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Key-alternating block ciphers
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where each F (i) is a permutation of Fn2 .
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Round function in a substitution-permutation network
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Outline

• Representations of Sboxes

• Linear approximations of a Boolean function and Walsh transform

• Resistance to differential attacks

• Finding good Sboxes

• Security criteria for the linear layer
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Representations of Sboxes

4



Boolean functions

Definition. A Boolean function of n variables is a function from Fn2
into F2.

Truth table of a Boolean function.

x1 0 1 0 1 0 1 0 1
x2 0 0 1 1 0 0 1 1
x3 0 0 0 0 1 1 1 1

f(x1, x2, x3) 0 1 0 0 0 1 1 1

Value vector of f : word of 2n bits corresponding to all f(x), x ∈ Fn2 .
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Vectorial Boolean functions

Definition. A vectorial Boolean function with n inputs and m outputs
is a function from Fn2 into Fm2 :

S : Fn2 −→ Fm2
(x1, . . . , xn) 7−→ (y1, . . . , ym)

Each function

Si : (x1, . . . , xn) 7−→ yi

is called a coordinate of S.

Example.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) f e b c 6 d 7 8 0 3 9 a 4 2 1 5
S1(x) 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1
S2(x) 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 0
S3(x) 1 1 0 1 1 1 1 0 0 0 0 0 1 0 0 1
S4(x) 1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 0

6



Hamming weight of a Boolean function

Hamming weight of a Boolean function.
The Hamming weight of a Boolean function f , wt(f), is the Hamming
weight of its value vector.

A function of n variables is balanced if and only if wt(f) = 2n−1.

Proposition. A vectorial function S with n inputs and n outputs
is a permutation if and only if any nonzero linear combination of its
coordinates

x 7−→
n⊕
i=1

λiSi(x), λ = (λ1, . . . , λn) 6= 0

is a balanced Boolean function.
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Algebraic normal form (ANF)

Monomials in F2[x1, . . . , xn]/(x2
1 + x1, . . . , x

2
n + xn):

{
xu, u ∈ Fn2

}
where xu =

n∏
i=1

x
ui
i .

Example: x1011 = x1
1x

0
2x

1
3x

1
4 = x1x3x4.

Proposition.
Any Boolean function of n variables has a unique polynomial
representation in F2[x1, . . . , xn]/(x2

1 + x1, . . . , x
2
n + xn):

f(x1, . . . , xn) =
∑
u∈Fn2

aux
u, au ∈ F2.

Moreover, the coefficients of the ANF and the values of f satisfy:

au =
⊕
x�u

f(x) and f(u) =
⊕
x�u

ax,

where x � y if and only if xi ≤ yi for all 1 ≤ i ≤ n.
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Example

x1 0 1 0 1 0 1 0 1
x2 0 0 1 1 0 0 1 1
x3 0 0 0 0 1 1 1 1

f(x1, x2, x3) 0 1 0 0 0 1 1 1

a000 = f(000) = 0

a100 = f(100)⊕ f(000) = 1

a010 = f(010)⊕ f(000) = 0

a110 = f(110)⊕ f(010)⊕ f(100)⊕ f(000) = 1

a001 = f(001)⊕ f(000) = 0

a101 = f(101)⊕ f(001)⊕ f(100)⊕ f(000) = 0

a011 = f(011)⊕ f(001)⊕ f(010)⊕ f(000) = 1

a111 =
⊕
x∈F3

2
f(x) = wt(f) mod 2 = 0

f = x1 ⊕ x1x2 ⊕ x2x3.
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Computing the ANF

n = 3:
0 1 2 3 4 5 6 7
f(0) f(1) f(2) f(3) f(4) f(5) f(6) f(7)
f(0) f(0)⊕ f(1) f(2) f(2)⊕ f(3) f(4) f(4)⊕ f(5) f(6) f(6)⊕ f(7)
f(0) f(0)⊕ f(1) f(0)⊕ f(2) f(0)⊕ f(1) f(4) f(4)⊕ f(5) f(4)⊕ f(6) f(4)⊕ f(5)

⊕f(2)⊕ f(3) ⊕f(6)⊕ f(7)
f(0) f(0)⊕ f(1) f(0)⊕ f(2) f(0)⊕ f(1) f(0)⊕ f(4) f(0)⊕ f(1) f(0)⊕ f(2) f(0)⊕ f(1)

⊕f(2)⊕ f(3) f(4)⊕ f(5) ⊕f(4)⊕ f(6) ⊕f(2)⊕ f(3)
⊕f(4)⊕ f(5)
⊕f(6)⊕ f(7)

first step:

f(2i+ 1)← f(2i+ 1)⊕ f(2i)

second step:

f(4i+ j + 2)← f(4i+ j + 2)⊕ f(4i+ j), ∀0 ≤ j < 2

third step:

f(8i+ j + 4)← f(8i+ j + 4)⊕ f(8i+ j), ∀0 ≤ j < 4
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Computing the ANF

When the value vector is stored as a 32-bit integer x:

x ^= (x & 0x55555555) << 1;
x ^= (x & 0x33333333) << 2;
x ^= (x & 0x0f0f0f0f) << 4;
x ^= (x & 0x00ff00ff) << 8;
x ^= x << 16;
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Degree of a Boolean function

Definition.
The degree of a Boolean function is the degree of the largest
monomial in its ANF.

Proposition.
The weight of an n-variable function f is odd if and only if deg f = n.

Definition.
The degree of a vectorial function S with n inputs and m outputs is
the maximal degree of its coordinates.
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Example

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) f e b c 6 d 7 8 0 3 9 a 4 2 1 5
S1(x) 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1
S2(x) 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 0
S3(x) 1 1 0 1 1 1 1 0 0 0 0 0 1 0 0 1
S4(x) 1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 0

S1 = 1+ x1 + x3 + x2x3 + x4 + x2x4 + x3x4 + x1x3x4 + x2x3x4

S2 = 1+ x1x2 + x1x3 + x1x2x3 + x4 + x1x4 + x1x2x4 + x1x3x4

S3 = 1+ x2 + x1x2 + x2x3 + x4 + x2x4 + x1x2x4 + x3x4 + x1x3x4

S4 = 1+ x3 + x1x3 + x4 + x2x4 + x3x4 + x1x3x4 + x2x3x4
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Identifying Fn2 with a finite field

Fn2 is identified with the finite field with 2n elements.

F2n = {0} ∪ {αi, 0 ≤ i ≤ 2n − 2}
where α is a root of a primitive polynomial of degree n.

⇒ for any i, αi =
n−1∑
j=0

λjα
j

Example for n = 4:
primitive polynomial: 1 + x+ x4, α a root of this polynomial.

F24 0 1 α α2 α3 α4 α5 α6 α7

0 1 α α2 α3 α+1 α2 + α α3 + α2 α3 + α+1

F4
2 0000 0001 0010 0100 1000 0011 0110 1100 1011

α8 α9 α10 α11 α12 α13 α14

α2 +1 α3 + α α2 + α+1 α3 + α2 + α α3 + α2 + α+1 α3 + α2 +1 α3 +1

0101 1010 0111 1110 1111 1101 1001

14



The univariate representation of Sboxes

Any vectorial function with n inputs and n outputs can be seen as

S : F2n −→ F2n

Then,

S(X) =
2n−1∑
i=0

ciX
i , ci ∈ F2n.

Example:

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) f e b c 6 d 7 8 0 3 9 a 4 2 1 5

S(X) = α12 + α2X + α13X2 + α6X3 + α10X4 + αX5 + α10X6 + α2X7

+α9X8 + α4X9 + α7X10 + α7X11 + α5X12 +X13 + α6X14
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Linear approximations of a function

and Walsh transform
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Linear attacks [Matsui 93]

Idea.
Use linear relations between the input and output bits of the
cipher which hold with probability significantly greater or significantly
less than 1/2.

a ∈ Fn2 : input mask
b ∈ Fn2 : output mask

∣∣∣∣Prx [a · x⊕ b · Ek(x) = 0]−
1

2

∣∣∣∣
For our 4-bit Sbox.

x1 ⊕ x4 ⊕ S2(x) = 0x9 · x⊕ 0x2 · S(x)

equals 0 with probability 1
8.
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Computing the probabilities of all linear relations

Bias of a Boolean function.
For any Boolean function f of n variables

E(f) =
∑
x∈Fn2

(−1)f(x) = 2n − 2wt(f).

Equivalently,

Pr[f(x) = 0] =
wt(f)

2n
=

1

2

(
1−
E(f)

2n

)
.

→ we need to compute the biases of all Boolean functions

x 7−→ b · S(x) + a · x .
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Linear approximations of an Sbox

a \ b 1 2 3 4 5 6 7 8 9 a b c d e f
1 -4 . 4 . -4 8 -4 4 8 4 . -4 . 4 .
2 4 -4 . -4 . . 4 4 8 . 4 8 -4 -4 .
3 8 4 4 -4 4 . . . . 4 -4 -4 -4 . 8
4 . -4 4 4 -4 . . -8 . 4 4 4 4 . 8
5 -4 4 . 4 8 . 4 -4 8 . -4 . 4 -4 .
6 -4 . 4 . 4 8 4 4 -8 4 . 4 . -4 .
7 . . . 8 . -8 . . . . 8 . 8 . .
8 . -4 4 -8 . 4 4 -8 . -4 -4 . . 4 -4
9 -4 -12 . . 4 -4 . 4 . . -4 -4 . . 4
a -4 . -12 -4 . 4 . -4 . 4 . . -4 . 4
b . . . 4 -4 4 -4 . . -8 -8 4 -4 -4 4
c . . . -4 -4 -4 -4 . . 8 -8 4 4 -4 -4
d -4 . 4 4 . -4 . -4 . 4 . . -12 . -4
e 4 -4 . . 4 4 -8 -4 . . 4 -4 . -8 -4
f -8 4 4 -8 . -4 -4 . . -4 4 . . -4 4

Pr[a · x+ b · S(x) = 0] =
1

2

(
1 +
E(a, b)

2n

)
For instance, for a = 0x9 and b = 0x2, we have p = 1

2(1− 12
16) = 1

8.

19



Walsh transform of a Boolean function

Walsh transform of a Boolean function f of n variables

Fn2 −→ Z
a 7−→ E(f + `a) =

∑
x∈Fn2

(−1)f(x)+a·x

where `a : x 7−→ a · x

Walsh transform of a vectorial function S:

Fn2 × Fm2 −→ Z
(a, b) 7−→ E(b · S + `a) =

∑
x∈Fn2

(−1)b·S(x)+a·x

20



Computing the Walsh transform

f(x) 0 1 0 0 0 1 1 1
T (x) = (−1)f(x) 1 -1 1 1 1 -1 -1 -1

step 1 0 2 2 0 0 2 -2 0
step 2 2 2 -2 2 -2 2 2 2
E(f + `a) 0 4 0 4 4 0 -4 0

first step: T (2i) ← T (2i) + T (2i+ 1)

T (2i+ 1) ← T (2i) − T (2i+ 1)

second step: T (4i+ j) ← T (4i+ j) + T (4i+ j + 2), ∀0 ≤ j < 2

T (4i+ j + 2) ← T (4i+ j) − T (4i+ j + 2), ∀0 ≤ j < 2

third step: T (8i+ j) ← T (8i+ j) + T (8i+ j + 4), ∀0 ≤ j < 4

T (8i+ j + 4) ← T (8i+ j) − T (8i+ j + 4), ∀0 ≤ j < 4

Complexity : n2n operations.
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Some basic properties of the Walsh transform

Lemma:

E(`a) =
∑
x∈Fn2

(−1)a·x =
{ 2n if a = 0

0 otherwise
.

Proposition. The Walsh transform is an involution (up to
a multiplicative constant): for any x ∈ Fn2 ,∑

a∈Fn2

E(f + `a)(−1)a·x =
∑
a∈Fn2

∑
u∈Fn2

(−1)f(u)+a·u+a·x

=
∑
u∈Fn2

(−1)f(u)
∑
a∈Fn2

(−1)a·(x+u)

= 2n(−1)f(x)
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Some basic properties of the Walsh transform

Parseval equality. ∑
a∈Fn2

E2(f + `a) = 22n.

Proof.

∑
a∈Fn2

E2(f + `a) =
∑
a∈Fn2

 ∑
x∈Fn2

(−1)f(x)+a·x


 ∑
y∈Fn2

(−1)f(y)+a·y


=

∑
x∈Fn2

∑
y∈Fn2

(−1)f(x)+f(y)
∑
a∈Fn2

(−1)a·(x+y)

= 2n
∑
x∈Fn2

(−1)f(x)+f(x)

= 22n .

[Check it on each column of the table on Slide 19]
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Linearity of a Boolean function

Definition. For any Boolean function f of n variables,

L(f) = max
a
|E(f + `a)|

is called the linearity of f (highest bias for an affine approximation).

NL(f) = 2n−1 −
1

2
L(f)

is called the nonlinearity of f (distance of f to the affine functions).
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Can we say something about L(f)?

L(f) = max
a
|E(f + `a)|

Theorem. [Rothaus 76] For any Boolean function with n variables,

L(f) ≥ 2
n
2 ,

with equality for even n only. The functions achieving this bound
are called bent functions. They are not balanced.

Proof. From Parseval equality:

22n =
∑
a∈Fn2

E2(f + `a) ≤ max
a∈Fn2

E2(f + `a)× 2n = 2nL2(f)

with equality if and only if all E2(f + `a) are equal.

Then, L(f) ≥ 2
n
2 with equality if and only if

E(f + `a) = ±2
n
2 , ∀a ∈ Fn2 .
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Can we say something about L(f)?

What is the lowest possible value for L(f) when n is odd?
When f is balanced?

Functions of degree 2.
For n odd, n = 2t+ 1

x1x2 ⊕ x3x4 ⊕ . . .⊕ x2t−1x2t ⊕ x2t+1

satisfies L(f) = 2
n+1

2 . Moreover, f is balanced and

∀a ∈ Fn2 , E(f + `a) ∈ {0,±2
n+1

2 }.

Theorem.

2
n
2 ≤ min

f∈Booln
L(f) ≤ 2

n+1
2

26



Boolean functions with a low linearity

n minf∈Booln L(f)

5 8 [Berlekamp-Welch 72]
7 16 [Mykkelveit 80]
9 24, 26, 28, 30 [Kavut-Maitra-Yücel 06]
11 46-60
13 92-120
15 182-216 [Paterson-Wiedemann 83]

Open problem. Find the lowest possible linearity for a Boolean
function of n variables, where n is odd and n ≥ 9.
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Balanced Boolean functions with a low linearity

n minf∈Ba`n L(f)

4 8
5 8
6 12
7 16
8 20, 24
9 24, 28, 32
10 36, 40

Open problem. Find the highest possible nonlinearity for a balanced
Boolean function of n variables, where n is even and n ≥ 8.

Proposition. [Katz 71] If f is balanced, all values E(f + `a) are

divisible by 2
d n−1

deg f e+1, i.e., at least by 4 (and by 8 if deg f < n− 1).

28



Linearity of an Sbox

Criterion on the Sbox.
All linear approximations of S should have a small bias, i.e.,

L(S) = max
a∈Fn2 , b∈Fn2 ,b 6=0

|E (b · S + `a)| = max
b 6=0
L(b · S)

must be as small as possible.

NL(S) = 2n−1 −
1

2
L(S)

is called the nonlinearity of S.
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Sboxes with a low linearity

What is the lowest possible value for L(S) when S is a vectorial
function with n inputs and n outputs?

Theorem. [Chabaud-Vaudenay 94] For any function S with n inputs
and n ouputs,

L(S) ≥ 2
n+1

2 ,

with equality for odd n only. The functions achieving this bound are
called almost bent functions.

For n even.
There exist Sboxes with

L(S) = 2
n+2

2

but we do not known if this value is minimal.

30



Resistance to differential attacks
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Difference distribution table of an Sbox

a \ b 1 2 3 4 5 6 7 8 9 a b c d e f
1 2 0 4 2 0 2 2 0 0 0 2 0 0 0 2
2 2 2 0 2 4 0 2 0 4 0 0 0 0 0 0
3 2 0 4 0 2 0 0 0 0 6 0 0 0 2 0
4 2 0 2 4 0 0 0 2 2 0 0 2 0 0 2
5 0 4 2 0 0 0 2 2 0 0 4 2 0 0 0
6 4 0 0 0 0 4 0 4 0 0 0 0 4 0 0
7 0 2 0 0 2 2 2 0 2 2 2 0 0 2 0
8 0 4 0 0 0 4 0 0 0 0 0 0 4 0 4
9 2 2 0 2 2 0 0 0 4 0 0 2 0 2 0
a 0 0 2 2 0 2 2 2 0 2 2 0 0 0 2
b 0 0 2 0 4 0 2 2 0 0 0 6 0 0 0
c 0 2 0 0 0 2 0 0 2 2 2 2 0 4 0
d 2 0 0 0 2 0 0 0 0 2 0 0 8 2 0
e 0 0 0 0 0 0 4 0 0 0 4 0 0 4 4
f 0 0 0 4 0 0 0 4 2 2 0 2 0 0 2

δS(a, b) = #{X ∈ Fn2 , S(X ⊕ a)⊕ S(X) = b}
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Resistance to differential attacks

Criterion on the Sbox.[Nyberg-Knudsen 92]
All entries in the difference table of S should be small.

δ(S) = max
a,b 6=0

#{X ∈ Fn2 , S(X ⊕ a)⊕ S(X) = b}

must be as small as possible.

δ(S) is called the differential uniformity of S (always even).

Theorem. For any Sbox S with n inputs and n outputs,

δ(S) ≥ 2 .

The functions achieving this bound are called almost perfect nonlinear
functions (APN).
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Link between the difference and square correlation tables

Theorem. [Chabaud Vaudenay 94][Blondeau Nyberg 13]
There is a one-to-one correspondence between the DDT

δ(a, b), a, b ∈ Fn2

and the squared LAT

E2(a, b), a, b ∈ Fn2

E2(u, v) =
∑

a,b∈Fn2

(−1)a·u+b·vδ(a, b)

δ(a, b) = 2−2n
∑

u,v∈Fn2

(−1)a·u+b·vE2(u, v)

There is a one-to-one correspondence between the Sbox and
the LAT.
But several Sboxes may have the same squared LAT.
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Finding good Sboxes
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Affine equivalence between Sboxes

S1 and S2 are affinely equivalent if there exist two affine permutations
of Fn2 , A1 and A2, such that

S2 = A2 ◦ S1 ◦A1

Then,

δ(S2) = δ(S1) and L(S2) = L(S1)

36



Permutations of Fn2 , n odd

L(S) ≥ 2
n+1

2 and δ(S) ≥ 2

• Any AB Sbox (i.e., with L(S) = 2
n+1
2 ) is APN [Chabaud-Vaudenay

94].

• The converse holds for some specific cases only, e.g for quadratic
APN Sboxes [Carlet-Charpin-Zinoviev 98]

• AB functions over Fn2 have degree at most n+1
2 .
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Known AB permutations of Fn2 , n odd

Monomials permutations S(x) = xs over F2n.

quadratic 2i + 1 with gcd(i, n) = 1, [Gold 68],[Nyberg 93]

1 ≤ i ≤ t
Kasami 22i − 2i + 1 with gcd(i, n) = 1 [Kasami 71]

2 ≤ i ≤ t
Welch 2t + 3 [Dobbertin 98]

[C.-Charpin-Dobbertin 00]

Niho 2t + 2
t
2 − 1 if t is even [Dobbertin 98]

2t + 2
3t+1

2 − 1 if t is odd [Xiang-Hollmann 01]

Non-monomial permutations.[Budaghyan-Carlet-Leander08]]
For n odd, divisible by 3 and not by 9.

S(x) = x2i+1 + ux2j
n
3 +2(3−j)n3 +i

with gcd(i, n) = 1 and j = i
n

3
mod 3
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Permutations of F4
2

δ(S) ≥ 4 and L(S) ≥ 8

16 classes of optimal Sboxes [Leander-Poschmann 07]

0 1 2 3 4 5 6 7 8 9 a b c d e f
G0 0 1 2 13 4 7 15 6 8 11 12 9 3 14 10 5
G1 0 1 2 13 4 7 15 6 8 11 14 3 5 9 10 12
G2 0 1 2 13 4 7 15 6 8 11 14 3 10 12 5 9
G3 0 1 2 13 4 7 15 6 8 12 5 3 10 14 11 9
G4 0 1 2 13 4 7 15 6 8 12 9 11 10 14 5 3
G5 0 1 2 13 4 7 15 6 8 12 11 9 10 14 3 5
G6 0 1 2 13 4 7 15 6 8 12 11 9 10 14 5 3
G7 0 1 2 13 4 7 15 6 8 12 14 11 10 9 3 5
G8 0 1 2 13 4 7 15 6 8 14 9 5 10 11 3 12
G9 0 1 2 13 4 7 15 6 8 14 11 3 5 9 10 12
G10 0 1 2 13 4 7 15 6 8 14 11 5 10 9 3 12
G11 0 1 2 13 4 7 15 6 8 14 11 10 5 9 12 3
G12 0 1 2 13 4 7 15 6 8 14 11 10 9 3 12 5
G13 0 1 2 13 4 7 15 6 8 14 12 9 5 11 10 3
G14 0 1 2 13 4 7 15 6 8 14 12 11 3 9 5 10
G15 0 1 2 13 4 7 15 6 8 14 12 11 9 3 10 5
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Permutations of F6
2

δ(S) ≥ 2 and L(S) ≥ 12

S= {0, 54, 48, 13, 15, 18, 53, 35, 25, 63, 45, 52, 3, 20, 41, 33, 59,
36, 2, 34, 10, 8, 57, 37, 60, 19, 42, 14, 50, 26, 58, 24, 39, 27, 21,
17, 16, 29, 1, 62, 47, 40, 51, 56, 7, 43, 44, 38, 31, 11, 4, 28, 61,
46, 5, 49, 9, 6, 23, 32, 30, 12, 55, 22};

satisfies

δ(S) = 2 , degS = 4 and L(S) = 16 [Dillon 09]

The corresponding univariate polynomial over F26 contains 52 nonzero
monomials (out of 56 possible monomials of degree at most 4).

This is the only known APN permutation with an even number of
variables.
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Good permutations of Fn2, n even

Usually, we search for permutations S with

δ(S) = 4 and L(S) = 2
n+2

2 .

Monomials permutations S(x) = xs over F2n.

2i + 1, gcd(i, n) = 2 n ≡ 2 mod 4 [Gold 68]

22i − 2i + 1, gcd(i, n) = 2 n ≡ 2 mod 4 [Kasami 71]

2
n
2 + 2

n
4 + 1 n ≡ 4 mod 8 [Bracken-Leander 10]

2n − 2 [Lachaud-Wolfmann 90]

The last one is affinely equivalent to the AES Sbox.
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Security criteria for the linear layer
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A two-round characteristic

S S S S

k+
?

k+
?

k+
?

k+
?

S S S S

????

L

?

?

? ?

? ? ?

? ? ??

?

- - - -

a

b

a1 a3a2 a4

c2 c3 c4c1

K
d = L(c)

c

d2d1 d3 d4

b1 b2 b3 b4

EDP((a, c, L(c), b)) =
t∏
i=1

δS(ai, ci)

2m

t∏
j=1

δS(L(c)j, bj)

2m

43



A two-round characteristic
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Differential branch number of L over Fm2

minimal number of active Sboxes within a 2-round characteristic

d = dmin(CL) where CL = {(x, L(x)), x ∈ (Fm2 )t}

CL is a code over Fm2 of length 2t and size (2m)t.

Maximizing the differential branch number.

From Singleton’s bound,

dmin (CL) ≤ t+ 1

with equality for MDS codes.
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MEDP of a two-round differential

A differential may aggregate many differential characteristics.

Bound on the 2-round MEDP [Hong et al00][Daemen-Rijmen02]:

MEDP2 ≤
(
2−mδ(S)

)d−1

where d is the differential branch number of L over Fm2 .
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AES [Daemen-Rijmen 98][FIPS PUB 197]

In the AES:

• S(x) = A(x254) over F28 where A is an affine permutation of F8
2.

Then, δ(S) = 4.

• L = MixColumns is such that CL is an [8, 4, 5] MDS code over F28

For any 2-round characteristic Ω,

EDP(Ω) ≤
(
δ(S)

2m

)d
= 2−30

For any 2-round differential (a, b),

EDP(a, b) ≤
(
δ(S)

2m

)d−1

= 2−24
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For linear cryptanalysis

Expected squared correlation (linear potential) of a mask (u, v):

ELP(u, v) = 2−2n−κ ∑
k∈Fκ2

 ∑
x∈Fn2

(−1)u·x+v·Ek(x)


2

Expected squared correlation of a 2-round linear trail (a, LT (c), c, b):

ELP((a, LT (c), c, b)) ≤
(
2−2mL(S)2

)wt(LT (c))+wt(c)
≤
(
2−mL(S)

)2d′
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Linear branch number of L over Fm2

d′ = dmin(C′L) where C′L = {(LT (x), x), x ∈ (Fm2 )t}

C′L is the dual (orthogonal) of CL:

∀x, y : (LT (x), x) · (y, L(y)) = LT (x) · y ⊕ x · L(y) = 0

Then, C′L is MDS if and only if CL is MDS.
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AES [Daemen-Rijmen 98][FIPS PUB 197]

In the AES:

• S(x) = A(x254) over F28 where A is an affine permutation of F8
2.

Then, L(S) = 25.

• L = MixColumns is such that CL is an [8, 4, 5] MDS code over F28

For any 2-round linear trail Ω,

ELP(Ω) ≤
(L(S)

2m

)2d′

= 2−30

For any 2-round linear approximation (a, b),

ELP(a, b) ≤
(L(S)

2m

)2(d′−1)

= 2−24
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More detailed lecture notes

https://www.paris.inria.fr/secret/Anne.Canteaut/poly.pdf
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