
HAL Id: hal-01955327
https://hal.archives-ouvertes.fr/hal-01955327

Submitted on 14 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Privacy Risks with Facebook’s PII-based Targeting:
Auditing a Data Broker’s Advertising Interface

Giridhari Venkatadri, Athanasios Andreou, Yabing Liu, Alan Mislove,
Krishna Gummadi, Patrick Loiseau, Oana Goga

To cite this version:
Giridhari Venkatadri, Athanasios Andreou, Yabing Liu, Alan Mislove, Krishna Gummadi, et al..
Privacy Risks with Facebook’s PII-based Targeting: Auditing a Data Broker’s Advertising Interface.
39th IEEE Symposium on Security and Privacy (S&P), 2018, San Francisco, United States. �hal-
01955327�

https://hal.archives-ouvertes.fr/hal-01955327
https://hal.archives-ouvertes.fr

Privacy Risks with Facebook’s PII-based Targeting:
Auditing a Data Broker’s Advertising Interface

Giridhari Venkatadri†, Athanasios Andreou§, Yabing Liu†,
Alan Mislove†, Krishna P. Gummadi‡, Patrick Loiseau∗‡, Oana Goga∗

†Northeastern University §EURECOM ‡MPI-SWS ∗Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG

Abstract—Sites like Facebook and Google now serve as de
facto data brokers, aggregating data on users for the purpose of
implementing powerful advertising platforms. Historically, these
services allowed advertisers to select which users see their ads
via targeting attributes. Recently, most advertising platforms have
begun allowing advertisers to target users directly by uploading
the personal information of the users who they wish to advertise
to (e.g., their names, email addresses, phone numbers, etc.);
these services are often known as custom audiences. Custom
audiences effectively represent powerful linking mechanisms,
allowing advertisers to leverage any PII (e.g., from customer
data, public records, etc.) to target users.

In this paper, we focus on Facebook’s custom audience
implementation and demonstrate attacks that allow an adversary
to exploit the interface to infer users’ PII as well as to infer their
activity. Specifically, we show how the adversary can infer users’
full phone numbers knowing just their email address, determine
whether a particular user visited a website, and de-anonymize
all the visitors to a website by inferring their phone numbers en
masse. These attacks can be conducted without any interaction
with the victim(s), cannot be detected by the victim(s), and do
not require the adversary to spend money or actually place an
ad. We propose a simple and effective fix to the attacks based on
reworking the way Facebook de-duplicates uploaded information.
Facebook’s security team acknowledged the vulnerability and has
put into place a fix that is a variant of the fix we propose. Overall,
our results indicate that advertising platforms need to carefully
consider the privacy implications of their interfaces.

I. INTRODUCTION

Data brokers are businesses whose revenue model revolves
around aggregating information about individuals from a va-
riety of public and private sources. Traditional data brokers
include Acxiom, Datalogix, and Equifax, who sell access to the
collected data to third parties, including advertisers, marketers,
and political campaigns. Recently, online services like Google
and Facebook have become de facto data brokers: while they
do not typically sell access to the collected data directly, they
instead use the collected data to build powerful advertising
services that have data on billions of users worldwide. Conse-
quently, any breaches or hacks potentially threaten the privacy
of large numbers of users, making them vulnerable to potential
fraud, harassment, and identity theft attacks [6].

These new data brokers provide interfaces to their ad-
vertising services that enable advertisers to target their ads
to users with specific attributes (e.g., all 35-year-old males
living in Detroit); these groups are referred to as audiences.
The interfaces provide advertisers with basic statistics about
their selected audience, including an estimate of its size. In

ground-breaking work in 2011, Korolova [18] demonstrated
that malicious Facebook advertisers could select attributes that
are “microtargeted”, or chosen so that they are satisfied only
by a single user. As a result, Korolova was able to use the
audience size statistics to infer users’ demographic information
that was set to be private. In response, Facebook disallowed
microtargeting, placing a minimum size on audiences.

Recently, data brokers such as Facebook [42] and
Google [1] have introduced a new feature on their advertising
interfaces: custom audiences. Instead of creating audiences
based on user attributes, advertisers can now upload personally
identifying information (PII) about specific users; the platform
then locates matching accounts and creates an audience con-
sisting of only these users. The advertiser can then use this
audience when placing ads, thereby showing their ads only
to the specific users whose information they uploaded. For
example, a small business may know the names and addresses
of its customers; using custom audiences, the business can
upload this information to Facebook, and then target these
users with advertising directly. The custom audience feature
has proven popular with advertisers: it allows them to directly
select the users to whom their ad is shown, as opposed to only
selecting the attributes of the users [42], [28].

At its core, the custom audience feature is a linking mech-
anism, enabling advertisers to link various forms of user PII
that they have collected to the information collected by the
advertising platform. Advertisers come with various pieces of
user PII—they may have the email addresses of some people,
the names and addresses of others, and the phone numbers of a
few more—and the platform links all of these disparate pieces
of PII to the users’ accounts. Unfortunately, if not implemented
carefully, the custom audience feature can inadvertently leak
bits of information about users to advertisers.

In this paper, we focus on auditing Facebook’s advertising
interface, as Facebook’s advertising service is one of the
most mature and well-used advertising platforms. Indeed, we
show that Facebook’s advertising interface leaks sensitive
personal information about users by reporting coarse-grained
information about the size of a custom audience. For example,
malicious Facebook advertisers can infer the phone number
of a user given only their email address, or they can infer
whether a given user has visited a webpage the advertiser
controls. None of these attacks require any interaction with
the victim, none can be detected by the victim, and all can
be performed without actually placing any ads or paying any

1

money. These attacks can be particularly devastating for user
privacy: for example, they enable malicious users to infer the
phone numbers of celebrities or politicians [31], [25], allow
oppressive governments to identify and intimidate citizens who
dissent online [30], enable adversaries to easily identify users’
mobile numbers for purposes of “phone porting” attacks [27],
and allow website operators to de-anonymize users who visit
websites that may contain embarrassing or censored content.

To develop our attacks, we carefully study the features of
the Facebook advertising interface. The attacks we present
are enabled by two characteristics of this interface that we
discover: First, we show that the size statistics reported by
the interface are obfuscated using rounding; this enables us to
create audiences that negate the effect of rounding by having
a size that falls exactly on the rounding threshold. Second,
we demonstrate that the interface de-duplicates multiple PII
records that refer to the same user when reporting the size
statistics; combined with the previous observation, we are able
to determine whether two pieces of PII refer to the same user.

Overall, our paper makes four contributions:

• We characterize the Facebook custom advertising interface,
revealing the two characteristics that enable our attacks.

• We show how an adversary can abuse the custom audience
linking mechanism to infer other PII of a victim, knowing
only basic information about the victim. This attack, for
example, allows an adversary to infer the phone number or
name/location of a victim, given their email address.

• We demonstrate how the adversary can use Facebook’s
third-party tracking Javascript to de-anonymize visitors to
their website (e.g., by inferring visitors’ phone numbers).

• We propose a mitigation that modifies how de-duplication is
implemented. In brief, instead of de-duplicating at the user
level, Facebook should de-duplicate at the PII level.

Ethics Throughout this study, we have ensured that all
of our experiments meet community ethical standards. First,
all of the input voter records that we used as a basis for
creating threshold audiences are available as public records.
Second, we did not collect or obtain the personal information
of any Facebook users; our small set of users only provided us
with their email addresses and phone numbers for validation.
Our attacks did not interact with their accounts in any way,
reveal any additional information about them that we did not
already know, or provide to Facebook any information about
them that Facebook did not already have. Third, we have
responsibly disclosed all of the attacks to Facebook, providing
them with early drafts of this submission. Their security team
has acknowledged the vulnerability and has put into place a
fix that is a variant of the fix we propose in Section VI.

II. BACKGROUND

Most of the popular web and mobile application-based services
today are funded by advertising, where the end users are
provided the service for free in exchange for being shown ads.

Site

N
am

e

E
m

ai
l

Ph
on

e
nu

m
be

r

C
ity

or
Z

IP

St
at

e
or

Pr
ov

in
ce

B
ir

th
da

y,
G

en
de

r

E
m

pl
oy

er

Si
te

us
er

ID

M
ob

ile
ad

ve
rt

is
er

ID

Min.
Size

Facebook 3 3 3 3 3 3 7 3 3 20
Instagram 3 3 3 3 3 3 7 3 3 20
Twitter 7 3 3 7 7 7 7 3 3 500
Google 3 3 3 3 7 7 7 3 3 1,000
Pinterest 7 3 7 7 7 7 7 7 3 100
LinkedIn 7 3 7 7 7 7 3 7 3 100

TABLE I: User attributes that advertisers can upload to create
custom audiences in various advertising platforms. Also shown
is the minimum custom audience size that the sites allow.

Most online advertising platforms are implemented using auc-
tions, where advertisers bid on keywords or search terms in the
traditional search-based advertising platforms (e.g., Google,
Yahoo, Bing); or user demographics, interests, behaviors, and
other user information in online social network advertising
platforms (e.g., Facebook, Twitter, Pinterest). Whenever a user
views a page, the platform runs an auction and displays the
ads requested by the winning advertiser(s).

On most online social media advertising platforms, ad-
vertisers are allowed to create audiences (simply, groups of
users) for convenience. For example, an advertiser may wish
to advertise to a certain group of users multiple times; the
advertiser is allowed to first define this audience (e.g., all
users living in a certain region), and then can submit ads (and
corresponding bids) to be shown to these users. Today, there
are two primary ways an advertiser can create an audience:

1. Attribute-based audiences Advertisers can create
audiences by specifying the properties of the users whom they
wish to target. For example, advertisers can create audiences
using any combination of targeting attributes, such as location
(city or ZIP), age, gender, languages, likes, interests, etc.

2. PII-based audiences Recently, a new method for
creating audiences has been developed: audiences created
based on information that uniquely identifies specific users
(i.e., using personally identifiable information, PII). These PII-
based audiences come in two flavors. First, the advertiser can
upload the PII of the users they wish to target (e.g., their
email addresses, their names and cities of residence, etc.).
The advertising platform then creates an audience of platform
users matching the PII.1 We refer to these audiences as custom
audiences, with the nomenclature referring to the fact that the
audiences are created in a custom fashion by the advertiser.

We provide an overview of the PII types that advertisers can
upload when creating custom audiences on various platforms

1Most platforms provide advertisers with guarantees that the platforms
themselves are not capturing customer information uploaded for custom
audience creation. This is typically implemented using hashing, where all
advertiser-provided data is hashed before being uploaded to the platform
(in fact, some platforms allow advertisers to upload already-hashed data
records) [41], [34], [16], [4].

2

in Table I. As can be observed, Facebook (and Instagram,
owned by Facebook) allows the widest variety of personal
information to be uploaded. However, all platforms allow
advertisers to create custom audiences based on email ad-
dresses, and most allow creation based on mobile advertising
IDs (essentially per-mobile-device identifiers) [40].2 We note
that the custom audience feature is given different names
on different platforms: Facebook’s Custom Audiences [42],
[35], Twitter’s Tailored Audiences [36], Google’s Customer
Match [1], Pinterest’s Audiences [26], and LinkedIn’s Audi-
ence Match [3].

Second, advertisers can create audiences based on users
who interact with the advertiser’s Facebook applications or
(external) website. To facilitate external website tracking, the
platform gives the advertiser some code (often referred to as a
tracking pixel, as it was historically implemented as a one-
pixel image) to include on their website; when users visit
the advertiser’s website, the code makes requests to the social
media platform, thereby adding the user to an audience. We
refer to these audiences as tracking pixel audiences.

It is important to underscore the distinction between PII-
based audiences and traditional attribute-based audiences: with
attribute-based audiences, advertisers could only specify the
attributes of the users they wanted to target (e.g., an advertiser
could create an audience of female users in Seattle). With
PII-based audiences, advertisers instead specify the particular
users they want to target, either by uploading known email ad-
dresses, names, or other personal information, or by selecting
users who visited an external website the advertiser controls.

III. FACEBOOK’S PII-BASED AUDIENCES

For the remainder of the paper, we focus on Facebook’s
advertising platform, as it is the largest and most successful
social media advertising platform. An advertiser can use a
number of different features of Facebook’s advertising inter-
face when placing an ad. Only the first few of these steps
are relevant to our attacks; the adversary does not need to
actually place an ad. In this section, we describe the important
features of Facebook’s advertising interface relevant to PII-
based audiences that we use throughout the paper.

A. Creating custom audiences

Advertisers create custom audiences using a web interface
where they are allowed to upload 15 different types of user
information; these include external unique identifiers such
as Email, Phone number, and Mobile advertiser ID,3 as
well as fields related to name (First name, Last name),
age (Date of birth, Year of birth, Age), sex (Gender), and

2LinkedIn is a business-centric social network and offers an entirely
different feature, Employer, as their account-targeting option. LinkedIn allows
advertisers to upload lists of up to 30,000 companies, and can target ads to
those companies’ employees. However, this feature is not self-service and
involves working with the LinkedIn account team.

3Mobile advertiser ID represents a mobile-OS-provided identifier that is
unique for each device (but can be reset by the user). This is useful for
advertisers who wish to target mobile users who have already installed the
advertiser’s app.

location (ZIP/Postal code, City, State/Province, Country).
In addition, advertisers can specify Facebook app user ID
and Facebook page user ID, which are obfuscated identifiers
that are generated when a user installs an advertiser’s Facebook
application or likes their page. Behind the scenes, Facebook
first hashes advertiser-provided data before uploading it for
matching, ostensibly to assure advertisers that the matching
process will not reveal the advertisers’ customer data [41].

We experimented with this interface to determine what set(s)
of fields are required in order to initiate the matching process
(e.g., would it be enough to simply upload a First name
of “John” and match all users named John on Facebook?).
Among the 15 fields, we found that only five of them can
be used alone to create a custom audience: Email address,
Phone number, Mobile advertiser ID, Facebook app user
ID, and Facebook page user ID. If the advertiser wishes
to use only the remaining 10 fields, they must provide First
name, Last name, and one of the following sets of fields:
(City, State/Province), (ZIP), or (Date of birth); they can
provide additional information if desired. Finally, we note
that advertisers are allowed to upload files with different
information for different users (e.g., a file with the email
addresses of some users, and the phone numbers of others).

It typically takes up to a few hours for Facebook to create
the custom audience after the advertiser uploads the PII. As far
as we can tell, there is no limit on the size of lists that can be
uploaded; the audience creation process takes proportionally
longer for longer lists, e.g., a few hours for 10 million records.

To prevent advertisers from targeting individual users (likely
as a response to Korolova’s work [18]), most platforms have
policies about the minimum number of matched members
for each PII-based audience to be usable. We show this
information in Table I. While Facebook requires at least 20
individuals when creating a custom audience [24], most other
sites, such as Google AdWords, Twitter, Pinterest, only allow
advertisers to use a custom audience if it contains of hundreds
of users or more. In the case of Facebook, it will actually
create audiences with fewer than 20 users, but will not allow
an advertiser to advertise to only that audience (more on this
later).

Finally, once the audience is created, Facebook reports
success and tells the advertiser the number of matched records
(note that Facebook may not be able to match all of the
PII records that were uploaded to Facebook accounts). We
refer to the number of matched records as the audience size.
The custom audience size is obfuscated, and we explore the
mechanism by which it is obfuscated in the next section.

B. Creating tracking pixel audiences

Advertisers create tracking pixel audiences using a separate
web interface by simply providing a name for the audience,
and then including the Javascript code provided by Facebook
in their external website. As with custom audiences, Facebook
provides an obfuscated audience size and requires at least 20
individuals for the audience to be usable.

3

C. Obtaining potential reach

The second advertising feature that we use is the potential
reach. To place an ad, the advertiser can choose an existing
PII-based audience to advertise to, or combine that audience
with any other PII-based audiences that the advertiser has
previously created. This avoids requiring the advertiser to
submit multiple ads (one for each audience) or to re-upload
the same data multiple times.

When combining audiences, Facebook allows advertisers
to include users who appear in any number of existing PII-
based audiences, and then exclude users who appear in any
number of such audiences. When convenient, we denote these
operations as union (∪) and set-minus (\). In testing the
interface, we found that exclude trumps include (e.g., if a
user is part of any excluded audience, the user will not be
in the final combined set regardless of how many included
audiences they appear on). For simplicity, we refer to the
resulting set of users as the combined audience. It must be
noted that Facebook allows the inclusion or exclusion even of
audiences that have fewer than 20 users.

Once the advertiser has selected the combined audience
they wish to advertise to, they then proceed to place a bid
and upload the actual advertisement. As these steps are not
necessary for our attacks, we do not discuss them in detail.

However, there is one feature of Facebook’s interface that
we do use: the number of active users that are in the combined
audience. Facebook provides advertisers with this number,
called the potential reach. Facebook [43] defines it as4

... the number of daily active people on Facebook
that match the audience you defined through your
audience targeting selections

We refer to users who are “daily active” as targetable.
It is important to note how potential reach and audience

size differ: the audience size only applies to PII-based au-
diences and includes all matched Facebook accounts, while
the potential reach can be applied to both PII-based audiences
and combinations of such audiences, but only includes “daily
active” Facebook accounts. Thus, for a single audience, the
potential reach is always less than or equal to the audience
size. Additionally, we can obtain the potential reach for
combinations of audiences via includes and excludes.

Similar to the audience size, the potential reach that Face-
book reports is obfuscated; we explore this in the next section.

D. Determining audience intersection size

The final advertising feature that we utilize is the audience
comparison page. Advertisers are likely to have created multi-
ple PII-based audiences; in order to help them understand these
audiences and decide which to use, Facebook’s advertising
interface allows advertisers to measure the overlap between
different pairs of PII-based audiences that they have created.
When convenient, we denote this operation as intersection (∩).

4While this definition was provided at the time we conducted the exper-
iments, Facebook has since changed the definition of potential reach [2].
However, the new definition still captures the notion of active users.

We interacted with this feature using some of the PII-based
audiences we created, and observed it had two important
characteristics. First, the interface only supports PII-based
audiences with an audience size of at least 1,000; smaller
audiences are not available when using this interface. Second,
the intersection size shown is based on audience size, and not
on potential reach. Third, this intersection size is obfuscated;
we explore the obfuscation mechanism in the next section.

IV. FACEBOOK IMPLEMENTATION CHARACTERISTICS

Having described the key features of Facebook’s interface, we
now begin our analysis. We examined how the key features are
implemented, and found two implementation characteristics
that enable our attacks; we first describe the datasets we
used for testing before describing the two characteristics. The
experiments described in this section were performed between
January and March 2017; Facebook’s fix in response to our
disclosure has since changed how some of these features work.

A. Datasets

To study how the PII-based audience interface is implemented,
we need PII-based audiences to test with. To create custom
audiences, we use two sources of data: First, we use the
phone numbers and email addresses of 100 recruited friends
and family members. For all of these users, we only use the
data that Facebook already had listed in their accounts and was
visible to us. Second, for experiments where we needed large
numbers of records, we used public voter records from North
Carolina [37]. In brief, records of registered voters in North
Carolina are publicly available and contain voters’ names and
ZIP codes, among other fields. Obviously, not all registered
voters will have Facebook accounts and both the Facebook
and voter data could be out-of-date or inaccurate; thus, when
uploading sets of voter records to create custom audiences, we
expect that not all records would match a Facebook account.

To create a tracking pixel audience, we set up a test website
with a Facebook tracking pixel created under our advertising
account. We recruited 20 friends and family members with
active Facebook accounts to visit the page.

B. Calculating size statistics via rounding

As noted in the previous section, there are three different
mechanisms within Facebook’s advertising interface that re-
port the “size” of a PII-based audience: (1) the audience size
representing the total number of matched accounts of a custom
audience or accounts in a tracking pixel audience, (2) the
audience intersection size representing the total number of
accounts two PII-based audiences have in common, and (3) the
potential reach representing the number of “daily active” users
in a PII-based audience (or combination of such audiences).
Recall that all three of these numbers were obfuscated in some
way; we now determine how they are actually calculated.

Potential reach We first examine potential reach, described
in Section III-C. We use our browser’s developer tools to
examine the network requests made by Facebook’s advertising
interface when we choose audiences to include or exclude. We

4

find that the interface makes GET requests to an API endpoint,
which returns JSON objects that include the corresponding
potential reach. We created a script to automate the process
of making requests; we then used our script to collect the
potential reach of over 58K different combinations of custom
audiences (based on voter data) and targeting attributes, and
found the output to have the following properties:

Granularity Looking at the distribution of potential reach
values, we never observed any values smaller than 20, or that
were not a multiple of 10; besides, we observed that larger
values had few significant digits. Looking closely, we found
that the values all come from the set

{20, 30, ... 990, 1000, 1100, ... 10000, 11000, ..., 100000, ...}

meaning they are multiples of 10 up to 1,000, multiples of 100
up to 10,000, multiples of 1,000 up to 100,000, and multiples
of 10,000 beyond 100,000.

Consistency Next, we examine how consistent the potential
reach values are over time. We first measure the consistency
over short time scales by running 1,000 API queries back-
to-back (roughly one query every second) for the same audi-
ence and targeting attributes. We repeat this experiment five
different times with two different audiences, and find all the
potential reach values within each run of 1,000 were exactly
the same. This result shows that the audience size statistics
are consistent over short intervals.

To measure consistency over longer time scales, we queried
the API every five minutes for the potential reach of four
different audiences, issuing 150 queries for each audience over
a period of over 12 hours. The potential reach of three of the
audiences remained constant, while the potential reach of the
fourth audience changed slightly at one point during the 12
hour experiment and stayed at the new value. This result shows
that across longer time scales, the potential reach values are
largely consistent; the small changes in potential reach are
consistent with Facebook’s definition of potential reach as the
number of active users in the audience.

Finally, we measure the consistency of custom audience
creation by re-uploading 15 lists of PII multiple times within
the same day to create custom audiences. We find that the
potential reach remained consistent for 14 of the lists, with the
final list changing by 10 users at one point. Again, this small
change is consistent with the definition of potential reach.

Monotonicity Next, we examine whether the potential reach
monotonically increases when we add more users to the list
we upload. Specifically, we upload a series of lists such that
each list has one record added beyond the previous one.
Thus, in the corresponding series of custom audiences created,
each audience would contain at most one additional Facebook
account compared to the previous one (if Facebook could not
find a match for the added record, or if the matched user was
not active, we would expect the potential reach of the audience
to be the same as that of the previous one).

We then study whether the corresponding potential reach
values increase monotonically. For example, starting with a

random sample of 300 voter records, we sequentially add 16
records to the list and upload all 17 lists. The potential reach
for the initial sample was 30. This value increased to 40 as
the first record was added, and then increased to 50 after
the 14th record was added, showing that the potential reach
statistics increase monotonically. We repeated this experiment
with multiple audiences; in all cases, the same pattern held:
the potential reach values increased monotonically, using the
minimum granularity steps described above.

Summary Overall, our results strongly suggest that Facebook
is rounding the raw potential reach value in steps of 10, 100,
1,000, or 10,000, depending on its magnitude.

Audience size Next, we examine the audience size,
described in Sections III-A and III-B. We repeated all of the
experiments that we conducted above for potential reach; for
brevity, we omit the details and simply describe the inferred
behavior. We observe that the audience size has values in
{20, 30, ... 90, 100, 200, ...}, meaning they are multiples of 10
up to 100 and multiples of 100 thereafter. We also observe that
audience size has greater consistency than potential reach, as
we did not observe any cases where the number of matched
accounts changed over short or long time periods; this makes
sense, as audience size is only the number of accounts,
and does not consider user activity. Finally, we observe that
audience size has similar monotonicity to potential reach.

Summary We again observe that Facebook appears to be
rounding the actual size of the audience in steps of 10 or 100,
depending on its magnitude.

Audience intersection size Finally, we examine the char-
acteristics of the audience intersection size, as described in
Section III-D. We repeated all of the experiments that we per-
formed on potential reach in Section IV-B on the intersection
size calculation. We found the calculation to be consistent and
monotonic, but with different granularity: the interface rounds
the intersection size in steps of 5% of the smaller audience
size. For example, if we intersected a audience with size 1,000
and another with size 4,500, the answer would be a multiple
of 50.

Summary We observe that Facebook appears to be rounding
the actual size of the intersection in steps of 5% of the smaller
of the two audience sizes.

C. De-duplicating PII from the same user

Next, we describe the second implementation characteristic
that enables our attacks. We found that when Facebook has
an audience—or combination of audiences—that was created
with different PII that both refer to the same user, Facebook
only “counts” that user once when reporting the potential
reach, audience size, or audience intersection size. For exam-
ple, suppose that an advertiser uploaded two custom audiences:
one containing the phone number of one of their customers
(list A), and another containing the email address of the same
customer (list B). If the advertiser then asked for the potential

5

Audience Potential Reach
Size Alone ∪ C1p ∪ C1e,2p ∪ C1e,1p

C1e 50 40 40 90 40
C1p 50 40 – 90 40
C1e,2p 100 90 – – 90
C1e,1p 50 40 – – –

TABLE II: Audience size and potential reach returned by Face-
book for different audiences, and combinations of audiences
(described in Section IV-C). In all cases, Facebook appears
to be de-duplicating records both within and across audiences
before calculating the statistics.

reach of targeting users in the combination A ∪ B, this user
would only be counted once.

To demonstrate this behavior, we describe experiments we
conducted on each of the three “size” mechanisms using data
from our 100 friends and family members. We randomly
divided these into two distinct groups: G1 containing 50 users,
and G2 containing the remaining 50 users.

Audience size To test how Facebook de-duplicates audiences,
we created four custom audiences:
• C1e, with the email addresses of all users in G1 (50 records)
• C1p, with the phone numbers of all users in G1 (50 records)
• C1e,2p, with the email addresses of all users in G1 (50

records), and the phone numbers all users in G2 (50 more
records)

• C1e,1p, with the email addresses of all users in G1 (50
records) and the phone numbers of all users in G1 (50 more
records)

We then record the audience size that Facebook reports. As
shown in the second column of Table II, we found that C1e

and C1p have an audience size of 50, and C1e,2p has an
audience size of 100, as expected. However, we found that
C1e,1p has an audience size of 50 users. We repeated this
experiment with different sets of users of varying sizes, and
found the same behavior. Thus, this experiment shows that
when creating a custom audience, PII referring to the same
user—even if present in separate records in the uploaded list—
is de-duplicated when creating the custom audience.

Potential reach To test how Facebook de-duplicates
combinations of audiences when calculating potential reach,
we request the potential reach for different combinations of the
audiences we created. For example, we ask for the potential
reach if we “include” audiences C1e and C1p. The results
of this experiment are shown in Table II, and we make a
number of observations. First, the third column of the table
shows the potential reach value; this is typically lower than
the audience size, as the potential reach only includes active
users. Second, we observe that Facebook appears to be de-
duplicating records, even across audiences. For example, when
we “include” audiences C1e and C1p, we observe that the total
potential reach is 40, even though the potential reach of each
audience individually is also 40. We ran similar experiments
by combining custom audiences and tracking pixel audiences,
and found the same behavior.

Audience intersection size Finally, we explore whether
Facebook de-duplicates records when computing the audience
intersection size. To do so, we need to modify our custom
audiences, as the minimum custom audience size for using the
audience intersection interface is 1,000. We create “extended”
versions of C1e, C1p, C1e,2p, and C1e,1p (denoted by EC1e,
EC1p, etc.) by adding “padding” records from the North
Carolina voter list; for each audience, we repeatedly add
random records and re-upload until the audience size reaches
1,000 users.

We then measure the audience intersection size between
the ECi lists; we find that Facebook again appears to be
de-duplicating across custom audiences. For example, the
intersection size between EC1e and EC1p is 40, even though
those two custom audiences were created using different
PII. We repeated this experiment with a variety of different
audience sizes and found the same behavior.

In summary, Facebook appears to be de-duplicating users
when calculating the audience size, potential reach, and audi-
ence intersection size, both within a single audience and across
combinations or intersections of audiences.

V. ATTACKS

In this section, we show how Facebook’s advertising interface
can be abused by an adversary to link different identities
belonging to the same user. We describe three distinct attacks
in this section, each with different threat models.

A. De-anonymizing web visitors

We begin by demonstrating the first of our three attacks,
which allows an adversary running a website to determine if
a particular Facebook user has visited their site.

Threat model We assume that the adversary runs a website
where they have installed a Facebook tracking pixel, that the
adversary wishes to determine whether or not a particular
victim Facebook user has visited this website, and that the
adversary knows enough PII of their victim that they can
include them in a Facebook custom audience (e.g., their email
address; see Section III-A). We assume that the adversary has
access to Facebook’s advertising system (it is important to
note that any user can sign up for Facebook advertising, and
no authorization or approval process is necessary). We also
assume that the victim is a “daily active” Facebook user.

Threshold audiences The insight behind the method is
to create a threshold audience: an audience or combination
of audiences where the size statistic of interest—potential
reach, audience size, or audience intersection size—lies right
before or right after Facebook’s rounding threshold. We call
an audience with a size right before the rounding threshold a
lower threshold audience, and an audience with a size right
after the rounding threshold an upper threshold audience. For
example, if Facebook rounds to the nearest 10 using the “5-or-
higher” rule, an audience with a size of 84 would be a lower
threshold audience (with size reported as 80), an audience with
a size of 85 would be an upper threshold audience (with size

6

A
B
C

A
B
C
D

A
B
C
D
E

930 930 930

Determine if V
is targetable

Determine upper threshold
aud. with pixel audience P

Determine if
V is in P2 3 4

P P P P

V

Includes

Excludes

A₁ A₂ A₃ A₄

A
B
C

A
B
C
D

A
B
C
D
E

810 810 820

A₁ A₂ A₃

Find lower
threshold aud.

1

V

A
B
C
D

A₂

810 820

V targetable?
Yes

930 940

V in P ?

Potential
Reach

No Yes No

A
B
C
D
E
F

940

P

A₄

A
B
C
D
E
F

Fig. 1: Diagram of algorithm for determining if victim V
visited the adversary’s website. ¬ We first create custom
audiences A1...An with increasing numbers of records and
identify a lower threshold audience (e.g., A2). We then
determine if V is targetable by obtaining the potential reach of
this audience union a custom audience V consisting only of V
(i.e., A2∪V). To determine whether V is in the tracking pixel
audience P, ® we first identify an upper threshold audience
containing P by successively combining P with each Ai (i.e.,
A4∪P).; ¯ we then determine whether V is in P by excluding
V from this combination (i.e., A4 ∪ P \ V) and seeing if the
potential reach drops.

reported as 90), and an audience with a size of 86 would not be
a threshold audience. We use threshold audiences throughout
the paper to enable our attacks.

Is the victim targetable? De-anonymizing web visitors boils
down to determining whether a given user is part of a tracking
pixel audience. To do so, we use the potential reach statistic,
which only counts targetable (daily active) users. Thus, we
first need to determine whether the victim is targetable; to do
so, we upload a series {L1, L2, ..., Ln} of lists to Facebook,
each containing one additional record beyond the previous one.
To create these lists, the adversary can use any source of PII
(voter records, random phone numbers, etc.). Facebook creates
custom audiences {A1, A2, ..., An} corresponding to each of
these lists. We also create a custom audience V consisting
only of our victim user.

For each Ai, we obtain the potential reach of that audience.
We then identify a lower threshold audience as the last
audience before the potential reach changes (if multiple such
audiences exist, we can simply choose one of them). For
example, if the potential reach of A1 and A2 is 810 and the
potential reach of A3 is 820, then A2 is our lower threshold
audience (as A3 is simply A2 with one additional user).

Once we have identified the lower threshold audience, we
then ask for the potential reach of the lower threshold audience
union V ; if the potential reach changes, we know that we can
target the victim, otherwise, the victim is not a “daily active”
user or our external information was not sufficient to target
them. Continuing the example above, we examine the potential

reach of A2 ∪ V : if the potential reach is 820, the victim has
an active Facebook account; if it is 810, they do not. This
process is shown in the first two steps of Figure 1.

Is the victim in the tracking pixel audience? If the
victim is targetable, we can then proceed to determine whether
they are in the tracking pixel audience P (i.e., have visited
the adversary’s webpage). We first find an upper threshold
audience for potential reach by successively combining P with
the Ai lists we uploaded. For example, if the potential reach
of A3 ∪ P is 930 and A4 ∪ P is 940, then A4 ∪ P is an
upper threshold audience. Finally, we take this upper threshold
audience and exclude V , containing only our victim (e.g., we
ask for the A4∪P \V). If the potential reach drops, we know
the victim is in P ; if not, we know the victim is not in P .

Evaluation To evaluate the effectiveness of this attack,
we recruited 40 volunteers from our friends and family; each
provided us with the email address with which they log into
Facebook. Using our Facebook advertiser account, we created
a Facebook tracking pixel and installed it on a webpage we
control. We divided the group in half, and had 20 volunteers
visit this webpage from the browser they normally use; we
had the remaining 20 volunteers not visit the website.

We then conducted the attack using the 40 email addresses
to determine whether they had visited our webpage. We
successfully inferred that all 20 of the volunteers who did not
visit our webpage were not part of the tracking pixel audience.
We also successfully inferred that 18 of the volunteers who
did visit the webpage were part of the tracking pixel audience.
We closely investigated the two users where the attack did
not succeed: we found that both had an anti-tracking browser
extension installed that prevented the Facebook tracking pixel
from communicating with Facebook. Thus, our attack suc-
ceeded for all users who visited our webpage and became
members of the tracking pixel audience.

B. Inferring a victim’s PII

We now turn to demonstrate a more powerful attack: an adver-
sary with knowledge of only a victim’s email address (or other
PII) can infer a victim’s other PII (e.g., their phone number, or
their name and city/state). This attack also demonstrates how
an attacker can use audience size statistics instead of potential
reach, meaning all Facebook users are vulnerable to this attack
(i.e., not just “daily active” users).

Threat model Our threat model for this attack is similar to
the threat model in Section V-A, with two modifications: First,
the adversary is not running a website, but has a piece of PII
for a victim user (e.g., their email address) and wishes to infer
other PII. Second, the victim no longer needs to be a “daily
active” user; they only need to have a Facebook account.

Is the victim in a custom audience? Our attack relies
on the ability to determine whether the victim is a member
of a custom audience the adversary uploaded; let us call this
audience A, created from PII list L. In contrast to the previous

7

100-..1
100-..2
100-..3
...
199-..9

810

Create 100
phone number
lists for upload

10 lists per digit,
10 digits

(one-time cost)

Upload lists
with victim

Determine
intersection lower
threshold audience

Intersect lower
threshold audience
with each

Infer phone
number

1 2

4

5

6

200-..1
200-..2
200-..3
...
299-..9

100-.09
100-.19
100-.29
...
999-..9

...

R

810 820

R

J

R

1750

1..1749R R

R
 V

J

R

1750

1..1749

R
R

J

R

1750
1751

1..1749

R
R

 V

J

R

1750
1751

1..1749

R
R
R

J

R

1750
1751
1752

1..1749

R
R
R

 V

J

R

1750
1751
1752

1..1749

Intersect each
with one audience3

810 820 820

300-..1
300-..2
300-..3
...
399-..9

R

810

first digit
is a “2”

last digit
is a “9”

...

Fig. 2: Algorithm for determining phone number of the victim V, using two sets of extra records: R, a set of 1,949 records,
and J , a set of 200 records. ¬ We upload lists of all phone numbers sharing a certain digit along with R. We then upload
lists of 1,749 members of R with increasing additional members from R, both with and without V. ® Next, we identify the
threshold audience by intersecting each of the audiences without V with one of the phone number audiences; ¯ the threshold
audience is right before the intersection size changes. ° We then intersect the threshold audience with V with each of the
phone number audiences. ± We infer each digit of V’s phone number by looking for where the intersection size is higher.

attack, we aim to use the audience size statistic to do so; thus,
we need a different approach than before.

To conduct the attack, we rely on the custom audience
intersection size feature described in Section III-D. The naı̈ve
approach would be to upload a custom audience containing
only the victim and then ask Facebook for the size of the
intersection between A and this audience; if there is any
intersection, we know the victim is in A (and if there is
not, we know the victim is not in A). Unfortunately, there
are two properties of the intersection feature that make this
approach infeasible: Facebook only allows intersections of
custom audiences of at least 1,000 users each, and they only
show the intersection at the granularity of 5% of the smaller
audience size. We therefore must go through extra steps in
order to determine whether the victim is in A.

We use a set R of 1,949 records of other users’ PII (e.g.,
voter records) and a separate set J consisting of 50 additional
records (R, J , and L should not share any users). We will
describe the attack first making a simplifying assumption for
clarity; we will show how to remove the assumption shortly.
Let us assume for the moment that all records in R and J
can be matched to Facebook accounts. We then upload two
custom audiences to Facebook:
• C1: The union of R and L
• C2: The union of R, J , and the victim’s PII
We can observe that both C1 and C2 have at least 1,000
users (due to the size of R), and can therefore be used in the
custom audience intersection feature. We can further observe
that the intersection between the two audiences is determined
solely by R and whether the victim is a member of A (recall
that R, L, and J share no users, and that list L matches
audience A). Finally, we can observe that the smaller of the
two custom audiences (C2) has exactly 2,000 users, and that,
by construction, the intersection is a lower threshold audience:
we know the intersection size is either |R| (if the victim is not

in A) or |R|+1 (if the victim is). Since the interface will round
to the nearest 5% of 2,000 (i.e., 100) and |R| was selected
with 1,949 users, and since Facebook de-duplicates users when
computing intersections, the custom audience intersection size
that Facebook returns for C1 and C2 will either be 1,900 (if
the victim is not in A) or 2,000 (if the victim is). Thus, we
can determine whether the victim is in A, and therefore in PII
list L.

Dealing with unmatched users We now show how to
remove the assumption that all records in R and J will match
Facebook accounts. To do so, we need to address the fact
that removing this assumption will prevent us from creating a
lower threshold audience by design. Instead, we must find a
lower threshold audience in a similar manner to how we did
before. To do so, we “hold back” 10% of R (i.e., 200 records,
twice the rounding threshold5) and upload multiple versions
of C2; we also increase the size of J to account for the fact
that not all uploaded records will match (e.g., we can create J
from 200 records). Specifically, we upload a series of custom
audiences Ci2 and Ci3, for i =1749...1949, where
• Ci2: The union of R1..i, J , and the victim’s PII
• Ci3: The union of R1..i and J
where R1..i denotes PII records 1 through i in R. We can
then use the Ci3 to first locate a lower threshold intersection
audience in a similar manner as before: we intersect each
Ci3 with C1, and choose the Ci3 before the intersection size
changes. Let us call this lower threshold intersection audience
Ck3 . We then intersect C1 with Ck2 (the latter being simply Ck3
with the victim’s PII added in); if the intersection size is the
same as before, we know that the victim is not in A. If the
intersection size increases, we know the victim is in A.

5We choose to hold back twice the rounding threshold worth of users as
we need to ensure that we “cross” a rounding threshold when creating the
Ci

3 audiences, enabling us to find a lower threshold audience

8

Applying the attack to phone numbers We now show how
to apply this attack to infer a victim’s phone number. To do so,
we partition the space of all possible phone numbers into sets
that all share a common digit. Specifically, we create subsets
Lij of all possible phone numbers, where Lij is a set of phone
numbers whose i-th digit has a value of j. For example, if
phone numbers are eight digits, L12 will contain 20000000,
20000001, up through 29999999. This gives us 10d sets,
each of size 10d−1, where d is the number of digits in the
number.

With each of these lists, we are now ready to conduct the
attack. We simply repeat the methodology proposed above,
determining whether the victim is a member of each Lij . Note
that because J and R should never share any users with Lij ,
the adversary should choose users for R and J from a different
country than the one the victim is from. For each i, we should
find exactly one j such that the victim is in Lij . Figure 2 gives
a diagram of this attack.

Evaluation To evaluate the effectiveness of this attack, we
recruit 22 friends and family members who have Facebook
accounts, from two regions: 14 from the Boston area and 8
from France. In order to infer these users’ phone numbers, we
create the Lij lists for both regions.

For Boston, we create a total of 140 lists: two area codes
(617 and 857), where phones of each area code have 7 digits
we need to infer (recall that US phone numbers have the
structure XXXYYYZZZZ where XXX is the area code). Each
list contains 1M phone numbers, all with a single digit in
common. Each of these lists took around 30 minutes to upload.

For France, we create a total of 82 lists: French mobile
phone numbers have nine digits where the first digit is either
6 or 7. We generate all 200M possible numbers starting with
6 or 7 and use this to construct our sets (and hence each
Lij contains 10M phone numbers); it took over four hours to
upload each list. We uploaded all 82 lists of phone numbers
(two to determine the first digit, and 10 for each of the
remaining eight digits) over a period of a week.

It is important to note that uploading these initial lists is,
by far, the most expensive part of the attack. However, the
resulting audiences can be re-used to infer the phone number
of any user (i.e., the Lij audiences are not victim-specific).

We then conduct our attack to infer the phone numbers of
all 22 users. We find that we are successfully able to infer the
numbers of 11 of the 14 users in Boston, and of all 8 of the
users in France. In the cases where we succeeded, we were
able to infer each users’ phone number in under 20 minutes.
We carefully examined the three users on whom the attack
failed, and we found that one user had never provided their
phone number to Facebook, while the other two users had
actually provided multiple phone numbers to Facebook. As
a result, we inferred that these two users were members of
multiple Lij for a given digit i (e.g., we inferred that a user’s
second digit is both a 2 and a 5); in the Appendix, we describe
and evaluate a modified approach for determining both of the
underlying numbers. For the one user that had never provided

their phone number, no Lij matched for any digit.

C. De-anonymizing users en masse

Recall that in Section V-A, we demonstrated an attack that
allowed the adversary to determine if a specific user was a
member of a tracking pixel audience. Utilizing the techniques
developed in the previous attack, we now present a much
more powerful version of that attack: the ability to infer en-
masse the PII of the members of any audience. For example,
we show how this can be used to de-anonymize all visitors
to a webpage: by placing Facebook’s tracking pixel on the
webpage, the adversary can determine the phone numbers of
all members of this audience.

Threat model As in Section V-A, we assume that the
adversary runs a website where they have installed a Facebook
tracking pixel, and that the adversary wishes to de-anonymize
all visitors to this website. We assume that the visitors are
“daily active” Facebook users (those visitors who are not
“daily active” are not subject to the attack). In addition, as
before, we assume that the adversary has access to PII of
some Facebook users—e.g., from voter records—in order to
be able to create threshold audiences.

Inferring the first digit(s) Let us denote our tracking
pixel audience as P . We first find an upper threshold audience
containing P using the same technique as in Section V-A: we
upload a series of increasing Ai audiences and identify an At
such that At ∪ P falls just over the rounding threshold.

We then use the Lij from Section V-B, where each Lij
contains all possible phone numbers whose i-th digit has a
value of j. Specifically, we check each of the L1j to determine
if any of the users in P have each possible j ∈ 0..9 as the
first digit. To do so, we simply exclude the L1j from At ∪P ,
denoted At∪P \L1j ; if the potential reach of this combination
is lower than the potential reach of At ∪ P , we know at least
one member of P has a phone number with a first digit of j.
At this point, we have determined all of the first phone number
digits (e.g., we might determine that all users in P have phone
numbers starting with 2 or 8).

Inferring further digits Now, we have a set of prefixes (e.g.,
2 and 8 from above), and we wish to determine the next digit(s)
for each prefix (e.g., 21, 26, or 87). The natural way to do so
would be to create lists L for every possible prefix (e.g., all
phone numbers starting with 20, ...), but this quickly becomes
unmanageable as there are 10d possible prefixes of length d.
Instead, we effectively construct these lists using the exclude
feature and the Lij we already uploaded. Specifically, let us
denote Lcij as the complement of Lij—all phone numbers that
do not have j as the ith digit—we can express it as Lcij =
∪k 6=jLik. We can then exclude Lcij from our audience to focus
only on the prefix of interest.

Let us suppose we have the prefix 8 and we wish to de-
termine all following digits for phone numbers that start with
8. We can then determine an upper threshold set containing
P \ Lc18 = P \ (L10 ∪ L11...L17 ∪ L19); let us denote this
P ∪ At \ Lc18. We can then exclude each L2j from this as

9

well and see if the potential reach drops; if so, it indicates
there is at least one user with the prefix 8j. For example, if
the potential reach of P ∪At \ (Lc18 ∪ L24) is lower than the
potential reach of P ∪At \Lc18, then we know there is at least
one user whose phone number starts with 84.

This approach naturally generalizes to longer prefixes by
excluding the complement of each prefix digit. Suppose we
have a prefix of 379 and we wish to determine the set of next
digit(s). We would construct an upper threshold list containing
P \(Lc13∪Lc27∪Lc39), denoted P ∪At \(Lc13∪Lc27∪Lc39). We
can then additionally exclude each L4j to determine if any of
the phone numbers starting with 379 have j as the next digit.

Recursively inferring all phone numbers Given the
methodology above, it is straightforward to infer all of the
phone numbers in an audience. We first infer the first digits of
phone numbers corresponding to members of P . Subsequently,
in iteration k, we take each phone prefix inferred from iteration
k − 1 (which would be of length k − 1), append to it a digit
d ∈ {0, 1, · · · , 9} and check whether the resulting phone prefix
of length k matches at least one member of P . If so, we add the
prefix of length k to the list of prefixes inferred in iteration
k. This terminates by outputting all the phone numbers of
members of P for which Facebook has a phone number.

Evaluation We place a Facebook pixel to track visitors
to a webpage that we created specifically for this experiment,
and recruit 14 friends and family from the Boston area that
have Facebook accounts, and have a phone beginning with
area code either 617 or 857. The volunteers were asked to
visit the webpage while logged in to their Facebook account.
Using the methods from section V-A with the email addresses
provided by the volunteers, we found that two volunteers had
installed ad-blockers and were not in the pixel audience, that
another volunteer was not a “daily active” user, and a final
volunteer did not have a phone number associated with their
Facebook account. Thus, we expect that we should be able to
infer 10 phone numbers from our pixel audience.

Our method output nine phone numbers that correctly
matched the phone numbers of nine out of the 10 remaining
volunteers. For the 10th user, we found that user had provided
multiple phone numbers to Facebook; we describe and eval-
uate a modified approach for how such users can be handled
in the Appendix. Our method took around one hour to do the
entire search and output the phone numbers by sending queries
to Facebook in a serial fashion; this time could be cut down
significantly by parallelizing the queries sent to Facebook.

D. Discussion

We now discuss a few issues our attacks bring up.

Cost We first briefly quantify the cost of launching our
attacks, and discuss potential optimizations to reduce this cost.
The costs are summarized in Table III.

Number and size of phone number lists: If we represented
the enumerated phone numbers from section V-B using a base
b different from 10, we would need bdlogbNe lists of size

N
b each, where N is the number of possible phone numbers.

For example, to reduce the size of each list (e.g., to avoid
detection), the attacker could use a base of 100, which would
require 400 lists of 100K numbers each for a particular US area
code (compared to 70 lists of 1M numbers each, as before).
Though these numbers seem large and potentially easy to
detect, the attacker could partition these lists across multiple
accounts to avoid detection or rate limiting (see Section VI-A).

Number and size of padding lists: In addition to the lists of
enumerated phone numbers, our attacks require the uploading
of lists of padding records. For our email–phone linkage attack
(Section V-B), we require up to 200 lists of padding records
(containing fewer than 2,000 records each) to find a threshold
list, and 200 more with the victim added to each of the
previous 200 lists. Alternately, by first finding the threshold
list in the first round of uploads, and then adding the victim
only to the threshold list, we only need one list (as opposed
to 200) with the victim added. Furthermore, by searching for
a threshold list using two rounds of uploads, the number of
lists can be reduced to 30, where in the first round we upload
lists whose sizes increase in increments of 10 to find a range
of 10 consecutive sizes within which the threshold list lies. In
the second round, we find the actual threshold list from within
the appropriate range.

For our attacks de-anonymizing particular web visitors (Sec-
tion V-A) and de-anonymizing users en-masse (Section V-C),
we need r lists containing 1 · · · r users respectively (to find
threshold lists), where r is the granularity of rounding applied
to the website’s victim audience size. For audiences of size
greater than 1,000, the value of r can be in the hundreds or
greater (see section IV-B). However, by working with subsets
of the audience of less than 1,000 users, the value of r can
be reduced to 10 and the lists can be re-used with different
subsets. For example, to infer the phone numbers of a website
audience with 8,000 members, it would be necessary to use
around 100 padding lists to find a threshold list. However, if at
a time we only attempt to learn any matching phone numbers
that end with a particular digit (by excluding those that have
phone numbers that end with other digits), the size of the
reduced audience would be roughly a tenth of the original
size (∼800), which would be rounded to the nearest 10 and
would only require 10 padding lists.

Time taken: For our email–phone linkage attack (Sec-
tion V-B), there is a setup time of a few days to upload the
phone number lists (only done once) and of a few hours to find
a threshold audience (done once for every batch of victims);
parallelization can reduce this time. Then, it typically only
takes an additional hour to find the phone number of any
victim.

For our attack de-anonymizing particular web visitors (Sec-
tion V-A), once the phone number and padding lists are all
uploaded (similar cost as above), we only need to upload a
record with the victim’s information (roughly 20 minutes).
Then, we only need to run around r queries, taking a few
minutes per victim.

10

Attack step Num of lists uploaded Size of each list Queries Time taken Times performed

Upload phone lists 82 (France) 20M (France) 0 < 1 week (France) Once
70 (US) 1M (US) 0 < One day (US) Once

Upload padding lists for V-A r Up to r 0 1-2 hours if r = 100 Once
Upload padding lists for V-C r Up to r 0 1-2 hours if r = 100 Once

Find threshold list for V-B 200 (one upload round) < 2,000 200 3–4 hours Once per batch
30 (two upload rounds) < 2,000 30 4–6 hours Once per batch

V-A inference step 1 (victim’s record) 1 ~r Up to 20 min Once per victim
V-B inference step 1 (threshold list plus victim) < 2,000 One per phone list Up to 1 hour Once per victim
V-C inference step 0 – O(md(r + 10)) O(md(r + 10)) seconds Once per audience

TABLE III: The cost of performing various steps for the three attacks described in the paper.

For our en-masse de-anonymization attack (Section V-C),
once the lists are all uploaded (similar cost as above), the
worst-case requires O(md(r + 10)) queries (where d is the
number of digits in the phone number, m is the total number
of matching phone numbers, and r is the rounding applied to
the audience size as previously described); e.g., these would
require around two hours when m = 10, d = 7, and r = 100
(at a query each second). However, this worst-case estimate
assumes that phone numbers do not share any prefixes; when
phone numbers share prefixes, the time taken for inferring a
particular prefix is amortized across all the phone numbers that
share the prefix. Hence, for larger audiences, the attack can
potentially scale significantly sub-linearly. Also, as pointed out
in Section V-C, by uploading the lists to multiple advertiser
accounts and inferring the matching phone numbers in parallel,
the time taken can go down proportionally.

Generality Any similar advertising platform would be
incentivized to provide the functionality that Facebook’s ad-
vertising platform provides (custom audiences, de-duplication,
size statistics, etc.), as many of these are requested by the
advertisers. Indeed, as described in Section II, other advertis-
ing platforms provide PII-based targeting, and provide similar
size statistics. While Instagram, Google [38], and Twitter
allow the use of both email addresses and phone numbers,
Pinterest and LinkedIn allow the use of both emails and mobile
advertiser IDs (identifiers for the user’s mobile device). This
suggests the potential for similar attacks on other platforms,
but due to space constraints, we leave exploring them to future
work. However, it is worth noting that most other platforms
have larger minimum sizes for audiences; this alone does not
significantly raise the difficulty of our attacks, as the attacker
need only pad any uploaded audiences with additional records
(e.g., voter records).

In order to check if other platforms are vulnerable, a
similar process as presented in this paper can be followed:
(i) determine the properties of size statistics (e.g., consistency,
monotonicity, presence of noise), and whether the platform
de-duplicates different kinds of PII; if so, (ii) collect padding
lists with appropriate PII and size (based on the granularity of
size statistics) and evaluate the attacks presented in Section V.

Other PII linkages When inferring a victim’s PII (Sec-
tion V-B), the adversary need not be limited to phone numbers;
any PII that can be enumerated can be used by assigning a
unique d-digit number as an index to each enumerated PII
element, and applying the same attack to infer the match-

ing d-digit index. For example, since Facebook’s advertising
platform allows audiences to be created using combinations
of (First name, Last name, City, State) or (First name,
Last name, Date of birth), the same attack could be used
to infer the phone number of a victim knowing only their
name and city, or their name and date of birth. Worse, the
adversary could enumerate combinations of common names
and potential dates of birth in the U.S., assign them indices,
and then infer the name and birthdate of a victim given only
their email address.

VI. DEFENSES

We now address how Facebook can fix the attacks.

A. Defense approaches and non-fixes

Recall that all of our attacks were enabled by two imple-
mentation characteristics from Section IV: (1) the rounding
of audience size statistics, and (2) the de-duplication of users.
Simply removing all size estimates is likely to be impractical,
as this feature is likely useful to advertisers. Thus, Facebook
must find a tradeoff between providing utility to advertisers
and ensuring user privacy; using coarse-grained audience size
estimates alone is insufficient, as we showed an adversary can
construct audiences that fall on the rounding threshold. We
first discuss potential defense approaches that raise the cost
for the attacker, but do not prevent the attack.

Anomaly detection A platform could use anomaly detection
(e.g., on the rate of queries, the size of lists, the contents
of lists, etc.) to identify malicious advertisers. The main
challenges with this approach are that the attacker could spread
their queries out across multiple accounts, across time, and mix
in other legitimate queries to evade detection. Moreover, the
attacker need not upload easily-detectable lists (e.g., lists with
all phone numbers that begin with a single digit); the attacker
can easily make it more difficult to detect a pattern. Thus, as
observed in other contexts (such as fake account detection),
approaches based on anomaly detection struggle to provide
guarantees of robustness.

Rate-limit API queries Alternatively, the platform could
rate-limit API queries; while this will increase the time taken
to conduct the attack, the attacker can again overcome the
constraints by using multiple accounts. Thus, this raises the
bar for attackers, but is insufficient for determined or powerful
attackers, or for attackers who are only interested in targeting
certain users (e.g., celebrities or dissidents).

11

Financial disincentives Alternatively, an advertising plat-
form could employ financial disincentives by charging adver-
tisers for every audience created or size estimate obtained.
While such disincentives would increase the cost to the at-
tacker, they may not be well-received by advertisers, who often
create a large number of audiences and run many campaigns.
Moreover, advertisers who wish to target particular victims
would likely not be dissuaded by such costs.

Noisy size estimates While the addition of random noise
would make the proposed attacks harder, an adversary could
still circumvent that by making many repeated queries and
performing statistical analysis on the results. For example, if
Facebook adds uniform noise between 0 and n − 1 (without
rounding), then log(ε)

2log(1− 1
n)

samples of each of two audiences
are necessary to say whether the sizes come from the same
distribution with probability 1 − ε. If we set ε = 0.01 and
n = 20, then we require only 45 samples of each audience
size.

Applying differential privacy [7] might be robust against the
described attacks. However, as pointed out by Korolova [18],
deploying differential privacy is challenging in advertising
platforms as the adversary can easily create multiple adver-
tising accounts and issue many queries to the platform.

B. Secure mechanism that restricts de-duplication

Overall, there does not appear to be a simple and robust
solution based on modifying how audience size statistics are
calculated that would prevent our attacks while maintaining
utility. Instead, we propose a solution based on changing the
way Facebook de-duplicates users.

Model of the platform For the purpose of the defense
we propose, we assume the advertising platform provides
advertisers the following functionalities: (1) creating PII-based
audiences by either uploading records or using tracking pixels,
(2) obtaining the size of these PII-based audiences, and (3)
combining these PII-based audiences using ∪, ∩, and \, and
obtaining the size of the resulting audience.

Proposed mechanism As is done on Facebook today (see
Section III-A), the platform should define a set of PII types
Pi, where each PII type is defined by a set of attributes that
uniquely identify users. The PII types can contain a single
attribute (e.g., {Email}), or multiple attributes (e.g., {Name,
Date of Birth}). However, all PII types should be minimal,
meaning if any attribute is removed, it is no longer a PII type
(e.g., if {Name, Date of Birth} is a PII type, then {Name}
cannot be a PII type).

Since tracking pixel audiences are not created by explicitly
uploading records, we need to treat them differently: each
tracking pixel audience is viewed as a unique PII type Pi.

We require that the platform have a priority order of PII
types {P1, P2, · · · }; it can be arbitrary, as long as it is static.

Advertisers can create custom audiences by uploading a list
of records L, with each record containing an arbitrary number
of attribute values. Note that we impose no constraint on what

advertisers can upload; the security guarantees will come from
how this upload is treated by the platform. Hence, a record
might contain attributes that comprise zero, one, or several PII
types and can potentially contain some attributes of a multi-
attribute PII (without containing the entire multi-attribute PII).

The platform then turns the uploaded records into a custom
audience, internally represented as a set of reduced records.
For each uploaded record, the platform finds the smallest
i such that all the attributes comprising Pi are present in
the uploaded record; the platform then discards all other
attributes in the record. This reduced record is added to the
set representing the custom audience (with de-duplication). If
no complete PII type from the ordered list is contained in
the record (e.g., the record only contains a value for attribute
Name which alone does not constitute a PII type), then the
record is dropped.

Finally, the platform provides the size estimate of the
custom audience created from L, denoted s(L), by matching
each of the reduced records against the user database. For each
reduced record, if the attributes actually match an account,
s(L) is increased by 1. Thus, a user may be counted twice if
they appear in the custom audience as two different reduced
records (e.g., if the user’s {Email} and {Phone} are in two
separate reduced records).

The precise security guarantees provided by our solution are
given in the following result.

Theorem 1. No size estimate s(L) for any L can give any
extra information about a PII type Pk of a user to an attacker
who knows another PII type Pj of the user, and knows all
existing values of Pk in the database. Formally, for any user
u, any PII types Pj and Pk (k 6= j), any y such that there
exists some user with Pk = y, and any list of records L,

Pr(P
(u)
k =y|P (u)

j =x, s(L)) = Pr(P
(u)
k =y|P (u)

j =x). (1)

where P (u)
k denotes the value of PII type Pk for user u as per

the platform’s internal database.
Theorem 1 shows that our proposed method to compute

size estimates s(L) is secure against the attacks in this paper.
Specifically, we consider an attacker that knows a PII type Pj
about a victim u (i.e., knows that P (u)

j = x), and we show
that the result of s(L) for any L gives no extra information
about any other PII type Pk of the same individual. Theorem 1
follows directly, using Bayes rule, from the following lemma.

Lemma 1. Consider any user u, any PII types Pj and Pk
(k 6= j) and any y such that there exists a user with Pk = y.
For any list L, given that P (u)

j = x, s(L) is independent of
whether P (u)

k = y.

Proof. We prove that for any list L, the value of s(L) is the
same whether or not P (u)

k = y.
First note that the result is trivial if L does not contain at

least one record with Pj = x and one record with Pk = y
(possibly the same record). Then we distinguish two cases.
Case 1: suppose that there is no record in L with both Pj = x
and Pk = y. Since we know that there exists a user with Pk =

12

y, those records will be counted independently of whether or
not P (u)

k = y. Then the result follows from the fact that records
with different PII types are not de-duplicated, regardless of
whether they belong to the same user.

Case 2: suppose that there is one record with Pj = x and
Pk = y. Then one of the PII types (or both if there are other
higher priority PII types in the record) will be disregarded
independently of whether they both correspond to the same
user or not, and the resulting list falls in Case 1.

Operations on the lists Until this point, we have only
addressed the size statistics of a custom audience resulting
from an uploaded list. We now discuss computing the size
statistics of a combination of PII-based audiences, using ∪,
∩, and \ operations. The definition of s(...) for combinations
follows the same principle as the definition of s(L). Let L1

and L2 be two PII-based audiences. Then s(L1 ∪L2), s(L1 ∩
L2), s(L1 \ L2) are computed based on the corresponding
operations on the reduced records that make up Li (in the case
of tracking pixel audiences, all records are single-attribute and
are inherently reduced). As with s(L), the final size statistic
is then computed by matching each of the resulting reduced
records after applying the operation against the user database,
counting users multiple times if they are represented by two
separate reduced records.

Then, the Theorem 1 holds on s(L1 ∪ L2), s(L1 ∩ L2),
s(L1 \ L2); this follows directly from the following lemma.

Lemma 2. Consider any user u, PII types Pj and Pk (k 6= j)
and y such that there exists a user with Pk = y. For any lists
L1 and L2, given that P (u)

j = x, s(L1 ∪L2), s(L1 ∩L2) and
s(L1 \ L2) are independent of whether P (u)

k = y.

Proof. The proof is similar to that of Lemma 1: we show
that the size estimate of the audience resulting from L1 ∪L2,
L1 ∩ L2, or L1 \ L2 as defined above is the same whether or
not P (u)

k = y. First note that the result is trivial unless one
of the lists contains at least one record with Pj = x and the
other at least one record with Pk = y. Then we distinguish
two cases.

Case 1: If there is no record with both Pj = x and Pk = y
in either list, then the result follows from the fact that records
with different PII types are not de-duplicated, regardless of
whether they belong to the same user.

Case 2: If there is one record with Pj = x and Pk = y,
then one of the PII types (or both if there are other higher
priority PII types in the record) will be removed independently
of whether they both correspond to the same user or not, and
we are back to Case 1.

C. Defense discussion

We now provide a brief discussion of our proposed defense.

Implementation Our proposed defense—replacing the
existing matching algorithm by the one outlined above—is
straightforward to implement. While we assumed that cus-
tom audiences were internally represented as sets of reduced

records, this does not need to be the case to implement our
solution; the platform could instead represent them as today,
but then tag the users in the list with the record by which they
were matched (to facilitate calculating the size statistics).

Accuracy of size estimates Our proposed method will
overestimate the number of users in the audience if there are
multiple records with different PII types corresponding to the
same user; this is intentional as de-duplicating these users
opens the door to our attacks. However, any defense must
make a trade-off between utility to advertisers and privacy for
users; our defense guarantees that the PII linkage attacks pro-
posed in this paper will not be possible, while not significantly
reducing the utility of size estimates to advertisers. In rounding
size estimates (as they do today), Facebook already provides
inaccurate statistics to advertisers; this shows that Facebook
has decided that obfuscating the true value to provide privacy
for users is acceptable. Given this, we believe that our defense
strikes a better tradeoff than what Facebook already does. Our
defense will not affect advertisers who have only one type
of PII, or those who upload lists that do not actually contain
multiple references to the same user.

Limitations We note that, as stated in the theorem, s(L)
gives no extra information beyond information about existence
of an individual with a given value y of PII type Pk. Indeed,
our mechanism does not prevent an attacker from discovering
whether or not there exists an individual with Pk = y. This is
important in particular for the multi-attribute PII case. Suppose
for instance that the attacker knows that P (u)

j = x and that
he knows parts of the attributes that constitute P (u)

k (a multi-
attribute PII). Then the attacker could still potentially learn
information on P (u)

k by finding out which of the existing PII
type Pk are consistent with his background information. For
example, if a user’s name happened to be unique globally, the
attacker could upload combinations of the {Name, Date of
Birth}; the one that matched would reveal the user’s date of
birth. However, this is a separate attack from the ones in this
paper, as it is an attack on the creation of custom audiences
themselves; we hope to address it in future work.

Facebook’s fix Facebook has acknowledged the vul-
nerabilities reported in this paper and has confirmed to us
that it has deployed a stricter version of our defense: no
size statistics will be provided for audiences created using
multiple PII attributes. Additionally, no size estimates will be
provided when combining audiences that were created using
different PII attributes. This stricter defense uses our fix’s
core idea of preventing linking, but does so by providing no
size statistics when multiple PII attributes are used; compared
to our suggested defense, it may be easier to implement but
provides lower utility to advertisers.

VII. RELATED WORK

Obtaining user information Due to the large amount
of personal data that online social networking sites collect,
they have been the vector for many privacy attacks over the

13

years. Krishnamurthy et al. [19] found that multiple pieces
of users’ personal information (name, city, zip code, email
address, phone numbers, gender, birthday, age, employer,
friends, activities, and interests) are either always available
or available by default on most of the 12 OSN sites they
examined, implying that potential privacy leakages on these
sites can pose a significant issue. For example, the “Down-
load Your Information” tool allowed users to inadvertently
download the contact data for their friends, including email
addresses and phone numbers, which they were not supposed
to have access to [11]. Moreover, studies have developed
methodologies to infer user attributes such as gender, political
views, and religious views [22], [32], [15]; these use features
such as homophily to make predictions about users’ attributes.

Even worse, some social networking sites have been ob-
served leaking private user information to third parties: for
example, Facebook was observed leaking user IDs, usernames,
and even personal details (e.g., name, gender, other profile
data, friends, networks, wall posts, photos, and likes) to
advertisers, typically via Request URIs and HTTP headers
(e.g., Host, User-Agent, Referrer, and Cookie) [20], [9]. Even
though Facebook has since fixed the issue [29], Facebook Mes-
senger was observed leaking PII to third parties in 2016 [10].

Exploiting advertising services Korolova [18] demonstrated
in 2011 that the microtargeting capabilities of Facebook’s
advertising system may allow advertisers to draw inferences
about users who click on a Facebook ad, such as their age or
sexual orientation. Using attribute-based targeting, she targeted
the user so precisely that she created an audience of exactly
one user;6 she could then create multiple audiences with
different values of the unknown attribute and determine which
of the advertisements results in a click.

In comparison to our work, there are two main differences:
first, Korolova’s attack requires that there be a set of targeting
attributes that uniquely (or almost uniquely) identify the user
among all Facebook users (e.g., Male, lives in St. Louis,
age 32, ...). Instead, we only need one piece of personal
information (often easily available) sufficient to target the user
via a custom audience (e.g., their email address). Second, our
attacks show how user information beyond targeting attributes
can be inferred (i.e., we show how users’ phone numbers
or names can be inferred from their email address). Third,
Facebook mitigated Korolova’s attack by imposing a minimum
audience size of 20; our work shows that even with this
mitigation, attacks are still possible.

Linking user identities The custom audience feature
represents a linking mechanism between external data and
Facebook’s data. Researchers have examined the related prob-
lem of linking the accounts of a single user across multiple
services [39], [17], [5], [21], [13], [12], [14]. For example,
Vosecky et al. proposed an approach to link identities by
exploiting user profile attributes, including name, date of birth,

6At the time, Facebook did not have any minimum size requirement on
audiences, thus enabling the attack.

and email [39]. Balduzzi et al. [5] used email addresses
to discover multiple identities of a user. However, as was
recently measured by Goga et al. [14], only a few attributes
like usernames and real names are available in OSN sites
reliably, which makes such linkage attacks successful only
for a small fraction of users. As a result, recent studies
have moved beyond users’ personal information and examined
using textual and image content for linking [21], [13], [12],
[14]. In our work, we are not proposing a new method of
linking, but are instead examining the privacy implications of
a linking mechanism provided by advertising platforms.

Custom audiences There has been surprisingly little
academic study of custom audiences. The most recent related
study by Minkus et al. [23] empirically examined how offline
information (such as voter records) could be matched to
public Facebook profiles, thereby enabling the inference of
features such as the user’s residential address, date and year
of birth, and political affiliation. Tucker [33] investigated how
users’ perception of control over their personal information
affects how likely they are to click on online advertising
on Facebook, and found that giving users control over their
private information can benefit advertising on Facebook. This
implies that users want to control their own data used in
online advertising; however, the current privacy settings [8]
give users very few options. Even worse, users do not have
control over their offline data, which can be used in the
custom audiences feature. Our work is the first to study custom
audiences directly and to point out the privacy leaks that occur
via the custom audience interface.

VIII. CONCLUSION

The vast amounts of user data that social networking
services have collected is now utilized by their advertising
platforms to allow advertisers to target users via their PII.
In this paper, we have shown how the inclusion of PII-based
targeting opens up new privacy leaks in advertising platforms.
By giving advertisers fine-grained control over the set of users
targeted, and by providing them with coarse-grained statistics
of audience sizes, the platforms open themselves to powerful
attacks that can let an adversary learn private information
about users. While we have proposed a solution to the attacks
we uncovered, our work shows that platforms need to carefully
audit their interfaces when introducing PII-based targeting.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd,
Carmela Troncoso, for their helpful comments. We also thank
Paul Francis and Deepak Garg for their valuable feedback,
Vincent Toubiana and Franck Baudot at CNIL for helping us
bring the problem to Facebook’s attention, and Facebook’s
security team for implementing the fix. This research was
supported by NSF through grants CNS-1563320 and CNS-
1616234, ANR through grants ANR-17-CE23-0014 and ANR-
16-TERC-0012-01, Institut Mines Telecom through the “Fu-
ture & Ruptures” program, the Alexander von Humboldt
Foundation, and a Data Transparency Lab grant.

14

REFERENCES

[1] About Customer Match. https://support.google.com/adwords/answer/
6379332?hl=en.

[2] About Potential Reach. https://www.facebook.com/business/help/
1665333080167380?helpref=faq content.

[3] Account Targeting. https://business.linkedin.com/marketing-solutions/
ad-targeting/account-targeting.

[4] Audience Targeting. https://help.pinterest.com/en/articles/targeting.
[5] M. Balduzzi, C. Platzer, T. Holz, E. Kirda, D. Balzarotti, and C. Kruegel.

Abusing Social Networks for Automated User Profiling. RAID, 2010.
[6] T. S. Bernard, T. Hsu, N. Perlroth, and R. Lieber. Equifax Says

Cyberattack May Have Affected 143 Million in the U.S. https://www.
nytimes.com/2017/09/07/business/equifax-cyberattack.html.

[7] C. Dwork. Differential Privacy. ICALP, 2006.
[8] Facebook Ads Preferences. https://www.facebook.com/ads/preferences.
[9] Facebook Leaks Usernames, User IDs, and Personal Details to Adver-

tisers. http://www.benedelman.org/news/052010-1.html.
[10] Facebook Messenger Chatbots Can Leak Your Private Informa-

tion. https://www.techworm.net/2016/09/facebook-messenger-chatbots-
can-leak-private-information.html.

[11] D. Guarini. Experts Say Facebook Leak of 6 Million Users’ Data Might
Be Bigger Than We Thought. http://www.huffingtonpost.com/2013/06/
27/facebook-leak-data n 3510100.html.

[12] O. Goga. Matching User Accounts Across Online Social Networks:
Methods and Applications. Ph.D. Thesis, Pierre and Marie Curie
University, 2014.

[13] O. Goga, H. Lei, S. H. K. Parthasarathi, G. Friedland, R. Sommer, and
R. Teixeira. Exploiting Innocuous Activity for Correlating Users Across
Sites. WWW, 2013.

[14] O. Goga, P. Loiseau, R. Sommer, R. Teixeira, and K. P. Gummadi.
On the Reliability of Profile Matching Across Large Online Social
Networks. ACM KDD, 2015.

[15] N. Z. Gong and B. Liu. You Are Who You Know and How You Behave:
Attribute Inference Attacks via Users’ Social Friends and Behaviors.
USENIX Security, 2016.

[16] How Google uses Customer Match data. https://support.google.com/
adwords/answer/6334160.

[17] T. Iofciu, P. Fankhauser, F. Abel, and K. Bischoff. Identifying Users
Across Social Tagging Systems. AAAI ICWSM, 2011.

[18] A. Korolova. Privacy Violations Using Microtargeted Ads: A Case
Study. Journal of Privacy and Confidentiality, 3(1), 2011.

[19] B. Krishnamurthy and C. E. Wills. On the Leakage of Personally
Identifiable Information via Online Social Networks. ACM SIGCOMM
WOSN, 2009.

[20] B. Krishnamurthy, K. Naryshkin, and C. E. Wills. Privacy leakage vs.
Protection measures: the growing disconnect. IEEE W2SP, 2011.

[21] S. Liu, S. Wang, F. Zhu, J. Zhang, and R. Krishnan. HYDRA: Large-
scale Social Identity Linkage via Heterogeneous Behavior Modeling.
ACM SIGMOD, 2014.

[22] A. Mislove, B. Viswanath, K. P. Gummadi, and P. Druschel. You Are
Who You Know: Inferring User Profiles in Online Social Networks.
ACM WSDM, 2010.

[23] T. Minkus, Y. Ding, R. Dey, and K. W. Ross. The City Privacy Attack:
Combining Social Media and Public Records for Detailed Profiles of
Adults and Children. ACM COSN, 2015.

[24] Marketing API: Custom Audience. https://developers.facebook.com/
docs/marketing-api/reference/custom-audience.

[25] R. Nazarian. Facebook Loophole Exposes Private Phone Numbers,
Here’s How to Close It. https://www.digitaltrends.com/social-media/
facebook-phone-number-hackers-flaw/.

[26] New Targeting Tools Make Pinterest Ads Even More Effec-
tive. https://business.pinterest.com/en/blog/new-targeting-tools-make-
pinterest-ads-even-more-effective.

[27] N. Popper. Identity Thieves Hijack Cellphone Accounts to Go After Vir-
tual Currency. https://www.nytimes.com/2017/08/21/business/dealbook/
phone-hack-bitcoin-virtual-currency.html.

[28] T. Peterson. How Facebook’s Custom Audiences Won Over
Adland. http://adage.com/article/digital/facebook-s-custom-audiences-
won-adland/297700/.

[29] Protecting Privacy with Referrers. Facebook Engineering’s Notes.
http://www.facebook.com/notes/facebook-engineering/protecting-
privacy-with-referrers/392382738919.

[30] S. E. Rasmussen and J. C. Wong. Facebook Was Where Pak-
istan Could Debate Religion. Now it’s a Tool to Punish ‘blasphe-
mers’. https://www.theguardian.com/technology/2017/jul/19/facebook-
pakistan-blasphemy-laws-censorship.

[31] D. Storm. Hacker Says He Can Get Phone Numbers
on Facebook Which Are Not Supposed to be Public.
http://www.computerworld.com/article/3158109/security/hacker-says-
he-can-get-phone-numbers-on-facebook-which-are-not-supposed-to-be-
public.html.

[32] K. Thomas, C. Grier, and D. M. Nicol. Unfriendly: Multi-party Privacy
Risks in Social Networks. PETS, Springer-Verlag, 2010.

[33] C. E. Tucker. Social Networks, Personalized Advertising, and Privacy
Controls. Journal of Marketing Research, 2014.

[34] Tailored Audiences File Data. https://dev.twitter.com/ads/audiences/file-
data.

[35] Target Facebook Ads to People on Your Contact List. https://www.
facebook.com/business/a/custom-audiences.

[36] Target Custom Groups of Twitter Users. https://business.twitter.com/en/
targeting/tailored-audiences.html.

[37] US Voter List Information. http://voterlist.electproject.org.
[38] Upload Data Files and Manage Your Customer Match Audiences. https:

//support.google.com/adwords/answer/6276125?hl=en.
[39] J. Vosecky, D. Hong, and V. Y. Shen. User Identification Across Multiple

Social Networks. NDT, 2009.
[40] What Are Mobile Advertising IDs and When Should I Use Them

with Custom Audiences? https://www.facebook.com/business/help/
570474483033581.

[41] What Happens When I Upload My Customer List to Facebook? https:
//www.facebook.com/business/help/112061095610075.

[42] What’s a Custom Audience from a Customer List? https://www.
facebook.com/business/help/341425252616329/.

[43] What’s the Difference Between Estimated Daily Reach and Potential
Reach? https://www.facebook.com/business/help/1438142206453359.

APPENDIX A
HANDLING VICTIMS WITH MULTIPLE PHONE NUMBERS

When describing our attacks in Section V, we found that
they did not work as anticipated for users who had uploaded
multiple phone numbers to Facebook. We now describe and
evaluate extensions to our attacks that allow us to handle such
users.

A. Extending email-phone inference attack

In Section V-B, we described how our email-phone number
linkage attack fails when the victim has provided multiple
phone numbers to Facebook. When this happens, we infer mul-
tiple values for each digit of the phone number, corresponding
to the multiple phone numbers.

We first describe a solution that involves the same one-
time preparatory steps as the attack described in Section V-B.
We then briefly describe how, by conducting additional one-
time preparatory steps, the attacker could significantly reduce
the effort required per victim to disambiguate and infer the
multiple matching phone numbers, thereby scaling up the
attack.

Naı̈ve method for disambiguation Let us assume that the
attack in Section V-B infers multiple values for some digits of
the phone number, and that the maximum number of values
inferred for a digit is n (for simplicity, let us assume this
occurs only at one digit i). This indicates that Facebook must
have at least n phones corresponding to this user. For each
value j inferred for the digit i, we perform the following steps:

15

https://support.google.com/adwords/answer/6379332?hl=en
https://support.google.com/adwords/answer/6379332?hl=en
https://www.facebook.com/business/help/1665333080167380?helpref=faq_content
https://www.facebook.com/business/help/1665333080167380?helpref=faq_content
https://business.linkedin.com/marketing-solutions/ad-targeting/account-targeting
https://business.linkedin.com/marketing-solutions/ad-targeting/account-targeting
https://help.pinterest.com/en/articles/targeting
https://www.nytimes.com/2017/09/07/business/equifax-cyberattack.html
https://www.nytimes.com/2017/09/07/business/equifax-cyberattack.html
https://www.facebook.com/ads/preferences
http://www.benedelman.org/news/052010-1.html
https://www.techworm.net/2016/09/facebook-messenger-chatbots-can-leak-private-information.html
https://www.techworm.net/2016/09/facebook-messenger-chatbots-can-leak-private-information.html
http://www.huffingtonpost.com/2013/06/27/facebook-leak-data_n_3510100.html
http://www.huffingtonpost.com/2013/06/27/facebook-leak-data_n_3510100.html
https://support.google.com/adwords/answer/6334160
https://support.google.com/adwords/answer/6334160
https://developers.facebook.com/docs/marketing-api/reference/custom-audience
https://developers.facebook.com/docs/marketing-api/reference/custom-audience
https://www.digitaltrends.com/social-media/facebook-phone-number-hackers-flaw/
https://www.digitaltrends.com/social-media/facebook-phone-number-hackers-flaw/
https://business.pinterest.com/en/blog/new-targeting-tools-make-pinterest-ads-even-more-effective
https://business.pinterest.com/en/blog/new-targeting-tools-make-pinterest-ads-even-more-effective
https://www.nytimes.com/2017/08/21/business/dealbook/phone-hack-bitcoin-virtual-currency.html
https://www.nytimes.com/2017/08/21/business/dealbook/phone-hack-bitcoin-virtual-currency.html
http://adage.com/article/digital/facebook-s-custom-audiences-won-adland/297700/
http://adage.com/article/digital/facebook-s-custom-audiences-won-adland/297700/
http://www.facebook.com/notes/facebook-engineering/protecting-privacy-with-referrers/392382738919
http://www.facebook.com/notes/facebook-engineering/protecting-privacy-with-referrers/392382738919
https://www.theguardian.com/technology/2017/jul/19/facebook-pakistan-blasphemy-laws-censorship
https://www.theguardian.com/technology/2017/jul/19/facebook-pakistan-blasphemy-laws-censorship
http://www.computerworld.com/article/3158109/security/hacker-says-he-can-get-phone-numbers-on-facebook-which-are-not-supposed-to-be-public.html
http://www.computerworld.com/article/3158109/security/hacker-says-he-can-get-phone-numbers-on-facebook-which-are-not-supposed-to-be-public.html
http://www.computerworld.com/article/3158109/security/hacker-says-he-can-get-phone-numbers-on-facebook-which-are-not-supposed-to-be-public.html
http://www.computerworld.com/article/3158109/security/hacker-says-he-can-get-phone-numbers-on-facebook-which-are-not-supposed-to-be-public.html
https://dev.twitter.com/ads/audiences/file-data
https://dev.twitter.com/ads/audiences/file-data
https://www.facebook.com/business/a/custom-audiences
https://www.facebook.com/business/a/custom-audiences
https://business.twitter.com/en/targeting/tailored-audiences.html
https://business.twitter.com/en/targeting/tailored-audiences.html
http://voterlist.electproject.org
https://support.google.com/adwords/answer/6276125?hl=en
https://support.google.com/adwords/answer/6276125?hl=en
https://www.facebook.com/business/help/570474483033581
https://www.facebook.com/business/help/570474483033581
https://www.facebook.com/business/help/112061095610075
https://www.facebook.com/business/help/112061095610075
https://www.facebook.com/business/help/341425252616329/
https://www.facebook.com/business/help/341425252616329/
https://www.facebook.com/business/help/1438142206453359

1) Create the set Lpossij of all possible phone numbers with
value j at that digit i, and whose other digits each have
one of the values inferred for that respective digit.

2) Represent each phone number in Lpossij with a unique
d-digit index (where d = log10(|Lpossij |)).

3) Use the attack described in section V-B to link the given
email to the d digit index corresponding to the matching
phone number; this could be accomplished by dividing
Lpossij into 10d subsets just as in Section V-B.

This method requires uploading 10d custom audiences for
each phone to be inferred. However, the size of Lpossij is
small compared to the number of all possible phones. For
example, when n = 3, |Lpossij | ≤ 310 for 10 digit phone
numbers; hence, it would take less time to create these custom
audiences compared to the Lij created in Section V-B. In
general, an attacker should be able to use this method to infer
all matching phone numbers in a few hours. In case there
are multiple matching phone numbers in one of the Lpossij , we
can recursively apply the same method to further disambiguate
those numbers.

Scaling up the disambiguation We now briefly describe
how an attacker could speed up the disambiguation with some
additional one-time effort at the beginning. One method to do
this would be to upload sets of phone numbers Li1j1i2j2 whose
i1-th digit has a value j1 and whose i2-th digit has a value
j2, with one set corresponding to each possible combination
of i1,i2,j1, and j2. Checking whether the victim user exists
in Li1j1i2j2 allows the attacker to determine whether at least
one of the matching phone numbers has a value j1 for its
i1-th digit and has a value j2 for its i2-th digit. It is then
trivial to do the disambiguation between the possible phone
numbers, by appropriately checking whether the victim user
exists in Li1j1i2j2 , and to thereby infer all the matching phone
numbers.

This method does not require the attacker to create any
additional audiences when conducting the attack, allowing the
attacker to infer all the victim’s matching phone numbers in
well under an hour. However, it requires the attacker to upload
100

(
d
2

)
sets upfront (one set corresponding to each possible

combination of i1,i2,j1, and j2), where d is the total number
of digits in the phone number. For example, a 10 digit phone
number would require the attacker to upload 4,500 custom
audiences, while a 8 digit phone number would require the
attacker to upload 2,800 custom audiences. This would take
a few days, and would have to be launched across multiple
advertiser accounts (since each account allows the creation of
at most 500 PII-based audiences); however, it would not be
difficult for a determined attacker.

Evaluation We apply the naı̈ve disambiguation technique
to the two volunteers with multiple phones from V-B; we find
we are correctly able to infer the matching phones for these
two users (who have provided two and four phone numbers
to Facebook, respectively).

B. Extending en-masse de-anonymization attack

In Section V-C, we described how our attack to de-
anonymize members of a PII-based audience en-masse would
fail to infer phone numbers of victims who provided multiple
phone numbers to Facebook. We first explain why the en-
masse de-anonymization attack fails to infer the matching
phone numbers for users who have provided multiple phone
numbers to Facebook. We then introduce notation that we use
for our modified attack; and then describe the modified attack
itself.

Explanation for failure of the attack We explain the
failure of the method with an example: assume a user u who
has provided two phone numbers to Facebook (7913444
and 7995485) visits our webpage and is added to the pixel
audience. As part of its breadth-first search for matching phone
numbers, our attack would first determine that there exists at
least one matching phone number in the pixel audience starting
with the prefix 79. In the next iteration, the breadth-first search
would then construct an upper threshold list At such that
P ∪At\(Lc17∪Lc29) falls over the rounding threshold, and then
additionally exclude L3j to check whether any of the matching
phone numbers beginning with 79 have j as the next digit. At
the end of the iteration, the search would determine that there
exists at least one matching phone number corresponding to
each of the prefixes 791 and 799.

The following iteration is where the failure occurs. In order
to determine digits following the prefix 791, the breadth-first
search would first construct an upper threshold list such that
P ∪At \ (Lc17 ∪Lc29 ∪Lc31) falls over the rounding threshold,
and then additionally exclude L4j . We see immediately that
by excluding (Lc17 ∪ Lc29 ∪ Lc31) when determining the upper
threshold list, we automatically exclude users whose phone
numbers start with the prefix 799; since exclude trumps
include, and since u has a phone number starting with 799,
u is excluded from the list. As a result, we cannot infer any
additional digits of this phone number for u; the same problem
occurs when trying to infer the digit after the 799 prefix.

Notation As before, we denote the size of a PII-based
audience A as s(A). We also assume that indices begin from
1. We also use regular-expression-like notation to refer to
a set of phone numbers, with the i-th term of a regular
expression r denoting the set of possible values for the i-th
digit of the phone numbers in the set (we denote this set of
possible values by r[i]). For example the set of phone numbers
{7913444,7995485} is denoted by the regular expression
r = 79(1∨9)(3∨5)4(4∨8)(4∨5) where r[3] = {1, 9} is the set
of possible values for the third digits of the phone numbers in
the set. Regular expressions are either empty (denoted by ∅) or
of length k, corresponding to the first k digits of the matching
phone numbers, where k ∈ {1, ..., d} (d is the total number
of digits in the phone number); an empty regular expression
is assumed to match all possible phone numbers.

Given a regular expression r of length k that specifies
the possible values for the first k digits of matching phone

16

numbers, and given a set S of possible values for the (k+1)-
th digit, we can construct a regular expression r′ = r.S that
is satisfied only by phone numbers whose first k digits satisfy
r and whose (k+1)-th digit falls in S. Note that as a natural
consequence of this definition, if S denotes the possible values
for the first digit, r = ∅.S is satisfied only by phone numbers
that have first digits that fall in S.

In order to select phone numbers that satisfy a regular
expression r from a PII-based audience P , we do the fol-
lowing: for each digit index i whose possible values are
specified by r, we exclude (∪j∈r[i]Lij)c from P (this is
alternately accomplished by excluding (∪j /∈r[i]Lij) from P).
We denote this previously described operation by P \ r; note
that P \∅ = P . If we want to additionally exclude some list
L from P \ r, we denote this by P \ (r, L)

We now describe the attack do the en-masse deanonymiza-
tion and infer all matching phone numbers when users have
provided multiple phone numbers to Facebook.

Inferring all matching phone numbers The attack
is described in Figure 3, and is conducted by calling the
DEANONYMIZEPHONESWRAPPER function with the pixel
audience P and the lists of phone numbers Lij as parameters;
it returns the set Linf of all phone numbers of all (active)
users in P . At a high level the attack has the following steps
(the outer loop in the DEANONYMIZEPHONES function):

1) Determine a set of regular expressions, each of which
are satisfied by the phone numbers of a minimal
number of users in P , and which together cover as
many matching phone numbers as possible (line 8 in
DEANONYMIZEPHONES).

2) Disambiguate the phone numbers satisfying each
regular expression (loop starting at line 9 in
DEANONYMIZEPHONES).

3) Exclude the inferred phone numbers from P (by up-
loading a list with the inferred phone numbers and then
excluding the created audience), and repeat the previous
steps, until there are no more phone numbers to be
inferred from P .

The final step is necessary because in some cases, certain
phone numbers can “hide” other phone numbers from being
inferred, given the way our algorithm works; by excluding
inferred phone numbers from P and performing another round,
we can infer these phone numbers that were hidden in the pre-
vious round. We first briefly explain how the attack determines
a set of regular expressions in step 1, and then briefly explain
how it disambiguates the phone numbers satisfying a regular
expression in step 2.

Determining a set of regular expressions Note that for users
with multiple matching phone numbers, it is not possible to
directly determine all matching phone numbers just by using
the phone number lists Lij that we created. This is because
of the constraint imposed by Facebook’s platform that we
can only exclude a disjunction of custom audiences (and not
a conjunction). The best we can do is to learn all possible
values of users’ phone numbers at each digit for different users

(similar to what we get from the email phone linkage attack
for users with multiple phone numbers).

Therefore, we aim to determine a set of regular expressions,
each of which is satisfied by a minimal number of users’ phone
numbers. For each such regular expression, inferring which
phone numbers satisfying it are present in the pixel audience
(i.e., performing step 2) would require us to repeat the de-
anonymization attack focused on the set of phone numbers
satisfying the regular expression. Since each of these regular
expressions are satisfied by a small set of phone numbers,
we would be able to perform step 2 and disambiguate the
underlying phone numbers for each relatively quickly.

The procedure to compute these regular expressions (de-
scribed in GETREGEXES function in Figure 4) works by
searching the tree of all possible phone numbers, similar to the
procedure described in Section V-C; the only difference being
that it recursively computes regular expressions of matching
phone numbers, rather than individual matching phone num-
bers. In iteration k, the procedure takes each regular expression
r of length k− 1, and the set of k-th digits of phone numbers
that match r (denoted by nextDigits[r]), and then finds the
minimal subsets of nextDigits[r] for which we do not run
into the problem that the original de-anonymization ran into
(of one prefix of a user excluding another); these are then
appended to r to find regular expressions of size k. In order
to find the minimal subsets of nextDigits[r] described above,
we check for each subset of nextDigits[r] if we are able to
infer additional digits (nextDigitSet) at index (k+1); if no,
then we discard that subset, if yes, then save nextDigitSet
for use in the next iteration.7

Disambiguating phone numbers The procedure for disam-
biguating the phone numbers satisfying a regular expression
(described in the DISAMBIGUATE function in Figure 3) is very
similar to the naive disambiguation method proposed earlier
in the Appendix to disambiguate phone numbers matching an
email address. We find the index imax of the digit for which
the regular expression allows the maximum number of possible
values; for each possible value in r[imax], we fix that value,
enumerate all possible phone numbers which have that fixed
value at imax and which satisfy the regular expression, and
then recursively call DEANONYMIZEPHONES to learn all the
phone numbers within this enumerated set of users that are
part of the pixel audience.

Discussion We first note that the de-anonymization attack is
performed in multiple rounds of inferring regular expressions,
and then disambiguating phone numbers. Phone numbers of
users with only one phone number are guaranteed to be
discovered in the very first round, and will be represented by
regular expressions r that match them uniquely (i.e., r[i] is a
singleton set for all i). Also, note that while the attack has been

7As a consequence of this procedure, the GETREGEXES function produces
regular expressions that have the following properties: (i) For any user, they
are satisfied by all his phone numbers, or none of his phone numbers, and
(ii) Each regular expression of size k covers the minimal number of users
possible for a regular expression of size k (for k ∈ {1, ...d− 1})

17

1: function DEANONYMIZEPHONESWRAPPER(P, [Lij]) . Infer all matching phone numbers in P
2: Linf ← DEANONYMIZEPHONES(P, {}, [Lij])
3: return Linf
4: end function
5: function DEANONYMIZEPHONES(P,Linf , [Lij]) . Infer all matching phone numbers in P \ Linf
6: repeat
7: Lnew ← {}
8: rSet← GETREGEXES(P,Linf , [Lij])
9: for r ∈ rSet do

10: Ldisambiguated ← DISAMBIGUATE(r, P, Linf , [Lij])
11: Lnew ← Lnew ∪ Ldisambiguated
12: end for
13: Linf ← Linf ∪ Lnew
14: until |Lnew| = 0
15: return Linf
16: end function
17: function DISAMBIGUATE(r, P, Linf , [Lij]) . Disambiguate all phone numbers in P \ Linf that satisfy r
18: L← ∪i,jLij
19: Find imax such that |r[imax]| is maximum
20: For v ∈ r[imax] create Lv (list of phones in L that satisfy r and have value v at index imax)
21: Assign each phone in Lv a unique index
22: Partition Lv into Lvij (where Lvij is the list of phones in Lv whose index has i-th digit j)
23: Ldisambiguated ← DEANONYMIZEPHONES(P,Linf , [L

v
ij])

24: return Ldisambiguated
25: end function

Fig. 3: Algorithm to de-anonymize phone numbers when users have multiple phones.

described assuming that the PII being inferred is the phone
number, as mentioned previously in the paper, the same attack
can be used for inferring other PII (by enumerating possible
values for the PII and by inferring the index of matching users
in the enumerated set).

Evaluation We apply the extended version of the en-
masse de-anonymization attack on the audience containing
14 volunteers from Boston from Section V-C. Recall that in
Section V-C we were already able to infer the phone numbers

for nine users with single phone numbers, and found one user
in the audience who had provided multiple phone numbers
to Facebook. The modified attack outputs 11 phone numbers,
nine of which correctly match the nine users with single phone
numbers, and the remaining two of which correctly match
the user who had provided multiple phones. Our method took
around two hours to do the entire search and output the phone
numbers by sending queries to Facebook in a serial fashion; as
mentioned in Section V-C, this time could be cut likely down
significantly by parallelizing the queries sent to Facebook.

18

1: function GETREGEXES(P,Linf , [Lij]) . Get regular expressions of user’s phone numbers in P \ Linf
2: rSet← {∅}
3: nextDigits[∅]← {0, 1, ..., 9}
4: for i ∈ [1, ..., d− 1] do
5: rSetcurr ← {}
6: for r ∈ rSet do
7: rSetnew, nextDigitscurr ← UPDATEREGEXES(r, nextDigits[r], i+ 1, P, Linf , [Lij])
8: rSetcurr ← rSetcurr ∪ rSetnew
9: for r′ ∈ nextDigitscurr do

10: nextDigits[r′]← nextDigitscurr[r
′]

11: end for
12: end for
13: if i < d− 1 then
14: rSet← rSetcurr
15: else
16: rSet← {r.nextDigits[r] : r ∈ rSetcurr}
17: end if
18: end for
19: return rSet
20: end function
21: function UPDATEREGEXES(r, digits, i, P, Linf , [Lij])
22: rSet← {}, nextDigits← {}
23: Create a list D containing subsets of digits in increasing order of size
24: Dselected ← {}
25: index← 1
26: while index ≤ len(D) do
27: digitscurr ← D[index]
28: If digitscurr ⊃ digitsselected for some digitsselected ∈ Dselected, increment index and skip to next iteration
29: Find upper threshold audience such that s(P ∪At \ (Linf , r.digitscurr)) falls just over rounding threshold τ
30: nextDigitSet← {j : s(At ∪ P \ (Linf , r.digitscurr, Lij)) ≤ τ}
31: if |nextDigitSet| > 0 then
32: rSet← rSet ∪ {r.digitscurr}
33: nextDigits[r.digitscurr]← nextDigitSet
34: Dselected ← Dselected ∪ digitscurr
35: end if
36: index← index+ 1
37: end while
38: return rSet, nextDigits
39: end function

Fig. 4: Helper function that finds regular expressions matching the phone numbers of users in audience.

19

	Introduction
	Background
	Facebook's PII-Based Audiences
	Creating custom audiences
	Creating tracking pixel audiences
	Obtaining potential reach
	Determining audience intersection size

	Facebook Implementation Characteristics
	Datasets
	Calculating size statistics via rounding
	De-duplicating PII from the same user

	Attacks
	De-anonymizing web visitors
	Inferring a victim's PII
	De-anonymizing users en masse
	Discussion

	Defenses
	Defense approaches and non-fixes
	Secure mechanism that restricts de-duplication
	Defense discussion

	Related work
	Conclusion
	References
	Appendix A: Handling victims with multiple phone numbers
	Extending email-phone inference attack
	Extending en-masse de-anonymization attack

