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On Polynomial Code Generation

Paul Feautrier ∗ Albert Cohen † Alain Darte ‡

December 18, 2018

Abstract

In static analysis, one often has to deal with polynomials in the program con-
trol variables, either native to the source code or created by enabling analyses.
We have explained elsewhere how to compute dependences in such situations
and use them for building polynomial schedules. It remains to explain how to
generate polynomial code. The present proposal is to target new parallel pro-
gramming languages of the async/finish family, like X10 or Habanero, which are
“polynomial friendly” and for which efficient compilers exist.

Both these languages have barrier-like constructs—clocks for X10 and phasers
for Habanero—which may be used to synchronize activities. To understand the
behavior of a clocked program, one has to count the number of instances of
clock advance instructions since the creation of each activity. Advance instruc-
tions with equal counts are synchronized, and these counts may be polynomials.
The trick is therefore to insure that before executing a statement instance, its
activity has executed as many advance instructions as the current value of its
schedule. This can be obtained by inserting auxiliary loops for executing the
necessary advance instructions.

This scheme fails if the schedule is not monotonically increasing with respect
to the execution order in each activity. This problem may be solved by reorder-
ing the activities—which is possible since the real execution order is given by
the schedule—or in extreme cases by index set splitting.

1 Context

Parallel programs need optimizing compilers capable of analyzing, transforming,
and generating code with complex concurrent and parallel constructs. While
polyhedral methods are popular means to reason about nested loops and data
parallelism, the concurrency arising from task parallel and streaming languages
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leads to more complex control flow and dependence patterns. One important
family of transformations consists in converting one expression of parallelism
into another, closer to the machine. For example, one may need to convert mas-
sive amounts of task-level concurrency in the stream language OpenStream [6]
to data parallel execution or to “compile” this parallelism into coarser grain
tasks. In the same spirit, an optimizing compiler for parallel programs may aim
at reducing the dynamic range of runtime behavior by restricting the schedules
to a constrained set of parallel executions, thereby controlling memory usage in
streams, improving temporal locality, avoiding false sharing, bounding latency,
etc. We argue that polynomial scheduling methods are well suited to express
such transformations, and we investigate the down-stream schedule-guided gen-
eration of syntactic code for a target parallel language using clocks.

With this motivation in mind, let us review the main challenges and state
of the art in polynomial methods used to reason about the transformation of
task-parallel programs.

1.1 Why Polynomials?

The necessity of extending the polyhedral model beyond affine expressions and
constraints has been around for some time. Obvious candidates for such exten-
sions are polynomials and polynomial constraints, the so-called semi-algebraic
sets replacing polyhedra. Polynomials may be native to the source code, or re-
sult from enabling analyses, like induction variable evaluation, message count-
ing, array linearization, or become a way to schedule programs that cannot run
in linear time. Taking advantage of recent mathematical results on the “Pos-
itivStellen Satz”, a method to deal with polynomials has been proposed [10]
and applied both to sequential programs and to a streaming language, Open-
Stream [6]. To pursue this line of research, it remains in particular to explain
how to generate a parallel program from polynomial schedules.

1.2 An Overview of the OpenStream Language

The main components of an OpenStream program are streams, tasks, and task
instances. A stream is a possibly unbounded one-dimensional array, with a
read pointer and a write pointer. A task is an ordinary piece of C code, with
statements for accessing streams. The reader is referred to [21] for a detailed
description of the OpenStream language and run-time system.

1.2.1 The Control Program

The control program is a piece of sequential C code, expanded with task in-
stance creation statements. When a task instance is created, it is given access
to a subset of the control program variables, mainly the current values of the sur-
rounding loop counters, and to some streams. The control program may execute
arbitrary sequential code and transmit results to tasks via the firstprivate

clause inherited from OpenMP. We will ignore this feature in this work as,
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firstly, it increases the sequential fraction of the execution time and hence, by
Ahmdal law, reduces the efficiency of the program, secondly because we found it
possible to move these code fragments into tasks and use streams to distribute
the results.

1.2.2 The Polyhedral Fragment of OpenStream

This work applies only to the case where the control program fits in the polyhe-
dral model [6, 11]. The only executable statements are task creation statements,
and the only control statements are the sequence and arbitrarily nested counted
loops. Loop bounds must be affine forms in the surrounding loop counters
and integer parameters. Many streaming applications—for instance, signal pro-
cessing ones—deal with potentially infinite streams. These situations can be
modeled using infinite loops, i.e., by omitting the termination test in the for

construct.
Under these constraints, one may label task creation instances by an integer

vector of the enclosing loop iterators in the control program—the familiar 2d+1
notation—in such a way that their execution order or “happens before” relation,
noted ≺ is simply the lexicographic order of their labels.

1.2.3 Streams and Tasks

Each task can access a finite set of streams. At instantiation time, the control
program allocates a window into each accessible stream. Each stream s has a
write pointer Is, resp. a read pointer Js, which specify the starting position of the
current write window, resp. the current read window. For each stream access,
the programmer specifies two nonnegative integers, the burst and the horizon.
The horizon gives the size of the window. A null horizon is meaningless. The
burst is the amount by which the read or write pointer is incremented after each
access. The burst of a write access must be strictly positive and equal to the
horizon, so as to insure single assignment. A read access may have a null burst:
this implements the peek operation.

A task has a body: a piece of arbitrary code acting on the contents of
its stream windows and local variables. A task is stateless: if transmitting
information from one instance to another is needed, it must go through a stream
or a network of streams. The present scheduler assumes that a task instance
executes in unit time. It would be easy to assign to each task arbitrary delays,
perhaps obtained from some WCET analysis, and take them into account in
scheduling.

1.2.4 Stream Arrays

Streams can be organized into arrays of arbitrary size and dimension. Using the
familiar C syntax, the name of a stream array must be subscripted by a fixed
number of expressions. To allow static analysis, these subscripts must be affine
forms or polynomials in the surrounding loop counters and parameters.
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The original OpenStream compiler has been developed as an extension to
gcc, a choice motivated by the ease of parallelizing and optimizing existing
applications. Yet this choice is far from ideal to prototype polyhedral analyses
and transformations. To simplify the present work, a more compact pseudo-code
has been introduced in [6] and was extended as needs arose. This pseudo-code
has C syntax for control operations, extended with declarations for parameters
and streams, and executable statements for task creation. All examples in this
paper use this pseudo-code; we hope the reader will find them self-explanatory.

1.3 Static Analysis

If the control program of an OpenStream program fits in the polyhedral model,
one can statically analyze it up to scheduling and deadlock detection [6]. The
first step is to obtain closed form expressions for the read and write pointers
of each stream. Since at each task creation these pointers are incremented by
the burst, it is enough to count the number of creations of relevant tasks which
precede a given point in the execution of the control program. These creations
can be labeled by integer points in union of parametric polyhedra, hence can
be counted using the theory of Ehrhart polynomials [8, 3] or Brion’s generating
functions [2, 23] for which there exists efficient software.1 The resulting counts
are usually polynomials or piecewise polynomials of a degree bounded by the
loop nesting level of the control program. In infrequent cases, integer division
may occur in the resulting formulas. The burst is a numerical or parametric
constant; the barvinok library is also able to compute weighted sums when the
bursts are polynomials. However, in the presence of infinite loops, polynomial
bursts must be used with care as a polynomial in the iterators of the control
program is either constant or unbounded. The case where bursts are polyno-
mials in the parameters is an interesting generalization of cyclo-static dataflow
graphs where weights are parametric, pointing at a potentially important re-
search direction for embedded applications.

Dependences Since write bursts are strictly positive and equal to the hori-
zons, streams have the single assignment property. Hence, tasks have only flow
dependences, when a task creates a datum that is used later by another task,
or, in other words, when a write window and a read window overlap. Once the
read and write pointers have been evaluated by barvinok, closed form formulas
for dependences can be obtained. Since these formulas may use polynomials,
the dependence relations are represented as semi-algebraic sets, and polynomial
schedules can be obtained as in [10]. The polynomial scheduling problem is
only semi-decidable: a failure does not necessarily imply the non existence of a
polynomial schedule and hence a deadlock; it may also mean that the degree of
the schedule has been underestimated. The present scheduler tries to construct
bounded delay schedules, and rejects a program when no such schedule exists,

1The isl library: http://isl.gforge.inria.fr; and the barvinok library and iscc:
http://barvinok.gforge.inria.fr.
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on the ground that implementing unbounded delays needs unbounded memory.

2 A Simplified View of X10

The basic component of an X10 program [22] is the activity, a lightweight thread.
An activity is created by the primitive async{ <body> } or its variant clocked
async. The async primitive can be used recursively. The body of the async

executes in parallel with the creating activity, within the context of a finish

construct.
The finish and clocked finish primitives act as containers for enclosed

activities and wait for their termination before terminating themselves. A
clocked finish creates an unnamed clock. Each clocked async registers the
created activity to its clock. An activity which terminates is deregistered from
the clock. In this way, the number of activities registered to a clock may vary
in the course of the execution of a program. A clocked activity may issue an
advance instruction, in which case it stalls until all presently registered activ-
ities also have issued an advance instruction. One can show that the use of
clocks assigns the activities belonging to the same clocked finish to phases
which are executed sequentially in order of their phase number, the number
of advance instructions issued by an activity and its ancestors since the ini-
tial clocked finish [16]. While the present paper targets the X10 language,
we believe that the approach applies also to Habanero with minor syntactic
modifications.

3 The Basic Scheme

The standard approach for generating a parallel program from a schedule is
to construct fronts, sets of statement instances that are scheduled at the same
time, and to execute fronts sequentially in chronological order (the SEQ of PAR
mode in Occam terminology). The clocks of X10 are exactly what is needed for
building fronts. A front is the set of statement instances executed between two
consecutive advance instructions. Since advance instructions can be enclosed
in multidimensional loops, the phase numbers may be polynomials, and the
problem is to adjust these polynomials in such a way that they reproduce the
program schedules. This approach is reminiscent of the proposal of using clocks
for encoding loop transformations [24].

3.1 X10 Code Generation

Let (Ti), i ∈ {1, . . . , n} be the list of tasks of the source program, each with its
schedule θi. Let CPi be the slice of the control program that encloses task Ti
and no other. This program has an iteration vector xi, an iteration domain Di,
and an execution order which is simply the lexicographic order on xi, �. The
target program (in X10 notation) has the following shape:
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clocked finish {

clocked async {

for (x_i in D_i) {

some advance instructions;

T_i;

}

//...

}

}

This program cannot be executed as is. Since there is no way of undoing an
advance instruction, if we intend that the phase number of iteration xi be equal
to θi(xi), then θi must be a monotonically increasing function with respect to
�. This can be obtained by adjusting the order of the iterations of the xi
loop. According to the official specification of OpenStream, stream pointers are
increased at each task creation, hence changing the task creation order may
change the pointers values and the semantics of the program. But remember
that in the course of dependence calculations, closed form expressions for the
stream pointers have been obtained. By a process analogous to induction vari-
able substitution or reverse strength reduction, it is enough to replace each
increment by an evaluation of the corresponding form. In this way, any creation
order will result in an equivalent program. Note that since the execution order
of the main program is entirely dictated by the schedules, and these will not be
modified, this transformation will incur no loss of parallelism.

3.1.1 The Problem of the Decreasing Schedule

The property we need to enforce is, for two statement instances u and v in the
same activity:

u ∈ D, v ∈ D,u� v ⇒ θ(u) ≤ θ(v), (1)

where D is the iteration domain of the activity. A first attempt is to impose (1)
as an additional constraint when building θ. However, such a schedule may not
exist, as shown by the following OpenStream example:

parameter N;

stream s[N+1]; // array of N+1 streams

for(i=0; i<N; i++) {

task a { // theta = N-i

read once from s[i+1];

write once into s[i];

}

}

task b { // theta = 0

write once into s[N];

}
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The notation s[i] refers to the i-th stream in an array of streams s (declared
as an array of N + 1 streams).

Task a(i) is created before task a(i + 1), but there is a dependence from
i + 1 to i, hence no increasing schedule exists. Changing the creation order:
j = N − i solves the problem:

parameter N;

stream s[N+1]; // array of N+1 streams

for(j=1; j<=N; j++)

task a { // theta = j;

read once from s[N-j+1];

write once into s[N-j];

}

task b { // theta = 0;

write once into s[N];

}

Note that, in this case, there is no need to adjust the evaluation of the stream
pointers, which are all zero.

A first step in the solution is to check if (1) is satisfied or not, by testing if
the system of constraints

u ∈ D , v ∈ D,
u � v,

θ(u) > θ(v) (2)

is feasible or unfeasible. In the latter case, θ is monotonically increasing and no
modification of the program is needed. In the same way, by reversing the order
of the inequality (2), one can decide if θ is monotonically decreasing, in which
case it is enough to replace � by its opposite. This is the case for the above
example. Finding both systems unfeasible would imply that D is empty, which
is forbidden and can easily be checked beforehand. Having both systems feasible
implies that one partial derivative of θ at least changes sign in D. Setting this
derivative to be positive or negative allows splitting D in two parts which can
be processed independently. Experience shows that this situation happens very
seldom. As a case in point, the schedule for an infinite loop must ultimately be
monotonically increasing.

It remains to explain how to check the feasibility of (2). Since θ may be
a polynomial, plain linear programming may not be adequate. The preferred
method is to try to show that −1 is a positive linear sum of products of con-
straints in (2). This approach is similar in spirit to the Fourier-Motzkin algo-
rithm: if one can generate an absurd inequality as a consequence of the system
to be checked, this system is unfeasible. The ultimate computation can be del-
egated to powerful linear programming software, which makes the method very
efficient. Other possibilities are submitting the system to the Z3 SMT solver,2

2https://github.com/Z3Prover/z3
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(which has been shown to be slower than modern linear programming tools [20]),
or using developments in Bernstein polynomials [5].

3.2 How to Generate the “Advance Code”

A very simple solution to the generation of the advance instructions and control
flow is to assign a local phase counter φ to each activity. This counter is set
to zero at the beginning of the activity. Before executing each task instance u,
insert the following code:

n = theta(u);

execute (n-phi) advance instructions;

phi = n;

The number of advance instructions to be executed can also be computed stat-
ically, and, most of the time will be found to be 1. This might be related to the
design of bounded delay schedulers.

The following OpenStream example model the conversion of a two-dimensional
triangular dataset into a one-dimensional stream:

stream s, t;

task reset {

write once into t;

// theta = 0

}

for(i=1;; i+=1)

for(j=0; j<i; j+=1)

task source {

// theta = i(i-1)/2 + j

write once into s;

}

for(k=0;; k++)

task sink { // theta = k+1

read once from s;

read once from t;

write once into t;

}

It is easy to see that this code has monotonically increasing schedules. In the
corresponding X10 skeleton the notation [| source |] represents the unspec-
ified body of the task source:

clocked finish {

[| reset |]

clocked async {

phi1 = 0;

for(i=1;; i++)

for(j=0; j<i; j++) {
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n = i*(i-1)/2 + j;

for(l=0; l < n - phi1; l++)

advance;

[| source |]

phi1 = n;

}

}

clocked async {

phi2 = 0;

for(k=0;; k++) {

n = k+1;

for(l=0; l<n-phi2; l++)

advance;

[|sink|]

phi2 = n;

}

}

The reset task has been allocated to the parent activity. Since it is scheduled
at time 0, it does not need an advance instruction. It terminates immediately,
therefore does not interfere with the execution of source and sink, which pro-
ceed in lock step indefinitely. The reader may care to check that all advance
loops execute only one iteration.

4 Related Work

The construction of polynomial schedules was first considered by Achtziger et
al. in [1], but there was no attempt at code generation at that time. Be-
side the method of [10], polynomial schedules can also be obtained by counting
iterations, either in sequential programs [18] or after multidimensional schedul-
ing. Code generation in a polynomial context was first considered in Armin
Groesslinger’s PhD thesis [13]; here, the focus was on generating code for semi-
algebraic iteration domains, either native to the original code or after a loop
transformation like tiling. In this sense, this work is complementary to the
present proposal. The nearest attempt at polynomial code generation is [4].
The context is quite different: generating code after a non-rectangular loop nest
has been transformed into a single loop by linearization. The approach consists
in inverting the ranking function to recover the original loop counters, using a
standard computer algebra systems, which is limited to the fourth degree. It
may be that this limit can be raised by using cylindrical algebraic decomposi-
tion as in Groesslinger’s work. The approach may also be applied to the present
problem; a detailed comparison must wait for further work.

Lastly, there has been many attempts, not to handle polynomials, but to
avoid them: see for instance delinearization algorithms [19] or CRP [9] where
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multidimensional streams were proposed to avoid linearization, or in parametric
tiling schemes [17, 14, 7] or focus on specific tile aspect ratios [15].

5 Conclusion and Future Work

In this work, we have presented a new solution to the problem of generating
parallel code from polynomial schedules. Two observations: first, an affine form
is a polynomial of degree one, hence the method can be applied to polyhedral
programs. How it compares with standard approaches like CLooG is an open
question. Second, observe that each task is processed independently, hence the
generation is done in linear time in the number of tasks and is independent of
the number of task instances.

The present solution is specific to the selected pair of languages, here Open-
Stream and X10. We expect that it can be adapted to other situations, like
sequential programs, Kahn Process Networks, SDF, Habanero C and Java, and
perhaps OpenMP itself.

An interesting question is whether OpenStream and X10 have equivalent
expressive power. The answer is probably negative. For instance, OpenStream
programs may have deadlocks, while X10 does not, leaving out intricate con-
structs where clocked and unclocked asyncs are mixed inside the same clocked

finish. In this sense, the existence of a schedule for the OpenStream program is
a certificate of equivalence, and the present proposal is an explicit construction
of the equivalent program. Conversely, X10 can have races while OpenStream
is single assignment and cannot.

However, the present approach generates only task parallelism, hence the
degree of parallelism is bounded by the number of tasks. But an OpenStream
program may have data parallelism as for instance when an iterator is missing
in a schedule, or when a schedule has rational coefficients. How to generate
code in these cases is a subject for future work.

The resulting program may be far from optimal. Consider for instance the
following pseudo-OpenStream code:

stream s, t;

task a {

write once in s; // theta = 0

}

task c {

read once from t; // theta = 2;

}

task b {

read once from s; // theta = 1;

write once in t;

}

This program is clearly sequential. The generated code seems to be parallel, but
its sequentiality is encoded in the number of advance instructions preceding each
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task. Another case is that of a program having fork / join parallelism, which
can be encoded very simply by generating several clocked asyncs instead of
only one. A last example is a part of code using only one activity, where
advance instructions are superfluous. These optimizations can be left to a
post-processing pass, perhaps using techniques borrowed from [12].

Lastly, this work is only a slight extension beyond the polyhedral model.
How to enlarge its applicability is probably one of the most urgent challenges
for the future of compiler construction for parallel languages. Will the solution
be in the design of further models, or in approximation methods, or in more
powerful mathematical tools, only time will tell.
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