
HAL Id: hal-01956193
https://hal.inria.fr/hal-01956193

Submitted on 15 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Domain-Specific Approach To Unifying The Many
Dimensions of Context-Aware Home Service

Development
Nic Volanschi, Adrien Carteron, Charles Consel

To cite this version:
Nic Volanschi, Adrien Carteron, Charles Consel. A Domain-Specific Approach To Unifying The Many
Dimensions of Context-Aware Home Service Development. The 15th IEEE International Conference
on Ubiquitous Intelligence and Computing (UIC 2018), Oct 2018, Guangzhou, China. �hal-01956193�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162945803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01956193
https://hal.archives-ouvertes.fr

A Domain-Specific Approach
To Unifying The Many Dimensions of

Context-Aware Home Service Development
Nic Volanschi

Inria, Bordeaux, France
eugene.volanschi@inria.fr

Adrien Carteron
Inria, Bordeaux, France

adrien.carteron@aquilenet.fr

Charles Consel
Bordeaux INP & Inria, Bordeaux, France

charles.consel@inria.fr

Abstract—Developing context-aware homes involves a range of
stakeholders, addressing many dimensions such as service design
and development, infrastructure deployment, and maintenance.
Such a variety of dimensions often translate into heterogeneous,
low-level, silo-based processing of sensor data to extract context
information.

This paper analyzes a range of existing data processing layers
in the domain of aging in place to identify key concepts and
operations specific to context-aware processing. Based on this
analysis, we introduce a context-aware, domain-specific language
and its software architecture, which allow to put in synergy
the stakeholders of a context-aware home by providing them
with a unified approach to designing and developing services.
Our approach offers context aware-specific abstractions and
notations, within a data-centric and data-driven paradigm.

We have validated our approach by applying it to an assisted
living platform for aging in place, deployed in the home of 129
users. In particular, we used our domain-specific language to re-
implement 53 existing services, originating from the stakeholders
of the assisted living platform. These services were deployed
and successfully tested for their effectiveness in performing the
specific tasks of the stakeholders, such as detection of daily
activities, user risk situations, or sensor failures.

Index Terms—context-aware, domain-specific, data-centric,
data-driven, aging in place, programming models

I. INTRODUCTION

The notion of context is fundamental to the field of per-
vasive computing and encompasses a range of dimensions,
including the physical world, an individual, their activities,
and their technologies [1]. A major focus of the research on
context awareness has been the home (e.g., [2], [3]). This
scope involves many context dimensions, including physical
interactions with the environment (i.e., sensors), digital in-
teractions with the user environment (e.g., email, calendar),
status of the many components of the pervasive computing
infrastructure (hardware, software, and network), application-
specific concerns (e.g., activity detection). When it comes to
context-aware homes for the general population, a recurring
challenge is to identify what services users would need [4],
and more generally, to develop methods to gather and analyze
these needs [5].

However, when focusing on older adults, this population is
ready to benefit from context-aware homes to support aging
in place. A pervasive computing environment has the potential
to deliver assistive services 24/7 and address the needs of

older adults, whose nature can be of utmost importance to
ensure independent living (e.g., [6]). These services mainly
consist of 1) detecting and reminding daily activities (e.g.,
meal preparation, self-care, going to bed) to maintain the
user’s functional status [7] and 2) monitoring potentially
hazardous situations (e.g., cooker, entrance door) to make the
user safe [6]. Because it crosscuts various fields, a context-
aware home dedicated to aging in place involves a variety
of stakeholders to design and develop assistive services, as
well as to deploy and maintain the underlying infrastructure.
Stakeholders include older users, caregivers, aging experts,
health professionals, application developers, and maintenance
technicians. This considerable diversity of stakeholders raises
correspondingly diverse context dimensions. Typically, each
stakeholder develops their own, silo-based approach to ex-
tracting their specific context information from sensed data.
This approach prevents any synergy between stakeholders
such as code/experience sharing, and favors the duplication
of solutions for detecting similar event patterns.

We analyzed existing data processing layers of multiple
stakeholders, extracted from an assisted living platform, de-
ployed in 129 single-occupant homes of older adults, aged
82 years old on average [8]. This case study thus consists
of a range of services, whose usefulness has been validated in
practice on a daily basis. Our analysis identifies commonalities
and variabilities of these layers, revealing key concepts and
operations specific to context-aware processing.

Our Approach: Based on this analysis, we introduce
a context-aware, domain-specific language and its software
architecture, which provide a conceptual framework and a tool
to unify the design and the development of home services.
To unify heterogeneous sources of sensed data, ranging from
hardware devices to software components, our approach pro-
motes a processing paradigm, which is data centric and data
driven. Specifically, our approach is data centric to provide a
canonical view of sensed data to a range of services, spanning
maintenance services consuming low-level device status, to
caregiving-specific services using high-level activity measures.
Our approach is data driven in that services are defined in
terms of rules processing events and states.

To unify the way services are developed, our approach in-
troduces abstractions and notations that are specific to context-

aware processing. The resulting domain-specific language
(DSL) covers the needs of the stakeholders and provides an
abstraction layer over underlying, well-established concepts
and technologies, such as Allen’s algebra to express sequences
of interactions [9] and complex-event-processing engines to
efficiently process the rules generated from DSL services
(e.g., [10]). Furthermore, we envision that our language can
serve as a high-level stepping stone to introduce end-user
programming languages for stakeholders with no computer-
programming background.

To validate our approach, we have re-implemented 53
services ranging over all the stakeholders of the assisted living
platform under study. These new services were deployed and
successfully tested for their effectiveness in performing the
specific tasks of the stakeholders: detection of daily activities,
user risks, and sensor failures.

To summarize, this paper makes the following contributions.

Domain analysis. We provide an analysis of context-aware
processing layers in the domain of aging in place. From this
analysis, we identify key concepts and operations specific to
context-aware processing.

Domain-specific language. We introduce a language, specific
to developing context-aware services, providing high-level
abstractions and notations. Underlying this language is a data-
centric and data-driven paradigm that allows services from
a range of stakeholders to uniformly process heterogeneous
sources of sensed data.

Compiler. We have implemented a compiler for our DSL that
maps high-level rules into low-level requests, crunched by an
event-processing engine.

Validation. We applied our approach to re-implement 53
services, ranging over all the stakeholders of an assisted living
platform dedicated to aging in place. The resulting services are
expressed at a high level and are effective in performing the
tasks of the stakeholders.

II. DOMAIN ANALYSIS

Context-aware homes for aging in place are still in their
infancy and the path to adoption is being actively re-
searched [11]. The literature include few articles reporting
on the deployment of assisted living platforms in the wild
(e.g., [12]). Fortunately, we have been able to leverage the
HomeAssist project to conduct a domain analysis of context-
aware homes for aging in place.

A. HomeAssist: A Context-Aware Home for Aging in Place

HomeAssist is an assisted living platform that provides a
catalog of assistive applications, supporting and monitoring
daily activities, safety and social participation1 [8]. Home-
Assist has been deployed in 129 single-occupant homes of

1HomeAsssist applications were designed to be proactive. They aim at
prolonging aging in place by preventing decline (e.g., by ensuring that daily
routines are regularly performed) and detecting early causes of decline (e.g.,
social isolation). Thus, they are complementary to more classical applications
such as fall detection, which aim at detecting the consequences of decline.

community-dwelling older adults, 82 years old on average.
The duration of this field study is 12 months.

HomeAssist is a perfect case study on which to build a
unifying approach to developing context-aware home services
dedicated to aging in place. It matches all the requirements to
pursue our goal: 1) it is deployed in the wild in real homes; 2)
it supports aging in place for frail users with pressing needs; 3)
the field study is long enough that maintenance and evolution
problems must be properly handled; 4) it is deployed at a
large enough scale that administering context-aware homes
need to be supported by services; 5) existing services reflect
a range of needs expressed by stakeholders, spanning older
users, caregivers, occupational therapists, psychologists, hu-
man factors experts, installation and maintenance technicians,
and computer scientists.

Let us further describe this platform to delimit the scope of
the issues raised by the context-aware services. HomeAssist
consists of a client-server architecture, where the server runs
as many virtual machines as they are context-aware homes.
Each virtual machine executes the assistive services selected
by the user and their caregiver. These assistive services are
fed with sensing data sent via Internet by a gateway, deployed
in the context-aware home. This gateway gathers information
from the sensors placed at strategic locations in the older
adult’s home to monitor their daily activities (see Caroux et
al. for more details [7]). As well, the gateway channels actions
from the services to the home’s actuators. In the HomeAssist
field study, a typical home consists of 4 contact sensors
(entrance door, fridge, drawers, cabinets), 6 motion detectors
(entrance area, kitchen, bathroom, etc.), and 2 smart plugs,
which measure the electricity consumption and turn on/off a
connected appliance (microwave, light path, coffeemaker, etc.).
The number and type of devices can vary depending on the
configuration of the home and the activities to be monitored.
Finally, the home is equipped with a stationary tablet, placed
at a central location in the home and always connected to a
power outlet. This tablet is dedicated to interacting with the
user via notifications emitted by assistive applications, which
need to alert the user of a given situation (e.g. unattended
entrance door left open) [13].

B. Scenarios To Support Aging In Place

We now present four scenarios that illustrate the spectrum
of stakeholders and concerns involved in supporting aging in
place with a context-aware home (see Figure 1). The first
scenario addresses the safety concern of the older adult. It
consists of monitoring the entrance door to ensure that it is
not left open for too long without being attended. The second
scenario relates to a caregiver’s need to monitor a user’s
daily activities, and in particular, their eating routines. The
last two scenarios address the home technician’s concerns to
keep the context-aware home in an operational state. The first
maintenance scenario detects inconsistent values produced,
or values omitted, by the motion detector of the kitchen.
This situation is discovered by cross-checking the motion
detector information with that of the contact sensor of the

Stakeholder Domain Name Description
Older adult Safety Door Alert Entrance door is open and is unattended . . .for. . .5minutes

Caregiver
Daily
Activities

Reheating
A Frozen Meal Freezer gets used and stove gets turned onwithin. . .10.minutes or Freezer

gets used during stove is on, during lunch time (or dinner time)
Home
Technician Maintenance

Presence
Dependency Whenever the cupboard gets opened in the kitchen, a presence in the

kitchen is true
Home
Technician Maintenance

Communication
Failure A sensor fails to communicate . . .for. . . .24hours and its status does not get

updated

Fig. 1. Example scenarios for assistive services

cupboard (or any other sensor located in that room). The
second maintenance scenario detects whether a sensor fails
to communicate; this situation occurs when the sensor has a
drained battery or is malfunctioning.

These scenarios offer a glimpse at the kind of context-aware
services needed to support aging in place. Some services, such
as “Door Alert”, can fit most older users. Other services may
target daily activities that require a level of personalization for
an effective monitoring. This is illustrated by the meal prepa-
ration activity and the “Reheating a Frozen Meal” scenario.

Similarly, for maintenance scenarios, “Communication Fail-
ure” applies to any context-aware home, whereas “Presence
Dependency” requires to instantiate the consistency rules with
respect to the locations of sensors.

C. Commonality and Variability Analysis

To analyze stakeholder needs, we have examined a range of
services offered by HomeAssist to identify their commonalities
and variabilities. These services were developed in Java using
a tool-based design methodology [14], [15].

We now present the outcomes of this analysis that take the
form of high-level, domain-specific concepts. These concepts
will pave the way to our domain-specific approach presented
in the next section.

Commonalities. All services refer to a notion of environment
from which to perform measures. These measures encompass
interactions in both a physical environment (e.g., a motion
detected) and a digital one (e.g., an event reminder issued by
a calendar). Additionally, we identified two complementary
concepts related to an environment: events and states. On
the one hand, an event defines an environment measure that
changes (e.g., door gets closed/open) – events are underlined
with a dashed line in the scenarios of Figure 1. On the other
hand, a state makes an event persistent across time (e.g., door
is open) – states are underlined with a solid line in Figure 1.
Once these unitary concepts were identified, we found specific
ways in which they can be combined, revealing composition
commonalities. Specifically, the combination of environment
measures can define an order in which interactions must occur
and their duration – these constraints are underlined with a
dotted line in Figure 1.

Let us further study these commonalities by examining their
range of variability.

Variabilities. Environmental measures may be realized by a
variety of entities, including hardware (e.g., sensor), software
(e.g., calendar), local (e.g., door), and remote (e.g., new email
messages). The abstraction level of the environmental mea-
sures varies widely. For example, an event may be produced
by a sensor, as soon as a motion is detected in a room.
Alternatively, a sensor may detect the state of a room being
occupied, excluding room-to-room transfers.

Regarding composition, several order constraints were ob-
served between interactions, including an interaction preceding
another one, an interaction occurring during another one,
and an interaction overlapping another one. Not all of these
constraints are applicable to any kind of interactions (i.e., event
and state). For example, only two states may overlap, whereas
two events cannot. Indeed, in practical scenarios, events are
viewed as occurring sequentially, not simultaneously.

III. A DOMAIN-SPECIFIC APPROACH

We now present the main stages of our domain-specific
approach to developing context-aware services dedicated to
aging in place. This approach is depicted in Figure 2.

Fig. 2. Overall view of our domain-specific approach

1) Service definition: The first step is initiated with the
stakeholders that express scenarios of services, as illustrated
earlier. These scenarios are directly written in our domain-
specific language (see next section) by the stakeholders, if
they have the proper background, or by a service developer.

2) Service compilation: The high-level service is compiled
into low-level rules written in an event processing language.
These rules make explicit the domain-specific concepts, such
as states that are compiled into a combination of events and
related operations.

3) Service execution: When deployed, the rules are added
to a Complex Event-Processing (CEP) engine. Our rule execu-
tion engine is based on Esper, an open source CEP developed
by EsperTech.2 It offers Java and C# interfaces to develop
event-based programs. We chose Esper because it is a popular
CEP engine, used both in industry and research. Esper contains
a declarative domain-specific language for CEP, called EPL
(for Event Processing Language). EPL allows to describe
patterns of events to be recognized in an online stream of
events, using operators for ordering events, time constraints,
alternatives, etc. Esper does not offer a concept of state; it
only handles events and requires extra machinery to manage
a state. In our implementation, we run the Esper engine with
respect to EPL rules, compiled from our DSL rules, and a
stream of events from the context-aware home, formatted in a
canonical form.

Canonical form: The canonical form of sensed data pro-
duced by context-aware homes allows to process them uni-
formly, disregarding their original heterogeneous formats.
In our implementation, the canonical form of data, called
StreamEvent, is introduced as an abstraction layer above the
flow of sensed data events. In this representation, each event
consists in a 4-tuple consisting of the kind of event, its
location, its value, and the timestamp of its occurrence.

IV. A DSL FOR CONTEXT-AWARE SERVICES

In this section, we introduce our DSL for developing
context-aware services, named Maloya. This DSL is dedicated
to describing contexts in terms of states and events, and
operators to combine them. Figure 3 presents the syntax of
Maloya, as well as its informal semantics. Each construct of
the language is presented on the left-hand side; its correspond-
ing graphical representation is displayed on the right-hand
side. This graphical representation visualizes events and states,
and how operators combine them. A state is represented as a
rectangle-shaped signal, lasting between its starting and ending
points. An event is represented as a spike signal, with merged
starting and ending points. Underneath each DSL construct is
its translation into a core DSL, which can be viewed as an
abstract syntax.

A. Events and States

In our DSL, testing an event or a state is expressed as
follows: for an event, p becomes v ; for a state, p is
v. Where, in both cases, p is a sensor name (hardware or
software) and v is a value in the range of the sensor. The event
p becomes v occurs when the sensor p signals a value v,
if its previous value was different. The state p is v starts
precisely when the event p becomes v occurs; it ends when
the event p becomes v’ occurs, where v’ 6= v. We view
the period during which a state holds as the time interval of
a state. This notion is generalized for events by viewing them
as defining a zero-length time interval. The notion of time
interval is used to define operators and their semantics.

2http://www.espertech.com/esper/

A rule in our DSL consists of an operator applied to states
and/or events. All operators return events. More precisely, an
operator yields a success event when the context described by
the application of the operator is detected. Because operators
return events, operators taking an event as a given argument
can call a nested operator instead. On the other hand, operators
taking a state as a given argument cannot call a nested operator
instead. Thus, the nesting of operators is not arbitrary; it
follows the results of our domain analysis. Operators are
further discussed next.

B. Operators

Our operators, listed in Figure 3, are based on the op-
erators in Allen’s time interval algebra [9], viewing states
and events as time intervals, as explained earlier. Specifically,
Allen’s operators model all possible relations between two
time intervals, such as preceding, during, or overlapping.
However, in our domain, since a context-aware home produces
in principles an infinite stream of events, it may contain several
occurrences of the same event. For example, an event such
as lunch activity may occur many times in the stream of
events produced by a home; typically, every day. Thus, a rule
checking whether the lunch activity is performed during lunch
time is tested repeatedly: for each occurrence of the lunch
time slot. To account for this situation, we generalized Allen’s
operators between two intervals to account for their multiple
occurrences. Allen’s operators take non-empty time intervals;
we generalized them to accept events, when appropriate.

Let us now review in detail the operators used in the
examples of this paper. In the rule e1 precedes e2, the
operator yields success every time the occurrence of event e1

immediately precedes the occurrence of event e2. This means
that there must be no other occurrence of either e1 or e2

in between. To cover existing scenarios, we need to expand
the expressiveness of this operator (and others) with optional
time constraints. More precisely, we introduce two variants
of precedes: e1 precedes e2 within/by t. The time con-
straint is defined by the parameter t. These variants specify
an upper/lower bound on the time between the occurrences of
its event operands.

The rule e during s succeeds every time event e occurs
during state s. There are no time-constrained versions of this
operator.

The rule s1 overlapping s2 succeeds every time state s1

overlaps with state s2. This means that state s1 starts before
the beginning of state s2, and ends during s2, as shown in the
Figure 3. The time-constrained versions define an upper/lower
bound on the overlapping time of the occurrence of these
states.

The rule e occurs while s is similar to the rule e during
s, but succeeds only for the first occurrence of event e during
state s. A variant of the previous rule is s1 occurs while s2.
In this case, the rule succeeds the first time state s1 superposes
at least partially with s2. The time-constrained versions put
an upper/lower time bound on the superposition of the states.

Event: p becomes v
p ⇒ v e

v

v′
p

State: p is v
p = v s

e1

e2
Every time e1 immediately precedes e2
e1 precedes e2 ⇔ Precedes(e1, e2)

Variants: e1 precedes within t e2 ⇔ Precedes_less(t)(e1, e2)
e1 precedes by t e2 ⇔ Precedes_greater(t)(e1, e2)

e

s
Every time e occurs during state s

e during s ⇔ During(e, s)

s1

s2
Every time state s1 overlaps with state s2
s1 overlapping s2 ⇔ Overlapping(s1, s2)

Variants: s1 overlapping s2 within t ⇔ Overlapping_less(t)(s1, s2)
s1 overlapping s2 for t ⇔ Overlapping_greater(t)(s1, s2)

e

s
The first occurrence of event e during state s

e occurs while s ⇔ Occurs(e, s)

s1

s2The first occurrence of state s1
(partially) superposed with state s2

s1 occurs while s2 ⇔ Occurs(s1,s2)

Variants: s1 occurs within t while s2 ⇔ Occurs_less(t)(s1, s1)
s1 occurs for t while s2 ⇔ Occurs_greater(t)(s1, s1)

e1

en

Trigger whenever any of the events happens

{e1 or . . . or en} ⇔ Or(e1, . . . , en)

Trigger as soon as every event happens

{e1 and . . . and en} ⇔ And(e1, . . . , en)

Fig. 3. DSL syntax and informal semantics

Even though Allen’s operators express a range of situations,
they do not cover all the needs revealed by our domain analy-
sis; more operators are required. In particular, a disjunction of
events is needed to enable alternative contexts to be expressed.
A disjunctive rule is of the form {e1 or ... or en};
it succeeds whenever any ei occurs. Dually, we introduced a
conjunction rule of the form {e1 and ... and en}. This
rule succeeds when every ei occurred.

Let us now illustrate the use of our DSL operators by writing
the rule for the “Lunch Reheat” activity, described earlier
(Section II-B).

{ (Freezer becomes open precedes
within 10 minutes Stove becomes on)

or
(Freezer becomes open occurs while Stove is on)

} occurs while LunchTime

Note how this specification concisely encodes two scenario
variants: (1) taking a meal from the freezer, and then turning
on the stove; (2) taking a meal from the freezer to put it in
the stove, which is already running.

C. Compilation

Compilation is done in three main steps. The first step
translates the text of DSL rules into the core DSL; this
translation is defined as a one-to-one correspondence. For
instance, the core DSL form of the operator e during s is
During(e, s). The translation of our running example into
core DSL is as follows.

Occurs(Or(

Precedes less(10min)(freezer => open, stove => on),

Occurs(freezer => open, stove = on)),

lunchT ime)

Here “=>” denotes an event that occurs and “=” denotes a
state that holds.

The next compilation step consists of generating EPL
pseudo-code. This pseudo-code uses only valid EPL operators,
but does not yet instantiate the attributes of each event; this is
done subsequently. This step involves several transformations.
Firstly, as EPL does not support the notion of state, each state
in a rule is translated into the sequence of corresponding events
that mark the beginning and the end of the state, ordered by
standard EPL operators. For instance, the state of the stove
being on is translated in an EPL sequence of the stove being
turned on, followed by any event of interest but not the stove
being turned off. Hence, the operator “Occurs(. . . , stove =
on)” is translated in EPL as

stove ⇒ on → . . . and not (stove ⇒ off)
using the EPL operators “and”, “or” and “→”, which means
followed by. Also in this compilation phase, time constraints
in the rules are translated by explicit uses of the “timer:within”
construct in EPL for enforcing upper time bounds, and explicit
uses of “timer:interval” EPL construct for enforcing lower
time bounds. The result of this phase is the following EPL
pseudo-code:

lunchT ime ⇒ begin →
((freezer ⇒ open → stove ⇒ on and

not (freezer ⇒ open) where timer : within(10min))

or

(stove ⇒ on → (freezer ⇒ open) and not (stove ⇒ off)))

and not (lunchT ime ⇒ end)

The final step is to obtain the EPL Esper form from
the EPL pseudo-code, by completely instantiating the event
attributes as necessary in the stream of canonical events (i.e.,
in StreamEvent form). To do so, we use a static table giving
the attributes of each sensor in a given home:

"freezer":{
"location": "Kitchen",
"kind": "Freezer",
"values": ["open", "close"]

}

Moreover, this step binds all events in an EPL formula
as originating from the same home (as can be seen in the
EPL constraint “user=X.user” below). Also, this step
introduces “every” and “every-distinct” EPL constructs to deal
with multiple occurrences of an event. As a result of these
transformations, we obtain the final EPL Esper rule that is
executed by the Esper engine:

select Cal_L_b,Fre_K_o,Sto_K_o from pattern [
every Cal_L_b=StreamEvent(role.location=’Lunch’,

role.type=’Calendar’,
status!=’end’) ->

((every-distinct(timestamp)
Fre_K_o=StreamEvent(role.location=’Kitchen’,

role.type=’Freezer’,
status=’open’,
user=Cal_L_b.user) ->

Sto_K_o=StreamEvent(role.location=’Kitchen’,
role.type=’Stove’,
status=’on’,
user=Cal_L_b.user)

where timer:within(10min)
and not (StreamEvent(role.location=’Kitchen’,

role.type=’Freezer’,
status=’open’,
user=Cal_L_b.user)))

or(every-distinct(timestamp)
Sto_K_o=StreamEvent(role.location=’Kitchen’,

role.type=’Stove’,
status=’on’,
user=Cal_L_b.user) ->

(Fre_K_o=StreamEvent(role.location=’Kitchen’,
role.type=’Freezer’,
status=’open’,
user=Cal_L_b.user))

and not (StreamEvent(role.location=’Kitchen’,
role.type=’Stove’,
status=’off’,
user=Cal_L_b.user)))

) and not (StreamEvent(role.location=’Lunch’,
role.type=’Calendar’,
status=’end’,
user=Cal_L_b.user))]

Note that, even though these transformation steps may seem
straightforward, there are several subtleties involved, such as
the complex operator compositions, which require introducing

new stream variables (“named windows” in EPL). The details
of our compiler scheme are outside the scope of this paper,
and will be described elsewhere.

V. VALIDATION

This section presents the validation of our approach on
the HomeAssist platform. The expressiveness of our DSL is
validated by re-defining existing services in it. The correctness
of our compiler is validated by comparing the results of
executing the compiled rules with the results of existing
services deployed in the platform. Finally, the efficiency of
our DSL is validated by measuring some performance figures
of our running implementation.

A. Expressiveness

To validate the expressiveness of our DSL, we re-
implemented 53 services already deployed in HomeAssist.
These services are variations of 13 families of rules, which are
listed in Figure 4. Variations within each family were required
to cover all the sensors in the home and their combinations. For
example, variations of the rule “Long inactivity” are required
for key rooms other than the bedroom, such as the living room
or toilets. Similarly, the rule “Presence dependency” requires
a presence in the kitchen to be detected when any appliance
is used, such as the fridge, coffeemaker, or stove.

Rewriting an extended range of services allowed us to
validate that our DSL and its underlying concepts (event, state,
Allen’s operators) are expressive enough to cover realistic
services in the domain of aging in place.

B. Correctness

We did not attempt to prove the correctness of our DSL
compiler with respect to a formal semantics of its operators,
although this work would be of interest. Instead, we empiri-
cally validated the correctness of the compiled services by a
combination of visual code inspection and extensive testing.
We performed manual inspection of all the intermediate forms
described earlier (core DSL, EPL pseudo-code, Esper EPL)
to ensure that they remain consistent with their original
counterparts.

Then, we validated the compiler output (i.e., resulting EPL
rules) in two phases. First, we tested the rules by executing
them on log files from the HomeAssist project. These logs
contain the timestamped events produced by all the sensors in
the infrastructure, whether hardware or software. The results
were checked automatically for correctness using Perl scripts,
implementing the same service specifications. Note that these
scripts are much simpler to write than the real applications, as
they execute on log histories of sensed data, so they do not
have to compute results online, and must not deal with the
sensor infrastructure.

We repeatedly compared the results produced by the com-
piled DSL services and the scripted specifications on extended
log histories. This iterative process allowed us to refine our
compilation schemas until it produced the same results as the
scripted specifications.

Name Description / DSL
Metrics

StakeholdersDSL EPL
events # states # events # not

Presence Detect if cupboard status changes while no presence in kitchen 1 1 2 1 Sensor
dependency Cupboard becomes open occurs while Presence(Kitchen) is false installer
Departure Detect if entrance door is opened at least for 5 minutes during calendar night time

1 1 2 2

Occupational
alert Door is open for 5 minutes occurs while Night time therapist

Caregiver

Door alert Detect if entrance door is opened at least for 5 minutes during their is no presence in entrance

0 2 4 6

User
Door is open occurs for 5 min while Presence(Entrance) is false Caregiver

Long Detect if no movement in Bedroom since 24 hours
0 1 1 1

Occupational
inactivity Presence(Bedroom) is false for 24 hours therapist

Caregiver
Fridge Detect if fridge remains open at least 5 minutes 0 1 1 1 User
opened Fridge is open for 5 minutes Caregiver

Breakfast Detect cupboard and coffeemaker opening (any order) during breakfast period
2 1 3 1

User
{Cupboard becomes open and CoffeeMaker becomes on}
occurs while BreakfastTime

Caregiver

Lunch Detect freezer opening and stove use in the 10 minutes following or freezer opening during stove use

3 2 5 3

Caregiver
reheat all during lunch period User

{ (Freezer becomes open precedes within 10 minutes
Stove becomes on)

or
(Freezer becomes open occurs while
Stove is on) }

occurs while Lunch Time

Dinner Detect fridge opening and microwave use (any order) during dinner period
2 1 2 1

User
{Fridge becomes open and Microwave becomes on}
occurs while Dinner Time

Caregiver

Go Detect end of presence in bathroom and begin of presence in bedroom in the 10 minutes following

2 1 3 2

Caregiver
to bed during go-to-bed period User

(Presence(Bathroom) becomes false precedes within 10 minutes
Presence(Bedroom) becomes true)

occurs while Go-to-bed Time

Wake-up Detect end of presence in bedroom and begin of presence in kitchen in the 10 minutes following

2 1 3 2

Caregiver
during go-to-bed period User
(Presence(Bedroom) becomes false precedes within 10 minutes

Presence(Kitchen) becomes true)
occurs while Wake-up Time

Commfailure Detect any sensor that fails to communicate 1 0 1 0 Platform
warning Commfailure(Any) becomes true maintainer
Commfailure Detect any sensor that has failed to communicate since 24 hours

0 1 1 1

Platform
alert Commfailure(Any) is true for 24 hours maintainer

Sensor
installer

Battery Detect battery level of any senser that become less than 5% 1 0 1 0 Sensor
alert BatteryLevel(Any) becomes less than 5 installer

Fig. 4. Services examples

In a second phase, we connected the compiled DSL services
to the online stream of events in the production platform for 9
users during 1 month, in parallel with the existing services
written in Java. No difference was observed between the
results of both systems (Java and DSL).

C. Performance

To validate the applicability of our DSL approach in
practice, we measured the performance of the EPL rules
produced by our DSL compiler with respect to three indicators:
response time to online events, processing time, and memory
consumption. The rules were executed on a PC equipped with
an Intel Core i5-3320MHz and 8Go of RAM, running the
Linux kernel 4.15, and Esper 5.5. For easier generalization of
the results, all the measurements were performed by forcing
execution on a single core.

The response time of a rule indicates the time between the
last event that should trigger a rule, and its effective triggering.

A low response time means that the rule is sufficiently reactive
for practical use. We measured this latency by executing the
53 rules on a log of 1 year of one home, respectively 10 homes
multiplexed together. Time was accelerated by two different
factors to simulate higher traffic, i.e., the recorded events in
the log were submitted N times more quickly. As can be seen
from the results in Table I, the maximum response time of
all our rules were always less than a second. This order of
magnitude is perfectly compatible with the kind of rules that
are implemented in this platform for aging in place. Moreover,
the average latency is between 3 and 12 milliseconds.

To ensure that our implementation can scale up to hundreds
of users and to tens of implemented services, we measured
CPU and memory consumption in batch mode for various logs
of 1 year from homes of various sizes (H1 to H5), ranging
from small apartments to houses with several floors. That is, all
events in the logs were submitted sequentially with no delay,
and the rules were slightly modified to replace timers with

0	

200	

400	

600	

800	

1000	

1200	

13	 26	 39	 53	

Time	
(s)	

Number	of	rules	

H1	

H2	

H3	

H4	

H5	

Fig. 5. Total CPU load (in seconds) for processing a 1 year log, when varying
the number of rules

400	

450	

500	

550	

600	

650	

700	

13	 26	 39	 53	

MB	

Number	of	rules	

H1	

H2	

H3	

H4	

H5	

10	homes	

Fig. 6. Maximum memory consumption (in MBytes) for processing a 1 year
log, when varying the number of rules

computations on event timestamps.

We first studied the variation of the batch processing time
according to the number of rules. For that purpose, we created
subsets of the full set of 53 rules containing 13, 26, and 39
rules. As can be seen from Figure 5, the total processing time
for executing all the rules on 1 year spans from 5 to 20
minutes, depending on the home. Processing time increases
with the number of rules according to a mostly linear pattern,
except for one home (H5), where some rules (belonging to r2,
r3, r4) require more processing than others (belonging to r1).
As processing 1 year takes less than 20 minutes, a single CPU
core could process hundreds of homes simultaneously.

We then measured the memory consumption of our imple-
mentation in the same batch conditions. The results in Figure
6 show that memory consumption for various single homes is
at most half a GB. Moreover, memory consumption increases
much less than linearly with the number of homes, because 10
homes (including H1 to H5 and 5 other homes) are processed
simultaneously with less then 0.7 GB. These figures show that
a single server with 10GB memory could process more than
100 homes simultaneously.

Home(s) Acceleration factor Max latency (ms) Avg latency (ms)
H4 100,000 909 3.5

1,000,000 900 3.8
10 homes 100,000 941 11.9
(H1. . . H10) 1,000,000 942 11.9

TABLE I
LATENCY FOR RULE TRIGGERING

VI. RELATED WORK

There are many works aiming to simplify and sup-
port the development of context-aware applications in smart
homes. Let us classify them with respect to how they ap-
proach service development: user-oriented domain-specific
languages, automata-oriented event processing approaches,
and middleware-oriented approaches.

a) User-oriented, domain-specific approaches: These ap-
proaches start from the needs of end users of smart homes, and
provide a domain-specific language for developing context-
aware applications, usually complemented with a dedicated
development environment. This end-user programming ap-
proach has resulted in both textual and visual languages.
Scratch [16] offers visual programming notations, covering
most of a general-purpose programming language. In prin-
ciple, this language would allow users to write a wide range
of programs in the domain of smart homes, but would not
support such development with domain-specific abstractions.
IFTTT (If This Then That)3 offers much more specialized
graphic notations for automating simple processes involving
web services, sensors, and actuators. This approach lowers
the end-user conceptual effort at the expense of drastically
reducing the expressiveness of the language. For example,
conditionals only consists of one sensor or service, and cannot
be composed. Furthermore, no distinction is done between
events and states, which has been shown to confuse users when
defining services [17].

Improving on IFTTT, AppsGate [18] introduces a textual
DSL, which makes a clear distinction between states and
events, and allows some limited compositions of tests in rules.
AppsGate provides an end-user development environment ded-
icated to smart homes and it has been shown to cover simple
rules for comfort-oriented automation. While this extension
of IFTTT is very promising, it still falls short of addressing
the scope of real AAL applications. For example, the authors
mention that “expressing compound conditions [involving sev-
eral events or states] was difficult” [18, p.13]. Moreover, even
simple temporal composition such as “A immediately precedes
B” cannot be expressed in their language, due to the absence
of boolean connectors in conditions (e.g., once A is found,
wait for B but no A). Because our DSL approach is based
on a domain analysis, we identified the common scenarios to
be addressed and provide abstractions expressive enough to
capture them.

Conceptually, an interesting case of top-down approach to
context awareness is the identification of 6 top-level context

3https://ifttt.com

dimensions having the widest used in pervasive computing
[1]: the physical world, the cyber-world, the user, his/her
activities, the social context, and their dynamics. These context
dimensions result from a commonality analysis performed on
13 context meta-models formalized in the literature, and about
300 research papers on pervasive computing applications.
Our approach also involved a commonality analysis but in a
specific area: smart home services for aging in place. Thanks
to this domain instantiation, not only were we able to elicit
common concepts, but we also designed a language and tool
support that revolve around these concepts.

b) Automata-oriented, event processing approaches:
Some approaches leverage existing models of automata and
associated tools. Indeed, contexts may be modeled as partic-
ular sequences of events in the environment, constrained in
their order and time delays. For instance, the situation of the
unattended door may be recognized by an automaton accepting
a door opening event and a door closing event, separated by a
time delay greater than a given value. Such executable models
of context recognition may be expressed in a DSL for automata
modeling, which can be visual (StateCharts, SyncCharts) or
textual (synchronous languages) [19]. Time delays must be
handled explicitly in these models by using external timers
to generate timeout events. Timed automata [20] add a native
expression of time delays in the model. These automata-based
models are usually accompanied by formal tools for proving
useful temporal properties about the model, such as state
reachability. They are expressive enough for handling all cases
needed by smart home services, but require users to implement
common patterns such as sequencing events, recognizing a set
of events during a state, etc. When implementing these base
patterns as timed automata, users may introduce subtle bugs or
slight variations in behavior. This issue is of course amplified
when the models are written by stakeholders with different
levels of expertise.

Complex event processing languages [10] introduce event
composition operators that implement some very common
event patterns, such as ordered sequence of events within a
time delay, and event alternatives. Some CEPs use interval-
based semantics for complex events, and sometimes even
define the Allen temporal relations between interval-based
events [21]–[24]. However, there is no native notion of state
in these CEPs. For instance, the state of a door being open
has to be coded, as a complex event starting with a door
opening and ending with a door closing, with no door action
in between. This kind of encoding is error-prone and tends to
yield intricate CEP formulas (as can be seen in our examples).
This encoding is exactly what our DSL compiler automatically
generates, in a uniform and predictable way, thereby providing
a complete set of reliable common state/event operators. In
fact, this compilation approach sets apart our work from most
works in CEP, typically introducing a new CEP language with
its standalone implementation, rather than translating in an
existing, standard CEP language.

c) Middleware-oriented approaches: Some approaches
to developing context-aware applications rely on a middleware

(or a framework) to provide programmers, in a general pro-
gramming language, with dedicated abstractions for operating
and managing devices (e.g., sensor discovery) and context-
aware services; examples include FedNet [25], HomeOS [26],
Gaia [27], Olympus [28], and Plan B [29].

Raising further the abstraction level, other approaches in-
troduce a disciplined, declaration-based development process,
dedicated to context-aware services. These approaches go as
far as automating part of the programming task by generating
a programming framework. Examples of tool-based develop-
ment approaches are DiaSuite [14], [15] and IoTSuite [30].

All these approaches aim to abstract over sensor infrastruc-
ture details, but do not simplify the programming of context
detection logic. The core of context processing revolves around
recognizing specific patterns of events and states. Without
specific support, this programming is low level, tedious and
error-prone, even for seasoned programmers. Our approach
provides the programmer with this specific support.

VII. DISCUSSION

Our DSL bridges the gap between high-level domain con-
cepts and low-level mechanisms of event handling. As a
consequence, it contributes to making rules more concise and
to simplify their development, by encapsulating details of
event handling in a compiler. Indeed, the original Java appli-
cations implementing HomeAssist services contain manually
implemented timed automata, which recognize the sequences
of events corresponding to each DSL rule. Timing constraints
are explicitly handled by using a timer service, producing
timeout events that are inserted in the stream of events,
produced by the sensor infrastructure. In our DSL rules, these
low-level details of state and time handling are included in
the semantics of operators. For instance, the role of explicit
timers corresponds to our time-constrained operator variants.
This lowers the efforts to write rules and to make them more
predictable.

Limitations: Our approach is a first step towards sim-
plifying the development of context-aware applications in the
domain of aging in place, and presents a number of limitations.

First of all, our DSL only is dedicated to recognizing
contexts. It provides no constructs for performing actions
on the environment. These must be currently programmed
in a generic programming language. It would be useful to
extend our domain analysis to also cover the control part of
typical applications, and to derive domain-specific concepts
and notations to perform actions.

As far as applications are concerned, we have designed and
tested our DSL only on services in the domain of aging in
place, which involves a specific set of composition operators.
However, our DSL can express rich, arbitrarily nested combi-
nations. It would be interesting to apply it to other domains
of context-aware applications in the future.

Finally, our rules always return boolean values. However,
context-aware information may sometimes be more general
than strictly binary. For instance, a daily activity such as meal
preparation might be detected in a more nuanced way as a

probability between 0 and 1, to cope with some amount of
deviations from the user’s routine. Currently, in our DSL the
different routine variations must be coded as different rules,
which is not always practical. In the future, it would be
interesting to consider extending our approach with operators
returning non-boolean values.

VIII. CONCLUSION

We have presented a new approach for developing context-
aware services in a smart home, by analyzing a range of exist-
ing data processing layers in the domain of aging in place. We
have identified key concepts and operations specific to context-
aware processing. Based on this analysis, we have introduced
a context-aware, domain-specific language and its software
architecture, which allow to put in synergy the stakeholders
of a context-aware home by providing them with a unified
approach to designing and developing services. Our approach
offers context aware-specific abstractions and notations, within
a data-centric and data-driven paradigm.

We have validated our approach by applying it to an assisted
living platform for aging in place. In particular, we have
used our domain-specific language to re-implement existing
services of the assisted living platform. These services were
deployed and successfully tested for their effectiveness in
performing the specific tasks of the stakeholders, such as:
detection of daily activities, user risks, and sensor failures.

REFERENCES

[1] C. Bauer, “A comparison and validation of 13 context meta-models.” in
ECIS, 2012, p. 17.

[2] D. J. Cook, A. S. Crandall, B. L. Thomas, and N. C. Krishnan, “Casas:
A smart home in a box,” Computer, vol. 46, no. 7, pp. 62–69, 2013.

[3] J. Feminella, D. Pisharoty, and K. Whitehouse, “Piloteur: a lightweight
platform for pilot studies of smart homes,” in Proceedings of the 1st
ACM Conference on Embedded Systems for Energy-Efficient Buildings.
ACM, 2014, pp. 110–119.

[4] A. Brush, B. Lee, R. Mahajan, S. Agarwal, S. Saroiu, and C. Dixon,
“Home automation in the wild: challenges and opportunities,” in pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2011, pp. 2115–2124.

[5] J. Coutaz, E. Fontaine, N. Mandran, and A. Demeure, “Disqo: A user
needs analysis method for smart home,” in Proceedings of the 6th Nordic
Conference on Human-Computer Interaction: Extending Boundaries.
ACM, 2010, pp. 615–618.

[6] P. Rashidi and A. Mihailidis, “A survey on ambient-assisted living tools
for older adults,” IEEE journal of biomedical and health informatics,
vol. 17, no. 3, pp. 579–590, 2013.

[7] L. Caroux, C. Consel, L. Dupuy, and H. Sauzéon, “Verification of
Daily Activities of Older Adults: A Simple, Non-Intrusive, Low-Cost
Approach,” in ASSETS - The 16th International ACM SIGACCESS
Conference on Computers and Accessibility, Rochester, NY, United
States, Oct. 2014, pp. 43–50.

[8] C. Consel, L. Dupuy, and H. Sauzéon, “HomeAssist: An assisted living
platform for aging in place based on an interdisciplinary approach,”
in Proceedings of the 8th International Conference on Applied Human
Factors and Ergonomics (AHFE 2017). Springer, 2017.

[9] J. F. Allen, “Maintaining knowledge about temporal intervals,” Commun.
ACM, vol. 26, no. 11, pp. 832–843, Nov. 1983.

[10] G. Cugola and A. Margara, “Processing flows of information: From data
stream to complex event processing,” ACM Comput. Surv., vol. 44, no. 3,
pp. 15:1–15:62, Jun. 2012.

[11] J. Kaye, “Making pervasive computing technology pervasive for health
& wellness in aging,” Public Policy & Aging Report, 2017.

[12] J. A. Kaye, S. A. Maxwell, N. Mattek, T. L. Hayes, H. Dodge, M. Pavel,
H. B. Jimison, K. Wild, L. Boise, and T. A. Zitzelberger, “Intelligent
systems for assessing aging changes: home-based, unobtrusive, and
continuous assessment of aging,” Journals of Gerontology Series B:
Psychological Sciences and Social Sciences, vol. 66, no. suppl 1, pp.
i180–i190, 2011.

[13] C. Consel, L. Dupuy, and H. Sauzéon, “A unifying notification system
to scale up assistive services,” in Proceedings of the 17th International
ACM SIGACCESS Conference on Computers & Accessibility. ACM,
2015, pp. 77–87.

[14] B. Bertran, J. Bruneau, D. Cassou, N. Loriant, E. Balland, and C. Consel,
“DiaSuite: A tool suite to develop Sense/Compute/Control applications,”
Science of Computer Programming, vol. 79, pp. 39–51, 2014.

[15] D. Cassou, J. Bruneau, C. Consel, and E. Balland, “Toward a tool-based
development methodology for pervasive computing applications,” IEEE
Transactions on Software Engineering, vol. 38, no. 6, pp. 1445–1463,
2012.

[16] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and
Y. Kafai, “Scratch: Programming for all,” Commun. ACM, vol. 52,
no. 11, pp. 60–67, Nov. 2009.

[17] J. Huang and M. Cakmak, “Supporting mental model accuracy in trigger-
action programming,” in Proceedings of the 2015 ACM International
Joint Conference on Pervasive and Ubiquitous Computing, ser. UbiComp
’15. New York, NY, USA: ACM, 2015, pp. 215–225.

[18] J. Coutaz and J. L. Crowley, “A first-person experience with end-user
development for smart homes,” IEEE Pervasive Computing, vol. 15,
no. 2, pp. 26–39, 2016.

[19] A. Gamatié, Synchronous Programming: Overview. New York, NY:
Springer New York, 2010, pp. 21–39.

[20] J. Bengtsson and W. Yi, Timed Automata: Semantics, Algorithms and
Tools. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 87–
124.

[21] D. Anicic, P. Fodor, S. Rudolph, R. Stühmer, N. Stojanovic, and
R. Studer, A Rule-Based Language for Complex Event Processing and
Reasoning. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp.
42–57.

[22] M. Li, M. Mani, E. A. Rundensteiner, and T. Lin, “Complex event
pattern detection over streams with interval-based temporal semantics,”
in Proceedings of the Fifth ACM International Conference on Distributed
Event-Based Systems, DEBS 2011, New York, NY, USA, July 11-15, 2011,
D. M. Eyers, O. Etzion, A. Gal, S. B. Zdonik, and P. Vincent, Eds.
ACM, 2011, pp. 291–302.

[23] S. Helmer and F. Persia, “High-level surveillance event detection using
an interval-based query language,” in 2016 IEEE Tenth International
Conference on Semantic Computing (ICSC), Feb 2016, pp. 39–46.

[24] S. Hausmann, “The language dura: A declarative event query language
for reactive event processing,” 2014.

[25] F. Kawsar, T. Nakajima, and K. Fujinami, Deploy spontaneously:
Supporting end-users in building and enhancing a smart home. New
York, NY, USA: ACM, 2008, pp. 282–291.

[26] N. Rosen, R. Sattar, R. W. Lindeman, R. Simha, and B. Narahari,
“Homeos: Context-aware home connectivity,” in Proceedings of the
International Conference on Wireless Networks, ICWN ’04, Volume 2
& Proceedings of the International Conference on Pervasive Computing
and Communications, PCC’04, June 21-24, 2004, Las Vegas, Nevada,
USA, H. R. Arabnia, L. T. Yang, and C. Yeh, Eds. CSREA Press, 2004,
pp. 739–744.

[27] M. Rom’an, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell,
and K. Nahrstedt, “A middleware infrastructure for active spaces,” Per-
vasive ComputingPervasive Computing, vol. Middleware, no. October-
November, 2002.

[28] A. Ranganathan, S. Chetan, J. Al-Muhtadi, R. H. Campbell, and M. D.
Mickunas, “Olympus: A high-level programming model for pervasive
computing environments,” in Third IEEE International Conference on
Pervasive Computing and Communications, March 2005, pp. 7–16.

[29] F. J. Ballesteros, E. Soriano, K. L. Algara, and G. G. Muzquiz,
“Plan B: an operating system for ubiquitous computing environments,”
in 4th IEEE International Conference on Pervasive Computing and
Communications (PerCom 2006), 13-17 March 2006, Pisa, Italy. IEEE
Computer Society, 2006, pp. 126–135.

[30] P. Patel and D. Cassou, “Enabling high-level application development
for the internet of things,” Journal of Systems and Software, vol. 103,
pp. 62 – 84, 2015.

