al., 2012). Perhaps, with improving technology this

method is becoming more reliable. Flame luminosity sensors are, however, prohibitively

expensive for wide-spread practical use.

An early method for estimating ignition delay was proposed by Hardenberg and Hase

(1979). They developed an empirical relationship between the parameters which they deter-

mined had the most impact on ignition delay: mean piston speed (m/s), MPS; in-cylinder

temperature at the time of injection (K), T ; the compression ratio, rc; the polytropic index

of compression, n; the cetane number, CN ; and, the absolute charge-air pressure at the

time of injection (bar), P . Whilst this empirical relationship may not represent reality in

a modern engine and does not have the capacity to tell the analyst about any inter-cycle

variability, it does give insight into the effect of different engine parameters on the ignition

delay. In crank-angle degrees the empirical relationship as determined by Hardenberg and

Hase (1979) is:

ID = (0.36 + 0.22MPS) e
618840
CN+25( 1

RT
− 1

17190)+( 21.2
P−12.4)

0.063

, (6.2)

where, R is the universal gas constant (8.31434 J/mole). The polytropic index of com-

pression, n, and the compression ratio, rc, impact on the temperature and pressure of the

charge-air. Estimates of T and P can be obtained from the inlet manifold conditions (Hard-

enberg and Hase, 1979; Heywood, 1988).

T = Tir
n−1
c

P = Pir
n
c

Later work done by Prakash et al. (1999) extended this model to incorporate dual-fuel

operation of diesel engines.

Since the work done by Hardenberg and Hase, other estimators of ignition delay based on

engine parameters have been developed. Assanis et al. (2003) has extensively reviewed these
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and proposed their own method for estimating ignition delay. However, for experimentally

validating their ignition delay estimator, Assanis et al. (2003) compared their estimator to

measured values by taking the peak of the second derivative to be the start of combustion.

All of these approaches have practical difficulties or offer little, or no, information re-

garding cycle-by-cycle changes and hence do not allow for inter-cycle variability studies. In

this paper a methodology for determining the start of combustion is proposed that requires

no knowledge of difficult to estimate parameters such as heat loss to the walls and is still

accurate with noisy data. Using only the in-cylinder pressure signal a statistical modelling

approach is used to determine the start of combustion. A Bayesian approach to statisti-

cal modelling is used because it estimates the plausible range of parameter values (which

includes the start of combustion), given the data observed (Ellison, 2004). In contrast a

classical statistical analysis would provide the logical reverse: being estimates of the plau-

sibility of the data, under specific (null or alternative) hypothesis of the parameter values.

The latter would be better suited to confirmatory analyses where experimentalists wished

to confirm whether parameter values took on specific values in a new situation. In this

paper a new Bayesian modelling framework which provides posterior estimates of the start

of combustion is given and is implemented across 4000 consecutive cycles at various engine

loads to demonstrate its utility.

6.2 Experimental Configuration

Experiments were conducted at the QUT Biofuel Engine Research Facility (BERF) in June

2011. Table 6.1 contains the technical specifications of the engine and data acquisition

equipment. The engine was run at 2000 rpm on neat automotive diesel at full load (760 Nm)

and at three quarters (570 Nm) and half (380 Nm) of full load.

6.3 Experimental Data

Band-pass filtering was applied directly to the in-cylinder pressure signal, Figure 6.1 is an

example of the in-cylinder pressure signal, prior to digitising. This was achieved with a

two channel analogue Krohn-Hite model 3202 filter, by first passing the in-cylinder pressure

signal through a high-pass filter with a threshold of 4 kHz and then through a low-pass filter

with a threshold of 20 kHz. The high-pass threshold was set this close to the frequency of

interest, approximately 5-7 kHz, to minimise the potential impacts of knocking frequencies.

Experiments with the filter settings confirmed that at this threshold the frequency range of

interest was unaffected. The low-pass threshold was set to minimise the effects of the cross

talk from the diesel injection signal, approximately 28 kHz, whilst maintaining as much of

the integrity in the signal as possible.
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Engine Specifications
Make Cummins ISBe220 31
Capacity 5.9 `
Maximum power 162 kW at 2000 rpm
Maximum torque 820 Nm at 1500 rpm
Number of cylinders 6
Number of valves per cylinder 4
Compression ratio 17.3:1
Bore 102 mm
Stroke length 120 mm
Dynamometer Electronically controlled water

brake dynamometer
Injection system Common-rail
Data acquisition
Pressure transducer Kistler piezoelectric transducer

(6053CC60)
Analogue-to-digital converter Data Translation (DT9832)
Software National Instruments LabView
Sample rate 200 kHz
Sample time 4 minutes
Data collected In-cylinder pressure

Band-pass filtered in-cylinder pres-
sure (allowing 4-20 kHz)
Diesel injection timing
Crank-angle rotation information

Table 6.1: Engine and data acquisition specifications

Figure 6.2 shows an example of the band-pass filtered signal—it is taken from the same

cycle as the in-cylinder pressure trace shown in Figure 6.1. Because this band-pass filtering

took place whilst the signal was still in its analogue form, the dependent scale in Figure 6.2

is in Volts. An advantage of using the technique described is this paper to determine the

start of combustion is that it is unnecessary to calibrate the pressure signal. Hence, the

processing to convert from the unscaled differential signal to pressure has not been done;

from the perspective of the analysis, it would be an extraneous use of computation time.
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Figure 6.1: Pressure vs crank angle plot at 2000 rpm, full load on neat diesel fuel

358 360 362 364 366 368
Crank Angle (degrees)

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

Fi
lt

e
re

d
 P

re
ss

u
re

 S
ig

n
a
l 
(V

o
lt

s)

10−2

Figure 6.2: Band-pass filtered pressure signal at 2000 rpm, full load on neat diesel
fuel
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6.4 Determination of Ignition Delay

Ignition delay will be defined as being the time period between the start of diesel injection

and the start of combustion (Bodisco and Brown, 2013a). Therefore, in order to determine

the ignition delay it is important to obtain accurate knowledge of the diesel injection timing,

detailed in Section 6.4.1, and the start of combustion, detailed from Section 6.4.3. In the

engine setup under investigation in this paper nominal diesel injection timing was able to be

determined by directly interrogating the signal sent from the engine management system.

For this work, the start of combustion is determined using Bayesian modelling, described in

detail from Section 6.4.3. The Bayesian method described in this paper allows for cycle-by-

cycle results to be obtained without any need for cycle averaging.

6.4.1 Start of Diesel Injection – Estimating Injection Latency

Accurate knowledge of the start of fuel injection is important in a study involving ignition

delay; however, a common problem is a lack of easily obtainable information regarding

injector latency. In the engine setup used in this paper, nominal injection information is

obtained by directly interrogating the diesel injection signal sent from the engine management

system. Comparative ignition delay studies, such as in this paper, will generally be more

interested in the differences between test settings rather than absolute knowledge of ignition

delay. However, it is still advantageous to consider the injection latency to account for

cycle-to-cycle changes in the engine speed.

Figure 6.3 shows the diesel injection signal super-imposed over net rate of heat release

curves of the engine running with neat diesel fuel at full load and of the engine running

with cylinder one, where the pressure transducer is located, being motored, both at 2000

rpm. The point at which the two net rate of heat release curves deviate from each other will

be taken to be the point at which the actual diesel injection begins. Suh and Lee (2008)

showed in the results of their 2008 study of common-rail diesel injectors that for the injector

they investigated latencies as small as approximately 0.25 ms were normal. Similarly, in a

recent study Donkerbroek et al. (2011) showed using high speed imaging and by examining

a pressure trace of the rail pressure a 3.5 degree crank-angle latency between the injection

timing signal and the actual start of injection for their engine setup. In the present engine

setup an injection latency of 0.25 ms correlates exactly with the trough of the dip in the

net rate of heat release shown in Figure 6.3 and the point at which the two net rate of heat

release curves deviate. Therefore, it is assumed that the injector latency in this engine setup

is 0.25 ms.

Results of the Bayesian analysis shown later in Section 6.5 will be discussed relative to

each other; hence, precisely accurate determination of this value is not completely necessary.

However, slight changes in rpm from cycle-to-cycle will have a small impact on the number
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of crank angle degrees which occur in a given time period (i.e. the rate of change of engine

speed across 2 consecutive samples may not be precisely the same at each engine cycle during

a given test). Therefore, the more accurate the knowledge of the injector latency the better

the results will be and hence estimating this latency should not be overlooked.

356 358 360 362 364
Crank angle (degrees)

4

3

2

1

0

1

2

N
e
t 

R
a
te

 o
f 

H
e
a
t 

R
e
le

a
se

 (
J/
d
e
g
)

NRHR

NRHR (misfired)

Injection Signal

0.25 ms

Figure 6.3: Net rate of heat release: full load with neat diesel and misfired
compared to the diesel injection signal

6.4.2 Net Rate of Heat Release

Many authors determine the start of combustion by the analysis of cycle-averaged net rate of

heat release curves, such as in Figures 6.3–6.5 (Kouremenos et al., 1992; Rakopoulos et al.,

2007; Shehata, 2010; Tauzia et al., 2010). Inspection of Figure 6.3 reveals that the start of

combustion is at approximately 363.5 degrees crank angle—this result closely correlates to

the start of combustion resonance shown in Figure 6.2. However, even though the traditional

net rate of heat release method appears to work well, there are issues with the use of heat

release curves for the determination of ignition delay. A few of these issues include (Heywood,

1988; Brunt and Platts, 1999; Tauzia et al., 2010):

• the difficulty in accounting for mixture non-uniformity in the air/fuel ratio and in the

burned and unburned gas non-uniformity;

• the effect of crevice regions in the combustion chamber; and,
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• assuming the wrong rate of heat transfer, or no heat transfer, between the cylinder

charge and combustion chamber walls (especially with the addition of a ‘cooling’ ad-

ditive such as water, or a fumigated fuel in a dual-fuel engine).

Moreover, the calculation of the net rate of heat release relies on accurate knowledge of the

in-cylinder volume and in-cylinder pressure. In-cylinder volume is analytically determined

from crank angle data, although crank angle is directly measured there can be inaccuracies in

the calibration of top dead centre (TDC). Therefore, the determination of in-cylinder volume

is sensitive to the accurate determination of TDC. Figures 6.4 and 6.5 show the extent of

this sensitivity, Figure 6.5 is centred around the region of interest to give a clearer indicator

of the extent of difference each degree of offset from TDC makes in the calculation of net

rate of heat release.
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Figure 6.4: Net rate of heat release curves with the location of TDC displaced
±5 crank angle degrees
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Figure 6.5: Net rate of heat release curves with the location of TDC displaced
±5 crank angle degrees, for figure legend refer to Figure 6.4.

Lastly, the need to cycle average, to reduce noise, can potentially skew results if there

is a reasonable amount of inter-cycle variability. In the above examples running under

standard conditions this is not a large issue because of the engine’s repeatability from cycle-

to-cycle. However, if the engine is run under non-standard conditions, that result in even a

moderate amount of inter-cycle variability, this approach has the potential to be problematic.

Moreover, the need to cycle average also removes any possibility of exploring the inter-cycle

variation that may be present. Therefore, alternative methods should be explored if the

engine is run under non-standard conditions, or if the intention of the investigation is to

explore inter-cycle variability.

6.4.3 Combustion Resonance

Using combustion resonance to determine the start of combustion overcomes the issues out-

lined in Section 6.4.2. As the band-pass filtered in-cylinder pressure is in essence a directly

measured quantity, no assumptions or further calculations are required for its generation.

This means that combustion resonance can be used for the determination of the start of

combustion in any engine condition without concern about the aforementioned issues, par-

ticularly those related to post-processing of the in-cylinder pressure data. Work previously

done by Bodisco et al. (2012) showed that combustion resonance can be modelled using

Bayesian statistical modelling. However, their paper focused on the isolation of combustion
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resonance for the determination of in-cylinder parameters such as temperature and trapped

mass. This current work proposes to use a similar approach to determine the start of com-

bustion and, hence, the ignition delay.

For the purposes of this investigation we will qualitatively define the start of combustion

as being the point from which the band-pass filtered in-cylinder pressure signal ceases to

exhibit only noise-like behaviour and a strong resonance begins (Carlucci et al., 2006; Bodisco

and Brown, 2013a). Therefore, analysis to determine the start of combustion can easily be

undertaken manually (Bodisco and Brown, 2013a); however, in order to obtain statistically

stable results it would become very time consuming to analyse enough cycles, especially

when comparisons between multiple settings are desired. It is proposed that this problem

can be overcome with statistical modelling in a Bayesian framework; thus, automating the

process of determining the start of combustion. A similar approach has been undertaken by

Kim and Min (2008) which used wavelet transforms on the block vibration to determine the

start of combustion.

A basic statistical model of the signal in Figure 6.2 can be used in the determination of

the start of combustion. If the assumption that the combustion resonance is built from a

stationary frequency—whilst this is not true, over such a small time interval it is sufficient

for the purposes of this investigation, more complex models require more computation time

and will not significantly improve the accuracy of the result (Hickling et al., 1983; Ren

et al., 1999; Bodisco et al., 2012)—a very simple model can be used. The conceptual model

developed for the determination of the start of combustion is:

y = s(t) ∼ N(µ(t), τ)

µ(t) = H(t− δ)A sin

(
2π

λ
ωt+ φ

)
, (6.3)

where, s(t), the band-pass in-cylinder pressure signal (such as the example in Figure 6.2),

is assumed to be Normally distributed about some time varying mean, µ(t), with some

standard deviation, τ . The time varying mean, µ(t), is controlled by a step-function—µ is

zero before the change point defined by the parameter δ and when t > δ, µ is periodic with a

constant amplitude, A, sample rate, λ (200 kHz), and frequency, ω. Hence using this model,

the start of combustion can be determined by resolving the change point parameter, δ.

6.4.4 Statistical Model

A statistical approach can be used to estimate the parameters δ, A, ω and φ from data

tuplets {yi = s(ti), ti ∈ T }. We estimate these parameters within the Bayesian paradigm to

provide marginal posterior plausibility of parameter values based on the data observed e.g.

p(δ|y, t). The joint posterior distribution of all parameters is proportional to the product

of two terms: the likelihood of the data when parameters are known p(y|δ, A, ω, φ); and the
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priori distribution of all model parameters p(δ, A, ω, φ) (Gelman et al., 2003):

p(δ, A, ω, φ|y) ∝ p(y|δ, A, ω, φ)p(δ, A, ω, φ)

6.4.5 Priors

A Bayesian approach requires specification of prior plausibility of parameter values, as de-

fined in Section 6.4.4. If we assume that a priori, what is known about the plausible values of

each model parameter, is independent of what is known about all other parameters, then we

can factorise p(δ, A, ω, φ) = p(δ)p(A)p(ω)p(φ). Moreover, prior distributions should encom-

pass all plausible values a parameter can take (Gelman et al., 2003). In this investigation

somewhat informative priors will be utilised.

Uniform prior distributions can be appropriate in circumstances where there is insufficient

knowledge of the nature of the tendency of the model parameter—this is based on Laplace’s

rationale which has been termed the so-called ‘principle of insufficient reason’ (Gelman et al.,

2003). Applying the same logic a Uniform prior is assigned to φ. All that is known for a

certainty is that φ could take on any value between 0 and π, there is no further knowledge

about where in this distribution it potentially lies. Therefore, φ ∼ Unif(0, π).

Likewise, examination of the fast Fourier transform of the signal in Figure 6.2, shown in

Figure 6.6, indicates that the plausible region for the resonant frequency is between 4,500

Hz and 7000 Hz. Therefore, ω ∼ Unif(4500, 7000). In this case, it could be argued that a

Normal distribution would be a more appropriate choice. However, the Uniform distribution

was used because of its limiting nature; it was important that the MCMC did not attempt

to model a different frequency to the combustion resonance as this would likely result in an

undesired posterior distribution for the change point parameter, δ and hence an incorrect

calculation of the start of combustion.

The signal window, such as in Figure 6.2, was shifted based on an assumed ignition

delay so that the start of combustion would be approximately in the middle of the window.

Therefore, the start of combustion can be considered unlikely to occur towards the edges of

the time period. Here the time period extends for 200 samples (∼ 12 crank angle degrees),

so the furthest point from the edges occurs at the centre (at t = 100 samples). Therefore, in

choosing a prior for the change point parameter, δ, a Normal distribution is used to reflect

that our uncertainty, centred around the best estimate, behaves like a classical measurement

error distribution. By presuming that there is a 95% chance that the combustion time occurs

in the middle half of the time period (i.e. 50 ≤ t ≤ 150) a prior of δ ∼ N(100, 25) is obtained.

A common aspect of the band-pass filtered signals from this particular engine is that

the amplitude is about 0.04 Volts. It is important that the prior for this is reasonably

informative; it would not be appropriate if the model parameter, A, could be small enough

to simply model noise. Much the same, if the amplitude is too large then changes in the
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other model parameters are unlikely to make any significant difference to the model fit and

hence they may not converge, and if they do it may not be to the true value. A Normal

distribution has also been selected for A to keep it near to the 0.04 Volt estimate, but to

not be as restrictive as the Uniform distribution for the scenarios where a signal may have a

slightly higher or lower amplitude than is expected. The prior distribution does not need to

be central around the true value of the parameter as the information about the parameter in

the data is stronger (Gelman et al., 2003). Therefore, the prior is centred about a previous

Volt estimate: A ∼ N(0.04, 0.01).
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Figure 6.6: Fast Fourier transform of the band-pass filtered in-cylinder pressure
signal in Figure 6.2

6.4.6 Metropolis-Hastings Computational Algorithm

In order to estimate the posterior distribution of model parameters, we use a standard

Bayesian computational approach based on simulation rather than analytic computations.

The ergodic theorem ensures that Markov Chain Monte Carlo (MCMC) simulations will in

the long run provide a dependent (rather than independent) set of simulations from the pos-

terior distribution (Gelman et al., 2003). Implementing MCMC through the freely available

software package WinBUGS (Spiegelhalter et al., 1999) was not found to be computationally

fast enough to be feasible. The prepackage software approach was inappropriate mainly due

to an emphasis on exploring inter-cycle variability across thousands of consecutive cycles;

however, for this type of work it is an acceptable developmental platform.
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In situations, such as this, where the posterior cannot be analytically derived, a flexible

approach to computation is the Metropolis-Hastings algorithm—which is a special case of the

MCMC algorithm (Gelman et al., 2003). The Metropolis-Hastings algorithm cycles through

two steps.

1. Propose a candidate value of the parameter from an appropriate proposal distribution

θ∗ ∼ R(θ).

2. Accept this new proposed value with a probability that depends on its relative plausi-

bility under the posterior distribution, compared to the previous parameter value.

A generic Metropolis-Hastings approach to sampling is selected, where a new value of a

parameter is proposed from its full conditional distribution, based on a proposal distribution,

and then accepted or rejected using a probability of acceptance that is the minimum of unity

and the product of the ratio of proposal likelihoods and the ratio of posterior probabilities

evaluated at the old and new proposed value.

α = min

{
1,

R(θ∗)

R(θm−1)

p(θ∗|·)
p(θm−1|·)

}
where, m = 1, . . . ,M denotes the mth MCMC simulation from the chain, R(θ∗)

R(θm−1)
, the pro-

posal ratio, is selected to evaluate to unity and,

p(θ|·) = p(θ)p(y|θ; ·)

where, · denotes the full set of parameters {µt; δ, A, ω, φ} omitting the parameter of inter-

est, here generically denoted as θ. Therefore,

θm =

θ∗ with probability α

θm−1 otherwise.

Each candidate parameter, denoted as θ∗, is selected by a cyclic sampling strategy from

its conditional posterior distribution with the existing value of the parameter, θm−1, as the

mean (Gelman et al., 2003).

θ∗ ∼ N(θm−1, σθ)

Hence σθ acts as a tuning parameter, which determines how far the algorithm seeks for

candidate parameter values at each step. A large value of σθ promotes large steps but could

provide many wasted proposals. Conversely, a value of σθ that is too small promotes small

steps that may take longer to converge towards the true value, and may also induce high

cross-correlation of parameter values. Selection of the candidate parameter for δ is done
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similarly; however, instead of sampling from a Normal distribution a Uniform distribution

is used:

δ∗ ∼ Unif(δm−1 − n, δm−1 + n)

where, n defines the maximum possible deviation the candidate parameter for δ can have

from the existing value of δ—the candidate parameter is selected from the integers in Z that

fall within n units of δm−1. The use of a Uniform proposal distribution for δ is to ensure

broad exploration.

6.4.7 Simulation Results

After a suitable burn-in time (in this case 2000 iterations) model parameters are saved in an

array (in this case 200 values, every fifth value out of 1000 iterations) to create a posterior

density for each model parameter. Examination of the kernel density estimate (probability

density function) for each parameter, the posterior density, will not only yield the most

plausible value (taken to be the posterior mode), but also give the analyst an indication of

the uncertainty in the result (Rosenblatt, 1956; Parzen, 1962; Gelman et al., 2003). From

the analysis of the signal shown in Figure 6.2, it can be seen in Figure 6.7 that the most

plausible start of combustion timing is 363.97◦ with a 95% credible interval of [363.78, 364.14].

Similarly, the analysis also shows that the most plausible initial resonant frequency (Figure

6.8) is 6215 Hz with a 95% credible interval of [6202, 6233].
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Figure 6.7: Posterior density of the start of combustion, δ, of the band-pass
filtered in-cylinder pressure signal in Figure 6.2
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Figure 6.8: Posterior density of the combustion resonance, ω, of the band-pass
filtered in-cylinder pressure signal in Figure 6.2

Reconstructing the signal from the model allows the analyst to visually determine if the

model outputs are feasible. Figure 6.9 shows the signal in Figure 6.2 with a visualisation

of the model, as described in Equation 6.3. Parameter estimates for this cycle are shown

in Table 6.2. It can be visually seen that the model and the signal agree well, especially in

relation to the change point parameter. This is evident by how closely the model follows the

signal it was fitted to: the resonant frequency, ω, matches that of the signal and the periodic

part of the model begins at the same time as the combustion resonance.

Another outcome of this simulation is an estimate of the initial resonant frequency, ω—as

it is only fitting across a small section of the data the assumption of a stationary frequency

will not be significantly incorrect enough to produce a misleading result. In the case of

Figure 6.9, two periods of the combustion resonance are present, if it were much more than

this the assumption of a stationary frequency would fail and a misleading result may be

obtained. Therefore, the model described in this paper can be used effectively as a means of

determining the start of combustion and the initial resonant frequency.
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Variable Prior
Mean

Prior
StDev

Posterior
Mode

Posterior
StDev

A (Volts) 0.04 0.01 0.024 0.001
δ (◦ crank angle) 100

(362.34◦)
20
(≈1.52◦)

127
(363.97◦)

1
(0.05◦)

Uniform Prior Low High
ω (Hz) 4500 7000 6215 9
φ 0 π 2.92 0.03

Table 6.2: Model priors and parameter estimates of the band-pass filtered in-cylinder pressure
signal shown in Figures 6.2 and 6.9 based on the model described by Equation 6.3
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Figure 6.9: Model of the band-pass filtered in-cylinder pressure signal in Figure
6.2

6.5 Inter-cycle Variability

An important justification for using the analysis methodology described in the previous

section was to allow for cycle-by-cycle analysis of the data. As the Bayesian method is

reliable with noisy data the need to cycle average is removed and individual cycles can

be examined independently. Hence, the data can be investigated across large numbers of

consecutive cycles—the results shown in the section are from 4000 consecutive cycles (4

minutes of data). This investigation was performed on a standard desktop computer in
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C++ and the analysis took approximately 15 seconds per cycle to perform.

Ignition delay is influenced by the injection timing because of changes in the charge

air temperature and pressure (Heywood, 1988). The empirical relationship for estimating

ignition delay given by Hardenberg and Hase (1979) in Equation 6.2 shows the temperature

and pressure dependence at the time of injection. Therefore, no ignition delay study would

be complete without first examining the injection timing. Figure 6.10 shows the injection

timing—this data is presented in a histogram because of the discrete nature of the diesel

injection timing. The injection timing is controlled by the engine management system, in all

test cases the injection strategy was one a single sustained injection and combustion occurred

before the diesel injection was completed.

Advanced injection timing, such as exhibited by the engine under investigation, is com-

mon among modern diesel engines to mitigate harmful emission (Choi et al., 2005; Genzale

et al., 2009). Improved Emission control is achieved with advanced injection timing because

of an increase in premixed combustion and subsequent changes to in-cylinder pressure and

decreased in-cylinder temperature (Prabhakar and Boehman, 2012). Nitrogen oxides (NOx),

along with particulate matter, are a key emission from diesel engines. Excessive NOx for-

mation is normally related to high in-cylinder temperature and excess oxygen (Lavoie et al.,

1970) and is therefore directly influenced by the injection timing, injection pressure and the

amount of mixing prior to combustion, and hence the ignition delay.

Knowledge of the injection timing is determined from interrogating the diesel injector

signal and is corrected for injector latency, as explained in Section 6.4.1. At half load the

diesel injection timing is significantly later than at full and three quarter load. There is

more than a crank-angle degree difference between the start of diesel injection for half load

when compared with three quarter and full load. At half load injection typically occurs at

approximately 360.9 degrees crank-angle, whereas at three quarter load injection typically

occurs at approximately 359.7 crank-angle degrees and at full load injection typically occurs

at approximately 359.3 degrees crank-angle.

Figure 6.11 shows the combustion timing, δ. Similar to the injection timing shown in Fig-

ure 6.10, full and three quarter load commence combustion at a similar time, approximately

365 degrees crank-angle for three quarter load and approximately 364 degrees crank-angle

for full load, whereas the start of combustion for half load is much later at approximately 368

degrees crank-angle. Also worthy of noting is that, as the load is decreased the inter-cycle

variability of the diesel injection timing and the start of combustion is increased. This is

most likely an artifact of the stability of the in-cylinder temperature. At half load the inter-

cycle variability is considerably increased when compared to the higher loads, the inter-cycle

variability at full and three quarter load is very similar with only a fractional increase as the

load was decreased. This is also clearly seen in the ignition delay results, shown in Figure

6.12. The ignition delay at half load is approximately two degrees crank-angle longer than at
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full and three quarter loads, and significantly less stable. Both Figures 6.11 and 6.12 show

that on some cycles at half load combustion occurs much later than the rest of the cycles.

This may be caused by a low frequency (period of approximately 50 s) fluctuation in the

in-cylinder temperature as a result of instabilities in the dynamometer control system at this

operating condition. Including these cycles which are exhibiting unusual behaviour does not

significantly change the calculation of ignition delay—the modal, mean and median ignition

delay at half load is 6.9 crank-angle degrees, at three quarter load the ignition delay is 5.2

crank-angle degrees and at full load the ignition delay is 4.8 crank-angle degrees.
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Figure 6.10: Diesel injection timing at 2000 rpm
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Figure 6.11: Start of combustion as determined from the combustion resonance,
parameter δ, at 2000 rpm
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Figure 6.12: Ignition delay as determined from the combustion resonance at 2000
rpm

T. Bodisco (2013) PhD Thesis – In-Cylinder Pressure and Inter-Cycle Variability Analysis for a Compression Ignition Engine



116 A Bayesian approach to the determination of ignition delay

6.6 Comparison to Net Rate of Heat Release

Traditionally the start of combustion was determined by examining a net rate of heat release

plot Heywood (1988)—the start of combustion is usually characterised to be the point at

which the net rate of heat release becomes positive. Figure 6.13 shows a net rate of heat

release plot generated from the average of 4000 engine cycles at 2000 rpm and full load using

Equation 6.1. On the opposing axis of Figure 6.13 is the start of combustion distribution

shown in Figure 6.11, generated from the same 4000 engine cycles as the net rate of heat

release. Good agreement between the two methods can be seen; the start of combustion,

as determined by the Bayesian analysis, lines up well with the start of the increase in net

rate of heat release at approximately 364 degrees crank-angle. Also of note in Figure 6.13 is

that the start of combustion distribution, from the Bayesian analysis described in this paper,

lines up with the start of the increase in the net rate of heat release, rather than when the

net rate of heat release becomes positive.

 

Figure 6.13: Net rate of heat release and start of combustion as determined from
the combustion resonance, parameter δ, at full load

6.7 Conclusion

This paper has introduced a powerful new method for determining ignition delay. In contrast

to standard techniques this method uses combustion resonance, in the form of band-pass
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filtered in-cylinder pressure, and Bayesian statistical modelling to accurately resolve the

start of combustion. It was also demonstrated that this method allows for true inter-cycle

variability studies and does not suffer from some of the issues surrounding the use of in-

cylinder pressure directly to determine the start of combustion. The results shown in this

paper demonstrate the utility of this technique by examining 4000 consecutive cycles at 3

different engine loads: full, three quarter and half loads. At half load the ignition delay was

much longer than at the higher loads and the inter-cycle variability was greatly increased

when compared to the higher loads.

The Bayesian modelling method shown in this paper for determining the start of com-

bustion uses in-cylinder pressure. In-cylinder pressure methods are optimal because they are

inexpensive, when compared to optical sensors; also, using a measured engine parameter that

is directly related to the engine work for a study into ignition delay makes intuitive sense.

Moreover, this is the only in-cylinder pressure technique currently available for determin-

ing ignition delay that does not involve differentiation. Differentiating noisy data decreases

the signal-to-noise ratio and therefore complicates sensitive analysis such as this. Further,

Bayesian modelling requires only a small number of data points to be effective and is not

adversely effected by noise. Therefore, the methodology shown in this paper for determining

the start of combustion can be used to accurately resolve the ignition delay for individual

cycles, which is important if inter-cycle variability studies are required.
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Abstract

An experimental study has been performed to investigate the ignition delay of a modern

heavy-duty common-rail diesel engine run with fumigated ethanol substitutions up to 40% on

an energy basis. The ignition delay was determined through the use of statistical modelling

in a Bayesian framework—this framework allows for the accurate determination of the start

of combustion from single consecutive cycles and does not require any differentiation of the

in-cylinder pressure signal. At full load the ignition delay has been shown to decrease with

increasing ethanol substitutions and evidence of combustion with high ethanol substitutions

prior to diesel injection have also been shown experimentally and by modelling. Whereas,

at half load increasing ethanol substitutions have increased the ignition delay. A threshold

absolute air to fuel ratio (mole basis) of above ∼110 for consistent operation has been

determined from the inter-cycle variability of the ignition delay, a result that agrees well

with previous research of other in-cylinder parameters and further highlights the correlation

between the air to fuel ratio and inter-cycle variability.

Numerical modelling to investigate the sensitivity of ethanol combustion has also been

performed. It has been shown that ethanol combustion is sensitive to the initial air temper-

ature around the feasible operating conditions of the engine. Moreover, a negative temper-

ature coefficient region of approximately 900–1050 K (the approximate temperature at fuel
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injection) has been shown with for n-heptane and n-heptane/ethanol blends in the numerical

modelling. A consequence of this is that the dominate effect influencing the ignition delay

under increasing ethanol substitutions may rather be from an increase in chemical reactions

and not from in-cylinder temperature. Further investigation revealed that the chemical re-

actions at low ethanol substitutions are different compared to the high (> 20%) ethanol

substitutions.
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7.1 Introduction

In the mid-term to mitigate fossil fuel usage in diesel engines, the dual-fuel approach, partic-

ularly with ethanol, has been of research interest for decades (Surawski et al., 2012; Boretti,

2012; Chauhan et al., 2011; Surawski et al., 2010; Cheng et al., 2008; Sahin and Durgun,

2007; Selim, 2005; Abu-Qudais et al., 2000; Alperstein et al., 1958). This research area exists

because of the serious need to move toward more sustainable fuels (Shafiee and Topal, 2009;

Sahoo et al., 2009; Skelton, 2007; Bo et al., 2006). However, in the current literature there

is very little experimental published research on dual-fuel operation of heavy-duty common-

rail diesel engines, such as would be found in common practical applications (Bodisco and

Brown, 2013a).

Ignition delay is an important parameter in alternative fuel studies owing to its correlation

to emission (Valentino et al., 2012; Abu-Qudais et al., 2000; Cheng et al., 2008). An increase

in ignition delay is an indicator of a lower temperature throughout the cycle, causing a

reduced CO oxidation reaction rate (Abu-Qudais et al., 2000). Moreover, a longer ignition

delay can aid mixing prior to combustion, improving NOx and smoke emission (Valentino

et al., 2012). Whilst some studies have highlighted the importance of investigating ignition

delay, there has been limited investigation on the inter-cycle variability of ignition delay,

with the notable exception of the engine research group at the National Technical University

of Athens (Rakopoulos et al., 2008, 2010; Kouremenos et al., 1992), and limited investigation

into new techniques to improve the accuracy of its calculation (Bodisco et al., 2013b).

The engine research group at the National Technical University of Athens have investi-

gated numerous alternative fuels, including: methane, methanol and dodecane (Rakopoulos

and Kyritsis, 2001), vegetable oil (Rakopoulos et al., 2006), ethanol (Rakopoulos et al., 2008)

and bio-diesels (Rakopoulos et al., 2010; Rakopoulos, 2012). They have also investigated us-

ing supplementary diesel and gasoline as a fumigated fuel (Kouremenos et al., 1989, 1990).

However, this work was all performed on a low power naturally aspirated single-cylinder en-

gine (in their investigation high load corresponds to a brake mean effective pressure (BMEP)

of 5.37 bar). It should be noted that alternative fuel research at the National Technical

University of Athens has not been limited to the single-cylinder engine, but has also been

performed on a heavy-duty, turbo-charged, direct injection six-cylinder engine (Rakopoulos

et al., 2011).

Common-rail engines tend to have later injection when compared to their direct (me-

chanical) injection counter-parts. Subsequently, this later injection has an effect on the

performance and emission output of the engine—in dual-fuel operation with ethanol this has

a significant effect on the inter-cycle variability (Bodisco and Brown, 2013a). The current

literature, which is focused on direct (mechanical) injection diesel engines, suggests that

fumigated ethanol causes longer ignition delays owing to the higher specific heat capacity

of ethanol, when compared to the charge-air without ethanol (Bodisco and Brown, 2013a).
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This results in the charge-air having a lower temperature, the so-called ‘cooling effect’ of

ethanol. Moreover, the significantly higher injection pressure, with common-rail engines,

enhances the atomisation and fuel penetration (Bruneaux, 2001); hence, higher injection

pressures cause more homogeneous combustion and reduced ignition delay times.

Rothamer and Murphy (2012) compared the six commonly used in-cylinder pressure

methods of determining ignition delay in a recent study. The six methods compared were:

1. location of 50% of pressure rise due to premixed burn combustion;

2. extrapolation of the peak slope of pressure rise due to combustion to the zero crossing

point;

3. location of the first peak of the second derivative of the pressure signal;

4. location of the first peak of the third derivative of the pressure signal;

5. location of 10% of the maximum heat release rate in the premixed burn; and,

6. a repeat of (5) using a low-pass (threshold 2000 Hz) filtered in-cylinder pressure signal.

They noted that out of these methods the most reliable were ones that required the least

differentiation—differentiating data increases the noise. However, all of the in-cylinder meth-

ods tested by Rothamer and Murphy (2012) required some form of differentiation; whereas,

the method employed in this work requires no differentiation (Bodisco et al., 2013b). Also of

note, the ignition delay calculated with the low-pass filtered in-cylinder pressure signal was

200-330 µs shorter than the other methods.

In a study by Rodriguez et al. (2011) to investigate a predictive correlation for the ignition

delay period for biodiesels, specifically palm oil and rapeseed oil, found that the inter-cycle

variation in ignition delay for their engine was as great as 2.2%—this value is similar to that

reported by Assanis et al. (2003), who found an inter-cycle variation of 2%. However, the

representative values reported in their work were based on the analysis of the average of 50

consecutive in-cylinder pressure cycles. They also argue that in-cylinder pressure analysis

for the determination of ignition delay is preferable to other methods, particularly those

utilising luminosity detectors, as in-cylinder pressure changes are often detectable prior to

other indicators of combustion (Heywood, 1988; Rodriguez et al., 2011).

A promising method for determining the start of combustion is with the use of vibration

or acoustic emission signals (Chiavola et al., 2010; Arnone et al., 2009; Carlucci et al., 2006).

Even in constant volume bombs there is good agreement between the sudden increase in

pressure and the mechanical vibration (Reyes et al., 2012). The technique for determining

the start of combustion with a vibration signal is to simply identify the sharp onset of the

mechanical vibration. In a practical application, the use of an accelerometer is a cheap

alternative to the more expensive in-cylinder pressure transducer. However, as the engine
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setup in this current work has been undertaken on has an in-cylinder pressure transducer,

details in Section 7.2, the use of vibration signals has not been explored. Carlucci et al.

(2006) has argued that the high-pass filtered in-cylinder pressure signal is analogous to the

vibration signal—the start of combustion results shown in this work are determined through

the use of high-pass filtered in-cylinder pressure signals and are therefore assumed to match

those that could have been obtained with vibration signals.

Recent work by Bodisco et al. (2013a; 2013b) has shown the use of high-pass filtered in-

cylinder pressure signals as a means for determining the start of combustion in a heavy-duty

diesel engine. The current work will explore the statistical modelling technique employed in

Bodisco et al. (2013b) to investigate the inter-cycle variability of the start of combustion,

and hence ignition delay, in a heavy-duty Cummins common-rail multi-cylinder diesel engine

operated with fumigated ethanol up to 40% by energy. In the earlier work (Bodisco and

Brown, 2013a), it was shown that at high ethanol substitutions and high loads, hence higher

in-cylinder temperatures, that the fumigated ethanol undergoes auto-ignition and can reduce

ignition delay. However, that study was limited to 200 consecutive cycles owing to the

analysis tool used.

The conclusion to the ignition delay portion of the study in Chapter 5 was left uncertain.

The preliminary analysis showed a contradicting result with the full load data. It was shown

that the nominal ignition delay for the 40% ethanol substitution was longer than that of the

30% substitution, going against the trend showing a systematic decrease in ignition delay

with increasing ethanol substitutions. However, it was left uncertain if this result was true

or an artifact of the low number of cycles analysed. The limited number of analysed cycles

also prohibited an investigation into the relationship between the inter-cycle variability and

the air to fuel ratio. Moreover, it was left unknown if auto-ignition occurred prior to diesel

injection at the high ethanol substitutions because of limited knowledge related to the actual

fuel injection timing.

This chapter will explore the same data set as Chapter 5 using the statistical techniques

introduced in Chapter 6 to further investigate the ignition delay in an ethanol fumigated

common-rail diesel engine to validate the results available in Chapter 5. In this study the

diesel fuel injection timing will be determined by directly interrogating the electronic fuel

injection signal and then correcting for injector lag (Bodisco et al., 2013b). Injector lag is

the time period between the injector being excited and the actual fuel injection. Numerical

modelling will also be employed to investigate the sensitivity of auto-ignition in ethanol-only

combustion to the initial air temperature. As an extension, the sensitivity to auto-ignition of

n-heptane and n-heptane/blends at various injection temperatures will also be investigated.
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7.2 Experimental Configuration

Experiments were conducted on a modern turbo-charged, 5.9 `, inline 6-cylinder Cummins

diesel engine (ISBe220 31) with common rail injection at the QUT Biofuel Engine Research

Facility (BERF). For detailed engine specifications, including relevant results, refer to cor-

responding Chapters 5 and 6. Moreover, the results shown in this paper are from the same

data set described in Chapter 5.

As described in Chapter 5, the data collected was in-cylinder pressure, band-pass filtered

in-cylinder pressure (allowing 4-20 kHz, both pressure signals collected as a differential volt-

age signal), diesel injection timing and degrees of crank-angle rotation information. The

engine was run at 2000 rpm on neat automotive diesel and with ethanol fumigation sub-

stitutions of 10%, 20%, 30%, and 40% on an energy basis at full load (760 Nm) and at

three quarters (570 Nm) and half (380 Nm) of full load. Ethanol fumigation was achieved

by directly introducing the ethanol as a vapour into the air in-take at the inlet manifold

after the turbocharger—a detailed schematic of the ethanol fumigation system, along with

a schematic of the data acquisition system, is available in Chapter 5.

7.3 Terminology and Abbreviations

DXXXEYYY DXXXEYYY represents the
nominal XXX% of diesel fuel by
energy and the nominal YYY%
substitution of ethanol by energy

Neat diesel Neat diesel refers to the case
where the engine is run on diesel
fuel only, no ethanol substitution

EMS Engine management system
NRHR Net rate of heat release
Kernel density
estimate

An estimation of the probability
density function

TDC Top dead centre (0 and 360 crank-
angle degrees)

COV Coefficient of Variation – stan-
dard deviation normalised by the
mean

7.4 Ignition Delay

For this work the ignition delay will be defined as the period from the start of diesel fuel

injection until the time that combustion commences (Bodisco et al., 2013b)—the combustion
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timing will be determined by resolving the time at which the combustion chamber resonance

begins (Bodisco and Brown, 2013a; Bodisco et al., 2013b). In the methodology shown in

Chapter 6 the band-pass filtered in-cylinder pressure signal, example shown in Figure 7.1, is

modelled with a statistical model in a Bayesian framework. The conceptual model employed

in Chapter 6 is:

y = s(t) ∼ N(µ(t), σ)

µ(t) = H(t− δ)A sin

(
2π

λ
ωt+ φ

)
, (7.1)

where, the band-pass filtered in-cylinder pressure signal, s(t), is modelled as a Normal dis-

tribution with time varying mean, µ(t), and standard deviation, σ. The model parameter,

δ, acts as a change point, when t is less than δ, µ is zero and when t is greater than δ, µ

is a basic periodic function with amplitude A, frequency ω and phase shift φ. Therefore,

the change point parameter, δ, defines the start of combustion and resolving this model

parameter allows for the determination of ignition delay. The fraction 2π
λ

is a constant where

λ is the sample-rate in Hz (λ = 200, 000 Hz); hence, the resolved distribution for ω is also

in Hz. For detailed information on the model parameter priors and model implementation

refer to Chapter 6. Individual ignition delay results are assumed to be accurate within 0.2

crank angle degrees.
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Figure 7.1: Band-pass filtered pressure signal at 2000 rpm, full load on neat diesel
fuel
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7.5 Results

For each of these experiments the data was collected for four minutes after a suitable period

of time had elapsed to ensure data integrity—engine stability was determined by monitoring

the carbon monoxide output. At 2000 rpm, four minutes of data corresponds to 4000 cycles.

Further, in this study to gain a true perspective of the inter-cycle variability all 4000 cycles

in each data set were analysed consecutively.

Following the convention set out in Chapter 5, the results here will be grouped by engine

load and will be presented beginning with full load. In-cylinder temperature and pressure are

dependent upon load; therefore, for an investigation focusing on ignition delay it is sensible

to segregate the results by load. Further, ethanol substitutions are done on a percentage

energy basis; for example, a 30% ethanol substitution at one load is not equivalent to a 30%

ethanol substitution at another load—in this paper the named substitutions are nominal

values only, see Table 7.1. The results are shown as kernel density estimates to allow for

visual representation of the inter-cycle variability. A kernel density estimate is an estimation

of the probability density function, therefore the area under the kernel density estimate is 1.

Load Nominal
ethanol
substitution

Diesel
reduc-
tion

Diesel
energy

Ethanol
energy

Air fuel
ratio
(diesel +
ethanol)

Air fuel
ratio
(diesel +
ethanol)
stoichio-
metric

Air fuel
ratio
(ethanol
only)∗

D100E000% 0% 100% 0% 151.45 84.49 -
D90E010% 10.3% 92.1% 7.9% 114.24 61.26 345.27

Full D080E020% 21.1% 80.0% 20.0% 78.88 43.08 133.74
D070E030% 29.3% 71.3% 28.7% 64.01 35.43 91.61
D060E040% 38.1% 66.1% 33.9% 60.96 32.05 81.62
D050E050%∗∗ 51.4% 51.09% 48.91% 47.11 25.03 55.63
D100E000% 0% 100% 0% 187.81 84.49 -
D090E010% 9.2% 94.0% 6.0% 153.84 65.70 574.68

Three D080E020% 18.1% 81.7% 18.3% 100.306 44.94 178.05
Quarters D070E030% 26.8% 71.1% 28.9% 75.1611 35.26 107.20

D060E040% 36.2% 65.9% 34.1% 68.86 31.90 91.92
D100E000% 0% 100% 0% 221.85 84.49 -
D090E010% 6.8% 93.9% 6.1% 171.29 65.42 630.52

Half D080E020% 15.9% 68.3% 31.7% 108.92 43.36 185.96
D070E030% 26.1% 66.8% 33.2% 76.05 32.41 102.53
D060E040% 32.8% 57.2% 42.8% 60.34 27.51 74.34

∗ Air fuel ratio for stoichiometric ethanol combustion = 14.28
∗∗ Inferred result

Table 7.1: Ethanol energy substitutions at each test setting

7.5.1 Full Load Results

Figure 7.2 shows the diesel injection timing at full load—the diesel injection timing shown

in this figure, and subsequent figures, has been corrected for injector lag and is therefore

assumed to represent the most plausible actual diesel injection timing (Bodisco et al., 2013b).
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Injector lag is the time period between the injector being excited and the actual fuel injection.

Of note in this figure is the systematic increase in the diesel injection timing as the ethanol

substitution increases, with a marked increase for the 40% substitution case.

Using the statistical model developed in Chapter 6, Equation 7.1, the start of combustion

was determined, shown in Figure 7.3. The only truly unimodal distribution is for the neat

diesel case, showing a start of combustion consistent at ∼364 crank-angle degrees. At a

10% ethanol substitution, the distribution is bimodal with modes directly either side of the

neat diesel case, with the most predominate mode showing that combustion generally occurs

slightly later than under the neat diesel case, the two modes are approximately 0.7 crank-

angle degrees apart, less than half a degree each side of the neat diesel case. Following the

trend, at the 20% ethanol substitution the most predominate combustion timing occurs later

than in both the neat diesel case and the 10% ethanol substitution case. Furthermore, some

cycles show a significant decrease in the combustion timing, this decrease is as great as 2

crank-angle degrees lower than the neat diesel case.

Most interestingly, however, are the results for the 30% and the 40% ethanol substitu-

tions. At these high substitutions a significant increase in inter-cycle variability is observed,

as is significantly earlier combustion timing. The 30% ethanol substitution case exhibits

the greatest amount of inter-cycle variability and shows combustion timings both later and

earlier than any other case. Confirming the result obtained in Chapter 5.

The ignition delay, shown in Figure 7.4, for the neat diesel case and the 10% and 20%

ethanol substitutions all exhibit the same predominate mode, ∼5 crank-angle degrees. Ev-

idence that these low substitutions, in general, have only a small effect on ignition delay.

However, the bimodal features remain and indicate that combustion occurs earlier in some

cycles.

In both the 30% and 40% ethanol substitutions there is evidence of combustion prior to

diesel injection (denoted as negative ignition delay in Figure 7.4). The onset of combustion

occurs as early as 3 crank-angle degrees before diesel injection in some cycles. However, in

most cycles combustion occurs after diesel injection, in the 40% ethanol substitution case the

most frequent combustion timing occurs within a crank-angle degree after diesel injection.

The timing for the 30% substitution case is fairly uniform across -3 to 6 crank-angle degrees

from diesel injection. Moreover, the inter-cycle variability in the 30% and 40% ethanol

substitutions are very large when compared with neat diesel—standard deviations 17.7 and

10.8 times higher, respectively.
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Figure 7.2: Diesel injection timing, full load
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Figure 7.3: Start of combustion, full load
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Figure 7.4: Ignition delay, full load

7.5.2 Three Quarter Load Results

Much the same as the full load diesel injection timing results, shown in Figure 7.2, the three

quarter load diesel injection timing results, shown in Figure 7.5, show a systematic increase in

diesel injection timing. However, in this case the difference between each setting is typically

much larger, approximately a half a crank-angle degree increase in diesel injection timing

per 10% ethanol substitution increase. The most extreme case, 40% ethanol substitution,

has a 1.5 crank-angle degree increase in diesel injection timing.

Figure 7.6 shows the start of combustion for three quarter load. A systematic increase in

the combustion timing is evident from neat diesel to the 30% ethanol substitution case. The

neat diesel and the 10% and 20% ethanol substitution cases all have unimodal distributions

and are not showing any significant amount of inter-cycle variability. Whilst the 30% ethanol

substitution is predominately showing later combustion than the neat diesel case, there are

some cycles where the combustion timing is earlier. Also, the combustion timing distribution

for the 30% ethanol substitution is quite multimodal. Much like the 30% and 40% ethanol

substitutions at full load, shown in Figure 7.3, the 40% ethanol substitution at three quarter

load is exhibiting a large amount of inter-cycle variability with combustion timings ranging

from 6 crank-angle degrees earlier to 3 crank-angle degrees later than the neat diesel case.

Most of the increase in combustion timing from the neat diesel case to the 30% ethanol

substitution case is explained by the advancing diesel injection timing. This is evident by the
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similar ignition delay, shown in Figure 7.7, the predominate mode for all the cases at three

quarter load is approximately 5 crank-angle degrees. However, combustion is commencing

in the 40% ethanol substitution from as early as 2 degrees before diesel injection and as late

as 7 degrees after in a comparatively uniform distribution; however, it is slightly bi-modal.
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Figure 7.5: Diesel injection timing, three quarter load
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Figure 7.6: Start of combustion, three quarter load
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Figure 7.7: Ignition delay, three quarter load

7.5.3 Half Load Results

Similar to the full load results, the diesel injection timing at half load follows an approximate

0.2 crank-angle degree increase per 10% ethanol substitution increase, shown in Figure 7.8.

Moreover, throughout all of the tested load settings the EMS increased the diesel injection

timing as the ethanol substitutions were increased. Also, at each test setting, at all loads and

ethanol substitutions, the diesel injection timing had a range of approximately 0.3 crank-

angle degrees.

Figure 7.9 shows a systematic advancing of the start of combustion timing with increasing

ethanol substitutions. With the exception of the 40% substitution case, the most extreme

case, this advanced start of combustion can be explained by the advancing diesel injection

timing. The 40% ethanol substitution case is bimodal with the larger peak occurring sig-

nificantly later, approximately two crank angle degrees, than the lower substitutions. This

trend is clearly visible in Figure 7.10. At half load the effect of the 40% ethanol substitution

is that of the ‘cooling’ effect described in the literature in older engines (Bodisco and Brown,

2013a).

The difference in inter-cycle variability between the ethanol substitution settings at half

load is minimal, except at the 40% substitution case, shown in Figures 7.9 and 7.10. However,

at the lower substitutions the inter-cycle variability at half load is greater than that at higher
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loads. This is most likely an artifact of the engines’ dynamometer stability at this load rather

than some underlying phenomena.
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Figure 7.8: Diesel injection timing, half load
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Figure 7.9: Start of combustion, half load
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Figure 7.10: Ignition delay, half load

7.6 Air to Fuel Ratio

Chapter 5 highlighted the correlation between inter-cycle variability and the absolute air

to fuel ratio on a mole basis. For the engine described it was shown that the inter-cycle

variability increased with air to fuel ratio’s less than 110 and significantly increased with air

to fuel ratios less than 80. The parameters of interest in this study were: maximum rate of

pressure rise, peak pressure and indicated mean effective pressure.

Figure 7.11 shows the standard deviation of the ignition delay with respect to the absolute

air to fuel ratio. A similar trend to that shown in Chapter 5 with maximum rate of pressure

rise, peak pressure and indicated mean effective pressure is evident. At air to fuel ratios less

than 110 a significant increase in inter-cycle variability is present for the full load and three

quarter load cases.

In contrast to the earlier results (Bodisco and Brown, 2013a) where the standard deviation

was a better measure of inter-cycle variability, in the case of ignition delay the coefficient

of variation (COV) is shown to give more meaningful results. A comparison between the

results shown in Figures 7.11 and 7.12 shows that the data collapses better using the COV

of ignition delay instead of the standard deviation of ignition delay. This is explained by

the opposing trends in ignition delay at the different loads. At full load the ignition delay

decreases with increasing ethanol substitutions (decreasing air to fuel ratios); whereas, at
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half load the ignition delay increases with increasing ethanol substitutions, shown in Figure

7.13. Furthermore, using the COV corrects the decrease shown in Figure 7.11 at full loads

lowest air to fuel ratio. Also at the full load and three quarter load cases, the COV values are

very similar with respect to the air to fuel ratios, particularly at air to fuel ratios less than 110

where the engine’s performance is impaired from the increase in ethanol substitution. It is

also worth noting that at air to fuel ratios greater than 110 that all of the test settings present

a similar value for the COV, indicating minimal inter-cycle variability with the introduction

of ethanol before a threshold that is well described by the air to fuel ratio.

Figure 7.13 also shows that the ignition delay increases as the engine load decreases. This

relationship is primarily a result of a decrease in residual in-cylinder temperature at the time

of fuel injection—at lower loads each cycle has less heat release because of a decrease in fuel

consumption. The engine under investigation also has variable rail pressure, at lower loads

the rail pressure is not as high which will result in increased ignition delay times.

The neat diesel case at half load gives a contradicting result—this is true even with the

other in-cylinder parameters explored in Chapter 5. An environment that is too lean can

have a negative impact on combustion, causing increases in ignition delay (Saleh, 2011).

Therefore, the increase in the inter-cycle variability at half load is most likely attributable

to the combustion environment being too lean. Note that the stoichiometric air to fuel ratio

(mole basis) for the diesel-only case was 84.49.
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Figure 7.11: Standard Deviation of the Ignition Delay Vs the Air to Fuel Ratio
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Figure 7.12: Coefficient of Variation of the Ignition Delay Vs the Air to Fuel
Ratio
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Figure 7.13: Ignition Delay Vs the Air to Fuel Ratio
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7.7 Numerical Modelling

Presented here are the results of numerical modelling to investigate the sensitivity of ethanol

combustion. The numerical simulations are performed with the in-house program HOMREA

(HOMogeneous REActor) (Maas and Warnatz, 1988) which allows the simulation of systems

such as: homogeneous charge compression ignition (HCCI) engines or rapid compression

machines (RCM), taking into account detailed chemical kinetics. Setting initial conditions,

stroke length, bore, compression ratio, inlet air temperature, pressure, volume and mixture

composition, it is possible to calculate the temporal development of temperature, pressure

and the reaction species occurring in the reaction mechanism (Schubert et al., 2005; Warnatz

et al., 2001). All simulations are based on the primary reference fuel (PRF) mechanism from

Curran et al. (2002)—the mechanism includes more than 1000 species and 10000 reactions.

The chosen mechanism also includes next to the primary reference fuels (iso-octane and n-

heptane), toluene and ethanol. In all simulations, an engine cycle with a homogeneous load

is simulated in which:

• an engine volume curve is set as a temporal constraint;

• initial pressures are set to correspond to the absolute experimental boost pressure: 195

kPa (half load), 245 kPa (three quarter load) and 272 kPa (full load); and,

• the parameters of the engine used in the experimental study are set as initial conditions.

Owing to software limitations, phenomena such as heat loss to the walls and piston blow-by

have not been taken into account with this simulation. A homogenous air-ethanol mixture

can be safely assumed because of the long mixing time as a consequence of injecting the

ethanol into the intake manifold directly after the turbocharger into the intake airflow.

In a preliminary investigation into ethanol-only combustion, using the HOMREA soft-

ware, it was found that a stoichiometric mixture with an initial pressure of 272 kPa and

initial temperature of 47◦C (to match the experimental conditions at full load) yielded no

ignition; however, the software did show evidence that the ethanol was starting to be con-

sumed in chemical reactions. Owing to the relatively high octane and low cetane values of

ethanol, ignition can be complicated, or avoided, especially at low inlet air temperatures.

It was shown in Chapter 5, from an experiment that performed ethanol-only combustion,

that in a modern diesel engine ethanol was able to auto-ignite. This was achieved by estab-

lishing combustion with a 50% by energy ethanol substitution at full load, 2000 rpm and

then shutting off the diesel supply to cylinder one and monitoring the in-cylinder pressure.

However, the indicated work output from that cylinder (at a constant engine speed of 2000

rpm) progressively dropped off, indicating that there was potentially a sensitivity to the

initial temperature in the combustion chamber—assuming that all other initial conditions

must have remained the same. To investigate the sensitivity to the initial temperature, the
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engine condition has been simulated using a stoichiometric air-ethanol mixture with increas-

ing initial inlet air temperatures. Inlet air temperatures starting at 320 K were tested at 1 K

intervals. Figure 7.14 shows the results from 391 K to 400 K. It can clearly be seen that there

is great sensitivity to the initial inlet air temperature around the feasible experimental initial

conditions. Hence, Figure 7.14 validates the claim made that the negative and significantly

shorter ignition delay shown in Chapter 5 and Figures 7.4 and 7.7 was likely impart due to

the auto-ignition of ethanol.
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Figure 7.14: Numerical simulation results for increasing inlet air temperatures,
simulating the experimental engine condition for full load, 2000 rpm.

A challenge to auto-ignition in a compression ignition engine is the short time period at

high pressure and temperature. If ignition has not occurred before the in-cylinder volume,

and hence the temperature and pressure, decrease the chemical reactions may freeze. Cancino

et al. (2011) have shown that for stoichiometric air-ethanol mixtures and pressures up to

50,000 kPa that temperatures above 850 K are necessary for auto-ignition, especially if the

ignition delay time is to be less than 3 ms (comparable to the time taken from -18◦ to 18◦

crank angle at 2000 rpm).

Saisirirat et al. (2009) show a negative temperature coefficient (NTC) region between

630 K and 925 K for n-heptane/ethanol blends in a simulated HCCI engine. They concluded

from this that the chemical reactions have a greater effect on the ignition delay than the tem-

perature history in HCCI combustion. Similar results have been found in this work, showing
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a NTC region of approximately 900–1050 K for n-heptane and n-heptane/ethanol blends

using the HOMREA software, shown in Figure 7.15, using initial conditions representative

of the engine under investigation. As a surrogate fuel, n-heptane is appropriate because

it has a similar cetane number to automotive diesel fuel and hence ignition characteristics

(Curran et al., 1998; Saisirirat et al., 2011).
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Figure 7.15: Ignition delay times with varying initial temperatures showing the
negative temperature coefficient region.

In the experiments, the final in-cylinder temperature, after compression, lies in this NTC

region shown with the n-heptane/ethanol blends simulations. Therefore at the higher loads,

the dominate effect influencing the ignition delay may be that of the increased chemical

reactions and not that of the increased in-cylinder temperature. In this case the shorter ig-

nition delay times, with the high substitutions, could be explained by the increased chemical

reactions with ethanol prior to the diesel injection.

Complete reaction mechanisms for hydrocarbons normally consist of thousands of ele-

mentary reactions. To determine which reactions have the greatest influence on combustion

two different methods can be used: sensitivity analysis which identifies the rate limiting

reaction steps and reaction flow analysis which determines the characteristic reaction paths

(Warnatz et al., 2006).

A sensitivity analysis is conducted to investigate a range of diesel/ethanol ratios corre-

sponding to that of the full load experimental investigation detailed earlier in the paper.
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n-heptane is used as a representative of hydrocarbon diesel and the simulation is run with

pure n-heptane and n-heptane mixed with different ethanol ratios (10%, 20%, 30% and 40%

by energy) to identify the most sensitive reactions and their change with increasing ethanol

ratios. The model proceeds with a homogeneous ethanol/air mixture which is compressed

until TDC, then mixed with n-heptane and the ignition delay time is determined. In the

next step, global sensitivity analyses of the n-heptane/ethanol mixture at a defined time

step (10% before auto-ignition occurs) are made. The result of the sensitivity analyses with

respect to the temperature are recorded (see Figure 7.16) for all reactions which do not

appear have a negligible sensitivity. The maximum compression temperature decreases a

significant amount with increasing ethanol substitutions, from 930 K (only air, D100E000)

to 897 K (D060E040).

Figure 7.16 clearly shows that Reactions 8 and 9 are the most sensitive. For low ratios of

ethanol, the internal H-abstraction of Hydroperoxy heptyl (Warnatz et al., 2006; Machrafi

et al., 2008) in Reaction 8 is predominant. For high ethanol ratios (20% by energy and more)

the OH abstraction of Reaction 9 is the most sensitive one. Negative sensitivities indicate

that the main emphasis is on the reactant side and positive is that it is on the product side.

Figure 7.16: Sensitivity analyses of the different fuel compositions at a defined
time step before auto-ignition with respect to temperature.

During the compression phase, ethanol starts to decompose and stable intermediates such

as formaldehyde and acetaldehyde in additional to radicals such as OH or HO2 are formed.

In Figure 7.17 the ethanol concentration is shown on the left axis and the OH radical on

the right axis. The concentration is plotted over the ethanol ratio and represents the value

at TDC. It is apparent that the OH-concentration increases very strong until 20% ethanol
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substitution by energy and then decreases again almost as quickly as it increased.
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Figure 7.17: Ethanol and OH radical concentration at TDC.

7.8 Conclusion

Utilising a new in-cylinder pressure technique to explore ignition delay (Bodisco et al.,

2013b), this chapter has explored the effect of ethanol fumigation on a modern heavy-duty

common-rail diesel engine. The ignition delay was determined through the use of statistical

modelling in a Bayesian framework—this framework allowed the accurate determination of

the start of combustion from single consecutive cycles and did not require any differentiation

of the in-cylinder pressure signal. This method resolves parameters given in an empirical

statistical model using Markov-chain Monte Carlo. In the model employed in this work, a

change point parameter, denoted as δ, represents the start of combustion.

Experiments were run at 2000 rpm for four minutes (4000 cycles) with ethanol substi-

tutions from 0-40% on an energy basis. To ensure meaningful results, all 4000 cycles were

analysed at each engine setting (full, three quarters and half loads). In contrast to the cur-

rent literature, at full load the ignition delay decreased with increasing ethanol substitutions

and evidence of combustion with high ethanol substitutions prior to diesel injection was

also shown. Whereas, at half load increasing ethanol substitutions increased the ignition

delay. This has been explained by numerical simulation evidence that suggests the engine

may be reaching a condition that allows HCCI operation with ethanol and that the ignition

delay may have a greater dependence on the chemical reactions, than changes in in-cylinder

temperature.

A threshold absolute air to fuel ratio (mole basis) of ∼110 for consistent operation has

been determined from the inter-cycle variability of the ignition delay, a result that agrees
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well with previous research (Bodisco and Brown, 2013a) of other in-cylinder parameters.

Also shown is the significant increase in ignition delay that occurs at air to fuel ratios less

than 80 and the increase in ignition delay when the combustion environment is too lean.

Numerical modelling was employed to explore the sensitivity of the auto-ignition of

ethanol in a diesel engine. It was shown that auto-ignition was possible, but that it was

sensitive to the inlet air temperature with auto-ignition not occurring prior to inlet air tem-

peratures of 399 K. However, the modelling work did show that ethanol was being consumed

in chemical reactions prior to ignition. As a further study, the modelling work explore n-

heptane and n-heptane/ethanol blends across injection temperatures of 800–1200 K. A NTC

region was shown to exist from 900–1050 K, indicating that around this region that chemical

reactions may have a greater influence on ignition delay than changes in temperature.

An investigation into the sensitivity of the combustion chemistry using numerical mod-

elling showed that under the full load experimental conditions that the chemical reactions at

low ethanol substitutions were different to the high (> 20% by energy) ethanol substitutions.

It was also shown that OH radical concentration at TDC was the highest at the 20% ethanol

substitution.
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Abstract

Introduced in this paper is a Bayesian model for isolating the resonant frequency from com-

bustion chamber resonance. The model shown in this paper focused on characterising the

initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature

associated with combustion. By resolving the model parameters, it is possible to determine:

the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant

frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk tem-

perature as a function of crank angle and the trapped mass as a function of crank angle.

The Bayesian method allows for individual cycles to be examined without cycle-averaging—

allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail

compression ignition engine run at 2000 rpm and full load.

T. Bodisco (2013) PhD Thesis – In-Cylinder Pressure and Inter-Cycle Variability Analysis for a Compression Ignition Engine



Introduction 151

8.1 Introduction

Typically researchers interested in frequency content from engine signals (in-cylinder pres-

sure, vibration and acoustic emission) have employed fast Fourier transforms (FFT) (Tor-

regrosa et al., 2004; Payri et al., 2005). However, many authors have used more advanced

techniques that are able to capture non-stationary frequencies, such as: finite element anal-

ysis (Hickling et al., 1983), Wigner-Ville methods (Stankovic and Bohme, 1999; Ren et al.,

1999; Bhat et al., 2012), Hilbert transforms (Ren et al., 1999; Li and Zhang, 2010) and

continuous wavelet transforms (Li et al., 2001; Jun and Bing, 2004). Fast Fourier trans-

forms are common practice in basic spectral analysis mostly because of their ease of use and

computational efficiency (Duhamel and Vetterli, 1990; Huang et al., 1998). However, many

assumptions are made when using them—for example, the assumption of periodic station-

ary frequencies. Moreover, they can also have low resolution and are sensitive to noise and

incomplete data (Bretthorst, 1988a; Jaynes, 1987)—low resolution may make it difficult to

resolve close together frequencies (Dou and Hodgson, 1995). In his pioneering 1988 work,

Bretthorst (Bretthorst, 1988a) explains that if there is complex phenomena, or evidence of

more than a single stationary harmonic frequency, the Fourier method may yield incorrect

or misleading results.

In order to avoid any misinterpretation of the data, the method of data analysis should be

carefully selected. Under discussion here is the use of Bayesian modelling with the application

of isolating features of the combustion resonance in a heavy-duty Cummins, multi-cylinder,

turbo-charged, common-rail, direct-injection diesel engine. Of specific interest is the spectral

content contained in the in-cylinder pressure signal; in particular the resonant frequency that

occurs as a result of combustion. Isolation of this frequency is important as it is related to

the speed of sound and hence in-cylinder bulk temperature (Hickling et al., 1983; Bohme

and Konig, 1994; Ren et al., 1999; Torregrosa et al., 2004; Payri et al., 2005; Bodisco et al.,

2012).

The challenge with isolating the resonant frequency information from the combustion

resonance is that the frequency itself is an evolving frequency. In order for a FFT to produce

meaningful results, multiple periods of data are required (Gregory and Loredo, 1992)—it is

counter-intuitive in an application where a frequency is evolving to simultaneously analyse

multiple periods of data. An immediate implication of this is that the FFT method will not

be able to capture the transient nature of this signal, even if the data is analysed in windows

such as those found in a spectrogram—the results would only be able to indicate a trend and

likely not provide any definitive information. For a detailed study of combustion resonance,

with the goal of isolating the initial resonant frequency (at the onset of combustion) and

characterising its rise as the combustion chamber temperature increases, the FFT method

will not be satisfactory.

Continuous wavelet transforms (CWT) have emerged in recent years as a solution to the
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instantaneous frequency problem and have been used in a wide range of applications (Peng

and Chu, 2004; Sen et al., 2008). In comparison to the spectrogram method (using short-

time Fourier transforms), the time window is not held constant (Peng and Chu, 2004)—it

is advantageous to not have constant time windows, automated or even manual selection of

windows may cut useful information (Poggi et al., 2012). Rather, the time window of each

wavelet is varied to fit the data; therefore, there is always a trade-off between the frequency

and time resolutions. In relation to the application described in this paper, resolving a

single evolving frequency with respect to crank-angle, the CWT method has a few key short-

comings. Namely: the results of the CWT are typically presented in scales which need to

be estimated as frequencies (causing frequency resolution issues), difficulty with accurate

automated feature detection (the results are normally analysed visually, other algorithms

would need to be carefully generated to automate the feature extraction), wavelet selection

effects the results and whilst the CWT method does isolate evolving frequencies well, there

is no indication of uncertainty in the result and resolution issues can make detailed tracking

of the frequency of interest difficult.

Other advanced techniques, which are capable of capturing the transient nature of engine

signals, have issues of their own. These issues generally relate to undesirable assumptions

inherent with the analysis technique, susceptibility to noise, resolution and cross-talk. Sta-

tistical modelling, within the Bayesian paradigm, is suggested to overcome these issues. As

this is not a one-size-fits-all method, using this method is at the expense of simplicity (Bod-

isco et al., 2012). However, it can be argued that in data analysis more emphasis should be

given to scientific interest and less to mathematical convenience (Box and Tiao, 1992). Here

a solution is provided to this problem that does require access to computational support.

In the Bayesian paradigm all assumptions must be explicitly stated; this allows the

analyst more control compared to other techniques (Bretthorst and Smith, 1989). Whilst

this adds complexity, it also ensures that the analyst is completely aware of the problem

they are solving and reduces the potential risk of obtaining a misleading result. Moreover,

in this application it allows for the analysis to be conducted independently, on individual

engine cycles; thereby, allowing for inter-cycle variability studies and effectively removing

the need for ad hoc methods such as cycle averaging (Bodisco et al., 2012, 2013b).

Some work in this area has already been conducted by Bodisco et al. (2012; 2013b).

Much like the current work detailed in this paper, previous work has resolved parameters

in an empirical form of the in-cylinder pressure signal. In the original work (Bodisco et al.,

2012) model development was shown for isolating the resonant frequency as a function of

time in a four-cylinder DI naturally aspirated diesel engine—the model implementation was

performed in pre-packaged software, WinBUGS (Spiegelhalter et al., 1999). However, the

final model was kept simple and made some assumptions to reduce complexity. One such

assumption was that the resonant frequency only decayed—i.e. there was no initial rise in
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frequency with the corresponding increase in in-cylinder bulk temperature with combustion.

In that work (Bodisco et al., 2012) the final conceptual model was:

y = s(t) ∼ N(µ(t), τ)

µ(t) = f1(t) +H(t− δ)
3∑
i=2

fi(t)

fi(t) = Aie
−λit sin(Wiω0e

−aitt+ φ)

where s(t) is the in-cylinder pressure signal with the motoring frequency information re-

moved and is Normally distributed with time-varying mean, µ(t), and precision, τ . The

time-varying mean consists of the summation of three frequency (ωi(t) = Wiω0e
−ait) and

amplitude (Ai(t) = Aie
−λit)decaying sinusoidal waves with the same phase shift, φ, where i

identifies the sinusoidal. In this model, sinusoidals i = {2, 3} are zero until t > δ as controlled

by the step function H(t− δ).
Extending the previous work (Bodisco et al., 2012), this paper will demonstrate the use

of a more sophisticated model to estimate the rise of the resonant frequency in a heavy-

duty Cummins, multi-cylinder, turbo-charged, common-rail, direct-injection diesel engine.

Accurate isolation of the resonant frequency allows for an in-depth investigation into the

combustion temperature. Moreover, as the Bayesian method allows for each cycle to be

analysed independently, the inter-cycle variability of this important parameter can be inves-

tigated.

Experimental investigation into the combustion bulk temperature using an advanced

technique, such as described in this paper, could significantly aid in the analysis of alterna-

tive fuels. In diesel engines, emission formation, especially NOx, is temperature dependent

(Ramadhas et al., 2005; Frassoldati et al., 2006). The strong dependency between emis-

sion and temperature indicates the need for more advanced methods of investigation into

in-cylinder bulk temperature and temperature rate rise.

8.2 Experimental Configuration

Experiments were conducted at the QUT Biofuel Engine Research Facility (BERF) in August

2012. The engine under investigation is a 5.9 ` in-line six-cylinder, turbo-charged, common-

rail Cummins diesel engine. This is a heavy-duty Euro 3 engine with advanced injection

timing (around top dead centre) and variable injection pressure (250–1800 bar). Table 8.1

contains the technical specifications of the engine and data acquisition equipment.

Data was collected at 200 kHz use a Data Translation (DT9832) analogue-to-digital con-

verter and National Instruments LabView. This engine was equipped with a high resolution

crank angle sensors (operated at 0.5 crank angle degree resolution) and the data was col-
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lected asynchronously. The location of the pressure transducer can be seen in Figure 8.1, an

elevation is not shown because the cylinder head is flat. For the experimental results shown,

the engine was run at 2000 rpm on neat automotive diesel at full load (760 Nm). A more

detailed description of the engine setup can be found in Bodisco and Brown (2013a).

 3 

 107 

 42
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 44° 

PRESSURE SENSOR
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FRONT OF ENGINE
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EX

EX

Figure 8.1: Location of in-cylinder pressure transducer

8.3 Experimental Data

Using a two channel analogue Krohn-Hite model 3202 filter, the in-cylinder pressure signal

was band-pass filtered. The first channel was a high-pass filter with a threshold of 4 kHz and

the second a low-pass filter with a threshold of 12 kHz. In contrast to the ignition delay study

(Bodisco et al., 2013b), this frequency band was kept very close to the frequencies of interest.

This was done to ensure that noise and vibration not directly related to the combustion

resonance was minimised. A pilot study was performed with low-pass threshold frequencies

ranging from 8-20 kHz. It was determined that this study could be performed at any of

these filter settings; however, the band-pass range of 4-12 kHz was chosen because a low-

pass threshold at 12 kHz produces a signal free from high frequency noise that qualitatively

looks identical to those of lower thresholds.

Using the same acquisition system as described (Bodisco and Brown, 2013a; Bodisco

et al., 2013b), the band-pass filtering took place whilst the signal was still in its analogue

form; therefore, the dependent scale in Figure 8.2 is in Volts. Isolating the resonant frequency

from in-cylinder pressure is scale independent; hence, there is no need to convert the input

signal from a voltage signal into a pressure signal. Figure 8.2 shows an example of the band-

pass filtered signal—it is taken from the same cycle as the in-cylinder pressure trace shown

in Figure 8.3. The rise in signal (∼362 degrees crank angle) immediately prior to the start
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Engine Specifications
Make Cummins ISBe220 31
Capacity 5.9 `
Maximum power 162 kW at 2000 rpm
Maximum torque 820 Nm at 1500 rpm
Number of cylinders 6
Number of valves per cylinder 4
Compression ratio 17.3:1
Bore 102 mm
Stroke length 120 mm
Dynamometer Electronically controlled water

brake dynamometer
Injection system Common-rail
Data acquisition
Pressure transducer Kistler piezoelectric transducer

(6053CC60)
Analogue-to-digital converter Data Translation (DT9832)
Software National Instruments LabView
Sample rate 200 kHz
Data collected In-cylinder pressure

Band-pass filtered in-cylinder pres-
sure (allowing 4-12 kHz)
Diesel injection timing
Crank-angle rotation information

Table 8.1: Engine and data acquisition specifications

of the combustion resonance (∼364 degrees crank angle) evident in Figure 8.2 is attributable

to electronic noise from the injection signal and is not part of the combustion resonance.
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Figure 8.2: Band-pass (4-12 kHz) filtered pressure signal, full load, 2000 rpm
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Figure 8.3: Pressure vs crank angle plot, full load, 2000 rpm
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8.4 Conceptual Model

In Bodisco et al. (2013b), a statistical model was used to determine the start of combustion

from in-cylinder pressure. The model employed was:

y = s(t) ∼ N(µ(t), σy)

µ(t) = H(t− δ)A sin

(
2π

λ
ωt+ φ

)
, (8.1)

where, s(t), the band-pass in-cylinder pressure signal (such as the example in Figure 8.2),

is assumed to be Normally distributed about some time varying mean, µ(t), with some

standard deviation, σy—the independent variable t refers to the discrete time representation

in the data related to the sampling rate (200,000 Hz). The change point factor, H(t − δ),
switches the signal from Gaussian noise about 0 to a periodic sine wave of frequency ω—λ

is the sample-rate in Hz and φ is the phase-shift. Therefore, resolving the change point

parameter, δ, resolves the start of combustion.

As the work in Bodisco et al. (2013b) was primarily interested in resolving the start of

combustion only, the window this analysis took place in was restricted to 200 data points.

This allowed for the assumption that the resonance was from a stationary frequency. How-

ever, the present work is interested in characterising the rise in the resonant frequency and

accurately resolving the initial resonant frequency.

This can be achieved with only slight modification to the model shown in Equation 8.1.

In this implementation the amplitude, A, will be predetermined as a function of time and

the resonant frequency, ω, will be resolved as a function of time:

y = s(t) ∼ N(µ(t), σy)

µ(t) = H(t− δ1)A(t) sin

(
2π

λ
ω(t)t+ φ

)
, (8.2)

The amplitude, henceforth termed the frequency envelope, is predetermined to ensure the

frequency is correctly resolved—the other model parameters are conditional on the ampli-

tude. This approach helped improve model fit, and is a generalisation of a common Bayesian

computational practice to exploit hierarchical structure where possible. Hence, minimising

issues with incorrect frequency envelope estimates artificially reducing the data likelihood

estimates. Moreover, having the frequency envelope as a model input saves computation

time, by not having to resolve it as part of the modelling process.

The method for resolving the frequency envelope used in this work has been kept simple,

as it is not necessary for it to be precise. First, mean-average smoothing was applied to

the band-pass filtered in-cylinder signal to reduce the effects of noise. This smoothed signal

was then differentiated and the timing of all of the turning points was identified (when the

T. Bodisco (2013) PhD Thesis – In-Cylinder Pressure and Inter-Cycle Variability Analysis for a Compression Ignition Engine



158 A Statistical Model for Combustion Resonance from a DI Diesel Engine: with Applications

differentiated signal = 0). The absolute value of the original band-pass filtered in-cylinder

signal (before smoothing) at each of the identified turning points was found and the frequency

envelope was then determined by linearly interpolating between those points. This method is

computationally efficient and consistently yielded a result that adequately fit the frequency

envelope.

For modelling the rise of the resonant frequency, a multiplicative model was chosen

as it can rise slowly or quickly and the rate only relies on one parameter—multiplicative

models can be directly related to exponential models but are computationally easier to

work with. Heat release has been modelled previously using an Arrhenius type exponential

equation (Nishida and Hiroyasu, 1989; Jung and Assanis, 2001). In an auto-ignition process,

such as that found in diesel engines, a pool of radicals needs to be developed as the fuel

is gradually heating and mixing with the surrounding oxygen and combustion products.

This may occur in a region just downstream of the exit plane of the penetrating spray jet

where sufficient vaporisation has taken place. Ignition kernels will form and these would be

convected with the flow until they encounter combustible mixtures, which are then ignited

leading to extensive heat release. It is notable that in spray jets auto-igniting in a hot

vitiated co-flow, the heat release is minimal in the region where the auto-igniting kernels

are developed and increases significantly downstream in the jet where the main combustion

is taking place (O’Loughlin and Masri, 2011, 2012). Such a scenario is also expected in

the diesel engine considered here. Based on this, it is expected that the resonant frequency

will rise slowly at the start of pre-mixed combustion (when the auto-igniting kernels are

developing) and then more rapidly at the start of diffusion combustion (characterised by

extensive heat release), eventually followed by a slow decline. The model used to empirically

represent the resonant frequency in this study is:

ω(t) =



β0 t < δ1

β1ω(t− 1) δ1 ≤ t < δ2

β2ω(t− 1) δ2 ≤ t < δ3

β3ω(t− 1) t ≥ δ3.

(8.3)

As the empirical relationship given in Equation 8.3 is a multiplicative model, ω(t− 1) refers

to the value of ω at the previous data point. The initial resonant frequency is given by β0,

the initial rise in resonant frequency (from pre-mixed combustion) is characterised by β1,

the rapid rise in resonant frequency (from diffusion combustion) by β2 and the decline in the

resonant frequency by β3. Similarly, the model parameter δ1 (in both Equations 8.2 and 8.3)

corresponds to the start of pre-mixed combustion, δ2 corresponds to the start of diffusion

combustion and δ3 corresponds to the timing at which the resonant frequency begins to

decline.
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The Bayesian approach will provide marginal posterior plausibilities of each of the param-

eter values, based on the observed data. This allows the estimation of the model parameters.

Bayes theorem states that the posterior distribution is proportional to the product of the

likelihood of the data given the parameters and the priori distribution of the parameters

(Gelman et al., 2003).

p(θ|y) ∝ p(y|θ)p(θ),

for this case, θ = {δ1, δ2, δ3, β0, β1, β2, β3, φ σy} and yi = s(ti), ti ∈ T .

8.5 Priors

In a Bayesian approach, parameter values require specification of prior plausibility. In this

analysis, what is known about each model parameter is independent of the other parameters;

therefore:

p(θ) = p(δ1)p(δ2)p(δ3)p(β0)p(β1)p(β2)p(β3)p(φ)p(σy).

The prior distributions should encompass all plausible values a parameter can take (Gelman

et al., 2003).

Using the same logic shown in Bodisco et al. (2013b), φ ∼ Unif(0, π) and β0 ∼
Unif(5000, 7000). Combustion is assumed to occur approximately 4.5 degrees after the start

of injection (approximately 100 data points after the nominal start of injection) (Bodisco

et al., 2013b); therefore, δ1 ∼ N(100, 25). This prior assumes a 95% probability that com-

bustion will occur in the time period, 50 ≤ t ≤ 150.

The apparent rate of heat release diagram (generated from cycle-averaged data), shown

in Figure 8.4, is constructed using the first law of thermodynamics as described by Heywood

(1988) and does not account for heat losses. Examination of Figure 8.4 reveals an inflection

at approximately 370 degrees (approx 250 data points after the nominal start of injection).

This position corresponds to the timing at which the temperature begins to increase more

rapidly. The same prior given to δ1 is assigned to δ2, δ2 ∼ N(250, 25). Experience and

observation of the data, informs the last change point parameter, δ3. A slight decrease in

the resonant frequency is typically observed shortly after the rapid rise; therefore, δ3 ∼
N(300, 25). Additionally, δ3 has the restriction that it must be greater than δ2.
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Figure 8.4: Apparent net rate of heat release, full load, 2000 rpm

Of interest in this study is the resonant frequency and how it evolves as a function of time.

Because this is a multiplicative model, the parameter values of β1, β2 and β3 will be near

1. The model shown in Bodisco et al. (2013b) worked because the start of the combustion

resonance can be assumed to be somewhat stationary. Therefore, β1 was assigned a prior

that was very close to 1, β1 ∼ N(1.00005, 0.00005). If a starting frequency of approximately

5700 Hz is assumed and a peak frequency of 6500 Hz, an approximation of β2 of 1.002 can

be shown. Therefore, β2 ∼ N(1.002, 0.001). Both β1 and β2 were restricted to be greater

than 1.

Knowledge of β3 is more difficult to predict. Unlike β1 and β2, where it can be assumed

they are greater 1, β3 could potentially represent the beginning of the decline in the resonant

frequency or it could represent the slowing down of the evolution. The prior selected has

assumed a decline, but has not enforced it, β3 ∼ N(0.9999, 0.001).

The model parameter σy is there to fit the Gaussian noise in the data. In Bayesian

modelling it is common to consider the precision
(
τ = 1

σ2
y

)
, rather than the standard de-

viation (Gelman et al., 2003). In a state of ignorance, this parameter is often assigned an

uninformative Gamma prior, τ ∼ Gamma(0.01, 0.01).
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8.6 Model Implementation

Estimation of the posterior distributions of the model parameters is performed using a stan-

dard Bayesian computational approach based on simulation. The Metropolis-Hastings algo-

rithm, a special case of the Markov-chain Monte Carlo (MCMC) algorithm (Gelman et al.,

2003), has been used in this analysis as described in Bodisco et al. (2013b)—this section is

a summary from the more detailed explanation in Bodisco et al. (2013b). In this implemen-

tation candidate parameters, θ∗, are sampled from a proposal distribution dependent on the

current parameter value, θ∗ ∼ R(θ). For the parameters, {β0, β1, β2, β3, φ σy}:

θ∗ ∼ N(θm−1, σθ)

and for the parameters, {δ1, δ2, δ3}:

θ∗ ∼ Unif(θm−1 − n, θm−1 + n)

where, σθ and n are tuning parameters which determine the potential range of the ‘walk’

at each iteration and m = 1, . . . ,M denotes the mth MCMC simulation from the chain.

Therefore,

θm =

θ∗ with probability α

θm−1 otherwise.

where,

α = min

{
1,

R(θ∗)

R(θm−1)

p(θ∗|·)
p(θm−1|·)

}
and · denotes the full set of parameters omitting the parameter of interest, here generically

denoted as θ.

The results from the model had a tendency to not correctly resolve the start of com-

bustion, δ1. This issue occurred because of the predetermined frequency envelope causing

issues with convergence. Potential solutions to this issue included: modelling the frequency

envelope as part of the model instead of having it as an input parameter, developing a hierar-

chical model or predetermining the start of combustion and having it as an input parameter.

Using the model described in Bodisco et al. (2013b) to determine the start of combustion,

δ1, and then using δ1 as an input parameter (non-updatable) was determined as the most

computational efficient and reliable solution. Moreover, using the predetermined frequency

envelope ensures that once the frequency has converged to the correct solution that the

model will fit the data well and is therefore an important input parameter and removing it

could result in convergence issues and greatly increased computation time.
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8.7 Simulation Results

Figure 8.5 shows the model fit to the signal shown in Figure 8.2. It can be seen by observation,

or by the residual plot shown in Figure 8.6, that the model has fit the data very well—

indicating accurate isolation of the resonant frequency. This observation is made because

the residual plot shows no distinctive features (i.e. it appears to be noise only without

any repeating features). Table 8.2 shows the mean and standard deviation for each model

parameters prior and posterior distributions.
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Figure 8.5: Model fit to signal shown in Figure 8.2
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Prior Posterior
Parameter Mean Standard Mean Standard

Deviation Deviation
β1 1.00005 0.00005 1.00023 3.204× 10−5

β2 1.002 0.001 1.00101 2.869× 10−5

β3 1.9999 0.001 1.00004 3.381× 10−5

δ1 100 25 122 4
(362.3 degrees) (1.5 degrees) (363.7 degrees) (0.3 degrees)

δ2 250 25 242 2
(371.5 degrees) (1.5 degrees) (371.0 degrees) (0.2 degrees)

δ3 300 25 297 1
(374.6 degrees) (1.5 degrees) (374.5 degrees) (0.1 degrees)

Lower Upper Mean Standard
Bound Bound Deviation

β0 5000 7000 5502 43
φ 0 π 0.27 0.18

Table 8.2: Model parameter prior and posterior distributions
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Figure 8.6: Residual plot showing that subtraction of the fitted model from the
signal shown in Figures 8.2 and 8.5

Hence, as a function of crank angle, the resonant frequency of the signal shown in Figure

8.2, is modelled in Figure 8.7. For comparison to the continuous wavelet transform method,

Figure 8.8 shows the corresponding result from a continuous wavelet analysis using 256
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scales. It can be seen that both methods have isolated the frequency information well;

however, owing to the resolution in the Bayesian method, results in Figure 8.7 allow for

the determination of the start of pre-mixed and diffusion combustion and a greater ability

to track the evolution of the frequency as a function of crank angle (or time). Some key

features, however, can be noted in Figure 8.8 that correspond to Figure 8.7. Namely: the

general range of the frequency is similar, the start of pre-mixed combustion can be seen at

approximately 364 degrees and a sharper rise in frequency is also evident at approximately

371 degrees. From 500 consecutive engine cycles, Figure 8.9 shows the distribution of the

initial resonant frequency, β0.
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Figure 8.7: Example resonant frequency with respect to crank angle from model
fit shown in Figure 8.5
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Figure 8.8: Resonant frequency of the signal shown in Figure 8.2 isolated using
a continuous wavelet transform
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Figure 8.9: Distribution of the initial resonant frequency over 500 consecutive
cycles
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Although determined as an input parameter from the start of combustion model (Bodisco

et al., 2013b), Figures 8.10 and 8.11 show the distribution of the start of combustion and

the corresponding ignition delay. The model parameter δ2 isolates the start of diffusion

combustion—characterised by an increase in the rate of temperature rise. Figure 8.12 shows

the distribution of the start of diffusion combustion. This timing matches well with an

inflection seen in the net rate of heat release, shown in Figure 8.4. Corresponding to these

change point parameters, Figure 8.13 shows the distribution of the multiplicative parameter

β1 which corresponds to the initial rise in temperature during pre-mixed combustion and

Figure 8.13 shows distribution of the multiplicative parameter β2 which corresponds to the

more rapid rise in temperature from diffusion combustion. The results for the multiplicative

parameter β3 were slightly different to expected. When the model was developed it was

assumed that at the end of the diffusion combustion period the in-cylinder bulk temperature

(and hence resonant frequency) would start decreasing. However, the results shown in Figure

8.15 indicated that this has only shown to be true on some cycles. On the majority of cycles,

Figure 8.15 indicates that the rise in resonant frequency is slowed or perhaps stationary for

a period before it decreases.
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Figure 8.10: Distribution of the start of pre-mixed combustion over 500 consec-
utive cycles
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Figure 8.11: Distribution of the ignition delay over 500 consecutive cycles

370.0 370.5 371.0 371.5 372.0 372.5 373.0 373.5
Start of Diffusion Combustion (degrees)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p
d
f(

S
ta

rt
 o

f 
D

if
fu

si
o
n
 C

o
m

b
u
st

io
n
)

Figure 8.12: Distribution of the start of diffusion combustion over 500 consecutive
cycles
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Figure 8.13: Distribution of the initial multiplicative parameter, β1, over 500
consecutive cycles
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Figure 8.14: Distribution of the diffusion combustion multiplicative parameter,
β2, over 500 consecutive cycles
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Figure 8.15: Distribution of the reduction in combustion intensity parameter, β3,
over 500 consecutive cycles

8.8 Application

A key feature of using a Bayesian modelling technique is being able to analyse individual

cycles. Therefore, the analyst is able to investigate the inter-cycle variability of not only

the model parameters, as shown in Section 8.7, but also the inter-cycle variability of the

operating characteristics derived from the model results. Potential applications for these

results are determining the in-cylinder bulk temperature and the trapped mass as a function

of time (Hickling et al., 1983; Bodisco et al., 2012).

A nominal in-cylinder bulk temperature can be determined from the relationship to the

speed of sound by assuming ideal behaviour and uniform gas composition in the combustion

chamber—whilst these are not true assumptions, it does allow for an interesting investigation

into the bulk temperature in the combustion chamber. The speed of sound, c, is related to

the resonant frequency, f , by the following relationship (Hickling et al., 1983):

c =
fB

αnm
(8.4)

where, B is the cylinder bore and αnm is a non-dimensional value associated with the fre-

quency mode—in this study the resonant frequency represents the first circumferential fre-

quency; therefore, αnm = 0.5861 (Hickling et al., 1983; Bodisco et al., 2012). The speed of
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sound is also related to temperature (Hickling et al., 1983):

c2 = γRT (8.5)

where, γ is the ratio of specific heats, R is the characteristic gas constant and T is the

in-cylinder bulk temperature. Combining Equations 8.4 and 8.5:

T =
1

γR

(
fB

αnm

)2

(8.6)

and relating Equation 8.6 to the ideal gas law allows the determination of the trapped mass,

m, as a function of time:

m(t) = γP (t)V (t)

(
αnm
f(t)B

)2

(8.7)

Owing to potential imperfections in the combustion chamber walls and design features

that deviate from a perfectly round profile, the in-cylinder bulk temperature and therefore

the trapped mass determined from Equations 8.6 and 8.7, respectively, will not be correct

(Randall, 1987). However, a correction factor can be determined from knowledge of the

trapped mass in the cylinder at the onset of combustion. In the engine setup utilised in this

experiment in-take air and fuel flows are measured. The nominal distribution of trapped

mass (at the onset of combustion), determined from Equation 8.7, is shown in Figure 8.16.

Under the assumption that at the start of combustion there has been negligible blow-by, a

correction factor can be found.

A rearrangement of the ideal gas law (with the correction factor (ζ = 1.074), shown in

Equation 8.8) allows an in-cylinder bulk temperature profile to be created for each individual

engine cycle, example in Figure 8.17, and investigation into the inter-cycle variability of the

in-cylinder bulk temperature at the start of combustion, shown in Figure 8.18. This in-

cylinder bulk temperature is associated with the spatial average temperature. In reality, it

is expected that the changes between the different phases of combustion would be smoother;

however, Figure 8.17 does give an accurate indication of the spatial average in-cylinder

temperature with respect to crank angle.
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Figure 8.16: Distribution of the cycle resolved nominal trapped mass over 500
consecutive cycles

The bi-modal distribution of values shown in Figure 8.18 is interesting. It is showing

that the predominate initial in-cylinder temperature is approximately 2000 K; but, it is

also showing a significant second mode at approximately 2400 K. This bi-modal distribution

is likely caused by instabilities in the control of the dynamometer. Data collected from

this engine setup often shows a periodic time dependency, the spread of the distribution

shown in Figure 8.18 is indicating that this variability has a significant impact on the in-

cylinder temperature immediately prior to combustion. A bi-modal distribution, rather than

a uni-modal distribution, is likely caused by bias in the sampling period—the dynamometer

instability generally fluctuates with a period of approximately 50 seconds; therefore, a 60

second sample (as shown in this paper) will likely give bias to the repeated section of the

sample period.

T =
PV

ζmR
(8.8)
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Figure 8.17: In-cylinder bulk temperature as a function of crank angle
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Figure 8.18: Distribution of the initial in-cylinder bulk temperature across 500
consecutive cycles
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8.9 Conclusion

his paper has introduced a Bayesian model for analysing the combustion chamber resonant

frequency. The model employed in this paper focused on capturing the rise in the resonant

frequency associated with the increase in in-cylinder temperature from combustion. Ap-

plied to a band-pass filtered in-cylinder pressure signal, from a compression ignition engine,

this model is capable of directly determining: the start of combustion, the start of diffu-

sion combustion, the initial resonant frequency and the resonant frequency as a function

of time. It has also been demonstrated that knowledge of the resonant frequency allows

further investigation into the in-cylinder bulk temperature and trapped mass as a function

of time. Results from the Bayesian model have been shown for 500 consecutive cycles of a

turbo-charged, common-rail injection 5.9 l diesel engine run at full load and 2000 rpm.

The application of this technique to a modern compression ignition engine has shown that

it is able to resolve a crank angle dependent (or time dependent) average spatial in-cylinder

temperature profile and is useful for investigating the inter-cycle variability of the engine. A

bi-modal distribution of in-cylinder temperature was shown and explained to be caused by

engine operation instability. Moreover, this method for investigating the combustion chamber

resonance also yields a new metric for describing the rate of increase in temperature during

combustion, in terms of the model multiplicative parameters, βi. Applications for this can

include a more rigorous examination of the effect of alternative fuels and fuelling strategies,

allowing the analyst a greater breadth of information to draw conclusions from.
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Chapter 9

Conclusions

This research program has filled a significant gap in the field of engine research by intro-

ducing novel techniques for analysing in-cylinder pressure signals. It has contributed to the

alternative fuel debate by giving new evidence relating to the use of fumigated ethanol in a

modern common-rail diesel engine. Moreover, the application of these techniques have high-

lighted the importance of being able to analyse individual consecutive engine cycles to gain

an in-depth perspective of the effect an alternative fuelling strategy has on engine operation.

9.1 In-cylinder pressure techniques

The work contained in this dissertation has focused on in-cylinder pressure. In-cylinder

pressure is an important parameter to investigate if knowledge of the combustion processes

are to be understood. Therefore, a primary aim of this dissertation has been to improve the

way in which engine researchers use in-cylinder pressure data.

Chapter 4 proposed the use of statistical modelling, in the Bayesian paradigm, to in-

vestigate combustion chamber resonance. Using pre-packaged software, WinBUGS, it was

demonstrated that it is possible to isolate the resonant frequency as a function of time. More-

over, a high-level of cycle-to-cycle variation in this parameter was also shown and added a

valuable perspective on the argument against cycle-averaging data.

Isolation of the resonant frequency is important as it is related to the speed of sound

and hence temperature—knowledge of in-cylinder temperature is important because of its

relationship to emission formation. Moreover, in-cylinder temperature can also be used to

estimate the trapped mass in the combustion chamber, as a function of time; hence, this

method can be extended to experimentally investigate piston blow-by.

A Bayesian technique is appropriate in engine research because of the variable nature in

which an engine operates. Pre-fit data analysis solutions do not allow the analyst to include

their own knowledge and assumptions into the analysis. This is a key feature of the Bayesian

modelling techniques used in this dissertation, the analyst creates an empirical form of the

data and can then resolve each parameter, with uncertainty. If the model has been setup

well, the resolved parameters will inform the analyst about the operating characteristics of
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the engine.

Chapters 5 and 6 introduced the concept of using a band-pass filtered in-cylinder pressure

signal for the determination of the start of combustion. Initially in Chapter 5, this analysis

was undertaken manually by observing the change in the band-pass in-cylinder pressure

signal from high-frequency noise to an established periodic signal of approximately 6 kHz.

However, the time-consuming nature of manual data analysis prohibited any true inter-cycle

variability studies from being conducted.

In order to over-come the limitation of manual data analysis, an automated method was

explored in Chapter 6. This method utilised a Bayesian approach, similar to Chapter 4. A

simple model was used for this application to improve the computation time. The band-pass

filtered in-cylinder pressure signal was modelled as a Normal distribution with a time varying

mean, µ(t).

µ(t) = H(t− δ)A sin (kwt+ φ)

This time varying mean is zero before the start of combustion and a stationary periodic wave

after—resolving the change point parameter, δ, resolves the start of combustion. Coupled

with knowledge of the start of injection, the ignition delay can be determined with this

method for consecutive individual cycles. Ignition delay results for an ethanol fumigation

campaign are shown in Chapter 7.

Chapter 8 revisited the early work shown in Chapter 4. A key limitation of the final

model shown in Chapter 4 was that it did not consider the rise in resonant frequency from

the temperature rise during premixed combustion. Therefore, Chapter 8 examined the rise

in resonant frequency at the onset of combustion. A new model was developed that focused

on capturing this rise in resonant frequency and it was used to examine the inter-cycle

variability of the initial in-cylinder temperature, the rate of in-cylinder temperature rise, the

start of pre-mixed combustion and the start of diffusion combustion.

9.2 Inter-cycle variability

Inter-cycle variability featured throughout this entire work. However, it was most promi-

nently investigated in Chapters 5 and 7. The extent of inter-cycle variability can be used

as a parameter to investigate abnormal engine operation. Typically, this has been done by

observing the coefficient of variation (COV) of the indicated mean effective pressure (IMEP).

The COV is defined as the mean normalised standard deviation:

COVx =
σx
x̄
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Results from the ethanol fumigation campaign, shown in Chapter 5, have shown that the

COV of IMEP is not necessarily a good measure of inter-cycle variability.

Results from a Bayesian analysis are typically viewed in kernel density estimates (proba-

bility density functions). This is done to check for skewness, evidence of multi-modal results

and to estimate the uncertainty of the result. The shape of the kernel density estimate can

also be used to indicate of non-convergence, limitations in the model or evidence of multiple

possible results. Similarly, in-cylinder parameters from a large amount of consecutive engine

parameter data can be viewed in this format.

Chapter 5 investigated the inter-cycle variability of key in-cylinder parameters: maximum

rate of pressure rise, peak pressure, peak pressure timing and ignition delay—the ignition

delay study in this chapter was preliminary work and was later covered in-depth in Chapters

6 and 7—for an engine operating on neat diesel fuel and fumigated ethanol with substitutions

up to 40% by energy, see Table 5.1. For comparison to existing literature, this chapter also

shows the COV of IMEP. These in-cylinder parameters were investigated by generating

kernel density estimates from 4000 consecutive engine cycles.

Observing the results as kernel density estimates allowed for features such as multi-modal

behaviour to be identified. A key limitation of singular values, COV or a standard deviation,

for expressing inter-cycle variability is that it cannot inform the analyst of the nature of the

variability. Non-unimodal or widely random behaviour is likely to have a greater effect on

the engine (in terms of: noise, vibration and wear) than a large amount of variability, as

indicated by the COV or a standard deviation, will.

A key outcome of Chapters 5 and 7 was a relationship between the absolute air to fuel

ratio (on a mole basis) and inter-cycle variability. It was shown that for the heavy duty,

common-rail Cummins diesel engine, under investigation in this work, that as long as it was

operated with an air to fuel ratio greater than 110, the inter-cycle variability was not greatly

effected. However, operation below an air to fuel ratio of 110 (particularly below 80) resulted

in very significant inter-cycle variability.

9.3 Ethanol fumigation

Investigation into the ignition delay of the ethanol fumigated engine found results that

were contradictory with the current published work. The current literature suggests that

ethanol fumigation increases ignition delay because of the so-called “cooling effect” that

ethanol has—the amount of energy required to heat ethanol is greater than air; therefore,

the presence of ethanol in the charge air mixture causes a lower in-cylinder temperature

at the time the diesel fuel is injected. However, Chapter 5 has highlighted that much of

the ethanol fumigation work that has been done was performed on older engines operating

with comparatively low IMEP and earlier injection timing. An engine operating with higher
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fuel injection pressure at a far greater in-cylinder pressure (and consequently far greater in-

cylinder temperatures before injection) will have very different combustion characteristics.

This key difference manifests significantly with fumigated fuels.

It was shown in Sections 5.5.1, 5.5.2, 5.5.5 and Chapter 7 that ethanol fumigation can

reduce the ignition delay. Further, ethanol was also shown to auto-ignite (without the pres-

ence of diesel) under high-loads and -substitutions. This was an important conclusion, as it

shows that alternative fuel research needs to be conducted on engines that are representative

of industry and transport if the results are to be directly transferable. It also demonstrates

a gap in knowledge in alternative fuels research with modern heavy-duty engines.

9.4 Recommendations for the future

This dissertation offers a practical means for investigating the in-cylinder effects of alter-

native fuelling in diesel engines. As such, the most practical recommendation would be

to apply these techniques to other alternative fuels—particularly, relevant biofuels. A key

element to the success of alternative fuels (from a practical, non-economic and -political per-

spective) will be to have as complete as possible understanding of the implications involved

with using them. The techniques available in this work will allow for more meaningful and

comprehensive results.

The relationship between emission formation and in-cylinder temperature makes it likely

that correlations will exist between exhaust emission and the parameters investigated in this

dissertation—initial resonant frequency and rate of change of resonant frequency. Therefore,

a practical study could be to characterise an engine (or multiple engines) and search for links

between in-cylinder parameters and emission. This could be achieved by a combination of the

techniques outlined in this dissertation and the use of principle component analysis—such

as PROMETHEE-GAIA analysis.

The Bayesian modelling techniques developed in this dissertation are also applicable

to vibration signals. These techniques would be ideal for inclusion in off-line condition

monitoring of vibrating machinery and engines. Moreover, there would also be applications

in civil engineering in building condition management.

The Bayesian techniques developed in this dissertation were primarily aimed at resolving

frequency information; however, there are other applications outside of those from engines

and vibrating machinery. Essentially, any complex signal with hard to resolve frequency

components can be explored with a Bayesian modelling techniques. An application would

be to investigate wake shedding in fluid flow under the influsence of a geometry change.
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Comment on Error a

A.1 Comment on Error

A.1.1 Experimental Error

Possible sources of experimental error are from the in-cylinder pressure transducer and the
crank angle sensor. It can be reasonably assumed that the in-cylinder pressure transducer
was operating within 2% (from manufacturers (Kistler) specification) throughout these ex-
periments. However, it was shown in Chapter 3 that the PCB transducer in the Ford engine
(under investigation in Chapter 4) was operating with approximately 1% error. It is likely
that the Kistler in-cylinder pressure transducer in the Cummins engine was also performing
within a percent error.

Any slight deviation between the measured in-cylinder pressure and the true in-cylinder
pressure will only have an impact on the calculation of the: indicated work, indicated power,
indicated mean effective pressure, peak pressure and the maximum rate of pressure rise.
However, these parameters potentially influenced by the calibration of the pressure trans-
ducer were primarily discussed in terms of their inter-cycle variability. As such, if it is
assumed that any error in the measurement of the in-cylinder pressure was consistent across
an experiment, then the inter-cycle variability results, and hence the conclusions, should
be reasonably unaffected. Therefore, any potential in-cylinder pressure measurement error
would have had a negligible effect on the results shown in this dissertation.

The crank angle sensor (Kistler) used in this work has a resolution of half a crank angle
degree and has been calibrated at top dead centre. This calibration has been performed
using multiple methods (Jaye, 2002; Stas, 2000; Nilsson and Eriksson, 2004; Pipitone and
Beccari, 2007) and it can be assumed that the measured crank angle is within 0.1 of a crank
angle degree of the true position. Any deviation from the true crank angle position can,
therefore, be assumed negligible.

The introduced Bayesian modelling techniques in this dissertation are not sensitive to
slight deviations between the measured and the true in-cylinder pressure—empirical models
were developed to fit the band-pass filtered in-cylinder pressure signal, as opposed to mod-
elling the absolute in-cylinder pressure signal. An approach not reliant on absolute measured
values is advantageous, especially with the determination of ignition delay (Chapters 6, 7
and 8), because other current methods typically involve the calculation of heat release and
are therefore sensitive to the accurate measurement of both in-cylinder pressure and crank
angle.

Determination of the in-cylinder temperature from the resonant frequency (Chapters 4
and 8) does rely on accurately measured in-cylinder pressure and crank angle data. However,
it can be assumed that any deviation from the true value to the measured value will be
contained in the correction factor (Chapter 8) determined from the mean engine in-take.
Moreover, any potential error in the measurement of the in-cylinder pressure and crank
angle is likely to be minimal with this calculation compared to the accurate measurement
of the engine in-take and the assumptions that each cylinder receives an equal quantity of
charge-air and that the bulk temperature is uniformly distributed throughout the combustion
chamber. Therefore, the determined in-cylinder temperature with the Bayesian modelling
technique can be considered a representative value only. However, this does not detract from
its utility, especially for inter-cycle variability studies.
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A.1.2 Modelling Error

In Bayesian analysis, the model parameters are resolved into posterior distributions rather
than single values—these distributions represent the probability density estimate of the true
value of the model parameter. This feature is a result of the iterative nature of a Monte
Carlo technique and is important—if a model parameter does not explore the parameter
space (and converge about a solution) then there would be no evidence that the posterior
distribution of the model parameter is representative of a possible solution. The posterior
distribution of a model parameter is generated by creating a kernel density estimate from a
suitably large number of parameter updates, after enough iterations have occurred for the
model to have converged on a solution (this time is known as the ‘burn-in’).

If a single value is required for further analysis, typically the modal value of the model
parameter is used (indicated by the peak of the kernel density estimate). The uncertainty
of this value would normally be discussed in one of two ways: 95% credibility intervals or
examination of the standard deviation. Representative results in Chapters 6 and 8 are shown
in tables with the prior and posterior means and standard deviations. This approach was
taken to show what was learned about the model parameters as a result of the analysis.
Specifics of the uncertainties are discussed in the relevant chapters.
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A.2 Fuel Certificates

The diesel fuel used in the campaign that this thesis is based on was a blend of the following
two batches of fuel. This blend was used for all of the results shown in this thesis, with the
exception of Chapter 4.
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