
HAL Id: hal-01955542
https://hal.inria.fr/hal-01955542

Submitted on 14 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Register Optimizations for Stencils on GPUs
Prashant Singh, Aravind Sukumaran-Rajam, Atanas Rountev, Fabrice

Rastello, Louis-Noël Pouchet, P. Sadayappan

To cite this version:
Prashant Singh, Aravind Sukumaran-Rajam, Atanas Rountev, Fabrice Rastello, Louis-Noël Pouchet,
et al.. Register Optimizations for Stencils on GPUs. PPoPP 2018 - 23rd ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, Feb 2018, Vienna, Austria. pp.1-15.
�hal-01955542�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162946354?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01955542
https://hal.archives-ouvertes.fr

Register Optimizations for Stencils on GPUs
Prashant Singh Rawat
The Ohio State University

rawat.15@osu.edu

Aravind Sukumaran-Rajam
The Ohio State University

sukumaranrajam.1@osu.edu

Atanas Rountev
The Ohio State University

rountev.1@osu.edu

Fabrice Rastello
Univ. Grenoble Alpes, Inria, CNRS,
Grenoble INP, LIG, 38000 Grenoble,

France
fabrice.rastello@inria.fr

Louis-Noël Pouchet
Colorado State University
pouchet@colostate.edu

P. Sadayappan
The Ohio State University
sadayappan.1@osu.edu

Abstract
The recent advent of compute-intensive GPU architecture
has allowed application developers to explore high-order
3D stencils for better computational accuracy. A common
optimization strategy for such stencils is to expose suffi-
cient data reuse by means such as loop unrolling, with the
expectation of register-level reuse. However, the resulting
code is often highly constrained by register pressure. While
current state-of-the-art register allocators are satisfactory
for most applications, they are unable to effectively man-
age register pressure for such complex high-order stencils,
resulting in sub-optimal code with a large number of regis-
ter spills. In this paper, we develop a statement reordering
framework that models stencil computations as a DAG of
trees with shared leaves, and adapts an optimal scheduling
algorithm for minimizing register usage for expression trees.
The effectiveness of the approach is demonstrated through
experimental results on a range of stencils extracted from
application codes.

1 Introduction
Stencil computations are an important computational motif
in many scientific applications. Typically, a simple stencil
computation updates elements of one or more output arrays
using elements in the spatial neighborhood from one or more
input arrays. The footprint of a stencil is determined by its
order, which is the number of input elements from the center
read along each dimension. In many scientific applications,
the stencil order determines the computational accuracy. For
this reason, high-order stencils have been gaining popularity.
However, the inherent data reuse within or across statements
in such high-order stencils exposes performance challenges
that are not addressed by current stencil optimizers.
A significant focus in optimizing stencil computations

has been to fuse operations across time steps or across a se-
quence of stencils in a pipeline [5, 21, 22, 36, 44, 54, 59]. With
high-order stencils, the operational intensity is sufficiently
high so that even with just a simple spatial tiling, the compu-
tation should theoretically not be memory-bandwidth bound.
Consider a GPU with around 300 GBytes/sec global mem-
ory bandwidth and a peak double-precision performance

of around 1.5 TFLOPS. The required operational intensity
to be compute-bound and not memory-bandwidth bound is
around 5 FLOPs/byte or 40 FLOPs per double-word. Many
high-order stencil computations have much higher arith-
metic intensities than 40. For such stencils, achieving a high
degree of reuse in cache is very feasible, but high perfor-
mance is not realized on GPUs. The main hindrance to perfor-
mance is the high register pressure with such codes, resulting in
excessive register spilling and a subsequent loss of performance.
As we elaborate in the next section, existing register man-
agement techniques in production compilers are not well
equipped to address the problem with register pressure for
high-order stencils. Addressing this problem in context of
GPUs is even more challenging, since most of the widely
used GPU compilers like NVCC [38] are closed-source. Even
the recent effort by Google (gpucc [57]) has only exposes
the front-end to the user, and uses the NVCC backend as
a black box to perform instruction scheduling and register
allocation.

In this paper, we develop an effective pattern-driven global
optimization strategy for instruction reordering to address
this problem. The key idea behind the instruction reordering
approach is to model reuse in high-order stencil computa-
tions by using an abstraction of a DAG of trees with shared
nodes/leaves, and exploit the fact that optimal scheduling to
minimize registers for a single tree with distinct operands
at the leaves is well known [47]. We thus devise a state-
ment reordering strategy for a DAG of trees with shared
nodes that enables reduction of register pressure to improve
performance. The paper makes the following contributions:
• It proposes a framework for multi-statement stencils
that reduces register pressure by reordering instruc-
tions across statements.
• It describes novel heuristics to schedule a DAG of trees
that reuse data using a minimal number of registers.
• It demonstrates the effectiveness of the proposed frame-
work on a number of register-constrained stencil ker-
nels.

for (i=2; i<N-2; i++)
for (j=2; j<N-2; j++) {

out[i][j] = 0;
for (ii=-2; ii<=2; ii++)

for (jj=-2; jj<=2; jj++)
out[i][j] += in[i+ii][j+jj] * w[ii+2][jj+2];

}

(a) Stencil with lexicographical sweeps

for (i=2; i<N-2; i++)
for (j=2; j<N-2; j++) {

out[i][j] = 0;
for (ii=2; ii>=-2; ii--)

for (jj=-2; jj<=2; jj++)
out[i][j] += in[i+ii][j+jj] * w[ii+2][jj+2];

}

(b) Stencil with reverse-lexicographical sweeps

i

j

i

j

Figure 1. Comparing same stencil computation with different sweeping order

2 Background and Motivation
RegisterAllocation and Instruction Scheduling A com-
piler has several optimization passes, register allocation and
instruction scheduling being two of them. Passes before reg-
ister allocation manipulate an intermediate representation
with an unbounded number of temporary variables. The goal
of register allocation is to assign those temporaries to physi-
cal storage locations, favoring the few but fast registers to
the slower but larger memory.

For a fixed schedule, a common approach to perform regis-
ter allocation is to build an interference graph of the program,
which captures the intersection of the live-ranges of tem-
poraries at any program point. Register assignment is then
reduced to coloring the interference graph, where each color
represents a distinct register [10, 11]. Interfering nodes in
the interference graph are assigned different colors due to
their adjacency. The number of registers needed by the col-
oring algorithm is lower-bounded by the maximum number
of intersecting live-ranges at any program point (MAXLIVE).
If MAXLIVE is more than the number of physical registers,
spilling of registers and the consequent load/store operations
from/to memory are unavoidable.

Register pressure can sometimes be alleviated by reorder-
ing the schedule of dependent instructions to reduce the
MAXLIVE. Reordering independent instructions is often
used to enhance the amount of instruction-level parallelism
(ILP), for hiding memory access latency. Thus, there is a
complex interplay between instruction scheduling and reg-
ister allocation, affecting instruction-level parallelism and
register pressure, and the associated optimization problem
is highly combinatorial. Production compilers generally use
heuristics for increasing ILP, with a best-effort greedy con-
trol on register pressure. For typical application codes, the
negative effect on register pressure is not very significant.
However, for high-order stencil codes with a large number
of operations and a lot of potential register-level reuse, the
impact can be very high, as illustrated by an example below.

Illustrative Example Consider an unrolled version of the
double-precision 2D Jacobi stencil computation (Figure 1a)
from [50]. NVCC interleaves the contribution from each in-
put point to different output points to increase instruction
level parallelism (ILP). The interleaving performed to in-
crease ILP also has the serendipitous effect of reducing the
live range of the register data, and a consequent reduction in

register pressure. Nvprof [39] profiling data on a Tesla K40c
device shows that under maximum occupancy, this version
performs 3.73E+06 spill transactions, achieving 467 GFLOPS.

Figure 1b shows the same stencil computation after chang-
ing the order of accumulation. Exactly the same contribu-
tions are made to each result array element, but the order
of the contributions has been reversed. With this access pat-
tern for the code in Figure 1b, NVCC fails to perform the
same interleaving despite allowing reassociation via appro-
priate compilation flags. In fact, the register pressure is now
exacerbated by the consecutive scheduling of independent
operations to increase ILP. For this version, 1.58E+08 spill
transactions were measured, with performance dropping to
51 GFLOPS.

This example illustrates a problem with register allocation
when the computation has a specific reuse pattern, char-
acteristic of high-order stencil computations. The problem
stems from the fact that for most compliers the register allo-
cation and instruction scheduling algorithms that operate
at a basic-block level have a peephole view of the compu-
tation – they make scheduling/allocation decisions without
a global perspective, and thus sometimes work antagonis-
tically. Meanwhile, stencil computations typically have a
very regular access pattern. With a better understanding of
the pattern, and a global perspective on the computation,
it is feasible to devise an instruction reordering strategy to
alleviate register pressure.

Solution Approach In this paper, we circumvent the com-
plexity of the general optimization problem of instruction re-
ordering and register allocation by devising a pattern-specific
optimization strategy. Stencil computations involve accumu-
lation of contributions from array data elements in a small
neighborhood around each element. The additive contribu-
tions to a data element may be viewed as an expression tree.
Thus, for multi-statement stencils, we have a DAG of expres-
sion trees. Due to the fact that an element may contribute to
several result elements, the trees within the DAG can have
many shared leaves.
Given a single tree without any shared leaves, it is well

known [47] how to schedule its operations in order to mini-
mize the number of registers needed. We use this as the basis
for developing heuristics to schedule the operations from the
DAG of trees with shared leaves. In contrast to the problem

2

of reordering an arbitrary sequence of instructions to min-
imize register pressure, a structured approach of adapting
the optimal schedule for isolated trees to the case of DAG of
trees with shared leaves results in an efficient and effective
algorithm that we develop in the next two sections.

3 Scheduling DAG of Expression Trees
Stencil computations are often succinctly represented using
a domain-specific language (DSL). Listing 1 shows a 7-point
Jacobi stencil expressed in an illustrative DSL, similar in
spirit to stencil computation DSLs such as SDSL [25] and
Forma [43]. The core computation is shown in lines 2–4. As
with similar DSLs, the user can specify unroll factors for loop
iterators (line 9). Loop unrolling, or thread coarsening on
GPUs, is often used to exploit register-level reuse in the code.
The computation is automatically unrolled as a preprocessing
step, before the code is generated and optimized.
It is important to note that using a DSL is not a prereq-

uisite for using the scheduling techniques proposed in this
work. As described shortly, our approach works on a DAG of
expression trees. This DAG can be automatically extracted
either from the DSL representation or from C/Fortran code.
A stencil statement can be defined by the stencil shape

(as in lines 2–4) and the input/output data (as in line 8).
Each such stencil statement can be represented by a labeled
expression tree. For example, the tree corresponding to the
computation in Listing 1 has array element out[k, j, i] as its
root, scalars a,b, c and accesses to elements of array in as its
leaves, and arithmetic operators ∗ and + as inner nodes.
An expression tree for a stencil computation has three

types of nodes: (1) nodes n ∈ Nmem representing accesses to
memory locations, (2) nodes n ∈ Nop representing binary/u-
nary arithmetic operators, and (3) leaf nodes representing
constants. All leaf nodes in Nmem correspond to reads of ar-
ray elements (e.g., in[k + 1, j, i]) or scalars. The root of the
expression tree is also in Nmem and corresponds to a write
to an array element (e.g., out[k, j, i]) or a scalar. We asso-
ciate a unique label with each read/written memory location,
and assign to each node in Nmem the corresponding label.
The remaining tree nodes are in Nop. Figure 2b shows the
expression tree for an illustrative expression.

In a preprocessing step, we introduce k-ary nodes for asso-
ciative operators. For example, for the tree in Figure 2b, the
chain of + nodes is replaced with a single “accumulation” +
node. Figure 2c shows the resulting expression tree; the num-
bers on the nodes will be described shortly. The semantics of
an accumulation node is as expected: the value is initialized
as appropriate (e.g., 0 for +, 1 for ∗) and the contributions of
the children are accumulated in arbitrary order.

We often consider a sequence of stencil computations—for
example, in image processing pipelines [43]. Each compu-
tation in the sequence will be represented by a separate
expression tree. Similarly, unrolling will result in distinct

Listing 1. The input representation in the DSL
1 function j3d7pt (out , in, a, b , c) {
2 out[k][j][i] = a*(in[k+1][j][i]) + b *(in[k][j-1][i] +
3 in[k][j][i-1] + in[k][j][i] + in[k][j][i+1] +
4 in[k][j+1][i]) + c *(in[k-1][j][i]);
5 }
6 parameter L, M, N;
7 iterator k, j, i;
8 double in[L][M][N], out[L][M][N], a, b , c;
9 unroll k=2, j=2;
10 j3d7pt (out , in, a, b , c);
11 return out;

out = a + (b * c[i]) + d[i] + ((e[i] * f) / 2.3);

(a) Illustrative stencil statement

(b) Expression tree (c) Expression tree with accumu-
lations

Figure 2. Expression tree example

expression trees for each unrolled instance. For example,
after unrolling along dimensions k and j in Listing 1, there
will be a sequence of four expression trees. In some cases
the output of a tree is used as an input to a later tree in the
sequence. In such a case, there is a flow dependence: the
root of the producer tree has the same label as some leaf
node of the consumer tree (without an in-between tree that
writes to that label). In the input to our analysis, this flow is
represented by a dependence edge from the root node to the
leaf node. Thus, the entire computation is represented as a
DAG of expression trees.

Throughout the paper, wemake the following two assump-
tions: (1) the assembly instructions generated for the DAG of
trees after register allocation are of the form r1 ← r2 op r3,
where r1 and r2 can be the same; (2) each operand/result
requires exactly one register. This condition is only enforced
to simplify the presentation of the next two sections, and
can be very easily relaxed [4]. Our objective is to schedule
the computations in the DAG so that the register pressure is
reduced.

3.1 Sethi-Ullman Scheduling
We will use “data sharing” to refer to cases where the same
memory location is accessed at multiple places. There are
two types of data sharing: (1) within a tree: several nodes
from Nmem have the same label; and (2) across trees: in a
DAG of trees, nodes from distinct trees have the same label.

3

A classic result, due to Sethi and Ullman [47], applies to
a single expression tree without data sharing (i.e., each n ∈
Nmem has a unique label), and with binary/unary operators.
They present a scheduling algorithm that minimizes the
number of registers needed to evaluate such an expression
tree under a spill-free model.1 Each tree node n is assigned
an Ershov number [1]; we will refer to them as “Sethi-Ullman
numbers” and denote them by su(n). They are defined as

su(n) =

1 n is a leaf
su(n1) n has one child n1
max (su(n1), su(n2)) su(n1) , su(n2)
1 + su(n1) su(n1) = su(n2)

(1)

The last two cases apply to a binary op node n with chil-
dren n1 and n2. Intuitively, su(n) is the smallest possible
number of registers used for the evaluation of the subtree
rooted at n. The first two cases are self-explanatory. For a
binary op node n, if one child n′ has a higher register re-
quirement (case 3), this “big” child should be evaluated first.
The result of n′ will be stored in a register, which will be
alive while the second (“small”) child is being evaluated. The
remaining su(n′) − 1 registers used for n′ are available (and
enough) to evaluate the small child. Finally, the register of
n′ can be used to store the result for n, meaning that su(n) is
equal to su(n′). If the order of evaluation were reversed, the
result of the small child would have to be kept in a register
while n′ is being evaluated, which would lead to sub-optimal
su(n) = 1 + su(n′). In the last case in equation (1), both chil-
dren have the same register needs; thus, their relative order
of evaluation is irrelevant and one extra register is needed
for n. Of course, under the definitions in equation (1), su(n)
is the same as MAXLIVE for the tree rooted at n.
It is straightforward to generalize Sethi-Ullman number-

ing to trees containing accumulation nodes (as in Figure 2c).
Each such accumulation node n has children ni for 1 ≤ i ≤ k .
Let mx = maxi {su(ni)}. If there is a single child nj with
su(nj) = mx, this child is scheduled for evaluation first,
and therefore su(n) = mx. If two or more children nj have
su(nj) = mx, one of them is scheduled first; however, in this
case su(n) = 1 +mx. In both cases, the order of evaluation
of the remaining children is irrelevant. Figure 2c shows the
Sethi-Ullman numbers for the sample expression tree.
Note that the schedules produced by this approach per-

form atomic evaluation of subexpressions: one of the children
is evaluated completely before the other ones are considered.
For a tree without data sharing, this restriction does not
affect the optimality of the result. In the presence of data
sharing, atomic evaluation may not be optimal.

Since stencils read values from a limited spatial neighbor-
hood, data sharing often manifests in the DAG of expression
trees. For example, in Listing 1, in[k][j][i] will be an input
1In a spill-free model of the computation, a data element is loaded only
once into a register for all its uses/defs.

(a) Tree with data sharing (b) Scheduling cost

Figure 3. Scheduling a tree with data sharing

to all four expression trees corresponding to the unrolled
stencil statements. One can also find other nodes in Listing 1
that will be shared across multiple expression trees. For such
DAGs, the Sethi-Ullman algorithm cannot be directly applied
to obtain an optimal schedule. In Section 3.2, we present an
approach to compute an optimal atomic schedule for a DAG
of expression trees with data sharing. In cases when find-
ing an optimal evaluation can be prohibitively expensive,
Section 3.3 presents heuristics to trade off optimality in fa-
vor of pruning the exploration space. Finally, restricting the
evaluation to be atomic can generate sub-optimal schedules.
Section 4 presents a remedial slice-and-interleave algorithm
that performs interleaving on the output schedule generated
by the approach presented in Section 3.2.

3.2 Scheduling a Tree with Data Sharing
Figure 3a shows an expression tree with data sharing. For
illustration, nodes with the same label are connected in the
figure. Recall that we assume a spill-free model, therefore a
shared label loaded once into a register will remain live for
all its uses. With data sharing, there is a possibility that (1) a
label is already live before we begin the recursive evaluation
of a subtree that has its subsequent use, and/or (2) a label
must remain live even after the evaluation of the subtree in
which it is used. The optimal schedule of a subtree is affected
by the labels that are live before and after the evaluation of
the subtree. Therefore, we need to add live-in/out states as
parameters to the computation of the optimal schedule of
a subtree. In this section, we present an approach to opti-
mally schedule a tree with data sharing, under the model of
atomic evaluation of children; we defer the interleaving of
computation across subtrees to Section 4.
For a node n, let uses(n) be the set of labels used in the

subtree rooted at n. Figure 3a shows uses(n) for each inter-
nal node n. The live-in set for a node n, denoted by in(n),
contains all labels that are live before the subtree rooted at
n is evaluated. The live-out set is

out (n) = (in(n) ∪ uses(n)) \ kill (n) (2)

where kill (n) is the set of labels that have their last uses in the
subtree rooted at n. Note that kill (n) is context-dependent,

4

i.e., the set will vary depending on the order in which the
node is evaluated. The kill sets can be computed on the fly by
maintaining the number of occurrences of each label l in the
current schedule, and comparing it with the total number of
occurrences of l in the entire DAG.
We now show how to compute a modified Sethi-Ullman

number, su′ for each node n, when provided with an “evalua-
tion context” in terms of live-in and live-out labels. Consider
a node n with some in and out state. Just before the evalua-
tion of n begins, |in(n) | registers are live. Similarly, just after
the evaluation of n finishes, |out (n) | registers will be live.
During the evaluation of n, additional registers may become
live, while some of the other live registers may be released.
Now su′(n, in, out) represents the maximum number of reg-
isters that were simultaneously live at any point during the
evaluation of n. We also define su′(π , in, out), where π is a
sequence of the children nodes of n. This value will represent
the maximum number of registers that were simultaneously
live at any point during the evaluation of n with its children
ordered in the sequence described by π .

For simplicity we will use su′(n) instead of su′(n, in, out),
but the definitions will use the live-in/out sets in(n) and
out (n).

For a leaf node n ∈ Nmem with |in(n) | = α ,

su′(n) =

α + 1 label (n) < in(n)
α label (n) ∈ in(n)

The first case implies that a new register must be reserved
for the label of n if it is not already live before the evaluation
of n. The second case is self-explanatory.

To compute su′ for a k-ary (binary or accumulation) node
n with children n1 . . .nk , we need to explore all k! evalu-
ation orders of the children. Let π be any permutation of
the children of n representing their evaluation order. Then
su′(n) = min

π
su ′(π).

For the purpose of explanation, suppose the permutation
π = ⟨n1,n2⟩ is one particular evaluation order for a binary
node n with children n1,n2. To compute su ′(π), first we de-
termine the live-in and live-out sets for nodes in π as fol-
lows: in(n1) = in(n), in(n2) = out (n1), and out (n2) = out (n);
here out (n1) is as defined in equation 2. This provides the
required context to compute su ′(n1) and su ′(n2). Let mx =
maxi {su′(ni)}, so thatmx equals the maximum number of si-
multaneously live registers at any time during the evaluation
of π . Then,

su′(π) =

1 +mx ni ∈ Nmem & label (ni) ∈ out (n)
mx otherwise

In case 2, if n1 ∈ Nop , or if n1 ∈ Nmem but label (n1) < out (n),
then the result of the computation, identified by the label
of the node n, can reuse the register of n1 (similarly for n2).
However, in case 1, where both n1 and n2 are leaf nodes in

(a) Tree with context at root (b) Optimal schedule

Figure 4. Example: computing su ′(π)

Nmem and both must be live after evaluating n, we need an
additional register to hold the result.
For an accumulation node with k children, consider per-

mutation π = ⟨n1,n2 . . . ,nk ⟩. Suppose we have computed
all su ′(ni) and let mx = maxi {su′(ni)}. Then,

su′(π) =

mx su′(n1) = mx & n1 ∈ Nmem & label (n1)
< out (n1) & su′(nj) , mx, 2 ≤ j ≤ k

mx su′(n1) = mx & n1 ∈ Nop &
su′(nj) , mx, 2 ≤ j ≤ k

1 +mx otherwise

Just like the generalization of su(n) for accumulation nodes
in Section 3.1, su′ =mx when the following two conditions
hold: (1) n1 requires the maximum number of simultaneously
live registers, and the rest of the nodes in π can be completely
evaluated using the registers released by n1, and (2) the reg-
ister holding n1 can be reused by n, i.e., either n1 ∈ Nop (case
2), or n1 is a leaf node that is not live beyond this point (case
1). In all other scenarios, we need mx + 1 registers (case 3).

The computation of su ′(n) for a tree without an evaluation
context is shown in Figure 3b, and with an evaluation context
is shown in Figure 4a. For the same tree, Figure 4b shows
the permutation with minimum su ′. In all three figures, the
children of a node are ordered left-to-right, which defines
the corresponding permutation.

In some cases, exhaustively exploring all permutations of
the children may be unnecessary. In the tree of Figure 4a,
there are two subtree operands of the accumulation node
that share no data (the first and the third subtree operands
in the left-to-right order). Therefore, even though the sched-
uling within those two subtrees may be influenced by the
evaluation context, they do not influence each other’s eval-
uation. Let passthrough denote the labels that are live both
before and after the evaluation of node n: passthrough(n) =
in(n) ∩ out (n). Then, for a k-ary node n, any two of its chil-
dren ni and nj do not influence each other’s evaluation if

(uses(ni) ∩ uses(nj)) \ passthrough(n) = ∅ (3)

In such a scenario, for the node n, we can create maximal
clusters of its children that share data, but the only data

5

shared among clusters is the passthrough labels of n. For ex-
ample, if children t1 and t2 share label l1, and children t2 and
t3 share label l2, where l1, l2 are non-passthrough labels of
the parent node, then {t1, t2, t3, t4} must belong to the same
cluster. We extend the intuition behind Sethi-Ullman sched-
uling algorithm to establish that different clusters cannot
influence each other’s evaluation. Then, for each cluster ci ,
we can independently compute su′(ci) with in(ci) = in(n).
We only need to explore all permutations within the non-
singleton clusters. We propose the following theorems to
establish an evaluation order for the clusters.

Theorem 3.1. For k clusters ci 1 ≤ i ≤ k such that |in(ci) | ≤
|out (ci) |, the one with larger su′(ci) − |out (ci) | will be prior-
itized for evaluation over others in the optimal schedule. In
the special case where all the clusters have the same su′(ci) −
|out (ci) |, they can be evaluated in any order without affecting
MAXLIVE.

This result is a direct consequence of the Sethi-Ullman
algorithm. The cluster with larger su′(ci) − |out (ci) | will
release more registers, which can be reused by the next
cluster. The special case too is a direct consequence of the
Sethi-Ullman algorithm, where two sibling nodes with the
same su can be evaluated in any order (case 4 of equation 1).

Theorem 3.2. For two clusters c1 and c2 such that |in(c1) | >
|out (c1) | and |in(c2) | ≤ |out (c2) |, c1 must be evaluated before
c2 in the optimal schedule.

We prove the result by contradiction. Suppose that c2
is evaluated before c1 in the optimal schedule. Since the
schedule is optimal, su′(c2) ≥ su′(c1). Now we change this
optimal schedule by moving the evaluation of c1 before c2.
Evaluating c1 earlier will release |in(c1) | − |out (c1) | (i.e., ≥
1) registers, which can then be used in the evaluation of
c2. Based on the previous equations, the su′(c2) will either
decrease or remain the same, depending on whether the
number of registers released by c1 is greater than, or equal
to 1. This modified schedule therefore either has the same,
or has lower su′ than the optimal schedule, making it an
optimal schedule.

Theorem 3.3. For two clusters c1 and c2 such that |in(c1) | >
|out (c1) | and |in(c2) | > |out (c2) |, the one with smaller su′

must be prioritized for evaluation in the optimal schedule.

Again, we prove the result by contradiction. Suppose that
su′(c1) < su′(c2), and c2 is scheduled before c1 in the optimal
schedule. We change this schedule by moving the evaluation
of c1 before that of c2. From Theorem 3.2, su′(c2) after this
change will either remain the same, or decrease. Thus, su′
for the new schedule will either be the same, or reduce if
su ′(c2) was the maximum, making it an optimal schedule.

Based on these theorems, Algorithm 1 summarizes the
evaluation an optimal schedule for a tree with data sharing.

Algorithm 1: Schedule-Tree (n, in, out)
Input :A tree rooted at n with live-in/out contexts in and out
Output :An optimal schedule S for the tree

1 sched_cost← ∅, S ← ∅;
2 C ← create_maximal_clusters (n); (Sec. 3.2)
3 for each cluster c in C do
4 if |c | is 1 then
5 in(c) ← in(n);
6 out (c) ← computed using equation 2;
7 sched_cost[c]← su′(c);
8 else
9 compute in and out for each tree in c ; (Sec. 3.2)

10 π ← all permutations of the trees in c ;
11 sched_cost[c]← su′(π);
12 P ← sequence clusters using sched_cost and Thms. 3.1, 3.2, 3.3;
13 for each subtree ts in the sequence described by P do
14 append the schedule for ts in S ;
15 return S ;

3.3 Heuristics for Tractability
For a non-singleton cluster c , the algorithm presented in
Section 3.2 can become prohibitively expensive if |c | is large.
For example, when |c | changes from 7 to 8, the permutations
explored increase from 5040 to 40320. We now present some
heuristics that trade off optimality for tractability, and a
caching technique to further speed up the algorithm.

Pruning Heuristics We begin by establishing, for any
node n, the bounds on su ′(n). When n is evaluated with
non-empty contexts in and out , the bounds are:

su ′(n, ∅, ∅) ≤ su ′(n, in,out) ≤ su ′(n, ∅, ∅) + |in ∪ out |

We prove the lower bound by contradiction; the proof for
upper bound is omitted due to space constraints.
su ′(n, ∅, ∅) ≤ su ′(n, in,out): Assume to the contrary that

su ′(n, in,out) < su ′(n, ∅, ∅). We will modify the schedule S
corresponding to su ′(n, in,out) as follows: prepend a stage
to S that loads the labels ∈ in(n) into |in | registers, and
make in(n) = ∅. Append a state to S that stores all the labels
∈ out (n) from the respective registers into memory, and
make out (n) = ∅. This modified schedule corresponds to
su ′(n, ∅, ∅), and hence, su ′(n, ∅, ∅) = su ′(n, in,out).

With the bounds established, instead of exploring all per-
mutations, we can sacrifice optimality and stop further ex-
ploration when we are close to the optimal schedule. We
use a tunable parameter d , and stop trying the permutations
any further when su ′(n, in,out) − su ′(n, ∅, ∅) ≤ d . For the
experimental evaluation in Section 5, we set d to 1.
For a cluster c with |c | > 8, we also apply a partitioning

heuristic, which recursively partitions the subtrees in c into
sub-partitionswhere each sub-partition can be of amaximum
size p, with p < 8. The partitioning is based on either of the
two criteria:

6

− on “label affinity": the subtrees that share the max-
imum labels are greedily assigned to the same sub-
partition as long as the size of the sub-partition is less
than p. Such partitioning is based on the notion that
evaluating subtrees with maximum uses together will
potentially reduce passthrough labels, and MAXLIVE.

− on “release potential": the subtrees that have the last
uses of some labels are placed in a sub-partition, and
that sub-partition is eagerly evaluated. This partition-
ing is based on the notion that the released registers
can be reused by the next partition.

Once the sub-partitions are created, we only exhaustively
explore all permutations of subtrees within a sub-partition.
If the number of sub-partitions created is less than 8, then
we also try all the permutations of the sub-partitions them-
selves. For example, if |c | = 8, and the partitioning heuristic
creates two sub-partitions p1 and p2 of size 4 each, then our
exploration space will be {p1,p2} and {p2,p1}, while exploring
all 4! permutations of subtrees within p1 and p2 each – a total
of 2 × 4! × 4! permutations instead of 8! permutations.
We also let the user externally specify a threshold that

upper-bounds the total number of permutations for a tree.

Memoization For a node n, a lot of permutations of its
children will differ in only a few positions. In such cases, we
end up recomputing su ′ for a child multiple times, even when
the live-in/out context for the child remains unchanged.
These recomputations can be avoided by a simple mem-

oization, where for a node n, we map su ′(n) as a function
of a minimal context. The minimal context strips away la-
bels that are not in uses (n), but are in passthrouдh(n). The
su ′(n) with minimal context can be suitably adjusted to get
su ′(n) with a different context that has some passthrough
labels added to the minimal live-in/out. For example, sup-
pose that su ′(n) is 3 when the minimal in(n) = {a,b} and the
minimal out (n) = ∅. Then su ′(n) when evaluating it with
in(n) = {a,b, c}, out (n) = {c} and c < uses (n) will be 2+1=3,
and the optimal schedule will remain unchanged. Memo-
ization greatly reduces the total evaluation time, thereby
enabling the exploration of a large number of permutations.

3.4 Scheduling a DAG of expression trees
For each stencil statement that is mapped to an expression
tree, Section 3.2 described a way to schedule it. This sec-
tion ties everything together for a multi-statement stencil
by describing how to schedule a DAG of expression trees.
For optimal scheduling, one needs to explore all topological
orders for the trees in the DAG, and then evaluate all the
trees independently for each topological order. This may be
practical if the size of the DAG is small. Otherwise, we must
sacrifice optimality for tractability, and fix the evaluation
order of the trees in the DAG before the trees are individually
evaluated.

Algorithm 2: Schedule-DAG (D,R)
Input :D : DAG of expression trees, R: Per-thread register limit
Output :An optimal schedule S for the D

1 D′ ← D ; fusion_feasible← true ; tree_order← ∅; S ← ∅;
2 while fusion_feasible do
3 for each pair of transitive dep-free nodes ti ,tj in D′ do
4 M ∪ = compute_metr ic (D′, ti , tj); (sec. 3.4)
5 sor t_descendinд (M);
6 (tp, tq, fusion_feasible) ← f ind_f usion_candidate (M);
7 fuse tp and tq ;
8 update_dependence_edдes (D′, tp, tq);
9 for each node d in D′ do

10 append the tree sequence of d in tree_order ;
11 split_versions← create_split_versions (tree_order);
12 for each split in split_versions do
13 S ′ ← ∅;
14 for each kernel k in split do
15 for each tree t in k do
16 compute in and out for t ;
17 append output of Schedule-Tree(t, in, out) to S ′;
18 execute S ′ after compiling it with register limit R;
19 S ← S ′if S ′ is a faster schedule than S , or if S is ∅;
20 return S ;

We use the greedy heuristic described by Rawat et al. [44]
to fix the evaluation order of trees in the DAG. At each
step, the heuristic tries to fix the evaluation order of two
nodes in the DAG. We begin by computing, for each pair
of transitive dependence-free trees pi in the DAG, a metric
Mi that encodes: (a) the number of labels shared between
them, and (b) the number of common input arrays read by
them. Among the computedMi , we choose the one that has
the highest non-zero value, and fix the evaluation order of
its tree pair to be contiguous to enhance reuse proximity in
the final schedule. The DAG is updated by fusing the nodes
corresponding to the two trees into a “macro node". Post
fusion, we update the dependence edges to and from the
macro node, and recompute the metrics for the next step.
The algorithm terminates when no more nodes can be fused.

Once the algorithm terminates, we perform a topological
sort of the final DAG, and expand the DAG macro nodes to
their tree sequences. For these ordered trees, we can generate
code versions with different degree of splits. One extreme
would be a version where all the trees are in a single kernel
(max-fuse), and another extreme would be a version where
each tree is a distinct kernel (max-split) [8, 55]. For compute-
intensive stencils with many-to-many reuse, a single ker-
nel can have extremely high register pressure, sometimes
causing spills despite allowing for the maximum permit-
ted registers per thread. For such cases, performing kernel
fission instead of generating a single kernel for the entire
computation might improve performance. The split kernels
will incur additional data transfers from global memory, but
the register pressure per kernel will be much lower, giving
the user an opportunity to further enhance register-level

7

(a) Original tree (b) Interleaving expressions

Figure 5. Example: interleaving to reduce MAXLIVE

reuse via unrolling. Note that none of the production GPU
compilers are capable of performing kernel fusion/fission op-
timizations. For each split version created, the tree sequence
in it is evaluated using Algorithm 1. The returned schedule
is the one that gives maximum performance. Algorithm 2
outlines the entire process.

4 Interleaving Expressions
At this point, we have a schedule for the entire DAG of
trees, but with atomic evaluation enforced. However, inter-
leaving within/across trees can be instrumental in reducing
MAXLIVE. For example, in the unrolled stencil of Listing 1,
there is no reuse within a stencil statement, but plenty of
reuse across stencil statements. We will see later in Section
5 that relaxing the constraint of atomic evaluation, and per-
forming interleaving is imperative for performance in such
stencils. A compiler optimization that performs some inter-
leaving is common subexpression elimination (CSE). How-
ever, we require a more general interleaving that works at
the granularity of common labels instead of common subex-
pressions. For example, Figure 5a shows an expression tree
where su ′(S) is the largest, and the operands of the accu-
mulation node are evaluated in order from left to right in
the final schedule. Also, {c[i],b} < uses (S). The fact that
{c[i],b} ∈ passthrouдh(S) adds to su ′(S). By slicing the ex-
pression (e[i] ∗ b)/c[i] and placing it after the expression
b ∗ c[i] as shown in Figure 5b, c[i] and b will no longer be in
in(S). Instead of those two labels, a temporary label holding
the value of the sliced expression will be added to in(S), and
hence su ′(S) will reduce by 1. Note that this is not CSE, but a
more general optimization aimed to reduce MAXLIVE. This
slice-and-interleave optimization slices a target expression,
and interleaves it with a source expression, so that su ′ at a
program point reduces. It subsumes CSE if the source and
target expressions are the same.
We perform the slice-and-interleave optimization at two

levels: (a) within an expression tree, where the source and
target expressions belong to the same tree; and (b) across
the expression trees in the DAG, where source and target

Algorithm 3: slice-and-interleave (T , in,out)
Input :T : an input tree with schedule S and contexts in and out
Output :S : The schedule after applying slice-and-interleave

1 Lilv ← ∅;
2 min_exprs← sequence of minimal expressions extracted from S

whose operands are leaf nodes;
3 for each expression s in min_exprs do
4 Lilv ← all the labels seen in the schedule till s ∪ labels with

single occurrence in T;
5 for each expression t appearing after s in min_exprs do
6 if t only operates on the labels in Lilv then
7 t ′ ← maximal expression obtained by growing t until

it operates on the labels in Lilv ;
8 if live ranges reduced by placing t ′ after s then
9 slice and place t ′ after s in S ;

10 move t after s in min_exprs;
11 return S ;

expressions belong to different trees. For a chosen source
expression es rooted at node n, we compute a set of labels,
Lilv , which is a union of all the labels that were observed
in the schedule till now, with the labels that have a single
occurrence in the DAG.
We now try to find a set of target expressions operating

on just the labels from Lilv . To find the target expressions, we
start with minimal expressions, i.e., the simplest expressions
whose operands are leaf nodes ∈ Nmem . Once we find a min-
imal expression em that operates only on the labels ∈ Lilv ,
we find the root node r of em , and grow em to the expression
rooted at parent (r). We continue to grow the expression till
we have a maximal expression that only operates on the
labels ∈ Lilv . For each target expressions thus discovered, we
check if slicing and placing it between the source expression
es and subtree ts immediately following es in the schedule
decreases |in(ts) |. If it does, then slice-and-interleave is per-
formed.

Illustrative Example Letb∗c[i] be the source expression
in the tree of figure 5a. One of the explored target expressions
will be e[i] ∗ b, since it only uses nodes ∈ Lilv . Now we try
to grow the target expression by changing the root from ∗
to /, making (e[i] ∗ b)/c[i] the new target expression. All
the labels used in the grown target expression also belong
to Lilv . A further attempt to grow will change the target
expression to ((e[i] ∗ b)/c[i]) ∗ f [i]. However, f [i] < Lilv .
Therefore, we backtrack and finalize (e[i]∗b)/c[i] as a target
expression, since it is the maximal expression with all the
labels in Lilv . Placing the target expression after the source
expression decreases in(S) by 1. Therefore, we perform the
slice-and-interleave optimization. Algorithm 3 outlines the
slice-and-interleave algorithm that tries out different source
expressions, and continuously finds the target expressions
within the tree to interleave in order to reduce the live ranges.
The slice-and-interleave across the trees in a DAG is similar.

8

5 Experimental Evaluation
Our framework parses stencil statements written in a sub-
set of C: the array access indices in the stencil statements
must be an affine function of the surrounding loop iterators,
program parameters, and constants; loop iterators and pa-
rameters must be immutable in the stencil statements. The
framework supports auto-unrolling along different dimen-
sions to expose spatial reuse across stencil statements.
To ensure a tight coupling, several prior efforts on guid-

ing register allocation or instruction scheduling were im-
plemented as a compiler pass in research/prototype compil-
ers [7, 16, 20, 41, 45], or open-source production compilers
[29, 46]. However, like some other recent efforts [6, 28, 50],
we implement our reordering optimization at source level
for the following reasons: (1) it allows external optimizations
for closed-source compilers like NVCC; (2) it allows us to
perform transformations like exposing FMAs using operator
distributivity, and performing kernel fusion/fission, which
can be performed more effectively and efficiently at source
level; and (3) it is input-dependent, not machine- or compiler-
dependent – with an implementation coupled to compiler
passes, it would have to be re-implemented across compilers
with different intermediate representation. Our framework
massages the input to a form that is more amenable to further
optimizations by any GPU compiler, and we use appropriate
compilation flags whenever possible to ensure that our re-
ordering optimization is not undone by the compiler passes.

We evaluate our framework for the benchmarks listed in
Table 1 on a Tesla K40c GPU (peak double-precision perfor-
mance 1.43 TFLOPS, peak bandwidth 288 GB/s) with NVCC-
8.0 [38] and LLVM-5.0.0 compiler (previously gpucc [57]).
The first five benchmarks are stencils typically used in it-
erative processes such as solving partial differential equa-
tions [26]. The remaining three are representative of com-
plex stencil operations extracted from applications. hypterm
is a routine from the ExpCNS Compressible Navier-Stokes
mini-application from DoE [17]; the last two stencils are
from the Geodynamics Seismic Wave SW4 application code
[51]. For each benchmark, the original version is as written
by application developers without any loop unrolling; the
unrolled version has the loops unrolled explicitly; and the
reordered version is the output from our code generator.
On an Intel i7-4770K processor, the code generator gener-
ated each reordered version under 4 seconds. When the net
unrolling factor is limited to 4, the size of each reordered
version is under 600 lines of code. The read-only arrays are
annotated with the restrict keyword in all the versions to
allow efficient loads via the texture pipeline. All the stencils
are double-precision, compiled with NVCC flags ‘–use_fast_-
math Xptxas "-dlcm=ca"’, and LLVM flags ‘-O3 -ffast-math
-ffp-contract=fast’. Since none of the versions use shared
memory, using ‘dlcm=ca’ for NVCC enhances performance
by caching the global memory accesses at L1. However, we

Benchmark N UF k F R A U
2d25pt 81922 4 2 33 2 104 44
2d64pt 81922 4 4 73 2 260 92
2d81pt 81922 4 4 95 2 328 112
3d27pt 5123 4 1 30 2 112 58
3d125pt 5123 4 2 130 2 504 204
hypterm 3003 1 4 358 13 310 152

rhs4th3fort 3003 1 2 687 7 696 179
derivative 3003 1 2 486 10 493 165

N: Domain Size, UF: Unrolling Factor, k: Stencil Order, F: FLOPs per Point R: #Arrays,
A: Total Elements Accessed per Thread, U: Unique Elements Accessed per Thread

Table 1. Benchmark characteristics

notice no discernible performance difference when compil-
ing without the ‘–use_fast_math’ flag in NVCC. We explore
different instruction schedulers implemented in LLVM (de-
fault, list-hybrid, and list-burr) for the original and unrolled
code, and report the best performance. To minimize instruc-
tion reordering for our reordered code, we use LLVM’s de-
fault instruction scheduler, and do not use the -ffast-math
option during compilation. We test all the versions against a
standard C implementation of the benchmarks for correct-
ness: the difference in each computed output value with that
of the C implementation must be less than a tolerance of
1E-5.

Loop Unrolling For the experiments, the iterative kernels
were unrolled along a single dimension to expose spatial
reuse. Loop unrolling offers the compiler an opportunity to
exploit ILP, but scheduling independent instructions contigu-
ously may increase register pressure. Consider an unrolled
version of 2d25pt, compiled with 32 registers. From table
1, it is clear that the unrolled code has a high degree of
reuse. Listing 2 shows the SASS (Shader ASSembler) snippet
generated using NVCC for the unrolled version of 2d25pt
after register allocation. The instructions not relevant to
the discussion are omitted in Listing 2 (and 3), leading to
non-contiguous line numbers. The lines highlighted in red
show the instructions involving the same memory location
– line 1 loads a value from global memory into register R4,
and spills it in line 2 without using R4 in any of the interme-
diate instructions. Such wasteful spills are a characteristic
of register-constrained codes. The same value is reloaded
from local memory into R4 in line 4, and R4 is subsequently
used in lines 5 and 8. The uses of R4 are placed far apart
in SASS, adding to the register pressure. Interspersed with
these instructions are the load (line 3) and subsequent uses
of register R12. The interleaving increases ILP, but the uses
of R12 are also placed very far apart. A better schedule can
perhaps achieve the same ILP with less register pressure and
fewer spills.
Listing 3 shows the SASS snippet for the reordered code

generated by our code generator. Using operator distribu-
tivity, the multiplication of the coefficient to the additive
contributions is converted by our preprocessing pass into
fused multiply-adds. Notice that all the uses of register R20
(highlighted in red) are tightly coupled. The same holds for

9

Listing 2. SASS snippet for the unrolled code
1 106 /*0328*/ @P0 LDG.E.64 R4, [R24];
2 144 /*0458*/ @P0 STL [R1+0x10], R4;
3 332 /*0a38*/ @P0 LDG.E.64 R12 , [R8];
4 350 /*0ac8*/ @P0 LDL.LU R4, [R1+0x10];
5 354 /*0ae8*/ @P0 DADD R16 , R16 , R4;
6 358 /*0b08*/ @P0 DADD R16 , R12 , R10;
7 376 /*0b98*/ @P0 DFMA R6, R12 , c[0x2][0x40], R14;
8 374 /*0b88*/ @P0 DADD R16 , R6, R4;
9 436 /*0d78*/ @P0 DADD R12 , R12 , R24;

Listing 3. SASS snippet for the reordered code
1 163 /*04f0*/ @P0 DFMA R14 , R22 , c[0x2][0x8], R14;
2 164 /*04f8*/ @P0 DFMA R8, R22 , c[0x2][0x18], R8;
3 166 /*0508*/ @P0 DFMA R12 , R22 , c[0x2][0x30], R12;
4 175 /*0550*/ @P0 DFMA R8, R20 , c[0x2][0x30], R8;
5 176 /*0558*/ @P0 DFMA R12 , R20 , c[0x2][0x18], R12;
6 178 /*0568*/ @P0 DFMA R8, R30 , c[0x2][0x38], R8;
7 183 /*0590*/ @P0 DFMA R22 , R20 , c[0x2][0x8], R10;
8 184 /*0598*/ @P0 DFMA R10 , R20 , c[0x2][0x18], R14;
9 187 /*05b0*/ @P0 DFMA R16 , R30 , c[0x2][0x20], R12;
10 191 /*05d0*/ @P0 DFMA R10 , R30 , c[0x2][0x20], R10;

Version reg IPC inst.
exec.

ld/st
exec.

FLOPs L2
reads

tex txn tex
GB/s

Original 128 1.76 2.74E+9 5.28E+8 1.73E+10 5.27E+8 4.19E+9 899.53
Unrolled 255 1.12 1.36E+9 2.14E+8 1.72E+10 2.94E+8 1.67E+9 457.23
Reordered 64 2.00 1.41E+9 2.14E+8 3.34E+10 1.55E+8 1.67E+9 791.16

Table 2. Metrics for 3d125pt for tuned configurations

Metrics rhs4th3fort hypterm derivative
maxfuse split-3 maxfuse split-3 maxfuse split-2

Inst. Exec. 8.52E+9 8.25E+8 7.48E+8 7.71E+8 8.79E+8 8.96E+8
IPC 1.07 1.11 0.97 1.06 1.02 1.14

DRAM reads 9.07E+7 1.65E+8 1.57E+8 1.77E+8 1.34E+8 2.47E+8
ldst exec. 1.55E+8 1.08E+8 1.27E+8 1.46E+8 1.45E+8 1.30E+8
FLOPs 1.73E+10 1.81E+10 9.66E+9 9.36E+9 1.28E+10 1.34E+10
tex txn. 1.11E+9 8.24E+8 9.72E+8 1.06E+9 1.14E+9 1.01E+9

l2 read txn. 4.64E+8 3.79E+8 6.52E+8 5.90E+8 4.97E+8 4.51E+8
GFLOPS 237.16 274.52 140.71 155.02 168.27 182.83

Table 3.Metrics for reordered max-fuse vs. split versions

registers R22,R30, and the remaining instructions. Indepen-
dent FMAs are scheduled together without increasing the
MAXLIVE. This reduces register pressure without compro-
mising ILP. Therefore, even though the unrolled version
performs fewer FLOPs than the reordered version, we incur
less spill LDL/STL instructions per thread (101 for unrolled
vs. 7 for reordered).

For the 3d125pt stencil, table 2 shows some profiling met-
rics gathered by Nvprof with NVCC. The texture throughput
for the original code indicates that the stencil performance
is limited by the texture cache bandwidth. Loop unrolling
halves the accesses to texture cache and the executed load
instructions, but results in a significant drop in IPC due to
lowered occupancy. To better expose reordering opportuni-
ties after unrolling, the preprocessing pass of the reordering
framework exploits operator distributivity and converts all
the contributions in an individual statement to FMA oper-
ations. Therefore, instead of 130 FLOPs per stencil point,
the reordered version performs 250 FLOPs. As measured by
Nvprof, we incur a 2× increase in floating point operations,

but achieve significant reuse in registers at a higher occu-
pancy, which consequently improves the IPC and execution
time.

Register Pressure Sensitivity In GPUs, the number of reg-
isters per thread can be varied at compile time by trading off
the occupancy. Many auto-tuning efforts have recently been
proposed to that end [24, 32]. Table 4 shows the performance,
and the local memory transactions reported by Nvprof, with
varying register pressure. Due to space constraints, we only
present the data for NVCC compiler. We make the following
observations: (a) our optimization strategy reduces the regis-
ter pressure for all the thread configurations; (b) increasing
registers per thread for codes exhibiting very high spills re-
sults in better performance, e.g., 8× for rhs4th3fort; and (c)
for low spills, better performance can be achieved by either
increasing occupancy (e.g., reordered code for 3d125pt and
hypterm), or maximizing registers per thread (e.g., all the
codes for rhs4th3fort).

Finding a right balance between register pressure and oc-
cupancy is non-trivial, and an active research field [24, 32,
53, 58]. We perform a simple auto-tuning by varying the
tile sizes by powers of 2, and varying registers per thread
[32]. The best performance in GFLOPS for the auto-tuned
code with NVCC and LLVM compilers is shown in figure
6. Unlike the case with 32 and 64 registers per thread, the
unrolled code outperforms the original code for all bench-
marks, highlighting the importance of loop unrolling and
register-level reuse. Our reordering optimization improves
the performance by (a) producing a code version that uses
fewer registers, and hence can achieve higher occupancy; and
(b) helping expose and schedule independent FMAs together
for simple accumulation stencils, thereby hiding latency.

Kernel fission From table 1, we select the last three multi-
statement, compute-intensive stencils, for which we antici-
pate high volume of spills in the max-fuse form, and expect
kernel fission to be beneficial. For these three stencils, we
generate versions with varying degree of splits (Section 3.4).
Some splits require promoting the storage from scalars to
global arrays, while others require recomputations due to
dependence edges in the DAG. Table 3 shows the Nvprof
metrics with NVCC for two reordered codes: a version with
maximum fusion (max-fuse), and a version with split ker-
nels. Note that in each case, even though the DRAM reads
increase going from max-fuse to split version, the IPC also
increases. This is because the register pressure per kernel
is much lower in the split version, and hence we can unroll
the computation to further exploit register-level reuse. This
increase in register-level reuse is reflected in the reduced
L2 read transactions. We observe nearly 10% performance
improvement for the split version over max-fuse version for
all three stencils. Prior works have noted the importance
of kernel fusion for bandwidth-bound stencils [22, 44, 54],
and trivial kernel fission to aid fusion by reducing shared

10

2d25pt 2d64pt 2d81pt 3d27pt 3d125pt
hyptermrhs4th3fort

derivative
0

200

400
14
5 19

9

20
5

16
7

12
5

10
2

18
3

15
0

28
9

26
7

22
3

18
9

15
8

36
9 42

1 47
9

24
0 27
7

15
5

27
5

18
3

Pe
rf
or
m
an
ce

(G
FL

O
PS

) NVCC

Original Unrolled Reordered

2d25pt 2d64pt 2d81pt 3d27pt 3d125pt
hyptermrhs4th3fort

derivative
0

200

400

21
0

18
0 20
6

15
9

12
0

90

17
7

15
6

24
2

22
7

22
9

12
8

12
5

36
3 41

3 47
3

23
7 26
9

16
2

22
6

18
0

LLVM

Figure 6. Performance on Tesla K40c with benchmarks tuned for tile size and register limit

memory usage [55]. Such a kernel fission has very limited
applicability in stencils with significant many-to-many reuse
across statements. However, our motivation for kernel fis-
sion is orthogonal to prior efforts – we use kernel fission as
a means to reduce the register usage of the max-fuse ker-
nel, and then improve the register reuse for split kernels by
ample unrolling and instruction reordering.
With our reordering optimizations applied to the bench-

marks, we achieve speedups in the range of 1.22×–2.34× for
NVCC, and 1.15×–2.08× for LLVM. We finally discuss the
effect of optimizations discussed in Section 3.3. The bench-
mark derivative has a large number of independent trees;
each tree is an accumulation. The framework takes 3.42 sec-
onds to generate code for it, and the memoization function
is invoked 1.42E+05 times. Without memoization, the code
generation time increases to 5.71 seconds. Our framework is
well suited to enhance the performance of “optimize once,
execute multiple times" stencils found in production codes
where the compilation/optimization time is amortized over
the stencil execution.

6 Related Work
Register allocation has been extensively studied: from the
seminal work of Chaitin [11] on using graph coloring, to
the more recent SSA based schemes that exploit the possible
decoupling of the allocation phase to the assignment phase
[13, 34]. Many extensions/improvements have been applied
[33, 42, 48], but almost all the existing works are restricted to
the register allocation for fixed schedule. However, it is folk
knowledge that improvements to register allocation alone
does not bring much performance gain. The interplay of
register allocation and scheduling becomes quite important
for architectures with ILP, since there is a tradeoff between
increasing ILP and exposing locality. Hence, prior work on
hyper/super-block list or modulo pre-pass scheduling [12,
35, 56] were extended to account for register pressure. Other
works proposed a reverse scheme where register allocation
was made sensitive to not change the minimum initiation
interval for the scheduler to expose sufficient ILP [52]. Most
of the current mainstream open-source compilers [31, 49]

Bench. Reg Original Unrolled Reordered
LMT GFLOPS LMT GFLOPS LMT GFLOPS

2d25pt 32 1.83E+7 144.56 1.18E+8 57.34 4.21E+6 302.12
48 0 127.35 0 289.03 0 357.76
64 0 115.03 0 261.43 0 369.09

2d64pt 32 3.39E+7 111.75 7.17E+8 18.07 6.74E+6 315.49
48 0 191.17 4.04E+8 26.03 0 393.90
64 0 198.95 2.76E+8 38.89 0 420.61
128 0 146.64 1.31E+7 231.72 0 303.02

2d81pt 32 3.94E+7 101.72 8.2E+8 19.49 4.62E+6 426.87
48 0 202.73 5.13E+8 25.12 0 466.03
64 0 204.73 3.96E+8 30.67 0 478.95
128 0 151.38 7.11E+07 161.00 0 415.30
255 0 83.58 0 223,17 0 340.90

3d27pt 32 4.28E+7 126.07 2.24E+8 37.93 1.65E+7 182.53
48 0 167.23 2.01E+7 149.51 0 229.01
64 0 160.55 0 172.37 0 269.69
128 0 160.93 0 180.49 0 211.78

3d125pt 32 5.04E+7 99.77 2.13E+9 19.06 1.85E+7 327.64
48 0 96.26 1.42E+9 21.65 0 339.16
64 0 107.61 1.35E+9 25.62 0 336.77
128 0 143.12 5.25E+8 64.00 0 282.68
255 0 93.64 0 188.36 0 173.738

hypterm 32 9.14E+8 21.82 - - 4.51E+7 83.83
48 1.04E+8 74.33 - - 0 100.63
64 0 100.66 - - 0 138.12
128 0 102.27 - - 0 155.02
255 0 74.92 - - 0 141.52

rhs4th3fort 32 2.10E+9 19.93 - - 1.37E+9 31.47
48 1.21E+9 28.76 - - 4.30E+8 87.82
64 8.73E+8 38.26 - - 9.99E+7 171.01
128 1.60E+8 166.59 - - 0 241.16
255 0 182.67 - - 0 274.52

derivative 32 1.63E+9 13.54 - - 6.56E+8 34.25
48 1.16E+9 17.04 - - 1.29E+8 84.69
64 8.90E+8 20.91 - - 0 116.02
128 3.60E+8 53.15 - - 0 153.61
255 0 149.95 - - 0 182.83

LMT: Local Memory Transactions
Table 4. Spill metrics and performance in GFLOPS with
NVCC on K40c device for different register configurations

have adopted the first approach: when the register pressure
is too high, the pre-pass list scheduling heuristics prioritize
scheduling instructions that reduce the register pressure.
However, such algorithms lack a global view, focusing only
on the local register pressure at the current scheduled point.
The associated optimization problem is NP-hard, and it is
known that heuristics implemented in production compilers
perform quite poorly on long straight line code [30], such as
loop-body of highly unrolled loops.

11

This observation motivated developers of auto-tuned li-
braries [18, 19] to consider specific properties of the compu-
tational DAG to generate codelets that expose good locality
for register reuse at source level: for certain domain-specific
applications like FFT, a scheduling that minimizes the spill
volume is well understood [27]. The problem addressed in
this paper belongs to a similar category, where one has to
optimize register reuse for long straight-line code arising
from domain-specific kernels. The main difference is that
for the computational DAGs considered by our framework,
optimal or nearly-optimal scheduling is unknown. Our pro-
posed heuristic is a solution to address the optimization of
such DAGs. Prior work on code generation for expression
trees [2, 3, 47] were discussed in details in Section 3. We now
discuss some related work on combined register allocation
and instruction scheduling, and register optimizations for
high-order stencils.

Integrated Register Allocation and Instruction Sched-
uling Motwani et al. [35] show that integrated register
allocation and instruction scheduling is NP-hard. They pro-
pose a combined heuristic that provides relative weights
for controlling register pressure and instruction parallelism.
For instructions where the register of an operand can be
used for the result, Govindrajan et al. [20] try to generate
an instruction sequence from data dependence graph that is
optimal in register usage. Berson et al. [7] use register reuse
DAGs to identify instructions whose parallel scheduling will
require more resources than available, and optimize them
to reduce their resource demands. Pinter [40] describes an
algorithm that colors a parallel interference graph to obtain a
register allocation that does not introduce false dependences,
and therefore exploits maximal parallelism. Norris et al. [37]
propose an algorithm that constructs an interference graph
with all feasible schedules, and then removes interferences
for schedules that are to be least likely followed.
While these efforts consider integrated register manage-

ment and instruction scheduling, the goals are very different
and the contexts quite dissimilar. Prior work in this category
has focused on maximizing parallelism without significantly
increasing the MAXLIVE. In our context, the main reason
for reordering instructions is to effectively exploit the signif-
icant potential for many reuses of values held in registers,
while reducing the MAXLIVE.

Register Optimizations for High-Order Stencils Stock
et al. [50] identify a performance issue with register reuse
for iterative stencils by noting that even though the com-
putation becomes less memory-bound with increase in the
stencil order, their register pressure worsens. They use a
generalized version of [14] to interleave the additive con-
tributions in an unrolled computation. Their approach uses
retiming to homogenize stencil accesses and reduce register
pressure, whereas our approach is based on a very different
computational abstraction, and is more broadly applicable.

Basu et al. [6] propose a partial sum optimization imple-
mented within the CHiLL compiler [23]. The partial sums
are computed over planes for 3D stencils, and redundant
computation is eliminated by performing array common
subexpression elimination (CSE) [15]. However, this opti-
mization is only applicable to stencils with constant and
symmetrical coefficients. While their work does not claim
to reduce register pressure, it may do so as a consequence
of array CSE. Based on the concepts of rematerialization
[9], Jin et al. [28] propose a code generation framework that
trades off recomputations for reduction in register pressure.
It uses dynamic programming to iteratively determine the
minimum amount of recomputations required to reduce the
register consumption by one. This approach is limited to the
stencils described in [28], where the recomputation of an
expression does not increase the live ranges of the values
involved in it.
In summary, existing approaches targeting register op-

timization for high-order stencils do not generalize well.
Unlike these approaches, our framework optimizes both it-
erative and more general multi-statement stencils.

7 Conclusion
Despite a rich literature on register allocation and instruction
scheduling, current production compilers are not sufficiently
effective in reducing register pressure for compute-intensive
high-order stencil codes. For such codes, register spills are a
major performance limiter. Unfortunately, the compiler fails
to perform an instruction reordering that can relieve register
pressure, and the reordering it does perform to increase ILP
often increases register pressure.

This paper presents a register optimization framework for
multi-statement, high-order stencils, which views such com-
putations as a collection of trees with significant data reuse
across nodes, and systematically attempts to reduce register
pressure by decreasing the simultaneously live ranges. Just as
pattern-specific optimization techniques have demonstrably
been more beneficial over traditional compiler optimizations
for stencil computations, we show through this work that a
specialized register management framework can be highly
beneficial for stencil computations.

Acknowledgments
We thank the anonymous reviewers for their feedback and
suggestions that helped improve the paper. This work was
supported in part by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of
Energy Office of Science and the National Nuclear Security
Administration, and by the U.S. National Science Foundation
(NSF) through awards 1440749 and 1513120.

12

References
[1] A. Aho, M. Lam, R. Sethi, and J. Ullman. 2007. Compilers: Principles,

Techniques, and Tools (2nd ed). Pearson.
[2] A. V. Aho and S. C. Johnson. 1975. Optimal Code Generation for

Expression Trees. In Proceedings of Seventh Annual ACM Symposium
on Theory of Computing (STOC ’75). ACM, New York, NY, USA, 207–
217.

[3] A. V. Aho, S. C. Johnson, and J. D. Ullman. 1977. Code Generation for
Expressions with Common Subexpressions. J. ACM 24, 1 (Jan. 1977),
146–160.

[4] A. W. Appel and K. J. Supowit. 1987. Generalization of the Sethi-
Ullman Algorithm for Register Allocation. Softw. Pract. Exper. 17, 6
(June 1987), 417–421.

[5] Vinayaka Bandishti, Irshad Pananilath, and Uday Bondhugula. 2012.
Tiling Stencil Computations to Maximize Parallelism. In Proceedings
of the International Conference on High Performance Computing, Net-
working, Storage and Analysis (SC ’12). IEEE Computer Society Press,
Los Alamitos, CA, USA, Article 40, 11 pages.

[6] P. Basu, M. Hall, S. Williams, B. V. Straalen, L. Oliker, and P. Colella.
2015. Compiler-Directed Transformation for Higher-Order Stencils.
In Parallel and Distributed Processing Symposium (IPDPS), 2015 IEEE
International. 313–323.

[7] David A. Berson, Rajiv Gupta, and Mary Lou Soffa. 1999. Integrated
Instruction Scheduling and Register Allocation Techniques. In Proceed-
ings of the 11th International Workshop on Languages and Compilers
for Parallel Computing (LCPC ’98). Springer-Verlag, London, UK, UK,
247–262.

[8] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayap-
pan. 2008. A Practical Automatic Polyhedral Parallelizer and Locality
Optimizer. In Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’08). ACM,
New York, NY, USA, 101–113.

[9] Preston Briggs, Keith D. Cooper, and Linda Torczon. 1992. Remate-
rialization. In Proceedings of the ACM SIGPLAN 1992 Conference on
Programming Language Design and Implementation (PLDI ’92). ACM,
New York, NY, USA, 311–321.

[10] Preston Briggs, Keith D. Cooper, and Linda Torczon. 1994. Improve-
ments to Graph Coloring Register Allocation. ACM Trans. Program.
Lang. Syst. 16, 3 (May 1994), 428–455.

[11] G. J. Chaitin. 1982. Register Allocation & Spilling via Graph Coloring.
In Proceedings of the 1982 SIGPLAN Symposium on Compiler Construc-
tion (SIGPLAN ’82). ACM, New York, NY, USA, 98–105.

[12] J. M. Codina, J. Sanchez, and A. Gonzalez. 2001. A unified modulo
scheduling and register allocation technique for clustered processors.
In Proceedings 2001 International Conference on Parallel Architectures
and Compilation Techniques. 175–184.

[13] Q. Colombet, B. Boissinot, P. Brisk, S. Hack, and F. Rastello. 2011.
Graph-coloring and treescan register allocation using repairing. In
2011 Proceedings of the 14th International Conference on Compilers,
Architectures and Synthesis for Embedded Systems (CASES). 45–54.

[14] Raúl De La Cruz, Mauricio Araya-Polo, and José María Cela. 2010.
Introducing the Semi-stencil Algorithm. In Proceedings of the 8th In-
ternational Conference on Parallel Processing and Applied Mathematics:
Part I (PPAM’09). Springer-Verlag, Berlin, Heidelberg, 496–506.

[15] Steven J. Deitz, Bradford L. Chamberlain, and Lawrence Snyder. 2001.
Eliminating Redundancies in Sum-of-product Array Computations.
In Proceedings of the 15th International Conference on Supercomputing
(ICS ’01). ACM, New York, NY, USA, 65–77.

[16] Lukasz Domagala, Duco van Amstel, Fabrice Rastello, and P. Sadayap-
pan. 2016. Register Allocation and Promotion Through Combined
Instruction Scheduling and Loop Unrolling. In Proceedings of the 25th
International Conference on Compiler Construction (CC 2016). ACM,
New York, NY, USA, 143–151.

[17] ExaCT 2013. ExaCT: Center for Exascale Simulation of Combus-
tion in Turbulence: Proxy App Software. https://exactcodesign.org/

proxy-app-software/. (2013).
[18] M. Frigo and S. G. Johnson. 2005. The Design and Implementation of

FFTW3. Proc. IEEE 93, 2 (Feb 2005), 216–231.
[19] Kazushige Goto and Robert A. van de Geijn. 2008. Anatomy of High-

performance Matrix Multiplication. ACM Trans. Math. Softw. 34, 3,
Article 12 (May 2008), 25 pages.

[20] Ramaswamy Govindarajan, H. Yang, Chihong Zhang, José N. Amaral,
and Guang R. Gao. 2001. Minimum Register Instruction Sequence Prob-
lem: Revisiting Optimal Code Generation for DAGs. In Proceedings of
the 15th International Parallel &Amp; Distributed Processing Symposium
(IPDPS ’01). IEEE Computer Society, Washington, DC, USA, 26–33.

[21] Tobias Grosser, Albert Cohen, Justin Holewinski, P. Sadayappan, and
Sven Verdoolaege. 2014. Hybrid Hexagonal/Classical Tiling for GPUs.
In Proceedings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization (CGO ’14). ACM, Article 66, 10 pages.

[22] Tobias Gysi, Tobias Grosser, and Torsten Hoefler. 2015. MODESTO:
Data-centric Analytic Optimization of Complex Stencil Programs on
Heterogeneous Architectures. In Proceedings of the 29th ACM on Inter-
national Conference on Supercomputing (ICS ’15). ACM, 177–186.

[23] Mary Hall, Jacqueline Chame, Chun Chen, Jaewook Shin, Gabe Rudy,
and Malik Murtaza Khan. 2010. Loop Transformation Recipes for
Code Generation and Auto-tuning. In Proceedings of the 22Nd Interna-
tional Conference on Languages and Compilers for Parallel Computing
(LCPC’09). Springer-Verlag, Berlin, Heidelberg, 50–64.

[24] Ari B. Hayes, Lingda Li, Daniel Chavarría-Miranda, Shuaiwen Leon
Song, and Eddy Z. Zhang. 2016. Orion: A Framework for GPU Oc-
cupancy Tuning. In Proceedings of the 17th International Middleware
Conference (Middleware ’16). ACM, New York, NY, USA, 18:1–18:13.

[25] Tom Henretty, Richard Veras, Franz Franchetti, Louis-Noël Pouchet, J.
Ramanujam, and P. Sadayappan. 2013. A Stencil Compiler for Short-
vector SIMD Architectures. In Proceedings of the 27th International
ACM Conference on International Conference on Supercomputing (ICS
’13). ACM, 13–24.

[26] HPGMG 2016. High-Performance Geometric Multigrid. https://hpgmg.
org/. (2016).

[27] Hong Jia-Wei and H. T. Kung. 1981. I/O Complexity: The Red-blue
Pebble Game. In Proceedings of the Thirteenth Annual ACM Symposium
on Theory of Computing (STOC ’81). ACM, New York, NY, USA, 326–
333.

[28] Mengyao Jin, Haohuan Fu, Zihong Lv, andGuangwen Yang. 2016. Libra:
An Automated Code Generation and Tuning Framework for Register-
limited Stencils on GPUs. In Proceedings of the ACM International
Conference on Computing Frontiers (CF ’16). ACM, New York, NY, USA,
92–99.

[29] David Ryan Koes and Seth CopenGoldstein. 2006. AGlobal Progressive
Register Allocator. In Proceedings of the 27th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’06). ACM,
New York, NY, USA, 204–215.

[30] Stefan Kral, Franz Franchetti, Juergen Lorenz, Christoph W. Ueberhu-
ber, and Peter Wurzinger. 2004. FFT Compiler Techniques. In Compiler
Construction: 13th International Conference, CC 2004. Springer Berlin
Heidelberg, 217–231.

[31] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization (CGO ’04). IEEE Computer
Society, Washington, DC, USA, 75–.

[32] A. Li, S. L. Song, A. Kumar, E. Z. Zhang, D. ChavarrÃŋa-Miranda, and
H. Corporaal. 2016. Critical points based register-concurrency auto-
tuning for GPUs. In 2016 Design, Automation Test in Europe Conference
Exhibition (DATE). 1273–1278.

[33] Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. 2000.
Fusion-based Register Allocation. ACM Trans. Program. Lang. Syst. 22,
3 (May 2000), 431–470.

13

https://exactcodesign.org/proxy-app-software/
https://exactcodesign.org/proxy-app-software/
https://hpgmg.org/
https://hpgmg.org/

[34] Hanspeter Mössenböck and Michael Pfeiffer. 2002. Linear Scan Register
Allocation in the Context of SSA Form and Register Constraints. Springer
Berlin Heidelberg, 229–246.

[35] Rajeev Motwani, Krishna V. Palem, Vivek Sarkar, and Salem Reyen.
1995. Combining Register Allocation and Instruction Scheduling. Tech-
nical Report. Stanford, CA, USA.

[36] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. 2015. Poly-
Mage: Automatic Optimization for Image Processing Pipelines. In
Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
’15). ACM, 429–443.

[37] C. Norris and L. L. Pollock. 1993. A scheduler-sensitive global register
allocator. In Supercomputing ’93. Proceedings. 804–813.

[38] NVCC 2017. NVIDIA CUDA Compiler Driver NVCC. docs.nvidia.com/
cuda/cuda-compiler-driver-nvcc. (2017).

[39] NVprof 2017. NVIDIA Profiler. http://docs.nvidia.com/cuda/
profiler-users-guide. (2017).

[40] Shlomit S. Pinter. 1993. Register Allocation with Instruction Schedul-
ing. In Proceedings of the ACM SIGPLAN 1993 Conference on Program-
ming Language Design and Implementation (PLDI ’93). ACM, New York,
NY, USA, 248–257.

[41] Massimiliano Poletto and Vivek Sarkar. 1999. Linear Scan Register
Allocation. ACMTrans. Program. Lang. Syst. 21, 5 (Sept. 1999), 895–913.

[42] Fernando Magno Quintão Pereira and Jens Palsberg. 2008. Register
Allocation by Puzzle Solving. In Proceedings of the 29th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (PLDI ’08). ACM, New York, NY, USA, 216–226.

[43] Mahesh Ravishankar, Justin Holewinski, and Vinod Grover. 2015.
Forma: A DSL for Image Processing Applications to Target GPUs and
Multi-core CPUs. In Proc. 8th Workshop on General Purpose Processing
Using GPUs. 109–120.

[44] Prashant Singh Rawat, Changwan Hong, Mahesh Ravishankar, Vinod
Grover, Louis-Noel Pouchet, Atanas Rountev, and P. Sadayappan. 2016.
Resource Conscious Reuse-Driven Tiling for GPUs. In Proceedings of
the 2016 International Conference on Parallel Architectures and Compi-
lation (PACT ’16). ACM, 99–111.

[45] Hongbo Rong. 2009. Tree Register Allocation. In Proceedings of the
42Nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO 42). ACM, New York, NY, USA, 67–77.

[46] Vivek Sarkar and Rajkishore Barik. 2007. Extended Linear Scan: An
Alternate Foundation for Global Register Allocation. In Proceedings
of the 16th International Conference on Compiler Construction (CC’07).
Springer-Verlag, Berlin, Heidelberg, 141–155.

[47] Ravi Sethi and J. D. Ullman. 1970. The Generation of Optimal Code
for Arithmetic Expressions. J. ACM 17, 4 (Oct. 1970), 715–728.

[48] Michael D. Smith, Norman Ramsey, and Glenn Holloway. 2004. A
Generalized Algorithm for Graph-coloring Register Allocation. In

Proceedings of the ACM SIGPLAN 2004 Conference on Programming
Language Design and Implementation (PLDI ’04). ACM, New York, NY,
USA, 277–288.

[49] Richard M. Stallman and GCC Developer Community. 2009. Using
The GNU Compiler Collection: A GNU Manual For GCC Version 4.3.3.
CreateSpace, Paramount, CA.

[50] Kevin Stock, Martin Kong, Tobias Grosser, Louis-Noël Pouchet, Fabrice
Rastello, J. Ramanujam, and P. Sadayappan. 2014. A Framework for
Enhancing Data Reuse via Associative Reordering. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’14). ACM, New York, NY, USA, 65–76.

[51] SW4 2014. Seismic Wave Modelling (SW4) - Computational Infras-
tructure for Geodynamics. https://geodynamics.org/cig/software/sw4/.
(2014).

[52] Sid Touati and Christine Eisenbeis. 2004. Early Periodic Register
Allocation on ILP Processors. Parallel Processing Letters 14, 2 (June
2004), 287–313.

[53] Swapneela Unkule, Christopher Shaltz, and Apan Qasem. 2012. Auto-
matic Restructuring of GPU Kernels for Exploiting Inter-thread Data
Locality. In Proceedings of the 21st International Conference on Compiler
Construction (CC’12). Springer-Verlag, Berlin, Heidelberg, 21–40.

[54] Mohamed Wahib and Naoya Maruyama. 2014. Scalable Kernel Fusion
for Memory-bound GPU Applications. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’14). IEEE Press, 191–202.

[55] MohamedWahib and Naoya Maruyama. 2015. Automated GPU Kernel
Transformations in Large-Scale Production Stencil Applications. In
Proceedings of the 24th International Symposium on High-Performance
Parallel and Distributed Computing (HPDC ’15). ACM, New York, NY,
USA, 259–270.

[56] JianWang, Andreas Krall, M. Anton Ertl, and Christine Eisenbeis. 1994.
Software Pipelining with Register Allocation and Spilling. In Proceed-
ings of the 27th Annual International Symposium on Microarchitecture
(MICRO 27). ACM, New York, NY, USA, 95–99.

[57] Jingyue Wu, Artem Belevich, Eli Bendersky, Mark Heffernan, Chris
Leary, Jacques Pienaar, Bjarke Roune, Rob Springer, Xuetian Weng,
and Robert Hundt. 2016. gpucc: An Open-source GPGPU Compiler. In
Proceedings of the 2016 International Symposium on Code Generation
and Optimization (CGO ’16). 105–116.

[58] Xiaolong Xie, Yun Liang, Xiuhong Li, Yudong Wu, Guangyu Sun,
Tao Wang, and Dongrui Fan. 2015. Enabling Coordinated Register
Allocation and Thread-level Parallelism Optimization for GPUs. In
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO-48). ACM, New York, NY, USA, 395–406.

[59] Jingling Xue. 1997. On Tiling as a Loop Transformation. Parallel
Processing Letters 07, 04 (1997), 409–424.

14

docs.nvidia.com/cuda/cuda-compiler-driver-nvcc
docs.nvidia.com/cuda/cuda-compiler-driver-nvcc
http://docs.nvidia.com/cuda/profiler-users-guide
http://docs.nvidia.com/cuda/profiler-users-guide
https://geodynamics.org/cig/software/sw4/

A Artifact appendix
Submission and reviewing guidelines and methodology:
http://cTuning.org/ae/submission.html

A.1 Abstract
The artifact comprises an automated framework to perform
reordering optimization on stencil computations; the algo-
rithmic details of the framework are described in the PPoPP’18
paper Register Optimizations for Stencils on GPUs. The arti-
fact is publicly available for download from the github link
https://github.com/pssrawat/ppopp-artifact. The downloaded
package comes with
− The source code for the framework
− The benchmarks in the examples/ directory
− Documentation on how to add a new stencil bench-

mark in the docs/ directory
− Makefile to compile the reordering framework, and

shell scripts to run the benchmarks and verify the
results reported in the paper

A.2 Artifact check-list (meta-information)
• Algorithm: Register reordering framework for stencil com-
putations on GPU.
• Program: C/C++ and CUDA input.
• Compilation: CPU code: g++ with c++11 support (GCC
4.9.2 and 5.3.0 tested); GPU code: NVCC (8.0 tested) and
LLVM (5.0.0 tested).
• Transformations: The framework extracts the stencil state-
ments from the pragma-demarcated input CUDA file, per-
forms lowering transformations on the stencil statements,
and then reorders the lowered statements to enhance data
reuse and simultaneously reduce register pressure.
• Binary: Makefile is included in the package to generate the
executable. Reordered versions generated by the framework
are included for all the benchmarks; the scripts used to gen-
erate the reordered versions are also included.
• Data set: Included in the examples/ directory.
• Run-time environment: Tested on Ubuntu 16.04, and Red
Hat Enterprise Linux Server release 6.7 operating system.
• Hardware: We recommend a linux platform, and a GPU
device with compute capability >= 3.5.
• Output: GFLOPS for all the input benchmarks.
• Publicly available?: Yes.

A.3 Description
A.3.1 How delivered
The framework is open-source, and is available for download from
the git repositoryhttps://github.com/pssrawat/ppopp-artifact. The
downloaded package comprises the source code, the benchmarks,
and the evaluation instructions and scripts. All the files in the
repository are licensed to The Ohio State University.

A.3.2 Hardware dependencies
The framework has been tested on Ubuntu 16.04 and Red Hat Enter-
prise Linux Server release 6.7. The generated code can be executed

on any NVidia device with compute capability >=3.5. For reproduc-
ing the results reported in the paper, we suggest using Kepler K40c
device.

A.3.3 Software dependencies
− flex version >= 2.6.0 (2.6.0 tested)
− bison version >= 3.0.4 (3.0.4 tested)
− cmake version >= 3.8 for gpucc (3.8 tested)
− Boost version >= 1.58 (1.58 tested)
− GCC version >=4.8.1 with c++11 support to compile the

framework (4.9.2 and 5.3.0 tested)
− NVCC version >= 7.5 for benchmarking
− LLVM version >= 5.0.0 for benchmarking

A.3.4 Data sets
All the benchmarks that are evaluated in the paper are packaged
in the examples/ directory. Additionally, Makefiles and scripts are
included for easy evaluation.

A.4 Installation
First clone the artifact source to a local machine:

$. git clone https://github.com/pssrawat/ppopp-artifact
Then compile the source code to create the executable test:
$. cd ppopp-artifact
$. make all
Now set some environmental variables that are necessary for

benchmarking. The first variable is to indicate the path to CUDA
installation, and the second variable is to identify the compute
capability of the GPU device:

$. export CUDAHOME=path-to-CUDA-installation
$. export CAPABILITY=capability-of-GPU-card
The compute capability of the K40c device is 35; for a Pascal

device, it is 60.
To run the benchmarks:
$. cd examples
$. ./run-benchmarks.sh
The computed GFLOPS for all the benchmarks will be redirected

to the output file output.txt in the examples directory.

A.5 Evaluation and expected result
The performance for each stencil benchmark in GFLOPS will be in
output.txt after the evaluation script successfully finishes.

A.6 Experiment customization
The unrolling factors can be changed in the input .cu file, along
with the launch paramaters, and the reordered versions regenerated
by using the reorder.sh script provided with each benchmark. The
documentation in docs/ folder provides additional details about
adding new benchmarks, and optimizing them with the framework.

15

https://github.com/pssrawat/ppopp-artifact
https://github.com/pssrawat/ppopp-artifact

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Scheduling DAG of Expression Trees
	3.1 Sethi-Ullman Scheduling
	3.2 Scheduling a Tree with Data Sharing
	3.3 Heuristics for Tractability
	3.4 Scheduling a DAG of expression trees

	4 Interleaving Expressions
	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Artifact appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and expected result
	A.6 Experiment customization

