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Abstract

We consider homogenization problems for linear elliptic equations in divergence form. The
coefficients are assumed to be a local perturbation of some periodic background. We prove W?
and Lipschitz convergence of the two-scale expansion, with explicit rates. For this purpose, we
use a corrector adapted to this particular setting, and defined in [10, 11|, and apply the same
strategy of proof as Avellaneda and Lin in [1]. We also propose an abstract setting generalizing
our particular assumptions for which the same estimates hold.
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1 Introduction

The present paper follows up on the articles [9, 10, 11, 12]. In these works, we studied homogenization
theory for linear elliptic equations, for which the coefficients are assumed to be periodic and perturbed
by local defects, that is, L"(R?) functions, r €]1,+oo[. As expected, the macroscopic behavior, in
the homogenization limit, is defined by the periodic background only. However, if one is interested in
finer convergence properties, possibly with a convergence rate, then the defect may have an impact.
In such a case, a corrector taking the defect into account is necessary. Its existence has been proved
in [9] in the case r = 2, and in [10, 11] in the general case. Formal arguments in [9, 10] indicate that
this adapted corrector is important for having a good convergence rate and/or convergence in a finer
topology.

The aim of the present paper is to prove that the corrector constructed in [9, 10, 11, 12] indeed
allows for such convergence results. The work [1] and, more recently, [25], are the two major reference
works on these issues. They both address the periodic setting, and we will briefly summarize the
important results they established in Section 1.1 below.

Our proofs, in the setting of a periodic geometry perturbed by a local defect, closely follow the
general pattern of the proofs exposed in [25] and reproduce many key ingredients and details of both
[1] and [25]. For the sake of clarity and brevity, and also with a specific pedagogic purpose because
the arguments may become very rapidly technical, we have however decided to present our proofs in
the particular case of equations, as opposed to systems. Some simplifications of the proofs of [1, 25],
which all apply to systems as well as to equations, are then possible. The reader might better, then,
appreciate the string of key arguments, in the absence of some unnecessary technicalities. Similarly, we
have also provided some additional internal details of the proofs which can be useful to non experts for
a better comprehension. Our results carry over to elliptic systems (satisfying the Legendre condition,
as is the case for [1, 25]), provided some of the arguments are adjusted, and then follow those of [1, 25]
even more closely. We did not check all the details in this direction.

One interesting feature we emphasize in the present contribution is that the results of [1, 25] of
the periodic setting indeed carry over not only to the perturbed periodic setting, but also to a quite
general abstract setting, which we make precise in Section 1.2 below. The latter observation about
the generalization of the results of [1] and related works to non periodic setting is corroborated by the
recent works [5, 17]. Some of the necessary assumptions presented there (in the context of random
homogenization) are quite close in spirit to our own formalization.

We consider the following problem:

—div [a (g) Vue} =f in Q,
u®=0 on O

(1.1)

Here, Q is a domain of R?, the regularity of which will be made precise below. The right-hand side f is
in L9(Q) for some ¢ €]1, +00[, and the matrix-valued coefficient a satisfies the following assumptions:

a=a" +a (1.2)
where aP¢" denotes a periodic unperturbed background, and a the perturbation, with

aP®"(x) +a(x) and aP°(z) are both uniformly elliptic, inz € R?,
arr e (L°(RY))

ac (L=RY)N L’"(Rd))dXd, for some 1 <7 <400 (1.3)
dxd
aPer, a € (Cﬁ;ﬁ‘f (Rd)> for some o >0,

where C2%(R%) denotes the space functions that are, uniformly on R?, Hélder continuous with coef-
ficient .



From now on, we will not make the distinction between the spaces L(€2), (L4(€2))" and (L%())**¢,

denoting ||z||zq(q) the norm of z even if z is a vector-valued or a matrix-valued function. The same
convention is adopted for Holder spaces C%,

We also note that we assume d > 3. All our proofs and results can be adapted to the dimension
d = 2. Of course, dimension 1 is specific and can be addressed by (mostly explicit) analytic arguments
that we omit here.

All the results we present here have been announced in [8], and are part of the PhD thesis [23].

1.1 The periodic case

In the periodic case, that is, @ = 0, it is well-known (see for instance [6]) that problem (1.1) converges
to the following homogenized problem
{—div [@*Vu*]=f in Q

1.4
u* =0 on 099, (14)

where a* is a constant matrix. It is classical that u* — u* in L%*(Q), and that Vu® — Vu* in
L2(Q). In order to have strong convergence of the gradient, correctors need to be introduced, that is,
the solutions to the following problem

—div (" (z) (p + Vwp per(z))) =0,  wp per is periodic, (1.5)

posed for each fixed vector p € R%. It is well-known (see, here again, [6]), that problem (1.5) has a
unique solution (up to the addition of a constant), for any p € R?. Given (1.3), elliptic regularity
implies that Vuw, pe, € C2%(R?). Introducing the remainder

unif
d
Rier(@) = 07 (x) = (@) = & Y wpere, () Oy (@), (1.6)

— 0 in L?(Q), with the following convergence rate:
IV Rper|l oy < Cllfllzaey Ve, (1.7)

for some constant independent of f. The convergence rate O(y/2) is mainly due to the existence of a
boundary layer, and an O(e) convergence can actually be proved for interior domains.

In [18, 19|, the generalization of the above results (both (1.7) and interior convergence of order €)
are proved under more general assumptions (€2 of class C1'!, a € L and the corrector is not assumed
to have its gradient in L°°). Also in [19], in the case of Lipschitz domains, a convergence up to the
boundary of order €7, for some 0 < v < 1/3, is established.

In order to have a O(e) convergence rate up to the boundary, an adaptation of the corrector is
needed. This question was studied in [29] in the case of non-Holder coefficients. For the case of
systems (as opposed to equations) it was studied in [24] (actually also with non-homogeneous Dirichlet
conditions).

Issues regarding the convergence of the remainder are also addressed in [1], where Avellaneda and
Lin proved uniform (with respect to €) continuity for the operator L. which, to the couple (f,g),
associates the solution u® of (1.1) with Dirichlet condition u® = ¢g. This continuity holds from L?(€2) x
C%7(09) to CO*(Q) if ¢ > d, with p = min(vy,d/q). If ¢ < d, with homogeneous Dirichlet conditions,
the continuity holds from L4(Q) to Wb (Q), with 1/r+1/q = 1/d. These results also hold for systems,
and actually improve an earlier and more restricted work [2]. In [3], the same kind of results were
extended to equations in non-divergence form. In [25], estimates were proved for the convergence of
the Green functions associated to (1.1), both for Dirichlet and Neumann conditions. These estimates
allow to prove the convergence rate of R® in Wh?,

All the above results are valid only for periodic coefficients. In the preprint [17], some important
results of [1] were extended to the stochastic case, using the idea that, in [1], periodicity was only used
to ensure some uniform H-convergence. This is also a key idea of the present work.

Eer

the results of [6] imply that VR



1.2 The periodic case with a local defect

In order to develop the approximation estimates for (1.1)-(1.2)-(1.3) for @ # 0, we define the corrector
problem

— div(a(p+ Vwy)) =0 in R%

w@l (1.9

In the special case @ = 0, a Liouville-type theorem was proven in [4], showing that (1.8) reduces to
(1.5): up to the addition of a constant, the only solution that is strictly sublinear at infinity is the
periodic solution. In the case @ # 0, it has been proven in [9, 10, 11] (see also the recent work [21],
that brings a different perspective) that Problem (1.8) has a solution, that reads as

Wp = Wp,per + Wp, (1.9)

where wp, per is the solution to (1.5), w, is the solution to

— div (aVw,) = div (@(p + Vwp per))  in RY (1.10)

and, if a € L"(RY), Vw, € L"(RY), for any r €]1,+oc[. Even if a # 0, the proofs of [6] still imply in
this case that v — u* in L*(Q) and Vu. — Vu* in L*(Q), as € — 0, where u* solves (1.4), and
the matrix a* is equal to the periodic homogenized matrix. However, in order to improve and quantify
this convergence, [9, 10, 11] show that we need to replace the periodic corrector (1.5) by the solution
o (1.8), and define

d
Re() = u (o) =’ (@) — € ), (;) oju* (), (1.11)

instead of (1.6). Then we have:

Theorem 1.1 (Local defects in periodic backgrounds). Assume d > 3. Consider (1.1), where
the matriz-valued coefficient a satisfies (1.2), and aP*" and a satisfy (1.3). Assume that Q is a C*!
domain, that Q1 CC Q, that r # d and define

d
vy = min (1, ) €]0,1]. (1.12)
T
Let f € L?(Q), and let u®, u* be the solutions to (1.1) and (1.4), respectively. Define R by (1.11),

where the corrector w, withp =e;, 1 < j <d, is defined by (1.9)-(1.10)-(1.5) (thus in particular solves
(1.8)). Then Re satisfies the following:

1. R® € HYR), and

IR 120y < Ce (I Fll 20 (1.13)
VR 120,y < Ce (I fll2 (- (1.14)

2. If f € LY(Q) for some q > 2, then R € W14(Q) and
IVE Lo,y < C” [ fll Lo (1.15)

3. If f € COP(Q) for some 3 €]0,1[, then R € WH>(Q) and

VR e gy < Ce¥ In (24 €70) [ flloos (), (1.16)

where, in (1.13) through (1.16), the various constants C > 0 do not depend on f nor on e.



Given (1.12), this result gives two different behaviors of the remainder R° according to r < d or
r > d. In the first case, the defect is so localized that the estimates are exactly those of the periodic case
[25]. On the contrary, if r > d, the defect is spread out, and the quality of approximation deteriorates
as r grows. In the critical case r = d, we can apply the results of the case r > d in order to have the
above estimates, in which £ is replaced by ", for any v < v, = 1.

As already pointed out in [10], the case r = d is a critical case for the existence of a corrector.
Indeed, even if a?*” = 1, hence VwP®" = 0, the corrector equation reads as

—Aw, = div (ap) .

Hence, as |z| = +o0, wy(z) ~ C’/ Wdy, for some constant C' # 0. This makes clear

the fact that a(y) ~ |y|~! is reminiscent of the criticality of the space LI(R%).

Remark 1.2. In Theorem 1.1, the domain Q) is assumed to be C*'. However, as far as estimates
(1.13)-(1.14)-(1.15) are concerned, a CY'! reqularity is sufficient. The reqularity C*' is only necessary
to prove that R € W1>°(Q).

1.3 Abstract general assumptions

As we shall see below, Theorem 1.1 is a consequence of a more general, abstract, result that we state
in the present subsection. The point is that, in the theory of [1], the periodicity of the matrix-valued
coefficient a is essentially useful in order to have a bounded corrector. This assumption may be replaced
by uniform H-convergence (a notion which is made precise below in Definition 1.3).

Let us now emphasize that (1.1) considers a rescaled coefficient a (f), which is a strong assumption
of our setting. This implies, since a* is defined as some weak limit of functions of z/e, that a* is
homogeneous of degree 0. Hence, if it is continuous, it must be a constant. This is why we hereafter
assume that

*

a® is a constant matrix. (1.17)

We now introduce a set of assumptions that formalize our mathematical setting. We consider a
matrix-valued coefficient a that satisfies the following conditions

Assumption (A1). There exists p > 0 such that
1
vo e RY, VEERY,  pléf® < (a(2)€) - € < ;|€|2'

Assumption (A2). There ezists o €]0,1] such that a € C%%(R?).

unif

Assumptions (A1) and (A2) are standard, and were made already in [1]. We now give more specific
assumptions that aim at generalizing periodicity. The first one is the existence of a corrector:

Assumption (A3). For any p € RY, there exists wy € Hlloc(Rd) solution to the corrector equation
(1.8).

As in the periodic case, we assume that the gradient of the corrector is bounded uniformly:

Assumption (A4). For any p € RY, the gradient of w, is in L2 (R?), that is:

unif

”vaHLEmf(]Rd) 1= sup [[Vwy| r2(B(,1)) < +00,
R4

where B(x,1) denotes the unit ball of center x.

In the periodic case, we have Vw, (g) — 0 as € — 0. Moreover, this property is uniform with

respect to translation. This is a property we will impose here:



Assumption (A5). For any sequence (y,)nen of vectors in R% and any sequence ¢, — 0, and for

any p € R4,
/ Vuw, (m +yn> dr — 0,
Q En n—-+oo

where Q is the unit cube of RY.

With a view to addressing non-symmetric matrix-valued coefficients, note that, in contrast to
(1.2), the fact that a satisfies Assumption (A3)-(A4)-(A5) does not imply that a’ does. We will in
some situations need to assume that a’ also satisfies Assumption (A3)-(A4)-(A5), and likewise other
assumptions that follow below. In such a case, we denote by wg the corrector associated to the
coefficient a7

We will assume that the convergence to the homogenized matrix a* is uniform in the following
sense:

Assumption (A6). There exists a constant matriz a* such that, for any sequence (y,)nen of vectors
in R?, any sequence €, — 0 and for any p € R?,

X T %
/a(+yn> (p+va ("’Z/n))dx > a4 p,
Q En En n—-+400

where the matriz a* is the homogenized matriz in (1.4).

It is stated in Proposition 2.4 below that this implies uniform H-convergence, in the sense of the
following definition:

Definition 1.3. We say that the matriz-valued coefficient a (%) uniformly H-converges to a* if for
any sequence €, — 0 and any sequence (Yn), cn »

x
a ( + yn> H-converges to  a*.

n

For the definition of H-convergence itself, we refer to [27, Definition 1] or [32, Definition 6.4].

As we will see below, an important quantity in order to analyze the behaviour of the remainder R®
defined by (1.11) is the potential associated with a. In order to define it, we first introduce the vector
field M}, defined by

d
Mi() = ajj = ) aij(@) (O + Ojwe, (2)), 1<i<d, (1.18)
j=1

which is divergence-free, according to (1.8). Hence, formally, there exists B,ij (z), which is skew-
symmetric with respect to the indices 4, j, and is solution to div(By) = My, that is,

Viajake {17"'7d}7 Bz;j = *Biz (119)
Vi kef1,...,d}y, Y 0B =Mj. (1.20)
=1

A simple way to build this potential B is to solve the following equation
Vi, j, ke {l,...,d}, —AB}) =09;M;—dMj. (1.21)

It is clear that if B solves (1.21), then it satisfies (1.19). Moreover, taking the divergence of (1.21), we
get —A(div(B)) = —AM, that is,

d
Vike{l,...,d}, —A <Zai3;'g> = —AM].
=1



Hence, up to the addition of a harmonic function, we find (1.20). In most cases, this harmonic function
is necessarily a constant (think for instance of the periodic case).

The above construction can be made precise in the periodic case (see [22], pp 26-27). We will see
below how and why the construction also makes sense in our setting (1.2)-(1.3).

The link between B and R° will be clear below when we write the equation satisfied by R° (see
(2.6)-(2.7)). In order to apply a method close to that of [1], we are going to assume that, in some
sense, ewp(z/¢) and eB(x/c) vanish as ¢ — 0. This is the meaning of the following two assumptions

Assumption (A7). There exists C > 0 and v € [0,1] such that, for any x € R¢, any y € RY, and
any k € {1,...,d},
-yl >1 = |we, (x) —we, (y)| < Ol —y| .

Assumption (A8). There exists a potential B € H (R?Y) defined by (1.21), and there exists C > 0
such that, for any x € R? and any y € R?,

lt—y|>1 = |B(x) - B(y)| < Clz —y|"".
Here, the constant v € [0,1] is assumed to be the same as in Assumption (A7).

Proposition 5.5 below will establish that, in the case of a coefficient a satisfying (1.2) and (1.3),
the above assumptions are satisfied with v = v, defined by (1.12).

Our main result in this general abstract setting is

Theorem 1.4 (Abstract general setting). Assume d > 3 and that the coefficients a and a™ (and
their respective correctors w, and wl) satisfy Assumptions (A1) through (A6), and (A7)-(A8) for
some v > 0. Assume that Q) is a CQ’f) domain, and that Oy CC Q. Let € €]0,1] and let u®, u*, R° be
defined by (1.1), (1.4), (1.11), respectively, where f € L*()). Then we have
1. R* € HYR), and
1B 20y < Ce¥l[ fll2(9) (1.22)

IVE®|| 20,y < Ce”[| fll22(0)- (1.23)
2. If f € LP(Q) for some p > 2, then R € WYP(Q) and

HVREHLP(Ql) < Ce||fllLr (- (1.24)

3. If f € COP(Q) for some B €)0,1[, then R® € W1>°(Q) and

VRl e,y < C"In (24 70) [ fllcos ), (1.25)

where in (1.22) through (1.25), the various constants C > 0 do not depend on f nor on €.

The proof of Theorem 1.4 will consist in applying the strategy of proof of [1] and [25], which
were originally restricted to the periodic case. Here, periodicity is replaced by Assumptions (A3)
through (A8). The proofs follow those of [1, 25], but we need to everywhere keep track of the use of
assumptions (A3) through (A8), and check that these properties are sufficient to proceed at each step
of the arguments.

Remark 1.5. As we already pointed out in Remark 1.2 for the specific case of localized defects, in
Theorem 1.4, the assumption that Q is of class C*' is, here again, only needed for the estimate
IVE®|| £ (0)-



Given this result, it is clear that proving Theorem 1.1 amounts to proving that, in the case of a
defect, Assumptions (A1) through (A8) are satisfied with v = v, defined by (1.12).

Our article is organized as follows. In Section 2, we start with some comments on Assumptions
(A1) through (A8). Then we study the existence and uniqueness of the potential B, and we relate it
to the remainder R°, using (2.6)-(2.7), that is,

— div (a (g) VRE) = div (H9),
with 4 .,
H(x)=¢ Z a;j (g) We, (g) 0;0ku” () — € Z By (g) 0;0ru” (),
jk=1 jik=1

Our method to prove estimates on R° relies on some regularity properties of the operator — div(a(z/¢)V-)
on the one hand, and bounds on the right-hand side H® on the other hand. In Section 3, we prove

such regularity estimates in the homogeneous case (that is, if the right-hand side is 0). In Section 4,

we extend these results to the inhomogeneous case. Finally, in Section 5, we conclude the proof of

Theorem 1.4 (abstract setting) and that of Theorem 1.1 (local defects).

2 Preliminaries

2.1 Some remarks on our assumptions

Alternative formulations of our Assumptions. Assume (A1), (A2) and (A3). Then, it is clear
that Assumptions (A4) and (A5) are equivalent to

YV, (x—&-yn) .0 in L(D),

En n—-—4oo

for any bounded Lipschitz domain D, any p € R?, and for any sequences (Un) ey and g, — 0.
Similarly, if Assumptions (A1), (A2) and (A3) are satisfied, Assumptions (A4) and (A6) are equiv-

alent to
T T
- n - n —_— * i L2D7
o(Zom) (v (2 4m)) o w2

for any bounded Lipschitz domain €2, any p € R¢, and for any sequences (Un)pen and g, — 0.

Another important point is that Assumptions (A4) and (A5) are in fact equivalent to some strict
sublinearity condition at infinity for the corrector:

Lemma 2.1. Assume that the matriz-valued coefficient a satisfies Assumptions (A1) and (A3). Then,
it satisfies Assumptions (A4) and (A5) if and only if

Vp € RY, lim sup [wp(w + ) = wp(y)] =0. (2.1)
|x|—+o0 yER 1+ |JL‘|

Proof. We first assume that Assumptions (A4) and (A5) are satisfied and prove (2.1) using a contra-

diction argument. If (2.1) does not hold, then there exists two sequences (y,)nen and (x,)nen such

that

[wp(zn + Yn) — wp(yn)|
1+ [z

|5 | W +o00, and >~ >0,

where ~ does not depend on n. Defining ¢,, = |z,|~! and Z,, = 2,,/|2,|, this inequality implies

en =0, |Tx]l=1, e, >~ >0.

Tn
Wp (5 + yn) — wp(Yn)




Hence, defining v, (x) := ¢, <wp (; + yn> - wp(yn)), we have

v (0) =0, |on(Zn)l =v>0, |T,]=1. (2.2)

Moreover, Assumption (A5) implies

Vo, = Vuw, (E + yn) Lo 0 in L} (RY). (2.3)

n

Since — div <a (i + yn) V (on(z)+p- x)) = 0, Nash-Moser estimates [16, Theorem 8.24] imply that

vy, is bounded C%8(B(0,2)) for some 8 > 0. Hence, up to extracting a subsequence, it converges in
C°(B(0,1)) to some v € C°(B(0,1)). Now, extracting a subsequence once again, we have Z,, — 7,
with |Z| = 1. Hence, (2.2) implies

0(0)=0, [@)|=7>0, |7]=1.

Since (2.3) implies Vv = 0, we have reached a contradiction.
Conversely, if (2.1) is satisfied, then there exists A > 0 such that

Vo€ B(0,A)Y, VYyeRY |wy(r+y) —wy(y)| <14+ |z

If necessary, we can take A large enough to have A > 2. In particular, we have |w,(x+y)—w,(y)+p-z| <
1+ A+ Alp| on 0B(0, A). Recalling that

—div, [a(x + y)vx (wp(x + y) - wp(y) +Dp- .’E)] =0,
in B(0, A), this implies that

Then, we apply the Caccioppoli inequality, which gives a constant C' depending only on the coefficient
a such that
[ Ve a0 [ ) w4 (- )
B(y,1) B(y,2)

=C lwp(x +y) — wp(y) +p-2’de < C(1+ A+ Alp|) |B(0,2)].
B(0,2)

This implies Assumption (A4). In order to prove Assumption (A5), we integrate by parts, finding

/ Vwy, <x + yn) dx = / EnWp <x + yn> n(x)dx
Q En 8Q En

= jzz/m} En {wp (i + yn> — w, (—;; + ynﬂ n(z)dz.

Here, 8jS denotes the faces of the cube @, namely the set of equations {|x| < 1/2 k # j, x; = £1/2},
and n(x) is the outer normal to @ at point z. Applying (2.1), we find (A5). O

Logical links between our assumptions. We have the following logical links between the assump-
tions

Lemma 2.2. Assume that the matriz-valued coefficient a satisfies Assumptions (A1) and (A3).



1. If it satisfies Assumption (A7), then it satisfies Assumptions (A4) and (AS5).
2. If it satisfies Assumption (A8), then it satisfies Assumption (A6).

Proof. We first prove Assertion 1: if (A7) holds, then clearly (2.1) is satisfied. Hence, applying
Lemma 2.1, we have (A4) and (A5).
As for Assertion 2, B satisfies (1.20), hence

d d
/ Zaij (:c + yn) <5jk + 0jWe, (m + yn)) —aj | dv = / Z@B,’j (x + yn) dx
Q|j=1 En En Q4 En
= Z/ En (B,’j ( + yn) - B (yn)> e; -n(x)dz, (2.4)
j=179Q &n
where n(z) is the outer normal to @ at point x. Applying Assumption (A8), we have, for any x € 90Q,

€n < Ceplz|' 7% < Cla)er.

ij [ L ij
Bkj <€ + yn) - Bkj(yn)

Inserting this estimate into (2.4), we prove Assumption (A6). O

Remark 2.3. The above proof implies that, if B satisfies (2.1), that is,

lim (sup Bz +y) = B(y)|> =0, (2.5)

|z|— 400 y€ERd 1+ |£C|
then it satisfies Assumption (A6). Indeed, (2.5) is sufficient, with (2.4), to prove (A6).

Uniform H-convergence. First, we prove that under Assumptions (A1) through (A6), we have a
uniform H-convergence property, in the sense of Definition 1.3:

Proposition 2.4. Assume that the matriz-valued coefficient a satisfies Assumptions (A1) through

(AG6). Then, for any sequence (yn),cy of R? and any sequence (e,,) of positive numbers such that

en — 0, and any bounded domain 2, the coefficient a (8‘% + yn) H-converges to a* on Q, where a* is
defined by Assumption (A6).

neN

Proof. This is a standard application of homogenization tools (div-curl lemma in particular, see [22,
Lemma 1.1]), so we skip it. The only important point is that all the estimates, hence the convergences,
are uniform with respect to y,,. O

The following example proves that (A6) is not satisfied in general: in dimension 1, define

a(x) = (1+Inl)”

2 if 2”§$§2”+10g27n nez,
1 otherwise.

Then it is clear that a* = 1, and that the corrector is equal to w’ = 177‘1 Hence, using y, = 2™ and
en =log(1l + |n|)27", we have

1
/ a(yn+m>w’ (yn+z>d1‘:—1.
0 En En

Hence, Assumption (A6) is not satisfied.
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The matrix-valued coefficients ¢ and a”. If the matrix-valued coefficient a is not symmetric,
we will in the sequel need to assume that both a and a satisfy assumptions (A3) through (A8) (note
that (A1) and (A2) are stable under transposition of a).

In full generality, the existence of strictly sublinear correctors satisfying Assumptions (A4) and (A5)
for the coefficient a does not imply the existence of correctors for the adjoint coefficient o satisfying
the same properties, as the following two-dimensional counter-example shows it. Note that it extends
mutatis mutandis to any dimension d > 3.

Consider
1
a(q;l,g;Q) = (0 7(:]]-52)) ,

where v € L*°(R), and |y| < 1, so that a is indeed uniformly elliptic. Then div(ae;) = div(aez) =0,
hence the correctors associated with a are all equal to 0. We also compute

div (a’e1) =/ (z2).

Assume that o’ admits a corrector for the vector ey, and that it sastisfies (A4) and (A5). We denote
it by wl . It is solution to

dtwe, + 0z (y(w2) (1wl +1)) + 3wy, = 0.

Hence, v = 0w’ is a solution to Av+0s (y(z2)d1v) = 0. This is an elliptic equation, and v € L2, ;;(R?)
according to (A4). Hence, applying the Liouville theorem, v is a constant. If this constant is not 0,
then w? cannot be sublinear at infinity. Hence v = 0, which means that wl depends only on z».

Hence 93wl = —+'(z2). This implies

weT1 (z1,29) = Co — / (v(2) + Cq) dz.
0

We choose for v the function

1

v =x*7, with ~(z)= 3 Z (1[22n+1722n+2] (2) + 1[_22n+27_22n+1]<z)) ,
neN

where y is a smooth compactly-supported function such that 0 < x <1 and [ x = 1. For this v, it is
easily seen that weT1 cannot be strictly sublinear at infinity.

On the value of v,.. Let us point out that the value (1.12) of v, is optimal in the following sense:
first, in the periodic case, we recover the results of [25] (with v, = 1, that is, both the correctors and
the potential are bounded). Second, we have the following example, in dimension one, in which |(R5)/|
is bounded from below, up to a logarithmic term, by €. It is unclear to us whether a similar example
can, or not, be constructed in higher dimensions. It however strongly suggests that the convergence
rate stated is sharp.

Consider
aeL"(R), 0<a<l1, a(x)=a(—z), and " =1.

Then a* = 1, and the corrector is easily seen to be equal to

w(z) =w(z) = — /Ow Mdz.

1+a(z)
In the special case f =1, if we solve (1.1) and (1.4) with Q =] — 1, 1], one easily computes
X '
) ()= ————, (W) (2) = —=.
(W) (@) = - — @ (u®)" (z)

11



Hence, computing (R¢)’, we have

(B (2) = () (2) = (@) (2) 2w (2) (@) (@) = v’ () () (@)
.z - z/e a(z) B a(g) - MEM
T Tira f 5/0 Tra)™  "Tva(z) ~ 6/0 Tra) ™

Hence, since 0 <a <1,

Using

a(z) = , 60>0,
(14 [2)"7 (1 + log(1 + |[)1+9) "/

we find that, if x > 0,

|(R%) ()] =

N ™

/.L/E dZ
0 (142" (1 +log(1 + [2])+6)"
/I/E dZ
o (14 |z/2)Y" (1 +log(1 + |z|/e)1+o)/"
_¢ela 1

2 & (14 |al/e)" (1 +log(1 + |a|/fe)1+8) "

>

N ™

—(1+8)/r

> Ce'/" log (e71)

Hence, estimate (1.14) is optimal, up to logarithmic terms.

2.2 Equation satisfied by the remainder
We now prove

Proposition 2.5. Assume (A1), (A3), (A4), and that there exists B € Wé’cl (R?) solution to (1.19)-
(1.20). Then R° defined by (1.11) solves

— div (a (g) VRE) = div (H?), (2.6)
Hi(r)=¢ _%d_:l aij (g) We,, (g) 9;0ku”(z) — € _%d_:l By (g) 0;0pu” (), (2.7)

where w,, is the corrector defined by (1.8) with p =e;, 1 <k < d.
Proof. By definition of R°, that is, (1.11),

VR () = Vus (z) — V' (z) Zi: D () Ve, (g) —c Zj: we, (g) Vo ut (z).

We have, using — div [a (g) Vue} = —div (a*Vu"),
i (a(2) VR) —aiv | (a (2) =07 9 0 (£) iaju*(xw% ()
rea(2) Y w, () Vo)

=1
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in the sense of distributions. Using the definition (1.18) of My, = (M},..., M) this reads as

—div (a (g) VRE) =div |- Zdjaku*(x)Mk (g) +ea (g) Zd:wej (g) Vo,u*(x)
k=1 1

We concentrate on the first term of the right-hand side, and use div(My) = 0:

gla’“u*(z)M’“( )] ZZM ( )3j3ku*($)-

We now use the potential B defined by (1.19)-(1.20), and write
d x
div Oru* () My | —
o 2)
d d d . d d d -
= Zai Z ZEBI? (g) jopu*(z) | — Z Z Z B (E) 0;0;0ku*(x).

i=1 j=1k=1 i=1 j=1 k=1

div

d d d o
=YY > oy (;) 000" (z)

The right-most term vanishes because, for each k, By is skew-symmetric and D? (Oyu*) is symmetric.
O

Considering (2.6)-(2.7), a natural strategy to prove bounds on R¢ is the following: first prove bounds
on He¢, then prove elliptic regularity estimates for the operator — div(a(z/e)V-) that are uniform with
respect to €.

The following two Lemmas achieve the first step of this strategy, establishing bounds on H*®.

Lemma 2.6. Assume (A1) through (A4). Then, the correctors defined by Assumption (A3) satisfy

Vp e RY, YV, € CO%(RY). (2.8)

unif

If in addition Assumption (A8) holds, the potential B defined by (1.21) satisfies

VB e C"%(RY). (2.9)

unif

Proof. Estimate (2.8) is a direct consequence of elliptic estimates [16, Theorem 8.32|. Similarly, (1.21)
reads ~ABY = 9;Mj — &;M] = div(Mje; — M]e;), where M is defined by (1.18). Using (2.8),
e C%* (R%). Thus, applying [16, Theorem 8.32] again, we have (2.9). O

unif

Lemma 2.7. Assume (A1)-(A2)-(A3), and (A7)-(A8) for some v > 0, and let H® be defined by (2.7).
Then, for any R > 0 and any q € [1,+o0], if D?*u* € L1(S2), we have

1H | LaonB(o,r)) < Ce"R'™" HDQU*

L9(QNB(0,R)) * (2.10)

where the constant C does not depend on D?*u*, R, e.
Moreover, o being defined by Assumption (A2), for any B € [0, ], if u* € C*P(Q), we have

[(H*]co.s0nB0.R) < Ce"R'™" [D*u”] VPRV HDZU*

cosanBo,r) T C¢ (2.11)

L>=(QNB(0,R))’
where C does not depend on D*u*, R, €.
We recall here that the Hélder semi-norm [-]co.s(q/y is defined by

[V]go.8(qry = Sup
C0.8(Q) etyesy |$_y|ﬁ
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Remark 2.8. Lemma 2.7 is proved under Assumptions (A1), (A2), (A3), (A7), (A8) only. However,
applying Lemma 2.2, this in fact implies that Assumptions (A4), (A5), (A6) are satisfied.

Proof. First, it is clear that

d
Hl1 <e{ lalzemn 3 e (7)) +He Gl
1EE] (903(073))5<IIGIIL (Rd)kzzl Yer \2 )l = om0, m)) e/l @nB(0,R))

x || D*u*

Le(Q2NB(0,R)) * (2‘13)

Note that, we, and B being defined up to the addition of a constant, we can always assume that
We, (0) = 0 and B(0) = 0. Hence, if |z|/e > 1, Assumptions (A7) and (A8) imply

o ()] < (E) 7 Jp@)]se() @10

If |z|/e < 1, we use Lemma 2.6, which implies that Vw,, € L>(R?) and VB € L>(R?), whence

o (G| ze ()7 @) sclee (M) e

Inserting (2.14)-(2.15) into (2.13), we find (2.10).
Next, we prove (2.11), writing

d

) 2, %
[HE]co.s npo,ry) < Ellall o re) ;; Jre (E)HLw(mBm,R)) R e

d
i 2 %
+ellalpome Y [wek <g):|00’5(QﬂB(O ) 106" || e @m0, )
h=1 ’

e {a <g)}C0»B(QmB(O,R)) ; Hwek (E) HLw(mB(o,R)) 1P Le=(QNB(0,R))

- 2 % - 2 %
te HB (5) HLw(mB(o,R)) [P ]Co'ﬁ(QﬂB(O,R)) te {B (E)}Co,E(QﬂB(O,R)) |D% HL‘”(QHB(QR))

(2.16)
Here again, we use (2.14)-(2.15), which imply
d . .
3 [ G [zl < CeriRl @17
= e/ llLe=(@nB(0,R)) e/ llLe(@nB(0,R))

Using Assumption (A2), we also have, since § < «,
[a (7)} < e’ (2.18)
e/ 1co.s@nB(0,R))
Using (2.8), we have, for |z —y| < ¢,

|€w€k (%) — EWe, (%)|
|z —y|?

< C|[Vwe, ”Loo(Rd) |z — y|17ﬁ
= C|[Vwe, || oo gay [2 = y[" Pl = y|'™" < O Ve || poo (gay € PR
If |z — y| > &, we use Assumption (A7), which implies

|‘5w€k (%) — EWey, (%)’

< Ce¥|lx —y|'=Pv = Ce¥|x — y| Pz —y|' 7Y < Ce¥ PRV,
|z =yl
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Collecting the above estimates, we obtain

[w}e’“ (§>}C0,ﬁ(ﬂmB(O,R)) < oePR. (2.19)

A similar argument allows to prove that

[gB <§>}CO=B(QHB(O,R)) < O PRI, (220)

Hence, inserting (2.17), (2.18), (2.19), (2.20) into (2.16), we find (2.11). O

Next, we are going to prove elliptic regularity estimates for the operator — div(a(z/¢)V-) that are
uniform in €. This will in turn allow to prove estimates on R° using (2.6).

3 Estimates in the homogeneous case

Our aim is now to prove, as a first step, that, if the coefficient a satisfies (A1) through (A6), then a

solution v to .
—div(a(—+4y)Vv°) =0, 3.1
€

satisfies Lipschitz bounds wuniformly in ¢ > 0 and y € R%. To this end, we apply the compactness
method of Avellaneda and Lin [1]. Loosely speaking, since as ¢ vanishes, the equation homogenizes
into

div (a*Vv*) = 0,
for which Lipschitz bounds hold, thus, for e sufficiently small, such bounds should survive. On the
other hand, for ¢ "large", bounded away from zero, they also hold, uniformly, by standard elliptic
regularity results, thus, intuitively, the result.

3.1 Holder estimates

The main result of this Section is a generalization of [1, Lemma 24] to the present setting:

Theorem 3.1. Assume that the matriz-valued coefficient a satisfies (A1) through (A6). Assume that
Q is a C>! bounded domain, that B €)0,1], y € R, and g € C%P (B(O,l)). Assume that v is a
solution to -

_ div (a (g +y) WE) ~0 in 0N B(0, 1),

v =g in (0Q) N B(0,1).

Then there exists a constant depending only on a, 8 and Q such that

[v*llco.s@nB0,1/2)) < C <||9||co,ﬁ((ag)n§(0,1)) + HUEHLz(QﬂB(O,l))) (3:2)

In order to prove Theorem 3.1, we first assume that B(0,1) C Q. In such a case, (3.2) becomes an
interior estimate. Its proof is the matter of Lemma 3.2 and Lemma 3.3 below. In a second step, we
allow for B(0,1) to intersect 0§ and prove the same type of estimates (Lemma 3.4 and 3.5 below).

We first prove a result that generalizes [1, Lemma 7] (with f = 0 there) to the present setting.

Lemma 3.2. Assume (A1) through (A6), and let 8 €]0,1[. There exists 6 €]0,1/4] depending only
on p (see Assumption (A1)) and (3, there exists a ¢ > 0 depending only on a, B and 0, such that,
Vy € R?, if v° is a solution to

— div (a (g n y) Wf) — 0 in B(0, 1), (3.3)

2
v® 7][ v®
B(0,0)

then

]{3(0,0)

dx < 925][ v ()] da. (3.4)
B(0,1)
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Proof. We reproduce the proof of [1, Lemma 7], and use, instead of periodicity, uniform H-convergence.
Consider v* a solution to —div(a*Vv*) = 0 in B(0,1/2). The matrix a* being constant, we have

2
l U* l 'U*
B(Oxé) B(Oy‘g)

* (|2 |12
dx < 62 ||V 2o (B0,0)) < 6° (| Vv 2o (B(0,1/2))

< 092][ lv* ()] da.
B(0,1/2)

The right-most inequality is a consequence of elliptic regularity results. It may be proved by successively
applying [16, Theorem 8.32], and [16, Theorem 8.24]. Hence, for 6 sufficiently small,
628

2
vt — v*| dr < ][ lv*(2)|? da: (3.5)
]{%(0,9) ]{9(0,9) 29+ J (0,172

We then fix such a 6§ and argue by contradiction to prove that v® satisfies

2
f v — f v
B(Oié) B(Oaé)

If it does not hold, then we can build sequences €, — 0 and y,, € R? such that

2
ol fon
B(0,0) B(0,0)

where v solves (3.3) (with ¢ = ¢, and y = y,). Normalizing v°" if necessary, we may assume

that |v&n
B(0,1)
bounded in H'(B(0,1/2)). Hence we can extract a subsequence converging strongly in L?(B(0,1/2))
and weakly in H'(B(0,1/2)), to some limit v* € H'(B(0,1/2)). Applying Proposition 2.4 (this where
we use assumptions (A1) through (A6)), we see that v* is a solution to — div(a*Vv*) = 0in B(0,1/2).
Hence it satisfies (3.5). On the other hand, strong convergence in L?(B(0,1/2) allows to pass to the
limit in (3.7), reaching a contradiction. We have proved (3.6), which clearly implies (3.4). O

62 o
dz < ST [v®(2)|” d. (3.6)
B(0,1/2)

628 - 2
dx > W][ [v¥" (2)]” de, (3.7)
B(0,1/2)

2=, Applying the Caccioppoli inequality [15, page 76|, the sequence (v°"), y is

Exactly as in [1, Lemma 8] (with f = 0 there), a proof by induction (which we therefore do not
include here) from Lemma 3.2 allows to prove the following

Lemma 3.3. Under the assumptions of Lemma 3.2, let 6 €]0,1/4] and £y be given by Lemma 3.2. If
e €]0,60%¢q[, and if v° satisfies (3.3), then

2
¢ ,UE ¢ ,UE
B(O,gc) B(O,ec)

Following the sketch of the proof of [1, Lemma 10] (with f = 0 and g = 0 there), and using uniform
H-convergence where periodicity was used in [1], we obtain

Lemma 3.4. Assume (A1) through (A6) with 3 €]0,1], and that Q is a CY* bounded domain such
that, say, 0 € OQ. There exists 0 €]0,1/4] and g9 > 0 depending only on a, B and Q, such that, for
any € < €9, any y € R, and any solution v° of

dz < 9%/3][ e (2) 2 da
B(0,1)

x
—di — ) =0 n QN B(0,1
iv (a (6 + y) Vv ) in 7( , 1), (3.8)
v* =0 on (0Q) N B(0,1),
we have
][ v (2)|? da < 925][ v° (z)| da. (3.9)
QN B(0,0) QNB(0,1)
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Proof. Assume temporarily that v* is a solution to

—div (a*Vv*) =0 in QN B(0,1),
. — (3.10)
v*=0 in (02) N B(0,1).
In particular, we have v*(0) = 0, hence, for any 6 €]0,1/4],
|2 |2
][ [v*|* < CO*[|Vv HLoo(QmB(o,1/4))'
QNB(0,0)
Applying the boundary gradient estimate [16, Corollary 8.36], we have
V™| Lo (nB(0,1/4)) < Cllv L= (@nB(0,1/2))
hence
%12 %112
b W <O anpio o (3.11)
QNB(0,0)
We apply [16, Theorem 8.25|. This gives [|v"|| 1w (onp(0,1/2)) < C |v*|?. Hence, inserting this

QNB(0,1)

f o2 < 092][ o ?
QNB(0,0) QNB(0,1)

Thus, for 8 > 0 sufficiently small,

928
][ lv*|? < 7][ lv*]?. (3.12)
QNB(0,0) 2 JanB,1)

We now fix 6 > 0 to this value, and argue by contradiction: if (3.9) does not hold, then one can find
a sequence ¢, — 0 and a sequence vy, such that, for each n the solution v°» of (3.8) (with ¢ = &,,

Yy = yn) satisfies
][ v |2 > 925][ v |2, (3.13)
QNB(0,0) QNB(0,1)

Multiplying v°» by a normalizing constant if necessary, we may assume that

][ |vsn
QNB(0,1)

The sequence (v°"),ey is bounded in H*(2 N B(0,1/2)) according to Caccioppoli’s inequality [15,
Proposition 2.1, p 76]. Hence, we can extract weak convergence in L?(Q2N B(0,1)N H' (2N B(0,1/2))
and strong convergence in L?(Q2 N B(0,1/2)). We Denote by v* its limit. Inequality (3.13) implies

0%][ lv* |2 < %8 liminf][ v |? < liminf][ |ven |2 :][ lv*|2.
QNB(0,1) n—=+o° JonB(0,1) n—=+o0 JonB(0,0) QNB(0,0)

In addition, Proposition 2.4, which is valid since we assumed (A1) through (A6), allows to prove that
v* is a solution to (3.10), hence satisfies (3.12). We therefore reach a contradiction, concluding the
proof. O

estimate into (3.11), we find

2

=1. (3.14)

Here again, using an induction argument as in the proof of [1, Lemma 11] (with f = 0 there), we
have

Lemma 3.5. Under the same assumptions as those of Lemma 3.4, with 8 > 0 and g9 > 0 defined by
the conclusion of Lemma 3.4, we have, for any integer k > 0, if ¢ < 0%,

][ "UE|2 < 921:6][ |'U€|2.
QNB(0,0%) QNB(0,1)
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The four above Lemmas allow us to proceed with the proof of Theorem 3.1. We first deal with the
case of interior estimate, that is, 9Q N B(0,1) = @, then we prove the general case.

Proof of Theorem 3.1. Assume first that 9Q N B(0,1) = §. Then the proof is exactly that of [1,
Lemma 9] with f = 0, in which periodicity is not used. Next, if Q2 N B(0,1) # 0, we follow the proof
of [1, Lemma 24]. O

3.2 Lipschitz estimates

In this Section, we prove the following result, which is the generalization of [1, Lemma 16] (with f =0
there) to he present setting:

Theorem 3.6. Assume (A1) through (A6). Lety € RY, R > 0, and assume that v € H'(B(0,2R))
is a solution to .
—div (a (g + y) Vo (:L')) =0 iin B(0,2R).

Then, there exists a constant C' depending only on the coefficient a such that

o 1/2
sup  |Voi(z)] < = ][ B (3.15)
2€B(0,R) R \JB0,2r)

As we did for the proof of Holder estimates above, we are going to apply the proof of [1], replacing,
when necessary, periodicity by assumptions (A3) through (A6).
We first prove a result that is the generalization of [1, Lemma 14] (with f = 0 there) to our setting.

Lemma 3.7. Assume that the matriz-valued coefficient a satisfies Assumptions (A1) through (A6),
and let v €]0,1[. Then there exists g > 0 and 0 €]0,1/4[ depending only on a and vy such that, if
€ < g9 and if v° satisfies

—div (a (g + y) Vvs(x)) —0 in B(0,1), (3.16)

then

sup [v®(z) —v°(0) — Z {xj +e (wej (g + y) - wej(y))} ]é(o ) ;v°

z€B(0,0) —1
1/2
<o (f pP) e
B(0,1)

J:
Proof. As in the proof of Lemma 3.4, we argue by contradiction. Let v* € H(B(0,1/2)) be a solution

to
—div(a*Vv*) =0 in B <O, ;) . (3.18)

Since a* is constant, 0;0;v* is also a solution to (3.18). Hence, applying the interior Holder estimate
of [16, Theorem 8.24], we have ||D2'U*||C0v5(B(O,1/8)) < C||D2v*||L2(B(O’1/4)), where C' and S8 depend
only on a*. Hence,

ID*v* || L= (B(0,1/8)) < CID*0* | L2(B(0,1/4))- (3.19)

Then applying the Caccioppoli inequality [15, Proposition 2.1, p 76] twice, we infer

/ D202 < c/ " |2, (3.20)
B(0,1/4) B(0,1/2)
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In (3.19) and (3.20), the constant C' depends only on a*. Using a Taylor expansion, and applying
(3.19) and (3.20) to bound the remainder, we find that there exists a constant Cp depending only on

a* such that
1/2
< Cob? ][ 0" 2 :
B(0,1/2)

Hence, choosing # such that Cyf? < Qﬁ%, we find that v* satisfies (3.17) w,, is replaced by 0, that

is,
* * * 01+’y 1
SRRCEES W S2wm<

sup
xz€B(0,0)

v*(z) —v*(0) —x ][ Vo*

B(0,0)

sup
z€B(0,0)

1/2
][ [v*|? : (3.21)
B(0,1/2)

The condition on 8 reads 6 < (21+d/200)71/(177), which depends only on a*, d and ~.

Next, we assume that (3.17) does not hold, that is, there exists sequences ¢, — 0, y, € R? and
v € HY(B(0,1)) such that (3.16) holds (with e = &,,, y = Yy, v° = v°"), and

up W@—W@—Zkﬁ%@@Gﬁ@—%@ﬂﬁwﬁW

z€B(0,0)

j=1
1/2
> g1 ][ oo |2 . (3.22)
B(0,1)
Multiplying v by some constant if necessary, we may assume that ][ [ven 2 = 1. Applying the
B(0,1)

Caccioppoli inequality, we deduce that ve» is bounded in H'(B(0,1/2)), hence, up to extracting a
subsequence, we have v®» — v* in H'(B(0,1/2)) N L?*(B(0,1)). Applying Proposition 2.4 (thereby
using Assumptions (A1) through (A6)), we prove that v* satisfies (3.18), hence (3.21). Next, applying
Theorem 3.1, we have |[v*" ||co.5(p(0,1/2)) < C. This allows to pass to the limit in the first two terms of
the left-hand side of (3.22). Weak convergence in H'(B(0,1/2)) allows to pass to the limit in the term

][ 0;v°". Moreover, Assumptions (A1) through (A5) allow to apply Lemma 2.1, which implies
B(0,0)
that, for all j € {1,2,...,d},

— 0.

e—0
1/2
2)

T
sup sup e‘wej (f—ky) — we, ()
y€R? € B(0,1) €

Hence, passing to the limit in (3.22), we find

v*(z) —v*(0) —x ][ Vo*

> liminf 67 ][ |v®n
n—-+oo B(0,1)

sup
z€B(0,0) B(0,0)
1/2 1/2
g1+
soer(fowr) =Saf wr)
B(0,1) 2 B(0,1/2)
and we reach a contradiction with (3.21). O

Asin [1, Lemma 15] (with f = 0 there), an induction argument allows to prove the following

Lemma 3.8. Assume (A1) through (A6), and that v €]0,1[. Let 6 and &y be given by Lemma 3.7.
There exists C > 0 depending only on 6 such that, for any y € R%, if 0 < ¢ < 90", n € N, and if
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v® € HY(B(0,1)) satisfies (3.16), we have

d
o 10120 o () ) ] < 0
@€B(0,0m+1) e € :
where k;j(n) satisfies
sup [r;(n)| < Cl[vf||ze(0.1)) Y 07" (3.23)
<j<d ~

Remark 3.9. In (3.23), the important point is that C depends on 6 but not on n. Hence, since 0 < 1,
it implies sup |r;(n)| < C|[v®|| L= (B(0,1)), and will be used as such in the sequel. However, the form
1<j<d

(8.23) is more convenient for the induction proof.

Proof of Theorem 3.6. This exactly the proof of [1, Lemma 16], based on Lemma 3.7 and Lemma 3.8.
We therefore omit it. O

4 Estimates in the inhomogeneous case

In this Section, we deal with the non-homogeneous case, that is, the case when the right-hand side of
(3.1) is some div(f), f € L*(Q), with f # 0.

We first prove estimates on the Green function G¢ of the operator — div (a (%) V~) with homoge-
neous Dirichlet boundary conditions. This uses the results on the homogeneous case, since z — G*(z,y)
and z — V,G*(z,y) are solution to —div (a (£) V,v) = 0 in any open set that does not contain y.
Then, we use the representation u®(z) = [, G°(2,y)f(y)dy to prove estimates in the case f # 0.

4.1 Green function estimates

First, we recall that in [20], G° was proved to exist and be unique in Wol’1 (€2). In addition, the following
estimates were established in [20, 13]:

- C

IV5G Co)l pty  g + [9Ca) <0,

I, e | e <

@
where C depends only on ||a||~ and on its ellipticity constant. Here, LP*>° denotes the Marcinkiewicz
space of order p, as defined, e.g., in [7].

We now show

Theorem 4.1. Let d > 3. Assume (A1) through (A6). Let Q be a CY* bounded domain. Denote
by G° the Green function of the operator — div (a (f) V-) on Q with homogeneous Dirichlet boundary
conditions. For any Q1 CC ), we have the following estimates:

1.
Ve e Qy, YyeQ, £y, |V.G(x,y)] < =t (4.2)
2. If in addition o™ satisfies Assumptions (A3), (A4), (A5) and (A6), then we have
Vyey, Ve e, z £y, [VyG(z,y)] < W? (4.3)
. C
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In (4.2)-(4.3)-(4-4), the various constants C' depend only on the coefficient a, on Q and on ;.

The above result is actually contained in [1], if the coefficient a is assumed to be periodic. However,
it is not stated as such, and its proof, which may be found in the course of the proof of [1, Lemma 17],
is different from the one we present here.

Proof. We first prove Assertion 1. We define § = inf {|z —y|, 2 € Q1, y € 9N} > 0. Let a9 € Qy,
yo € Q\ {xo}. We set

1 .
R= imm(d(mo,aﬁ) s wo — yo|>

We have
2R § ‘LL‘O - y0| S CR, (45)

where the constant C' is C = 2 if R = |zo —yo|, and C =
only on © and €. Since yo ¢ B(zo, R),

Qd%m(m otherwise. In particular it depends

—div, (a (g) V.G (x, y0)> =0 in B(zg,R). (4.6)

Applying Theorem 3.6 to = — G°(x,yo), we have

1/2
c
|V2G* (20, 90)| < 7 <][ |GE (2, 0)|? dx) )
B(zo,R/2)

Using (4.1), (4.5), and the triangle inequality, |« — yo| > |20 — yo| — |z — 20|, we have

1/2 1 1/2 c
G*(x,y 2 dx <C ][ ——dx = .
(ﬁ ) ) ( e o T i

C
< T

Hence,
|V G (w0, y0)|

Using (4.5) again, we find (4.2).

Next, we prove Assertion 2. It is well-known (see [20, Theorem 1.3]) that the Green function G%.
of the operator —div (a” (2) V-) with homogeneous Dirichlet condition satisfies G3.(x,y) = G*(y, x).
Since al satisfies Assumptions (A1), (A2), (A3), (A4), (A5), (A6), G5 satisfies (4.2). This clearly
implies (4.3).

Finally, we note that V,G(z,yo) is also a solution to (4.6). Hence, applying the proof of Assertion 2
to V,G, we find (4.4). O

4.2 WP estimates

We now prove WP estimates on the solution v® of (4.7) below. The following Proposition is the
generalization of [31, Theorem 2.4.1] to the present setting.

Proposition 4.2. Assume (A1) through (A6). Letq €]2,+c[,y € R, R > 0 and H € LY(B(0,2R),R%).
Assume that v* € H'(B(0,2R)) is a solution to

—_ div (a (g + y) Vvs) — div(H) in B(0,2R). (4.7)

Then, there exists C > 0 depending only on the coefficient a and on q (in particular it does not depend
on y nor on £) such that

1/q 1/q 1/2
(]f Wq) gc(f |H|q> +c<][ Wz) |
B(0,R) B(0,2R) B(0,2R)
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Before we get to the proof of Proposition 4.2, we first state the following Lemma, which is a simple
consequence of [30, Theorem 2.4] (see also [31, Theorem 2.3.1]):

Lemma 4.3. Let By = B(zo, Ro) be a ball of RY, and F € L?(4By). Let 2 < q1 < q2, f € L% (4By).
Assume that there exists K > 0 such that for any ball B C 2By with 2|B| < |By|, there ezists
Fy € L?(2B) and Fy € L%(2B) such that

|F| < |Fi| + |F2| in 2B,

1/2 1/2
(][ |F1|2) <K sup (][ |f|2) ,
2B BCB’'C4By B’

1/q2 1/2 1/2
(][ |F2|qz) <K[(]l |F|2) +oswp (][ f|2> ]
2B 4B BCB’'C4By !

where the supremum is taken over any ball B’ such that B C B’ C B(xo,4Ry). Then, F € L% (By),
and
1/q1 1/2 1/q1
() <ol ()]
Bo 4B 4By

where C depends on K, q1,q2 only.
Proof of Proposition 4.2. The proof follows the lines of [31, Theorem 2.4.1]. However, since the setting
is slightly different, we reproduce it here for the sake of clarity and for the reader’s convenience.

Let 29 € B(0,2R) and Ry > 0 such that By := B(xg, Rp) satisfies 8By C B(0,2R). We intend to
apply Lemma 4.3 to F' = Vv® and f = H. For this purpose, we fix yg € 2By and R; > 0 such that
B := B(yo,Rl) C QBO

v® =] + 05,
where v} satisfies
_div (a (g + y) vuf) = div(H) in B(yo,4R1),
vi =0 in 0 (B(yo,4R1)) -
Multiplying this equation by v] and integrating by parts, we have

1/2 1/2
foower) zo(f o mp) (48)
B(yo,4R1) B(y0,4R1)

where C' depends only on the ellipticity constant of a. On the other hand, v§ satisfies

—div (a (g + y) vvg) =0 in B(yo,4R,).

Thus, applying Theorem 3.6 to v5 —][ v5, we have
B(yo,4R1)

1/2

£ £
v5 —][ v5
B(yo,4R1)

where the constant C' depends only on the coefficient a. Applying the Poincaré-Wirtinger inequality,

this implies
1/2
|Vvs| 2) .

C
VU3 || Lo (B(yo,2R1)) < 5 ][
2 (B(yo0,2R1)) R1 Byo,4R1)

||VU§||L°C(B(y0,2R1)) < C/ <][

B(yo,4R1)
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The constant C’ is equal to C' = R%CPW(B(yO,AlRﬂ) = CCpw(B(yo,4)), due to the scaling of the
constant Cpy in the Poincaré-Wirtinger inequality. Hence, C’ depends only on a. On the other hand,
using (4.8) and the triangle inequality, we have

1/2 1/2 1/2
foowask) o< wel) e (f e
B(yo,4R1) B(yo,4R1) B(yo,4R1)

1/2 1/2
<C ][ HP |+ ][ Vo2 )
B(yo,4R1) B(yo,4R1)

1/2 1/2
VU3l oo (Byo 2m1)) < C (J[ |H|2> + <][ v06|2> : (4.9)
B(yo,4R1) B(yo,4R1)

Collecting (4.8) and (4.9), we may apply Lemma 4.3 (with By = B(zo, Ro), 1 = q, g2 = 2q1, [ = H,
Fy = Vi, F, = V5, and B = B(yo, R1)) finding

1/q 1/q 1/2
(o) st ) ()]
Bo 4By 4By

This is valid for any z¢ and Ry > 0 such that B(xo,8Rg) C B(0,2R). Hence, covering B(0, R) by a
finite number of such balls, we conclude the proof. O

Thus,

4.3 Lipschitz estimates

Note that Proposition 4.2 does not include the case ¢ = +o00. However, using the estimates we have
proved on the gradient of G° in Theorem 4.1, we are able to now derive Lipschitz estimates:

Proposition 4.4. Assume that the coefficients a and a® satisfy Assumptions (A1) through (A6). Let
B>0and R > e >0, and assume that H € C%P(B(0,2R)). Then, there exists a constant C' > 0
depending only on a and B such that, if v° satisfies (4.7), then

1/2
Vve| oo (B(0,R)) < C (]{9(0 o) |VUE2> +CeP [H]co.5(B(0,2R))

R
+Cln <1 + 5) ||HHL°°(B(O,2R))- (4.10)

We recall here that []co.s(p(0,2r)) denotes the Holder semi-norm on B(0,2R) (see (2.12)).

Proposition 4.4 is a generalization of [25, Lemma 3.5], in two ways. First, we replace, here, the
periodicity assumption by (A1) through (A6). Second, in [25], Lemma 3.5 is stated only for the specific
case where v® = R® defined by (1.11), hence H = H*¢ defined by (2.7). Due to these differences, we
provide below a complete proof, although the ideas are contained in [25].

Proof. We split the proof in several steps: first, introducing a cut-off function, we write v° as an integral
of G¢, which is the Green function of the operator — div (a (f + y) V-) with homogeneous Dirichlet
boundary conditions on B(0,2R). Then, we use this representation and Theorem 4.1 to prove (4.10).

Step 1: introduction of a cut-off function and use of the Green function. We define ¢ € C°(B(0,3R/2))
such that

. C C
0<¢<1, ¢=1inB(0,5R/4), |[[V|L=(B0,2R) < &’ |D?¢|| o< (B0,2R)) < ik
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We clearly have ||V (¢v°)|L(B(0,r)) = [IV®||Lo(B(0,r))- Moreover,
. z € — _ q; € E _ E € . 1
—div (a (g +y) V (pv )) = —div (v a (5 + y) Vcﬁ) (a (z—: +y) Vv ) Vo + ¢div(H).
Hence, multiplying by G®(z, z) and integrating with respect to z over B(0,2R),
z
d(x)v®(x) = —/ G*(z,2) {a (f + y) Vvs(z)} -Vo(z)dz
B(0,2R) €
z
+/ V.G (x,2) - (v (2)a|—4+y) Vo(z)) dz
oo Y26 @) (v )a (Z +1) Vo)

- / V. (G*(x.2)4(2) - H(2)dz
B(0,2R)

= vf(@) +v(a) + 05 (a).

Step 2: bound on v5. Let z € B(0, R). Since V¢ vanishes in B(0,5R/4) and outside B(0,3R/2), we
have

z
Vi)l < [ V.G (@,2)] [a (2 +y) | V0 (2)] IV6(2)ld=.
B(0,3R/2)\B(0,5R/4) €

Successively using [V¢| < £, estimate (4.2), and B(0,3R/2) \ B(0,5R/4) C B(0,2R) \ B(0, R), we
deduce
C

1/2
Vs ()] < < Vel < C ][ Vo) . (4.11)
R* JB(0,2r)\B(0,R) B(0,2R)

Step 3: bound on v5. Similar arguments allow to prove that

Vi)l < [ VY62 [ fo (2 )| IVl

B(0,3R/2)\B(0,5R/4)

1/2

C

= E (/ |vzsz(.’L',Z)|2dZ> H’UEHL2(B(O,2R))7 (4.12)
B(0,3R/2)\B(0,5R/4)

the last inequality coming from the Cauchy-Schwarz inequality. We then apply (4.4), which implies

1/2

C
V.V.G(z,2)|*dz < . (4.13)
</B(0,3R/2)\B(0,5R/4) | | Rd/2

We point out that adding a constant to v does not change (4.7), hence we may assume that || B(0,2R) vE =

0. So, using the Poincaré-Wirtinger inequality, we have

1/2 12
vl L2(B(0,2R)) < C RQ/ |Vos|? — O RY4/2 ][ (Vs [2 ’
B(0,2R) B(0,2R)

where C' does not depend on R. Inserting this inequality and (4.13) into (4.12), we infer

1/2
V(o) < © (f |w§|2> | (4.14)
B(0,2R)

Step 4: bound on v§. We fix here again z € B(0, R). Integrating by parts, we have
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/ V. (G%(x,2)d(2))dz =0, (4.15)
B(0,2R)

hence
vi(x) = / V. (G5(z,2)¢(2)) - (H(z) — H(x))dz.
B(0,2R)

We differentiate this equalilty with respect to x, and use (4.15) again, finding

Vs () :/ V. (VoG (2,2)¢(2)) - (H(2) — H(z))dz */ V. (G (x,2)¢(2)) - Vo H(z)dz .
B(0,2R) B(0,2R)

=0

Thus,

Vs (z)] < / 6(2)| [V=VaG(z, 2)| [H(2) — H(z)|dz

B(0,2R)

+ / V()| V2 G* (2, 2)| |H(2) — H(x)|dz
B(0,2R)

Using that V¢ vanishes in B(0,5R/4) and outside B(0,3R/2), that |[V¢| < C/R, and (4.2), we have

/ IVo(2)| VoG (2, 2)| |[H(2) — H(z)|dz
B(0,2R)

C
< EHH”L‘X’(B(OQR))/ dz < C||H| =(B(0,2R))-

B(0,3R/2)\B(0,5R/4) |z — 2|41

Moreover, using (4.4) and the fact that H is g-Holder continuous, we also have,

@ — 2|7

/ 16(2)[ V-V G (z,2)| |H(2) — H(x)|dz < C[H]co.s(B(0,2R)) / I —T
B(0,2R) (z,¢) |z — 2|

dz
+2HH||L°°(B(0,2R))/ [rE
B(0,2R)\B(z,e) T — 2|

The integral in the right-most term of the right-hand side is bounded as follows (we use here |z| < R):

dz max(3R.e) .d—1 g, max (3R, ) R
7§C/ =C'ln<7 )SC’IH(l—!—).
/B(O,2R)\B(ac,s) |$ - Z|d € rd € €

Hence,
Vs (z)] < CEB[H]CW(B(OQR)) +Cln (1 + RE_l) ||HHL°°(B(0,2R))- (4.16)

Collecting (4.11), (4.14), (4.16), we have proved (4.10). O

Remark 4.5. In Propoisition 4.4, we have assumed that both coefficients a and o™ satisfy Assump-
tions (A1) through (A6). The result however still holds if only a satisfies those assumptions. Indeed,
the assumption on a® is only used for the proof of (4.13) and (4.16): in both cases, we have used the
pointwise bound (4.4) on Vi V,G, but the only relevant bound for proceeding with the proof of Propo-
sition 4.4 is an L? bound, which can alternately be obtained using (4.2) and the Cacciopoli inequality
(see [23, Section 2.5.3] for the details).

25



4.4 Convergence rates for Green functions

We now prove the following convergence result of G° to the Green function G* of the operator
—div(a*V-) with homogeneous Dirichlet conditions on €. It is the extension, in our setting, of [25,
Theorem 3.3]

Theorem 4.6. Assume that the matriz-valued coefficients a and o™ satisfy Assumptions (A1) through
(A6), and (A7)-(A8) for some v > 0. Let Q be a domain of class C**, and denote by G and G*
the Green functions of the operators — div (a (f) V~) and — div(a*V-), respectively, with homogeneous
Dirichlet boundary conditions on 2. Then there exists a constant C > 0 depending only on a, 2 and
v such that

5J/

£ _ * < [ —
Ve AR G wy) - G o)l S O

(4.17)

The proof of Theorem 4.6 replicates that of [25, Theorem 3.3], but we need to everywhere keep
track of the use of Assumptions (A7)-(A8) and check that these properties are sufficient to proceed at
each step of the arguments.

We prove the following lemma, which is a generalization of [25, Lemma 3.2]:
Lemma 4.7. Assume that the matriz-valued coefficient a satisfies (A1) through (A6), and (A7)-(A8)
for some v > 0. Let Q be a C*! bounded domain, zo € Q, R >0, ¢1 > d and g2 €]1,+oc[. Assume
that u® € HY(Q N B(z0,4R)) and u* € W29 (Q N B(xg,4R)) satisfy
—div (a (g) Vus) = —div(a*Vu") in QN B(xg,4R),
u® =u* on (092) N B(xg,4R).

Then, there exists a constant C' depending only on a, €, q1 and g2 such that

-4 * v —v *
[0 = || oo (0 Bao,R)) < CR™ % [0 = u*|| L2 @nB(ao.ar)) + C” R ™Y Vu*|| oo B (20 ,4R))
—d_y *
+C6VR2 a1 ||D2u ||Lq1(QﬁB($o74R)) (4.18)

Proof. We follow the proof of [25, Lemma 3.2], adapting it when necessary. First, since the problem
is translation invariant, we may assume that xog = 0. Then, we define a smooth open set €2 such that
QN B(0,2R) C Q C QN B(0,4R).

We define the remainder R® by (1.11). We know that it satisfies (2.6), with H¢ defined by (2.7). Next,
we split R® into R® = R} + R5, where RJ is defined as the unique solution of

_ div (a (g) VR?) = —div(H®) in ?j (4.19)
R =0 on 0f).

Hence, RS satisfies

~div(a(7) VEs) =0 in 0,
R () = Eiwej (g) du*(zr) on 591 O, (4.20)
=1

We use a scaling argument, defining Ry(z) = R5(z/R), a(z) = a(z/R), We, (v) = we,(r/R), and
w*(z) = u*(x/R). Writing down the equation satisfied by R, we are thus in the case R = 1 and we
may apply De Giorgi-Nash estimate. Scaling back to the original unknown RS, this implies

d
x . C
1852 rpo.my < C[Je Y we, () Oy’ @) + a7z VS s
=t L>(@)
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Using Assumption (A7) and the triangle inequality, this implies

C

v pl-v *
||R§||Loo(mB(o,R)) < Ce"R|[Vu ||Loo(§) + R/

1R[] o @ 1 CHR(fHLoc(ﬁ)' (4.21)

Next, according to the definition (1.11) of R®, and using Assumption (A7) again, we have

d
* x *
1B gy < 0" =0 lan gy + OB S we, (2) 0y ()

Jj=1

Loo ()
<l = u*l po ) + Cs”Rd/q2+1_”||Vu*||Loo(§). (4.22)
Inserting (4.22) into (4.21), we thus have
v pl—v||g,* c .
175l ooy < OB IV0 |y + moras I = 0l pun @y + ClRS gy (429

Next, we bound R. Denoting by G° the Green function of the operator — div (a (£) V-) on © with

homogeneous Dirichlet boundary conditions on ?2, we have, for any z € ﬁ,
Rilw) = = [ V,G*(o0) - HE (.

Using the Holder inequality and the estimate (2.10) of Lemma 2.7 (this is where we use Assump-
tion (A8)), we have
|Ri ()] < Ce"R([Vy G, )| ot ) 100" | s -

Since q; > d, we have ¢} < %, hence, using [20, Equation (1.12)] and Theorem 4.1,

1 _d—1
R ()] < Ce"RY7VIQI™ 7 |V, Gz, )

Iyt oy 100 s

< Ce’ R Y| D2y ) (4:24)

Collecting (4.23) and (4.24), we have proved

1B\l Lo (0B (2o, R)) = CR™%|uf — u*|| oz (01 B(wo ar)) + C“ R || VU™ || Lo (0B (20,4R))
—4_y *
+C€VR2 q1 HD2u ||LQ1(QQB(IO74R)). (4.25)
Next, we write

uf(x) —u*(z) = R°(z) + Eiwej (g) oju”(z),

which implies, using the triangle inequality and Assumption (A7),

. RN o .
[[v¢ —v ”L‘X’(QOB(mO,R)) < “RE”L‘”(QOB(mO,R)) +Ce (E> Vu HLN(QﬂB(zo,R))'

Inserting (4.25) into this estimate, we find (4.18). O

The following result is the generalization of [25, Theorem 3.4] (with ¢ = co there) to the present
setting. Here, the proof is substantially different from [25, Lemma 3.2].
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Lemma 4.8. Under the assumptions of Theorem 4.6, let ¢ > d, ©o # yo € Q, R = |xg — yo|/16.
Assume that f € C°(Q2N B(yo,4R)), and that u® and u* are solutions to
—div (a (g) Vua) = —div(a*Vu*) = f in £,
u*=u*=0 on 0N).
Then,
* —4d_y v
[u* = w* || e (0nB o, m)) < CRZ 57" f | Laqe)s (4.26)

where C depends only on the coefficient a, q and §2.

Proof. Due to translation invariance, we may assume that yo = 0. We apply Lemma 4.7 with ¢; = q.
Hence, u® — u* satisfies (4.18), that is,

_d . v nlop N
14 = u [l Lo (@B wo.r)) < CR % U = ul| Lo (@ Bwo.ar)) + CE"R ™Y [[VU* || L (0 B(wo.ar))
-2y *
+ Ce"R*™ 47| D*u*| Lo(anB(aoar))  (4:27)
for any ¢ > 1. We fix g2 < 2, and we are going to estimate separately each term of the right-hand
side of (4.27).

Step 1: bound on ||[Vu*| . Denoting by G* the Green function of the operator —div (a*V-) with
homogeneous Dirichlet boundary conditions on €2, we have

VeeQ, Vut(z)= /Q VoG (2,9)f (y)dy = / o VG @00

Hence, [Vu*(2)| < [[VoG*(2, )|l Lo’ (onp(o,4r)) | f La()- Applying [20, Theorem 3.3 (iv)], we have

14 o
1 ) ! {CR;’ 1 if 2] < SR,
) S

| (@, ) Lo (@nB(0.4R)) ( o |7 — y]7@ CRY |z|~4+1  if || > 8R.
Hence,
R4
|[Vu*(z)] < C||f||Lq(Q) max (R, [2]T) (4.28)
In particular, we have
_a
[Vu*| Lo () < CR'™ %4 £l e (4.29)

where C' depends only on a* and (2.
Step 2: bound on ||D?u*||q. According to standard elliptic regularity results (see for instance [16,
Lemma 9.17]), we have

1D oty < Cllf oo, (4.30)
where C' depends only on a¢* and 2. In addition, using the Green function representation again, [20,
Theorem 3.3 (vi)], and an argument similar to the proof of (4.28), we have, if |z| > 8R,

1 =5

* * R«
D% (2)] < | | vic (:c,y)f(y)dy‘ <c L)y < O . (431)
Q QNB(0,4R) lz -yl 7|

Pointing out that || > R for all € B(z(,4R), this implies, using the Holder inequality,

) P R _
1D*5" | Lan B gy < OBV 2 BV B, AR) Y| f oy = CRT*V fl|acey

< O (diam ()Y | fll pacy.  (4.32)
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Step 3: bound on |[u® — u*|| Le(QnB(x0,4R))- As in the proof of Lemma 4.7, we define R® by (1.11), and

write R = RS + R5, where RS and Rj are solutions to (4.19) and (4.20), respectively (with Q = ),
and H¢ is defined by (2.7). Mutliplying the first line of (4.19) by R and integrating, we have

VR L2 < CIH® || L2(0) (4.33)
where C' depends only on the ellipticity constant of the coefficient a. We claim that
d_dyq_,
IHE| L2 (0) < Ce”RE™a7)| £l Logay- (4.34)

We first deal with || H®|| 120\ B(0,sR)), then with || H®||12(onB(0,sR))- Using Assumptions (A7) and (A8),
we have, for all x € (2,

5 €z 2, % z 2 x |l‘ v 2 x
HE@)| < ellalle swp [, (2)] 102 @)+ (2)] |07 @) < 0 () 102 (o)

< Ce¥|z|' Y| D2t ().
We then compute the L? norm of H® on Q\ B(0,8R), and use (4.31), together with |z| > R:
1/2
|x|2(1_”)D2u*(x)|2dx>

27 <cer( [
L2(Q\B(0,8R)) \B(0.6R)

1/2
< Ce (/ WRM a dl‘) [ fllpagey < Ce"R*"™T274] f| pagq). (4.35)
Q\B(0,8R)

In addition, successively using Lemma 2.7 (with ¢ = 2 there), the Holder inequality, and [16, Lemma
9.17],

—v * vpd—2d41_yp
IHE || L2 (onBosr)) < Ce"R*™7||D*u* || 12(anposr)) < Ce"R2™ a7 fllLaca)- (4.36)

Collecting (4.35) and (4.36), we infer (4.34). Inserting (4.34) into (4.33), we thus have [|[VR{||12q) <
OEDRgigJ’»liVHf”Lq(Q). Hence, using the Holder inequality again and Sobolev embeddings,

4_1q

d _ d4q1_4d
| RSl @nsoary < CRE-CVRE| < CRwu 72| VRS 120

Ld-2(QNB(0,4R)) —
< "R 5707 fll Loy (4.37)
We estimate R5. Using the maximum principle,we have
d .
1By < |3 we, (£) oy
J=1 L (09)

This estimate, together with (4.28) and Assumption (A7), imply

|.Z"1_V
max (R4, [2]91)

_d »odd —dew
IR || L) < Ce"RY 4| fll poqer Sug)ﬂ{ }S Ce"R¥4|| fllpayR* .
xE

Thus,
_y_d
RS || (o) < Ce"R*74| fllLago)- (4.38)
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We next bound u® — u*. Applying the triangle inequality,

d

u® — || Loz (@B (zo,aR)) < Szlwej (2) O
o

L2 (QNB(x0,4R))
+ 1Rl oz (0nB(2o,ar)) + 12l Loz (@B 2g,ar)) - (4:39)

The first term is bounded using Assumption (A7) and (4.29):

d
. d_d_,
e w, (g)aju* < CR* %5 fll pagoy- (4.40)
i=1 L2 (QNB(z0,4R))

Hence, inserting (4.37), (4.38), (4.40) into (4.39), we infer
4 _da_,
[uf — u* || Laz (o B(ao.ar)) < Ce”R¥To2 || fll paga- (4.41)
Finally, we collect (4.27), (4.29), (4.32) and (4.41), which proves (4.26). O

We are now in position to prove Theorem 4.6.

Proof of Theorem 4.6. Let q¢ > d, xo,y0 € Q, R = |xog —yo|/16 and f € C(2N B(yo,4R)). We apply
Lemma 4.8. We have

u(z) = / G*(e,9)f(9)dy and w(z) = / G () (v)dy.

Since ¢ > d, we may apply inequality (4.26). This gives

_d_,
[ () = 6 o) £ < O s
Thus, a duality argument allows to prove
(> * 14 —d—l/
1G*(z,") =G (Iv')”Lq’(QﬂB(yOAR)) < Ce"R*™a7. (4.42)

Moreover, G and G* satisfy
1 T y e

div, (a (€> V,G (xo,y))

—div, ((a*)T V,G* (o, y))
G®(z0,-) = G*(z0,-) =0 on (9Q) N B(yo,4R).

0 in QN B(yo,4R),

0 in QN B(yo,4R),

Hence, we may apply Lemma 4.7 with go = ¢/. This implies
_d .
|G*(0,y0) — G (20, 90)| < CR™ ' [|G*(20, ) — G™(0: )| e’ (" B(yo,4R))
—v * v —d_y *
+Ce"R |V, G (w0, )| L= (0nByo,ar)) + O R* ™17 [ DJG* (20, )| La@nB(yo 4m)) -

Applying once again [20, Theorem 3.3] to G*, we have || V,G*(zo,")||L=(@nB(ye.ar) < CR'™® and
| D2G* (20, )|l La(@nB(yo,aR)) < CR™W. Thus, using (4.42), we get

|Gs(x07y0) - G*($07y0)| S CEVRZ_d_V7

which concludes the proof, since 16R = |z¢ — yo. O
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Next, we prove the following result, which is a consequence of Theorem 4.6, and is the generalization
of [25, Theorem 3.4] to the present setting.

Corollary 4.9. Assume that the matriz-valued coefficients a and a” satisfy Assumptions (A1) through
(A6), and (A7)-(A8) for some v > 0. Let Q be a bounded C** domain and q € [1,+oc[. Then there
exists a constant C > 0 depending only on a, v, Q and q, such that for any f € LY(Q), if u® and u*
are solution to (1.1) and (1.4), respectively, then

lu® —u*l|Ls @) < C”|| fllLa)s
where

1 2—v 1 7 1 - 2—v

- Y

q d s’ q d ’
and

.1 2—-v
s=+4o00 if —-< .
q d

Proof. First, assume that % > 2;”. Since the function g defined by g(z) = |z|>~?~" satisfies g €

LA/(d=2+v),0 “and since u® — u* satisfies

ut(z) — u(x) =/ (G5 (2, y) = G"(2,9)) f(y)dy,

Q

we use Theorem 4.6 and a simple application of Young-O’Neil inequality [28, 33], which gives

U —u
[[u® —u|

L*(Q) < OEV” g*|f| | Lsa() < C¢” ||9||Ld/(d—2+u>‘oo(9) ||f||L‘1(Q)7

which proves the result. The case s = +o0 is treated by a similar argument. O

5 Proof of the main results

5.1 Proof of Theorem 1.4
We give in this section the
Proof of Theorem 1.4. We first prove (1.22). Applying Corollary 4.9, we clearly have

d
”REHLQ(Q) < Cg””fHLz(Q) +e Zwe]. (g) @-u*

=t 12(0)

Hence, using Assumption (A7) and the fact that [|Vu*|[12q) < C| f|lL2(q), we deduce (1.22).

Next, we prove (1.23). For this purpose, we write again R°® = RS + RS, where RS and Rj are
defined by (4.19) and (4.20), respectively (with Q = €.) Multiplying the first line of (4.19) by RS
and integrating by parts, we have ||[VR{||12q) < C|[H®|[12(q). Hence, applying Lemma 2.7, we have
(2.10), which implies

IVES l2@) < C 1D |2y < C” £l 2o, (5.1)

The right-most estimate is a consequence of standard elliptic regularity estimates [16, Lemma 9.17].
Next, we apply the Caccioppoli inequality (actually, we need to cover ; CC Q by balls B,(z;) such
that Ba,.(z;) C Q for each ¢, and apply the Caccioppoli inequality on each of theses balls), getting

IVR; |2 (0)) < ClIR5| 2y < ClIRTIIz2 () + CIE [ L2(0) < CIVRIlL2(0) + CllR [ L2(02)

where we applied the Poincaré inequality to Rf. The constant C' in the above inequality only depends
on Oy, 2, and the coefficient a. Using (1.22) and (5.1), we prove (1.23).
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We now turn to the proof of (1.24). We fix {5 such that Q; CC Qo CC Q. We cover ; by balls
B, (z;) such that Ba,(z;) C Qs for all j. Applying Proposition 4.2 to R®, we have

IVE || Lagay) < CllH || La) + CIVET]|L2(0y)
Hence, using (1.23) and (2.10) again, this implies
IVE | Lag,y < Ce”ID*u" || Lag) + C”|| fll 20

Here again, elliptic regularity [16, Lemma 9.17] implies ||D*u*|zaq) < || f]lze(e), and we conclude
using the Holder inequality.

Finally, we prove (1.25). We assume f € C%#(Q). We first assume 3 < a. Here again, we define Qs
such that Qy CC Qy CC Q. We cover ; by balls B,(z;) such that By, (z;) C Qs for all j. Applying
Proposition 4.4 to v* = R®, we find

IVRE|| L (00) < CIIVERT[|2(0,) + C’[H sy + Cn (24671 [|H®|| Lo (-
We apply (1.23), (2.10) and (2.11), whence
IV R ey < e a(an) + Co" D20 oo gy + O n (24 ) | D2 o -

Here again, we apply standard elliptic estimates [16, Corollary 8.36], thereby proving (1.25).
We assume now that 3 > a. In particular, we have f € C%*(Q). Thus, we may apply the above
result with 8 = «, and we have

IVR®|| (o) < Ce”In (24 e7Y) | fllcoe() < Ce”In (2+e7Y) || fllcos(ay,
which completes the proof. O

5.2 Application to local perturbations of periodic problems: proof of The-
orem 1.1
We prove here that the setting defined by (1.2), (1.3) is covered by Theorem 1.4 with v = v, defined

by (1.12), thereby proving Theorem 1.1. First, we recall that [11] (see also [10]) shows that in such a
setting, the corrector equation (1.8) has a solution w, which reads as (1.9), where w, satisfies

if r>1, Vw,ec LI(RY), Vqc[r,+o0], (5.2)
if r=1, Vw,e LY(R?), Vg€l +oo], (5.3)

and with the property
if r<d, w,ec™(RY). (5.4)

Proposition 5.1. Assume that the matriz-valued coefficient a satisfies (1.2) and (1.3), with r # d.
Then there ezists a constant C > 0 depending only on a such that

VpeRY, VzeR? VyeRY  |wy(x) - wy(y)| < Clpllz -y, (5.5)
where v,. is defined by (1.12).

Remark 5.2. In Proposition 5.1, the case r = d is not covered. However, since in fact a € L™ N L,
this case can be addressed using the fact that a € L" for any r > d.

Proof. Since p — w, is a linear map, it is sufficient to prove (5.5) in the case |p| = 1. First, elliptic
regularity [16, Theorem 8.32] implies that w), per € Cifi‘f(Rd), hence it clearly satisfies (5.5). Therefore,
we only prove that w, satisfies (5.5).

If r <d, v, =1, and (5.5) is a direct consequence of (5.4).

If r > d, we apply Morrey’s Theorem [14, Theorem 4.10] to w,:

_ _ _ _d ~ —u.
Wy () — wp(y)| < V| rgay | — yl' = IV@p|l 1 gy |2 = yl!

Applying the triangle inequality, (5.5) is proved. O
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We now prove that a potential B defined by (1.21) exists and has suitable properties in the present
setting.

Lemma 5.3. Assume that 1 < q < 400, and that M = (Mi) red € L1(R?) satisfies
1<i k<

Vke{l,...,d}, div (Mk) —0.

Then, the potential E,? defined by

B = [ (o Dol ~ o B G) ) a (5:6)

dwg |z —y|d Y dwg oz —yld TF

where the constant wq is the surface of the unit sphere in R?, satisfies VB e Li(RY), and (1.21), hence
(1.18)-(1.19)-(1.20). In addition, there exists a constant depending on d and q only such that

Hvé‘ (5.7)

el
La(Rd)

La(Rd)

Finally, if ¢ < d and if M € L>(R%), then Be L>(R%), and there exists a constant depending only

on d and q such that
+ HMH ) . (5.8)
La(R4) Lo (RY)

Proof. First, it is clear that (5.6) is a well-defined function if M has compact support. Next, we
consider the operator T, which to M associates VB. Moreover, (1.19)-(1.20) are clearly satisfied by
B, hence, we have (1.21). Multiplying it by B and integrating by parts, we have

|

<o |
)

Loo (R

/R VB = / =MO;BY + M{OBY < | M| 12 gay |V Bllr2re)-

Hence, a density argument allows to define it as a continuous operator from L?(R?) to itself. Further-
more, T is a Calderon-Zygmund operator (see [26, Def. 1, p 224]). Hence, (5.7) holds.

It remains to prove (5.8). We split the integral in (5.6) into the integral over |z — y| < 1 and the
integral over |z —y| > 1, and find

~ — 1 — 1
Hence, applying the Holder inequality,
~ 1 ~ 1
[ P T N s P P -
Lo (R9) L= (R9) |||7] L1(B(0,1) Lo®?) || |z] L7 (B(0,1)©

We point out that, on the one hand, |z|'~¢ € L'(B(0,1)), and on the other hand, since ¢ < d,
¢’ > d/(d—1), whence |z|'~% € LY (B(0,1)C). We have thus proved (5.8). O

Proposition 5.4. Assume that the matriz-valued coefficient a satisfies (1.2) and (1.3) for somer > 1.
Let

d
Mj(x) = a3, — Y aij(x) (65 + Ojwe, (x))
j=1
be defined by (1.18). Then there exists Blij, 1<4,5,k <d, solution to (1.19)-(1.20), that s,
Vi, j, ke {l,...,d}, B} =-B}, > 0B =M.
i=1
Moreover, if r # d, then there exists C' > 0 such that
Ve eRY, yeR?, |B(z) - B(y)| < Clo -y, (5.9)
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Proof. We define B = BP¢" + E, where BP¢" is the periodic solution to
(B = =B D0 (B = agy = D al (G + OulyT) = (MP)]
i=1 i=1

This solution is proved to exist in [22, pages 6-7]. In addition, BP¢" is solution to
A (Bper)? — 62 (]\41767")?C _ aj (]\41767*);C .

Our Assumption (A2) and classical elliptic regularity (applied to wp per) show that (Mp”)i is in
C% (R?). Hence, still using elliptic regularity [16, Corollary 8.32], we have VBP*" e CY%(R%).

unif unif
Arguing as in the proof of Proposition 5.1, we obtain that BP¢" satisfies (5.9).
We now turn to B. In order to define it, we first set, for all j, k,
o d d
M,g = — Zaﬂ (5¢k + Biwek) — Z afjraﬂf)ek. (510)
i=1 i=1

In view of (5.2) and (5.3), we have M e L1(R%), for any ¢ €]r, +oo[, with ¢ = r allowed if r > 1.
Hence, M satisfies the assumptions of Lemma 5.3, hence there exists B, defined by (5.6). We have
VB € L9(R%), and one easily proves that B is a solution to

d d d
B]ZCJ = —B;j, ZGZB;CJ = — Z&'ﬂ (6zk + aiwek) — Zafj”&@ek. (5.11)
i=1 i=1

i=1

In the case r < d, we simply apply (5.8), finding that Be L>(R%), which implies (5.9), since v, = 1.
In the case > d, we have VB € L9(R%), and we may apply Morrey’s Theorem as we did above for
wp. This proves (5.9). O

Collecting the results of Proposition 5.1 and Proposition 5.4, we have thus proved the following
Proposition, which in turn implies Theorem 1.1.

Proposition 5.5. Assume that r € [1,+00[, r # d, and that the coefficient a satisfies (1.2) and (1.3).
Then a satisfies Assumptions (A1) through (A6), and (A7)-(A8), with v = v, defined by (1.12).

Proof. Tt is clear that (1.3) implies (A1) and (A2). As mentioned above, the results of [10, 11] imply
that (A3) and (A4) are satisfied. Proposition 5.1 implies (A7), and Proposition 5.4 implies (A8).
Finally, Lemma 2.2 implies (A5) and (A6). O
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