
HAL Id: hal-01956179
https://hal.inria.fr/hal-01956179

Submitted on 15 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementing a semi-causal domain-specific language for
context detection over binary sensors

Nic Volanschi, Bernard Serpette, Charles Consel

To cite this version:
Nic Volanschi, Bernard Serpette, Charles Consel. Implementing a semi-causal domain-specific lan-
guage for context detection over binary sensors. 17th International Conference on Generative Program-
ming: Concepts and Experiences (GPCE 2018), ACM SIGPLAN, Nov 2018, Boston, Massachusetts,
United States. pp.66-78, �10.1145/3278122.3278134�. �hal-01956179�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162945815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01956179
https://hal.archives-ouvertes.fr

Implementing a Semi-causal Domain-Specific
Language for Context Detection over Binary Sensors

Nic Volanschi
Inria Bordeaux
Talence, France

eugene.volanschi@inria.fr

Bernard Serpette
Inria Bordeaux
Talence, France

bernard.serpette@inria.fr

Charles Consel
Bordeaux INP & Inria Bordeaux

Talence, France
charles.consel@inria.fr

Abstract
In spite of the fact that many sensors in use today are bi-
nary (i.e. produce only values of 0 and 1), and that useful
context-aware applications are built exclusively on top of
them, there is currently no development approach specifi-
cally targeted to binary sensors. Dealing with notions of state
and state combinators, central to binary sensors, is tedious
and error-prone in current approaches. For instance, devel-
oping such applications in a general programming language
requires writing code to process events, maintain state and
perform state transitions on events, manage timers and/or
event histories.
In another paper, we introduced a domain specific lan-

guage (DSL) called Allen, specifically targeted to binary sen-
sors. Allen natively expresses states and state combinations,
and detects contexts on line, on incoming streams of binary
events. Expressing state combinations in Allen is natural
and intuitive due to a key ingredient: semi-causal opera-
tors. That paper focused on the concept of the language
and its main operators, but did not address its implemen-
tation challenges. Indeed, online evaluation of expressions
containing semi-causal operators is difficult, because semi-
causal sub-expressions may block waiting for future events,
thus generating unknown values, besides 0 and 1. These un-
known values may or may not propagate to the containing
expressions, depending on the current value of the other
arguments.

This paper presents a compiler and runtime for the Allen
language, and shows how they implement its state combining
operators, based on reducing complex expressions to a core
subset of operators, which are implemented natively. We
define several assisted living applications both in Allen and
in a general scripting language. We show that the former
are much more concise in Allen, achieve more effective code
reuse, and ease the checking of some domain properties.

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
a national government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
GPCE ’18, November 5–6, 2018, Boston, MA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6045-6/18/11. . . $15.00
https://doi.org/10.1145/3278122.3278134

CCS Concepts • Software and its engineering → Do-
main specific languages; • Human-centered comput-
ing → Ubiquitous computing; • Hardware → Sensor appli-
cations and deployments; • Information systems→ Stream
management; Data streaming;

Keywords domain-specific languages, binary sensors, con-
text awareness

ACM Reference Format:
Nic Volanschi, Bernard Serpette, and Charles Consel. 2018. Im-
plementing a Semi-causal Domain-Specific Language for Context
Detection over Binary Sensors. In Proceedings of the 17th ACM
SIGPLAN International Conference on Generative Programming: Con-
cepts and Experiences (GPCE ’18), November 5–6, 2018, Boston, MA,
USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3278122.3278134

1 Introduction
Sensors are the foundation of pervasive computing applica-
tions: they are embedded in handheld and wearable devices,
in many embedded systems, and they also are the keystones
of smart spaces. Some pervasive application domains mostly
or exclusively rely on binary sensors, that is, sensors produc-
ing only values of 0 and 1.
The smart homes domain for example heavily relies on

binary sensors, for several reasons. First of all, at the physical
level, many commodity sensors used for equipping smart
homes are binary by nature: motion sensors signal presence
or absence in a given area; contact sensors are attached to
home objects such as doors or drawers to signal their open
and closed states; pressure mats are placed at strategic loca-
tions in smart buildings to detect walking and trigger specific
automata, etc. On a more conceptual level, smart homes are
mostly interested in detecting environment situations and
interactions which are conceptually detected by binary sen-
sors, even if the underlying physical sensors may not be
binary. Thus, situations such as an over-heated or under-
heated area are typically detected by temperature sensors
passing over a threshold values. Interactions of a user with
the environment such as preparing a meal or doing cleanup
are usually detected by smart switches attached to strategic
devices such as cookers or washing machines, also associ-
ated with some threshold values, to signal the states of using,
or not using, the corresponding devices.

https://doi.org/10.1145/3278122.3278134
https://doi.org/10.1145/3278122.3278134
https://doi.org/10.1145/3278122.3278134

GPCE ’18, November 5–6, 2018, Boston, MA, USA Nic Volanschi, Bernard Serpette, and Charles Consel

Consequently, several research works studied algorithms
based on binary sensors for activity recognition [15, 16, 18]
in smart homes, but also in other application domains such
as object tracking [6] or smart manufacturing [23].

As a direct consequence of their particular value domain,
binary sensors share the notion of state, spanning over a
time interval. Associated to these notions, other derived no-
tions such as the current state or temporal constraints over
states, like a state lasting at least/at most a given time, are
of interest in most applications. Furthermore, real applica-
tions rely on multiple binary sensors, which brings into
play various notions of state combination, such as several
states being concomitantly or alternatively true, or tempo-
ral orderings between their time intervals, like sequencing,
overlapping, or containment. This rich set of concepts and
their possible combinations strive for being supported by
a domain-specific approach. Indeed, in absence of specific
support, implementing context detection logic in general
programming languages is highly technical, tedious, and er-
ror prone. Specifically, when developers have to repeatedly
implement these concepts and combinations in different ap-
plications, they may introduce subtle differences that may
translate to incoherences in behavior and bugs.
The problem is exacerbated when many different vari-

ations of (even small) context detection logics have to be
developed and deployed. This is usually the case when per-
vasive applications are intimately intertwined with user lives,
which is the case of every smart home application. Indeed,
services involving users have to be adapted to user profiles
and preferences, leading to many variations of the context
detection logic. For instance, an application detecting a daily
activity such as meal preparation has to closely match the
way each person performs this activity, which may involve
using various appliances, according to different temporal
patterns, and within customizable time slots. It has been
shown indeed that customizing assistive services in a smart
home to the users abilities plays a key role towards achiev-
ing acceptance of these technologies [7]. This stringent need
for customization entails that scalability in terms of sup-
ported needs can be achieved only if an important number
of context-aware services and variations thereof can be de-
veloped easily. In particular, when talking about variations
of a given service, it is clear that the ability to reuse logic is
also a key requirement.

In a companion paper [22], we introduced a domain-specific
language (DSL) for developing context detection logic over
binary sensors that is able to fulfil these requirements effec-
tively. Our language, called Allen, natively supports the con-
cepts of state and state combinators, and also the associated
concepts of current state, temporal constraints and order-
ings. Both raw information coming from sensors and more
refined contexts computed by applications are modeled as
boolean functions of time, also called signals. New contexts
are thus computed by applying operators to signals. The set

of predefined operators can be extended by user-defined op-
erators. Like native operators, user-defined operators apply
to a given number of signals, and may also be parameterized
by integer constants such as delays or thresholds.

That paper introduced the concepts of the Allen language,
its operators and their semantics, presented a prototype in-
terpreter, and compared it to the Complex Event Processing
(CEP) language called Esper. In turn, no details were given
about how operators were implemented in the interpreter.

This paper briefly introduces the Allen language in order
to be self-contained, then focuses on the challenges involved
in its implementation. Furthermore, it situates this DSL with
respect to the use of general programming languages for
programming context-aware services. Our contributions are:

• We motivate and evaluate our language by comparing
the implementation of real assistive services in our lan-
guage and in a general scripting language. Programs
in Allen are much shorter, facilitate reuse, and simplify
checking some specific behavior properties.

• We show why implementing the Allen operators is
not straightforward. Difficulties mainly result from
the online evaluation of semi-causal operators and
non-strict operators.

• We describe implementation techniques able to solve
these difficulties and implement an online evaluator
consuming streams of events coming from sensors
and producing streams of detected contexts. Our new
implementation also contains a compiler that produces
Perl code to be executed in conjunction with a runtime.

• We also show some optimization techniques for sim-
plifying the implementation of the language and for
decreasing the memory used at runtime.

Before introducing our DSL in section 3, we start by a
motivating example that will be used to illustrate its main
features and advantages, in the next section.

2 Motivating Example
As a motivating example, let us consider a simple but real
smart home assistive application called DoorAlert, which
aims at detecting security situations related to the entrance
door left open. From the user’s point of view, such an applica-
tion is relevant because the safety needs have been identified
as one of the areas that can be addressed in a promising way
by technology, for different categories of users, including nor-
mally aging seniors, or individuals with special needs such
as Alzheimer’s disease [3]. From the perspective of our dis-
cussion, this application is interesting because it is a typical
application relying on several binary sensors and involving
different temporal constraints and orderings. Furthermore,
it illustrates the needs for customization that are common
to assistive applications, because different versions of this
application must be developed for different user profiles.

Implementing a Semi-causal Domain-Specific Language . . . GPCE ’18, November 5–6, 2018, Boston, MA, USA

More specifically, DoorAlert detects the situation when
the entrance door has been left open and unattended for at
least some given timeT . This may arrive due to an oversight
of the home occupant, and is intended for seniors having
a moderate decline of short-term memory. When the situ-
ation is detected, the application sends a reminder to the
user to close the door. However, when the user stands in the
open door, for instance having a discussion with somebody
outside the home, the application should not signal this situ-
ation, because the door is not unattended in this case. The
application relies on two physical binary sensors: a contact
sensor attached to the entrance door, and a motion sensor
covering the area inside the home near the entrance door.

A variation of this application, called DepartureAlarm, is
intended for users presenting a risk of anxiety or disorienta-
tion which may lead to a night wandering episode, such as
individuals with Alzheimer’s disease. The DepartureAlarm
application detects the situation when the door has been left
open for at least some time T during the night, assuming
that an appropriate time slot has been defined for the night
time. In this version, only one physical sensor is used, the
contact sensor on the door, but its information is crossed
with a simple “software sensor” detecting night time. When
the situation is detected, an alarm is sent to a caregiver, for
example taking the form of an SMS.

2.1 Application Development in a GPL
Let us examine how such pervasive applications can be de-
veloped using a general programming language (GPL). We
choose Perl here, as this language is frequently used in prac-
tice for processing textual sensor logs (possibly pipes, in case
of online sensor processing) in a variety of formats, either
record-oriented (e.g., CSV) or semi-structured (e.g., JSON).
This is also why our language is compiled to Perl.

Due to space restrictions, wewill detail here only the Door-
Alert application. Its hand-coded Perl version implements
the automaton in Figure 1. Note that for the base version
of DoorAlert, the dashed elements in the figure must be
ignored. The automaton contains four states that encode all
the possible states of the two sensors, one being open or
closed, and the second signalling a presence or an absence
near the door. The initial state is usually the one in which
the door is closed and the user is not nearby. Transitions
are made whenever one of the sensors signals a new value.
Some transitions contain, besides the event condition, an
action such as initiating a timer (shown as “t=0”), cancelling
a timer, or raising an alert. The expiration of a timer can also
cause a transition, under the condition “t=T?”.

This automaton can be implemented in a straightforward
way by the Perl code in Figure 2.1 The code consists of an
1 Note that in Perl, scalar variable names start with $, and initially have
value undef. Hash table names start with %, but extracting a value from
a hash table %x is written $x{key}. Comments start with #. Numbers are
compared with == and strings with eq.

event processing loop handling each incoming event, and ex-
tracting from it relevant items via regular expression match-
ing, such as its timestamp, the sensor name, and its reported
value. The body of the loop must: handle all relevant events;
maintain state as necessary; manage timers; and record event
histories (in the hash table lastval).

In our case, the state is one of the four states in the automa-
ton, which have been encoded using two boolean variables,
opened and present. The timer is implemented by a vari-
able, unwatchedts. If the timer is active, this variable holds
the timestamp when the timer was triggered, otherwise, it
is undefined (i.e., has the predefined undef value in Perl).
Timeouts are detected at the beginning of the loop body
by checking if the period of time since the timer is active
up to the current event is at least T . Note that this code ex-
cerpt is simplified in that it checks timeout only when sensor
events happen in the house. In the complete code, special
timeout events are inserted into the stream of sensor events,
and therefore, timeouts are detected as soon as they happen,
without waiting for a new sensor event. This does not change
the logic of the loop body; it only simplifies our presenta-
tion of the code. Other simplifications include the handling
of options from the command line, such as the value of T .
Overall, the shown excerpt has 30 lines, while the complete
code has 65 lines, excluding user-defined subroutines such
as period, which may be implemented in a library module.

From this simple example, one can see that the loop body is
a generic event handler, able to recognize all relevant events
and handle them by performing the necessary transitions
and actions. It is well known that this coding structure does
not scale well to more complex cases, involving a greater
number of sensors and temporal constraints and orders. In
such cases the code becomes tedious to program and error
prone, a situation known as the callback hell [4]. Maintain-
ing an accurate automaton model along with the code (or
deriving the code from an automaton model, if appropriate
tool support is available) alleviates the problem to some ex-
tent, but on the automaton model as well, they are many
subtleties to be mastered. For instance, even in our simple
case, one must take care to initiate the timer on all transi-
tions towards the AwayOpen node, and only on these, and to
reset it on all transitions leaving that node other then the
self-loop actioning the alert. Failing to do so may lead to an
“escaped timer” which could trigger a false alert when some
specific paths are taken. The problem only becomes more
complex when several timers are involved in the automaton.

In general, this automaton-based event handling paradigm
forces developers to compile high-level temporal constraints
and orderings to low-level concepts such as state transitions
and timers. This repeated, manual compilation of common
domain patterns bears the risk of introducing subtle varia-
tions between the various instances. Furthermore, simple
properties in the application domain must be repeatedly
checked on the manually compiled automata. For example,

GPCE ’18, November 5–6, 2018, Boston, MA, USA Nic Volanschi, Bernard Serpette, and Charles Consel

AwayClosed	

PresentOpen	

AwayOpen	

PresentClosed	

AwayOff	

PresentOff	

Presence?	 Presence?	/	
cancel(t)	

Presence?	

Absence?	
Absence?	/	
t=0	

Absence?	

Open?	

Open?	/		
t=0	

Close?	/	cancel(t)	

Close?	

t=T?	/	
Alert!	

Close?	

Close?	

Figure 1. Automaton of the DoorAlert application (solid lines), and DoorAlert1 application (solid+dashed lines).

my $T; # timeout for unwatched door (in minutes)
my %lastval = (); # hash table with last value of each sensor
my $opened; # boolean state of the door
my $present; # boolean state of motion detector
my $unwatchedts; # begin timestamp of unwatched state

while (<>) { # for every line read on standard input (= 1 event)
pattern match relevant elements from incoming event
if (my ($date, $val, $sensor, $ts) = /.../) {

if (defined($unwatchedts) &&
period($unwatchedts, $ts) >= $T * 60) {

print "[$date] door unwatched since $unwatchedts\n";
$unwatchedts = undef;

}
if ($sensor eq 'Door' && $val != $lastval{'Door'}) {
$opened = $val;
if ($opened == 1 && $present == 0) {

$unwatchedts = $ts; # set timer on open & absent
} elsif ($opened == 0 && $present == 0) {
$unwatchedts = undef; # cancel timer on close & absent

}
} elsif ($sensor eq 'Hall' && $val != $lastval{'Hall'}) {

$present = $val;
if ($present == 0 && $opened == 1) {

$unwatchedts = $ts; # set timer on leave & opened
} elsif ($present == 1 && $opened == 1) {
$unwatchedts = undef; # cancel timer on come & opened

}
}
$lastval{$sensor} = $val;

}
}

Figure 2. Hand-coded Perl implementation of DoorAlert

the fact that the automaton in Figure 1 raises an alert each
time the door is left unattended for time T , and only in this
situation, has to be checked by (1) inspecting all the paths in
the automaton leading to the alert-triggering transitions to
ensure that the timer is appropriately set, and (2) ensuring
that the union of the conditions for taking alert transitions
exactly covers the given situation.

2.2 Application Evolution in a GPL
It is also instructive to examine what kind of code reuse can
be achieved when a new variation of an application imple-
mented in a GPL has to be created. Continuing our example
in Figure 1, let us assume that a new version of this applica-
tion, called DoorAlert1, has to be developed, which signals
the same situation of an unattended door, but at most once
per door opening. Indeed, the main version of DoorAlert
may raise an alert several times for a long door opening,
any time when the user disappears from the entrance hall
for time T or more. The DoorAlert1 variation is not meant
to upgrade DoorAlert, but offer another choice for people
having a greater degree of autonomy. For them, the designer
assumes that once the user came to the Hall and inspected
the situation without closing the door, it is no more neces-
sary to alert again about this situation until the door is closed.
As already mentioned, such a close matching between appli-
cation behavior and user profile is mandatory to avoid user
fatigue by over-notification, which could cause the rejection
of the assistive technology.
From the technical point of view, this variation can be

implemented as shown in the same Figure 1, by adding the
dashed states and transitions. As a particular case, the self-
loop on state AwayOpen, figured by a solid line is replaced
by the transition towards state AwayOff. This has the ef-
fect of disabling the alert until the door is closed. When
this happens, the automaton transitions to one of the states
AwayClosed or PresentClosed, depending on user presence,
thus reenabling the alert. In the Perl code of DoorAlert1 (not
shown), this could be implemented by adding a flag enabled,
initially set to 1, that is reset when the alert is triggered, and
set back whenever the door is closed. This flag could then
condition both actions of arming and cancelling the timer.

Whichever level we are considering, either the automaton
model or the GPL code, it is difficult to reuse the behavior of
DoorAlert into DooAlert1, other than copying and pasting

Implementing a Semi-causal Domain-Specific Language . . . GPCE ’18, November 5–6, 2018, Boston, MA, USA

the behavior, and adapting the new copy. This is because
the behavior is not reused as a black box, but rather as a
white box. Thus, in the automaton, the self-looping transi-
tion has to be deleted and replaced with another one. In the
GPL code, modifications have to be performed at several
program points. This copy/paste reuse has well known in-
conveniencies, such as duplicating maintenance tasks. For
instance, if the base version is evolved for any reason, say to
take into account a time slot, all the modifications have to
be reported on the new copy. Another inconvenient of this
white-box reuse is that domain properties that were checked
on the initial version DoorAlert must be checked again on
DoorAlert1.

The next section introduces our domain-specific approach
to building context-aware applications over binary sensors,
which eases their development by enabling very concise
programs, enables effective behavior reuse, and simplifies
the checking of some domain properties.

3 The Allen Language
Our DSL, called Allen, aims at supporting the development
of context-aware applications over binary sensors. For doing
so, Allen timely detects a set of contexts over a stream of
binary sensor events. Note that Allen only addresses the
context detection part of context-aware applications. The
actions to be performed when a context is detected are out
of the scope of the language. Applications may freely use the
output of an Allen program to react as appropriate. We first
describe the concepts of the language, and then its syntax
and semantics.

3.1 Concepts
Allen models sensors as boolean functions over time, also
called signals. Time is discrete in Allen, and more precisely
the domain of natural numbers N, starting with 0. For in-
stance, Unix timestamps can be used as time values. The
value of the signal for a sensor models the current value
of the sensors, defined as its last reported value. This def-
inition implies that the current value of a sensor does not
change until the opposite value is reported. We therefore
assume that the reported values are alternatively 0 and 1
(otherwise, repeated values can be filtered out in a lower
layer). Furthermore, we assume that the initial value of each
sensor at time 0 is known, and that each sensor reports a
finite number of values. These assumptions covers all prac-
tical cases of real sensor deployments. Therefore, if a sen-
sor s : N → B = {0.1} signals values s(ti)0≤i≤n where
n ≥ 0, t0 = 0, and ∀i ∈ [0,n) . ti < ti+1 ∧ s(ti) = ¬s(ti+1),
the signal corresponding to the sensor can be viewed as a
sequence of time intervals [ti , ti+1) over which the current
value is s(ti), plus a last time interval [tn,∞), where the cur-
rent value is s(tn). Note that the intervals are closed on the
left, because the value s(ti), respectively s(tn), has just been

Prog -> Lib Rules
Lib -> Def*
Def -> "def" id ("[" id ("," id)* "]")? ("(" id ("," id)* ")")?

"=" Context
Rules -> Context ";" Rules | Context
Context -> "let" id "=" Expr Context | Expr
Expr -> Prod "|" Expr | Prod
Prod -> Comp "&" Prod | Comp
Comp -> Expr1 (">=!"|"<="|">="|"<"|">") Int | Expr1
Expr1 -> "~" Expr1 | "(" Expr ")" | str

| id ("[" Int ("," Int)* "]")? ("(" Expr ("," Expr)* ")")?
Int -> id | int ("hr" | "min" | "sec")?

Figure 3. Grammar of the Allen language.

reported, and opened on the right, because this value lasts
until, but excluding, ti+1, when the opposite value s(ti+1)
is reported, respectively because the value ∞ is not in the
domain of s . We call a state of s any of these time intervals
where its current value is 1. A signal can thus be viewed as
a sequence of strictly increasing time intervals, representing
its states:

s = {[t, t ′)|t ∈ N, t ′ ∈ N∞, t < t ′ ∧ ∀t ′′ ∈ [t, t ′) . s(t ′′) = 1}

such that ∀[t1, t ′1), [t2, t
′
2) ∈ s . t ′1 < t2 ∨ t ′2 < t1, where we

note N∞ = N ∪ {∞}. In the following, we will therefore use
signals either as functions of time or as sequences of time
intervals, as needed.
Contexts are also modeled as signals in Allen. Context

signals are computed by applying operators on sensor signals
and on other context signals. There is a rich set of operators
in Allen, taking and returning signals. They are detailed next.

3.2 Syntax
The syntax of the Allen language is given in Figure 3. The
central syntactic construct is the non-terminal Expr, defining
expressions over signals. The simplest forms of expressions
are the name of a sensor, such as "Hall" (terminal str),
or a variable representing a signal, such as p (terminal id).
More complex expressions are built by applying operators
to simpler expressions.
The most basic operators are the boolean operators and,

or, not, which are pointwise applications of the standard
boolean operators on signals. For expressing time constraints,
there are comparison operators (non-terminal Comp) select-
ing states that are longer or shorter than a given delay, such
as p > 1min. A delay (non-terminal Int) is either an integer
constant expressing hours, minutes, or seconds, or a variable
valued as such a constant. Finally, as states are modeled as
time intervals (where the value of a signal is 1), temporal
ordering betweens states is expressed using a standard set
of operators on time intervals, namely the time interval re-
lations from the Allen logic [2]. These are the 13 possible,
mutually exclusive, orderings between two time intervals
I1 and I2, as depicted in Figure 4. However, as signals are

GPCE ’18, November 5–6, 2018, Boston, MA, USA Nic Volanschi, Bernard Serpette, and Charles Consel

I2	

I1	Equals	I2	

I1	Before	I2	 I1	A1er	I2	

I1	Met	by	I2	I1	Meets	I2	

I1	During	I2	

I1	Ends	I2	

I1	Starts	I2	

I1	Overlaps	I2	

I1	Overlapped	by	I2	

I1	Contains	I2	

I1	Ended	by	I2	

I1	Started	by	I2	

Figure 4. The 13 possible relations between two time inter-
vals.

sequences of time intervals, these relations are generalized
to be applicable on signals. The precise semantics of our
operators is explained in Section 3.3.
A context in Allen may contain, besides a signal expres-

sion, a list of local variable definitions using the let construct
(non-terminal Context). Finally, a program (non-terminal
Prog) contains a list of contexts separated by semicolons
(non-terminal Rules), optionally preceded by a library of
user-defined operators. A user-defined operator (non-terminal
Def) associates to a context expression a name, an optional
list of parameters, between square brackets, and an optional
list of signal operands, between round brackets. Operator
parameters must be valued as integer time constants, and
signal operands must be valued as signal expressions, as can
be seen in the syntax for invoking a user-defined operator
(last choice of non-terminal Expr1). For instance, the follow-
ing Allen program defines and invokes an operator which
selects the presence states in the shower whose durations
are in a given time range:
def inrange[min,max](p) = p >= min & p <= max

inrange[5min,1h](Shower)

3.3 Semantics
Boolean operators are pointwise applications of the standard
boolean operators:

• (p&q)(t) = p(t) ∧ q(t)
• (p |q)(t) = p(t) ∨ q(t)
• (∼p)(t) = ¬p(t)

Temporal-constraints operators select states of a given
signal whose duration fulfil a given constraint with respect
to a given delay T > 0:

• s < T = {[t, t ′) ∈ s | t ′ , ∞∧ t ′ − t < T }
• s <= T = {[t, t ′) ∈ s | t ′ , ∞∧ t ′ − t ≤ T }

• s > T = {[t, t ′) ∈ s | t ′ = ∞∨ t ′ − t > T }
• s >= T = {[t, t ′) ∈ s | t ′ = ∞∨ t ′ − t ≥ T }
• s >=! T = {[t, t +T) | [t, t ′) ∈ s ∧ (t ′ = ∞∨ t ′− t ≥ T)}

The last operator, >=!, is a stricter version of the operator
>= (in the sense that ∀t, (s >=!T)(t) → (s >= T)(t)), which
selects the states of s lasting at least time T , and abbreviates
them to a duration of T . This operator is useful to timely
signal a state exceeding a given duration, without waiting
for the state to be finished. For instance, it is useful to know
when a door is left open for 5 minutes, instead of learning
that only when the door is closed again, possibly after a long
time.

There are other two useful temporal operators that do not
constrain the states of a signal:

• delay[T](s) = {[t + T , t ′ + T) | [t, t ′) ∈ s ∧ t ′ , ∞} ∪

{[t +T ,∞) | [t,∞) ∈ s}
• wave[T1,T0,Tend] = {[t, t + T1) | t mod (T1 + T0) =
0 ∧ t < Tend }

Operator delay, as it names suggests, delays a signal for a
certain time lapseT > 0. Operator wave is a nullary operator,
i.e., not taking any signal as an operand; it rather synthesizes
a periodic signal itself, which is 1 during time T1, then is 0
during time T0, and loops so until time Tend is reached. At
that time, it just finishes the current cycle and becomes 0
forever. These two operators can be combined to generate a
signal which is 1 every day during a given time slot. Such a
signal is of great importance for context-aware applications
in a smart home, such as daily activity recognizers or comfort
automation. For instance, a slot between 8AM and 10AM
during 3 days can be defined as follows:
def slot[Tstart,T1,T0,Tend] =

delay[Tstart](wave[T1,T0,Tend])
def breakfast_time = slot[8hr,2hr,22hr,72hr]

Time ordering operators generalize the corresponding
relations from the Allen logic, in order to apply on multiple
time intervals (also called non-convex intervals). Thus, for
any operator in Allen logic called R (see Figure 4), operating
on two intervals, there is a corresponding operator in our
language, called r , operating on two signals p and q. It selects
the states in p which are in the relation R with at least one
state inq. Bymaking explicits the constraints in the operators
R, we obtain:

• meets(p,q) = {[t, t ′) ∈ p | ∃[t ′, t ′′) ∈ q}
• met(p,q) = {[t, t ′) ∈ p | ∃[t ′′, t) ∈ q}
• eq(p,q) = {[t, t ′) ∈ p | ∃[t, t ′) ∈ q}
• starts(p,q) = {[t, t ′) ∈ p | ∃[t, t ′′) ∈ q . t ′ < t ′′}
• started(p,q) = {[t, t ′) ∈ p | ∃[t, t ′′) ∈ q . t ′′ < t ′}
• ends(p,q) = {[t, t ′) ∈ p | ∃[t ′′, t ′) ∈ q . t ′′ < t}
• ended(p,q) = {[t, t ′) ∈ p | ∃[t ′′, t ′) ∈ q . t < t ′′}
• overlaps(p,q) = {[t, t ′) ∈ p | ∃[t ′′, t ′′′) ∈ q . t < t ′′ <
t ′ < t ′′′}

• overlapped(p,q) = {[t, t ′) ∈ p | ∃[t ′′, t ′′′) ∈ q . t ′′ <
t < t ′′′ < t ′}

Implementing a Semi-causal Domain-Specific Language . . . GPCE ’18, November 5–6, 2018, Boston, MA, USA

• durinд(p,q) = {[t, t ′) ∈ p | ∃[t ′′, t ′′′) ∈ q . t ′′ < t <
t ′ < t ′′′}

• contains(p,q) = {[t, t ′) ∈ p | ∃[t ′′, t ′′′) ∈ q . t < t ′′ <
t ′′′ < t ′}

Note that the Before and After relations in Allen logic do not
have a meaningful counterpart in our language. For example,
selecting states in p that are Before a state in q comes to
selecting almost all states in p. Thus, we left out these two
operators.

There are two additional operators that have been added
later on to the Allen logic [12], that we have adopted in our
language, too. They select the states of a signal q in which
signal p holds all the time, respectively occurs at least once:

• holds(p,q) = {[t, t ′) ∈ q | ∀t ′′ ∈ [t, t ′) .p(t ′′)}
• occurs(p,q) = {[t, t ′) ∈ q | ∃t ′′ ∈ [t, t ′) .p(t ′′)}
• occurred(p,q) = {[t ′′, t ′) | [t, t ′) ∈ q ∧

∃t ′′ ∈ [t, t ′) .p(t ′′) ∧ ∀t ′′′ ∈ [t, t ′′) .¬p(t ′′′)}

Note that we added a third operator, called occurred, which
is a stricter variant of the occurs operator: instead of se-
lecting the whole states of q where p occurs, it selects only
the ending sub-intervals of each such state where p has al-
ready occurred. This operator is useful to signal the precise
moments when p occurs for the first time in each state of q.

4 Qualitative Evaluation
Using the above operators, it is easy to write the context
detection logic for our running example, as follows:
def dooralert[T] = ("Door" & ~"Hall") >=! T

The DoorAlert application simply selects the combined
states where the entrance door is open and at the same time
there is no motion in the Hall, combined states which fur-
thermore exceed a duration of T . All this is simply done us-
ing three signal operators: negation, conjunction, and lower
bound time constraint. This signal expression is encapsu-
lated in a user-defined operator using the def construct,
parameterized with the timer delay. No automaton has to
be designed by the developer to recognize the correspond-
ing patterns of events sequences, and there is no need to
explicitly set timers and handle timeouts. All these low-level
details are delegated to the Allen language compiler and
runtime. As a result, the Allen program for the application
is very concise and self-explaining. This is in sharp contrast
with both the automata form in Figure 1 and the GPL form
in Figure 2.

Moreover, some domain properties of the program are sim-
ple to check, due to the semantics of the involved operators.
Thus, it appears clearly that:

• The DoorAlert situation is detected every time the
door is open and unattended for at least T . Indeed,
the open-unattended situations are all separated by
a door closing and/or a presence in the entrance hall.
All those lasting at least T are returned by the >=!
operator.

• Conversely, any state computed by DoorAlert corre-
sponds to a door left open and unattended for at least
T . This property is obvious thanks to the staged com-
position of the involved operators: any state selected
by the >=! T operator lasts at leastT , and any state rec-
ognized by "Door" & ~"Hall" is an open-unattended
door state.

• All the states computed byDoorAlert span exactly time
T , start when the door becomes open and unattended,
and end time T afterwards. This property is ensured
by the semantics of the >=! operator.

Finally, the simplicity of code reuse is demonstrated in
the DoorAlert1 variant of this application, which reuses the
previous user-defined abstraction, simply encapsulating it
in a new operator application.
def dooralert1[T] = occurred(dooralert[T], "Door")

The occurred operator ensures, by its semantics, that at
most one alert is raised per door opening state. Thus, as
opposed to the copy/paste reuse in the Perl code or automata
solutions, there is no modification to be done here on the
reused code; the new DoorAlert1 abstraction is obtained
by composing the reused abstraction, as is, with some new
domain logic. The parameterization of the reused abstraction
is also propagated to the new one.
Other forms of reuse could be expressed, by making the

reusable abstractionmore generic. For instance, let us assume
that the DoorAlert application must be installed in a home
with two entrances, both equipped with a contact sensor
and a motion detector. It is easy to pass these sensors as
operands of the DoorAlert abstraction, then instantiate the
abstraction twice, and define their new composition using
an or operator:
def dooralert[T](door, hall) = (door & ~hall) >=! T
Instantiate twice in a context:
dooralert[10min]("FrontDoor", "Hall") |
dooralert[5min]("BackDoor", "Cellar")

The DepartureAlarm application can similarly be encoded
in a concise and self-explaining form, by reusing the user-
defined slot operator defined in Section 3.3, as follows:
def departurealarm[T,Tstart,T1,T0,Tend] =

during("Door" >=! T, slot[Tstart,T1,T0,Tend])
Instantiate for T=2hr and night slot from 10PM to 6AM:
departurealarm[2hr,22hr,8hr,16hr,72hr]

These examples show that our language brings some ad-
vantages in terms of conciseness, reusability, and the possi-
bility to check domain properties. The next section discusses
the challenges of implementing our language.

5 Implementation
Implementing the Allen language would be rather straight-
forward if evaluation of contexts could be done in batch
mode. That is, if all sensor events accumulated during their
deployment would be stored in a database, all the temporal

GPCE ’18, November 5–6, 2018, Boston, MA, USA Nic Volanschi, Bernard Serpette, and Charles Consel

ordering operators could be implemented by simple rela-
tional queries, directly translating their set-based semantics.
However, implementing the Allen operators in an online
setting, i.e. handling events continuously as they are pro-
duced by the deployed sensors, is far from trivial. We first
explain why the online setting is important for the context
detection, and the difficulties that arise from that. The rest
of this section details some implementation techniques that
can be used to solve these difficulties, and furthermore some
optimization techniques decreasing the cost of implementing
the language, or improving the efficiency of its implemen-
tation in terms of memory consumption. At the end of the
section, we briefly describe our prototype implementation,
which integrates all these techniques.

5.1 Online Context Evaluation
Timely detecting contexts based on the streaming data com-
ing from sensors is a key feature in context-aware appli-
cations in various domains. For instance, in context-aware
applications in the Internet Of Things (IoT), real-time pro-
cessing is considered essential due to the volume of data [17].
Also, many real-world applications that focus on addressing
the needs of a human require information about the activities
being performed by the human in real time [15]. However,
the online processing of incoming events constitutes a real
challenge for the set of operators described in the previous
section. Indeed, when examining the semantics of most op-
erators, one can see that they are semi-causal. That is, the
current value of the signal computed by some operator at
time t sometimes depends on events in the operand signals
that happen in the future, at times strictly greater than t . We
use this term as opposed to operators whose value at time t
only depends on past and present value of its operand sig-
nals, which are called causal [14]. For instance, the boolean
negation operator is causal, because the value of the expres-
sion ∼p at time t only depends on the current value of p at
time t . On the contrary, the >=!T operator is semi-causal,
because the meaning of the expression (p >=!T)(t) some-
times depend on values p(t ′) with t ′ > t . To see why this
is so, recall from Section 3.3 that this operator selects the
states of p lasting at least timeT , and keeps only their begin-
ning of length T . Figure 5 illustrates the signals computed
for the DepartureAlarm application, featuring the operator
Door >=! 2hr . We can see that:

• when the current value of Door is 0, e.g., Door(18) = 0,
it is known in real time that: (Door >=! 2hr)(t) = 0,
because there is no state to select at this time;

• when a state of Door starts because the door is open,
for instance at times 14 and 23, its duration is not
yet known, so it is unknown yet whether this state
will be selected, hence the value of (Door >=! T)(t) is
unknown.

These two situations are represented differently in the signal
of the expression Door >=!2hr : as a solid line when the
value is known in real time, and as a dashed line when the
value is only computed a posteriori. Note that the period of
incertitude ends either when the door is closed in less than
T = 2hr (e.g. at t = 15), or otherwise after time T = 2hr ,
when the door opening is known to last at leastT (at t = 25).
At this precise time (t = 25), the signal is both computed a
posteriori as 1 over the last period of T , and resets to 0.
Let us now focus on the whole expression of the De-

partureAlarm application, which consists in applying the
during operator to the signal above and to the night slot:
durinд(Door >=! 2hr ,Night). The second operand, the night
slot, is always known in real time, as it only depends on the
current time of the day, which can be considered as a sort
of software sensor. As opposed to that, we saw that the first
operand, the expression Door >=! 2hr , becomes unknown
during two time intervals, [14, 15) and [23, 25). A naive im-
plementation of the Allen language would blindly propagate
these incertitude intervals to the during expression. How-
ever, recall that the semantics of this operator (see section
3.3) is to select the states of its first operand that are properly
included in some state of its second operand. Therefore, the
value of during is always 0 whenever its second operand is
0, regardless of its first argument’s value (we may say that
the operator is non-strict in the first argument). In particular,
this is the case during the whole interval [10, 22). Hence, the
incertitude on the first operand during [14, 15) does not have
to be propagated: the value of during is still 0 and known
in real time. This explains the solid line on this signal at that
period. On the other hand, the incertitude on the first ar-
gument during [23, 25) does propagate through the during
operator, because if and only if its value turns out to be 1
during this interval (which happens, actually), this would
constitute a state properly contained in the night slot.

This example exposes the two major difficulties for imple-
menting an online evaluator of the Allen language. Firstly,
when evaluating a compound expression, the current val-
ues of its sub-expressions may be known at some times to
be 0 or 1, but may also be unknown at some other times.
Furthermore, when such a value becomes known again, the
evaluator may have to compute a posteriori some dependent
values in the past that now may become known, according
to the new information. Thus, the evaluator should manage
discontinuous information about values, track dependencies
between values, and update the dependencies according to
new information when it arrives, all along the chains of
dependencies.

Secondly, a careful implementation of the online evaluator
can avoid propagating some unknown values, to compute a
complex expression as much as possible in real time. Opti-
mizing these cases is important because the given example
is not at all marginal. Indeed, most of the operators in the
Allen language are semi-causal, and most of them are also

Implementing a Semi-causal Domain-Specific Language . . . GPCE ’18, November 5–6, 2018, Boston, MA, USA

during	

>=!	2hr	

Door	

slot[22hr,8hr,	
							16hr,72hr]	

Door	>=!	2hr	

Night	

Door	

During(Door	>=!	2hr,	
													Night)	

t	

))	 ((

)	 (

10	 12	 14	 16	 18	 20	 22	 24	 26	 28	 30	

Figure 5. Signals involved in the DepartureAlarm application.

non-strict in at least one argument. Thus, semi-causal opera-
tors include all the introduced temporal constraint operators
(comparison of a signal to T), and all of the temporal order-
ing operators inspired from the Allen logic except met and
occurred. We refer the reader to [22] for details, and for
a finer characterization of their causality properties. Non-
strict operators include & (and), | (or), delay, and all of the
temporal ordering operators inspired from the Allen logic.
Given this large number of cases, it is crucial to optimize
such cases in order to compute composed contexts in real
time whenever possible.

5.2 Operator Composition
In order to cope with the first implementation difficulty,
that of managing dependencies between possible unknown
values, we use an appropriate value domain integrating un-
known values, and we introduce adequate data structures
for updating dependent values.
Thus, for the current value of any signal, we use an aug-

mented, three-valued domain, {0, 1,⊥}. A signal has a cur-
rent value s(t) = ⊥ whenever its value is unknown with
respect to the events happening at times t ′ ≤ t . We stress
the fact that the expression “the value is unknown” should
be understand as “the value could not be computed by the
evaluator, using its evaluation strategy”, rather than in an ab-
solute logical sense. For instance, the value of the expression
p |∼p could in principle be proved to be 1 at any point in time,
even when the current value of signal p is unknown, but our
evaluator does not attempt at such forms of reasoning.
For managing the dependencies between the values in-

volved in an expression, we build a rooted, acyclic dataflow
graph for each context to be evaluated, by parsing the con-
text into an abstract syntax tree, possibly containing shared
nodes. Indeed, recall from Section 3.2 that a context is an

expression optionally preceded by a list of local variable
definitions, using the let construct. The different uses of
these local variables within the expression lead to shared
nodes in the tree. An example of dataflow graph (without
shared nodes), corresponding to the DepartureAlarm context,
is given in the left part of Figure 5. Each leaf in the graph
corresponds either to a sensor such as Door, or to a nullary
operator such as the Night slot. Each internal node in the
graph corresponds to an operator applied to one or more
signals. Each edge flows from each signal to the operator(s)
applied to it, thus creating a data dependency. For instance,
two edges flow into the during node, corresponding to its
two signal operands.

In the simplest case when an operator is causal and strict,
its current value is known exactly when the current values of
all its operands are known. On the other hand, if the operator
is semi-causal, its value may be unknown even when the cur-
rent values of all its operands are known. Conversely, if the
operator is non-strict, its value may be known even when
the current values of some of its operands are unknown.
Summarizing all the possible cases, at time t , the value of an
operator node may be known up to a time t ′ ≤ t , and the
value of its operands may be known up to times t ′i ≤ t . For
semi-causal operators, t ′ may be strictly less than all of the ti ;
for non-strict operators, t ′ may be greater than some of the
ti . One might think that in general t ′ ≤ max(ti), that is, a sig-
nal cannot be computed beyond its most advanced operand.
But even this relationship does not hold when considering
operators such as delay[T](p), which can tolerate during
some time (T in this case) an unknown value of its operand.
Thus, there is no general relationship between t ′ and t ′i . To
support such a loose connection between the nodes in the
dataflow graph, the evaluator maintains for each node the
history of its timestamped values, organized as a list. The

GPCE ’18, November 5–6, 2018, Boston, MA, USA Nic Volanschi, Bernard Serpette, and Charles Consel

timestamp of each value indicates the moment when the
signal switched to this value. Thus, for sensor signals, when-
ever the sensor produces a new value v at time t , the pair
⟨v, t⟩ is appended to the list. For derived signals, which are
all three-valued as 0, 1, or ⊥, some timestamps additionally
indicate the moments when the signal became unknown.
Thus, when the current value becomes unknown at time t1,
the pair ⟨⊥, t1⟩ is appended to the list. Later on, when the
value v becomes known again, the pair ⟨v, t1⟩ is appended
to the list. Note that a new (known or unknown) value is
appended to the list only if it differs from the last value. The
current value of the signal is always the last one, at the end
of the list. The list also allows to retrieve older values at any
given time t ′ in the past, by scanning the list backwards until
a pair ⟨v, t ′′⟩ is found, with t ′′ ≤ t ′.

Whenever a set of one or several sensors simultaneously
produce values, all the contexts depending on those sensors
are updated, if needed. This update is done by a linear pass
over its dataflow graph, traversed in topological order to
propagate new values from leaves towards the root. The
traversal continues only as long as new values are produced
by the nodes. Note that a new value may be any form of
value change, that is, switching between two known values,
switching from a known value to the unknown value, or vice
versa.

5.3 Online Operator Evaluation
In order to cope with the second implementation difficulty,
that of evaluating online an individual operator applied to
some operand signals, we use an incremental algorithm, and
we use speculative techniques to integrate in this algorithm
optimizations for tolerating unknown values of the operands.
We illustrate these technique with the implementation of the
during operator, which is both semi-causal and non-strict.
As explained above, the value produced by an operator

node must be updated any time the value of some of its
operand changes, either between two different known val-
ues, or between a known and unknown value, in either sense.
Moreover, the situations when two operands change simulta-
neously must be taken explicitly into account, to distinguish
between operators requiring simultaneous events, such as
starts, and operators requiring ordered events, such as
during. Thus, all these single-event and multiple-events
cases have to be carefully studied in order to decide whether
the result of the operator has to be updated, either to a known
value or to the unknown value.

For the during(p,q) operator, only one of these cases
concerns a non-causal behavior: the event when, at time t ′,
p changes from 0 to 1 while the current value of q at t ′ is 1.
In this case, signals p and q are examined to see which one
is the first to switch back to 0 after t ′ (recall that operand
signals may be known until times t ′i > t ′). If this information
is already available from signals p and q:

• if p becomes 0 before q, the result of during is set to 1;
• if p becomes 0 after or at the same time as q, the result
of during is set to 0.

If this information is not yet available, the result of the
during operator is set to ⊥. Recall from the previous section
that an operator is recomputed whenever new information
becomes available on one of its operands. Therefore, the
result of the during operator will be subsequently recom-
puted when new events happen on signals p or q. When a
value switch will have happened on either p or q, during
will be recomputed, and will fall in one of the cases above,
set to 0 or 1. If set to 1, the subsequent handling of the event
when p changes from 1 to 0 will reset the value of during
to 0. Note, however, that p and q may possibly never change
after t ′. In this case, the value of during will indefinitely
stay unknown, which is the right behavior according to the
semantics of during.

Some other cases concern the non-strict behavior of during.
All these cases must be found to avoid setting the result of
the operator to ⊥ when unknown operand values can be
tolerated. For instance, the case encountered in Figure 5 at
time t = 14 is when signal p becomes ⊥ while q is 0. In this
case, the value of during is set to 0, and the ⊥ value is not
propagated. No less than 10 other cases can be identified for
this operator where the ⊥ value is not propagated.

5.4 Operator Reductions
As can be seen from the example of the during operator,
implementing an operator is tedious and time consuming.
This is no surprise, as this effort factorizes within the imple-
mentation of the Allen language efforts that are otherwise
repeatedly performed by developers, consisting in encod-
ing domain abstractions in low-level form, paying attention
to both correctness issues and optimizations. Nevertheless,
we could optimize this implementation effort by observing
that some operators can be expressed in terms of others.
Thanks to the user-defined operators, we could thus avoid
implementing directly the following operators:

def occurs(p,q) = q & ~holds(~p,q)
def started(p,q) = occurs(starts(q,p),p)
def ended(p,q) = occurs(ends(q,p),p)
def contains(p,q) = occurs(during(q,p),p)
def overlaps(p,q) = occurs(over(p,q),p)
def overlapped(p,q) = occurs(over(q,p),p)

As can be seen, operators overlaps and overlapped have
been reduced to a common native operator called over,
which is a stricter version of overlaps, selecting not the
complete states of p that overlap a state of q, but only their
ending segments that are superposed with the beginning of
a state in q:

• over (p,q) = {[t ′′, t ′) |
∃[t, t ′) ∈ p, [t ′′, t ′′′) ∈ q . t < t ′′ < t ′ < t ′′′}

Implementing a Semi-causal Domain-Specific Language . . . GPCE ’18, November 5–6, 2018, Boston, MA, USA

We proved these equivalences between operators, based
on the semantics of the different operators involved.2

5.5 Managing Timers
For implementing temporal operators such as temporal con-
straints operators (> T and the like), the delay operator, or
signal synthesisers such as wave, the dataflow graph of the
contexts containing such operators must be evaluated not
only upon events coming from sensors, but also at preset
delays, either absolute or relative to other events. For this
purpose, the Allen runtime automatically manages timers.
When a timer is set to trigger a timeout at time t , a timeout
event, timestamped with t , is merged into the streams of
events coming from sensors. The online evaluator uniformly
handles events in increasing timestamp order, so the timeout
event is handled after sensor events which happen before t ,
before sensor events which happen after t , and simultane-
ously with sensor events timestamped at t , if any.

For instance, the implementation of the delay[T](p) op-
erator sets a timer of T any time the signal p switches its
value, and handles each timeout by switching the value of
the result. The initial value of the operator is 0. If p(0) = 1, an
additional timer of T is set at t = 0. It is easy to see that this
faithfully implements the semantics of the delay operator.

Semi-causal and non-strict behaviorsmust be implemented
as for any other operator, by studying all possible impacting
events.

5.6 Memory Space Optimization
By default, the complete signal of each node in the dataflow
graph is kept. This means that the memory space used by the
Allen runtime linearly increases with time: O(n × t) for an
expression with n nodes. If the intermediate signals are not
needed, memory space can be saved by dropping elements
at the beginning of their lists. Indeed, none of the Allen
operators explicitly use events in the past for computing the
current value: the current value only depends on present
events, and sometimes on future events. For example, the
delay[T] operator does not need to recall events in the past
to reproduce them after time T . Rather, past events have
been already handled by creating timers that will trigger
after time T , as explained in Section 5.5.
Therefore, the only reason for keeping past events is be-

cause some nodes in the dataflow graph may be blocked at
some times t ′i < t in the past, where t is the current time,
waiting for some future events. Therefore, recomputing their
values at time t ′i when those events become available may
need the value of their argument signals at time t ′i . It follows
that every event older thanmin(t ′i) may be forgot without
disturbing the computation of any node value. We imple-
mented amemory space optimization that periodically erases

2The proof using the Coq proof assistant is provided with our prototype
implementation.

all obsolete events, defined this way. The period for trigger-
ing the forgetting policy is a parameter, which can be varied
in order to better amortize its cost.

5.7 Prototype
By using the implementation techniques described above,
we implemented a compiler and a runtime for the Allen lan-
guage. The implementation is written in Perl and amounts to
a total of 4200 lines of code.3 The compiler constitutes about
10% of the code. It parses an Allen program and generates
a Perl module containing one Perl subroutine definition for
each user-defined operator, and a list of dataflow graphs, one
for each context to be evaluated. This Perl module is linked
with the runtime, and executed over a stream of incoming
events, expressed in a simple textual format based on JSON.

6 Related Work
There are various approaches aiming at simplifying the work
of building context-aware systems. A recent survey [1] clas-
sifies such works according to the particular development
phase that is addressed, such as design, implementation, or
testing. As far as programming is concerned, viewed as a part
of the implementation phase, most of the existing approaches
use general programming languages, and focus on specific
mechanisms or extensions for building context-aware sys-
tems, such as objects, aspects, features, or agents; a specific
line of work concerns context-oriented programming. These
approaches focus on how to structure applications for eas-
ily incorporating context-dependent features, and how to
enable and disable them in specific contexts. The detection
logic of the contexts is not specifically supported by a DSL,
nor is it specifically focused on streaming sensor events. The
few reviewed approaches based on DSLs are aimed at model-
ing hierarchies of contexts, rather than programming them.
A notable exception is the IFTTT DSL, discussed below.

Trigger-action programming (TAP) The IFTTT (If This
Then That) language [21] allows end users to express context-
aware services as trigger-action rules, where triggers only
refer to one event. In particular, triggers mentioning a state
such as ‘the light is on’ refer in fact to the events of state
changes, e.g., ‘the light gets turned on’. A user study [13] ev-
idenced the fact that specifying services in IFTTT is difficult
because the notions of event and state are frequently con-
fused by end users. This study recommends some guidelines
for future TAP languages. Taking that work into account, an
extension of IFTTT called AppsGate has been recently pro-
posed [8], in which distinct conditional constructs refer to in-
stantaneous events (e.g., as-soon-as, each-time) and to states
lasting over a time interval (e.g., if, while). However, condi-
tions must refer to a single event and a single state respec-
tively, which prevents combining events or states between
3 Our open-source prototype is available at https://github.com/
NicVolanschi/Allen.

https://github.com/NicVolanschi/Allen
https://github.com/NicVolanschi/Allen

GPCE ’18, November 5–6, 2018, Boston, MA, USA Nic Volanschi, Bernard Serpette, and Charles Consel

them and with each other. Very recently, the CCBL visual
language has been proposed [19] which allows to express
triggers combining several states. Combinations are done
by graphically nesting state conditions, which is roughly
equivalent to using our boolean operators And, Or, and Not
between states. There are no other operators combining
states. In turn, the language includes actions. An extension
of CCBL [20] adds a few operators named after some Allen
relations: During, Starts, Ends, and After. However, their
semantics is always causal, so it does not exactly correspond
to those Allen relations. Note that other Allen relations such
that ‘Overlaps/Overlapped by’ are not covered by CCBL.

Automata Automata are also frequently used for describ-
ing context-aware systems reacting to events. We already
discussed in the introduction some shortcoming of automata,
including the low level of details for managing state relation-
ships and timers, the difficulty of code reuse, and of checking
domain properties.

Synchronous languages Synchronous languages such as
Esterel [11] propose a textual notation for a higher-level
encoding of automata, to describe applications reacting to
events, modeled as signals over time. Esterel constitutes
a domain-specific, imperative programming language for
computing over signals, including an abstraction mechanism
called modules, similar to user-defined procedures in general
programming languages. Beyond such powerful abstractions,
the strength of synchronous languages is that their domain-
specific nature enables ensuring strong guarantees about
the correctness and real-time behaviour of the programs,
including a clean and predictable handling of simultaneity
between events. Our Allen-based operators also ensure pre-
dictable handling of simultaneous events. There are however
a number of issues for handling delays in Esterel [5], which
are crucial for implementing our temporal operators. More
importantly, synchronous languages allow to encode in a
reusable way the causal subset of our operators, but it is
an interesting question whether and how our semi-causal
operators could be encoded in a synchronous language.

FRP The central concepts of Functional reactive program-
ming (FRP) languages [4, 10] are behaviors (later called
signals), which are time-dependent values, and streams of
events. The two concepts are inter-convertible using the hold
and changes functions, This paradigm allows to define com-
plex applications by composing event streams and behaviors
using an extensible set of operators. Thus, event streams
can be filtered, transformed, or merged, and two behaviors
can be multiplexed using a third behavior as a continuous
condition. The set of operators in the Allen DSL could be im-
plemented as a library of FRP operators. An interesting open
question is to what extent the implementation of non-causal
operators, involving unknown values, could be simplified
using lazy evaluation and the FRP framework. However, a

first issue is that lazy streams naturally model future events,
that is unknown values becoming known at some point,
but our evaluation also deals with the reverse case, when
a known value becomes unknown at some point. Also, in
most FRP languages, simultaneous events are translated to
single events, either by preferring one of the events or by
serializing them, in an order specified by the program. In
turn, the implementation of most Allen operators critically
relies on an explicit handling of simultaneous events.

CEP Complex Event Processing [9] is a paradigm for ex-
pressing complex events as patterns of atomic or other com-
plex events. In most CEP languages atomic events are in-
stantaneous, that is, they do not have a duration. Therefore,
states must be explicitly coded as pairs of start/end events,
leading to complex formulas when combining several states.
A detailed comparison of our approach to CEP is in [22].

7 Conclusion
Implementing context-aware applications over binary sen-
sors, using general programming languages, can be tedious
and error prone, especially when states frommultiple sensors
are combined into complex conditions. This hampers the scal-
ability of service development, which is crucial for instance
when developing a wide variety of assistive applications for
to the needs of different persons and home configurations.
We briefly presented the Allen language, which: allows to de-
fine context detection components over binary sensors in a
very concise way; enables effective code reuse; and simplifies
the checking of some domain properties. In turn, implement-
ing the Allen language poses some challenges, mainly due to
the presence of semi-causal and non-strict state combining
operators. We presented implementation techniques that are
able to overcome these difficulties, and further optimization
techniques for decreasing implementation cost and making
the language runtime more efficient.
In future work, we plan to simplify the implementation

even more, by expressing a greater number of operators
in terms of other ones, therefore reducing the core subset
to a minimal number of native operators. We also intend
to explore new compiler optimization techniques for accel-
erating the execution of such derived operators, to make
them execute at comparable speed with the native operators.
This is not currently the case, because derived operators are
currently translated by replacing their node in the dataflow
graph with a subgraph, at each use. Another promising line
of work would be to integrate certain common uses of non-
binary sensors into the language. For instance, it would be
straightforward to incorporate predefined predicates over
non binary sensors such as Temperature > 20◦C , where
Temperature is a number-valued sensor, whose conversion
into boolean values could be done in an underlying layer,
generated by the compiler and deployed with the runtime.

Implementing a Semi-causal Domain-Specific Language . . . GPCE ’18, November 5–6, 2018, Boston, MA, USA

References
[1] Unai Alegre, Juan Carlos Augusto, and Tony Clark. 2016. Engineering

context-aware systems and applications: A survey. Journal of Systems
and Software 117 (2016), 55 – 83. https://doi.org/10.1016/j.jss.2016.02.
010

[2] James F. Allen. 1983. Maintaining Knowledge About Temporal Inter-
vals. Commun. ACM 26, 11 (Nov. 1983), 832–843. https://doi.org/10.
1145/182.358434

[3] Ronald M. Baecker, Karyn Moffatt, and Michael Massimi. 2012. Tech-
nologies for Aging Gracefully. interactions 19, 3 (May 2012), 32–36.
https://doi.org/10.1145/2168931.2168940

[4] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem,
Stijn Mostinckx, and Wolfgang de Meuter. 2013. A Survey on Reac-
tive Programming. ACM Comput. Surv. 45, 4, Article 52 (Aug. 2013),
34 pages. https://doi.org/10.1145/2501654.2501666

[5] T. Bourke and A. Sowmya. 2010. Delays in Esterel. In SYNCHRON
2009 (Dagstuhl Seminar Proceedings), Albert Benveniste, Stephen A.
Edwards, Edward Lee, Klaus Schneider, and Reinhard von Hanxleden
(Eds.). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany,
Dagstuhl, Germany. http://drops.dagstuhl.de/opus/volltexte/2010/
2434

[6] Yann Busnel, Leonardo Querzoni, Roberto Baldoni, Marin Bertier, and
Anne-Marie Kermarrec. 2011. Analysis of Deterministic Tracking of
Multiple Objects using a Binary Sensor Network. ACM Transactions
on Sensor Networks 8 (2011). https://hal.inria.fr/inria-00590873

[7] Charles Consel, Lucile Dupuy, and Hélène Sauzéon. 2017. HomeAssist:
An Assisted Living Platform for Aging in Place Based on an Interdisci-
plinary Approach. In Proceedings of the 8th International Conference
on Applied Human Factors and Ergonomics (AHFE 2017). Springer.

[8] Joëlle Coutaz and James L Crowley. 2016. A First-Person Experience
with End-User Development for Smart Homes. IEEE Pervasive Com-
puting 15 (May 2016), 26 – 39. https://doi.org/10.1109/MPRV.2016.24

[9] Gianpaolo Cugola and Alessandro Margara. 2012. Processing Flows of
Information: From Data Stream to Complex Event Processing. ACM
Comput. Surv. 44, 3, Article 15 (June 2012), 62 pages. https://doi.org/
10.1145/2187671.2187677

[10] Conal Elliott. 2000. Declarative Event-oriented Programming. In Pro-
ceedings of the 2Nd ACM SIGPLAN International Conference on Princi-
ples and Practice of Declarative Programming (PPDP ’00). ACM, New
York, NY, USA, 56–67. https://doi.org/10.1145/351268.351276

[11] Abdoulaye Gamatié. 2010. Designing Embedded Systems with the
SIGNAL Programming Language: Synchronous, Reactive Specification.
Springer New York, New York, NY, Chapter Synchronous Program-
ming: Overview, 21–39. https://doi.org/10.1007/978-1-4419-0941-1_2

[12] Malik Ghallab and Amine Mounir Alaoui. 1989. Managing Efficiently
Temporal Relations Through Indexed Spanning Trees. In Proceedings of
the 11th International Joint Conference on Artificial Intelligence - Volume

2 (IJCAI’89). Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1297–1303. http://dl.acm.org/citation.cfm?id=1623891.1623963

[13] Justin Huang and Maya Cakmak. 2015. Supporting Mental Model
Accuracy in Trigger-action Programming. In Proceedings of the 2015
ACM International Joint Conference on Pervasive and Ubiquitous Com-
puting (UbiComp ’15). ACM, New York, NY, USA, 215–225. https:
//doi.org/10.1145/2750858.2805830

[14] David Janin and Bernard Paul Serpette. 2016. Timed Denotational
Semantics for Causal Functions over Timed Streams. Research Report.
LaBRI - Laboratoire Bordelais de Recherche en Informatique. https:
//hal.archives-ouvertes.fr/hal-01402209

[15] Narayanan C. Krishnan and Diane J. Cook. 2014. Activity recognition
on streaming sensor data. Pervasive and Mobile Computing 10 (2014),
138 – 154. https://doi.org/10.1016/j.pmcj.2012.07.003

[16] Fco. Javier Ordóñez, Paula de Toledo, and Araceli Sanchis. 2013. Ac-
tivity Recognition Using Hybrid Generative/Discriminative Models
on Home Environments Using Binary Sensors. Sensors 13, 5 (2013),
5460–5477. https://doi.org/10.3390/s130505460

[17] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos. 2014.
Context Aware Computing for The Internet of Things: A Survey. IEEE
Communications Surveys Tutorials 16, 1 (First 2014), 414–454. https:
//doi.org/10.1109/SURV.2013.042313.00197

[18] J. Saives, C. Pianon, and G. Faraut. 2015. Activity Discovery and
Detection of Behavioral Deviations of an Inhabitant From Binary
Sensors. IEEE Transactions on Automation Science and Engineering 12,
4 (Oct 2015), 1211–1224. https://doi.org/10.1109/TASE.2015.2471842

[19] Lénaïc Terrier, Alexandre Demeure, and Sybille Caffiau. 2017. CCBL:
A Language for Better Supporting Context Centered Programming
in the Smart Home. In The 9th ACM SIGCHI Symposium on Engi-
neering Interactive Computing Systems (PACM on Human-Computer
Interaction), Vol. 1. Lisbonne, Portugal. https://hal.archives-ouvertes.
fr/hal-01534805

[20] Lenaïc Terrier, Alexandre Demeure, and Sybille Caffiau. 2017. CCBL: A
new language for End User Development in the Smart Homes. In Pro-
ceedings of IS-EUD 2017. 82–87. https://pure.tue.nl/ws/files/69763287/
IS_EUD2017_extended_abstracts.pdf#page=83

[21] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L.
Littman. 2014. Practical Trigger-action Programming in the Smart
Home. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’14). ACM, New York, NY, USA, 803–812.
https://doi.org/10.1145/2556288.2557420

[22] Nic Volanschi, Bernard Serpette, Adrien Carteron, and Charles Consel.
2018. A Language for Online State Processing of Binary Sensors, Applied
to Ambient Assisted Living. Technical Report submitted for publication.
Inria Bordeaux. Available upon request.

[23] Le Yi Wang, Ji-Feng Zhang, and G. G. Yin. 2003. System identification
using binary sensors. IEEE Trans. Automat. Control 48, 11 (Nov 2003),
1892–1907. https://doi.org/10.1109/TAC.2003.819073

https://doi.org/10.1016/j.jss.2016.02.010
https://doi.org/10.1016/j.jss.2016.02.010
https://doi.org/10.1145/182.358434
https://doi.org/10.1145/182.358434
https://doi.org/10.1145/2168931.2168940
https://doi.org/10.1145/2501654.2501666
http://drops.dagstuhl.de/opus/volltexte/2010/2434
http://drops.dagstuhl.de/opus/volltexte/2010/2434
https://hal.inria.fr/inria-00590873
https://doi.org/10.1109/MPRV.2016.24
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1145/351268.351276
https://doi.org/10.1007/978-1-4419-0941-1_2
http://dl.acm.org/citation.cfm?id=1623891.1623963
https://doi.org/10.1145/2750858.2805830
https://doi.org/10.1145/2750858.2805830
https://hal.archives-ouvertes.fr/hal-01402209
https://hal.archives-ouvertes.fr/hal-01402209
https://doi.org/10.1016/j.pmcj.2012.07.003
https://doi.org/10.3390/s130505460
https://doi.org/10.1109/SURV.2013.042313.00197
https://doi.org/10.1109/SURV.2013.042313.00197
https://doi.org/10.1109/TASE.2015.2471842
https://hal.archives-ouvertes.fr/hal-01534805
https://hal.archives-ouvertes.fr/hal-01534805
https://pure.tue.nl/ws/files/69763287/IS_EUD2017_extended_abstracts.pdf#page=83
https://pure.tue.nl/ws/files/69763287/IS_EUD2017_extended_abstracts.pdf#page=83
https://doi.org/10.1145/2556288.2557420
https://doi.org/10.1109/TAC.2003.819073

	Abstract
	1 Introduction
	2 Motivating Example
	2.1 Application Development in a GPL
	2.2 Application Evolution in a GPL

	3 The Allen Language
	3.1 Concepts
	3.2 Syntax
	3.3 Semantics

	4 Qualitative Evaluation
	5 Implementation
	5.1 Online Context Evaluation
	5.2 Operator Composition
	5.3 Online Operator Evaluation
	5.4 Operator Reductions
	5.5 Managing Timers
	5.6 Memory Space Optimization
	5.7 Prototype

	6 Related Work
	7 Conclusion
	References

