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Abstract—Stereo visual odometry has received little investiga- matching and scene point triangulation is seriously affe.ct
tion in high altitude applications due to the generally poorper-  To counteract this, applications have been typically retsid
formance of rigid stereo rigs at extremely small baselined-depth ;4 short baseline pairs and/or low-impact environmentsil&vh

ratios. Without additional sensing, metric scale is considred lost . ina h le to blav in this situai d defd
and odometry is seen as effective only for monocular persptees. engineering has a role to play in this situation, and detaona

This paper presents a novel modification to stereo based viali €an be typically ignored on many indoor robots and ground ve-
odometry that allows accurate, metric pose estimation from hicles, it must be considered in environments where strattu
high altitudes, even in the presence of poor calibration and changes from internal sources of the environment can cause
without additional sensor inputs. By relaxing the (typicaly fixed) misalignment. In airborne applications calibrations aresm

stereo transform during bundle adjustment and reducing the . ificantly affected by vibrati hil h
dependence on the fixed geometry for triangulation, metrichy signimcantly alrecte y vibration, while pressure chage

scaled visual odometry can be obtained in situations where Uunderwater can cause similar effects. In order to succeed
high altitude and structural deformation from vibration wo uld in applications outside the realm of indoor and short-term

cause traditional algorithms to fail. This is achieved thraigh demonstration, reducing this strict dependence is esdenti
the use of a novel constrained bundle adjustment routine and

accurately scaled pose initializer. We present visual odoetry

results demonstrating the technique on a short-baseline steo AA
pair inside a fixed-wing UAV flying at significant height (~30- . )
100m).
T
|. INTRODUCTION = @ 50-200m
Stereo-based Visual Odometry (VO) has received significal ‘
attention in recent years as a robotic pose estimatar [1]. 2, ‘ ? ’ ’ , ’
Having been demonstrated over trajectories exceeding 50km

with and without loop closure, stereo VO is a well studieg_ : , . -

. ig. 1. The typical configuration of a stereo pair in grounddzhVO (left),
probllem.. HO.VVeveri adequate perform.an(.:e. in a number B airborne VO (right), showing the dramatically reducésesvability in
applications is prevented by two specific limitations: the airborne case.

« A need for a relatively large baseline-to-depth ratio to . i )
achieve accurate triangulation As a result of both deformation and poor triangulation

« A strict dependence on accurate calibration for epipolSUes, metric visual odometry for longer range stereo iresna
and rectified image feature matching an open problem in robotics. _
With increasing distance of the scene from a stereo pair,We_ proposeasolun_on tha_t relaxes the d_ep_enden_c_e on trian-

accuracy in triangulation decreases, and the geometry (%Hatmn from geome_;trlcglly f|xeq| ster_eo paurs in _addlfuomh

be considered to approach a monocular approximation as frgurate st.ereo calibration, wr_ule still maintaining riuztilty .

baseline-to-depth ratio becomes smaller (Elg. 1). Thistivas accurate visual odometry. This paper presents three major

effects: fast error build up due to poorly triangulated stuve, changes:

and a weakly observable scale that is typically constrabyed A metrically scaled pose initializer for high altitude (30-

the stereo baseline. In addition, pose initialization imast 100m) stereo

impossible, as the triangulation of scene from a single paire A constrained bundle adjustment implementation for on-

is inadequate and highly error prone. For these reasond, mos line calibration to counteract deformation

stereo-based visual odometry solutions restrict theresefy ~ « A modified visual odometry algorithm for distant sensing

ground vehicles and very low altitude multi-rotor applioas while maintaining metricity

[4, 15]. Together, these three methods provide the ability to perfor
Moreover, structural deformations between cameras caretrically scaled, accurate visual odometry at high agtu

cause serious issues for field robotics applicatioms [6] amdthout the need for additional sensors. We demonstrate the

must be accounted for. Knocks, pressure changes and vibratnethodology in both a simulated experiment and on stereo

can cause a stereo calibration to degenerate such that@pipasual data from a fixed-wing airborne vehicle flying at sfgni
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icant altitude, where vibration significantly deforms thereso error metric and observation (e.g. compass bearing, alerti
calibration and scale is weakly observable due to the exdiemreadings etc. in addition to projective observations), dieth
small baseline-to-depth ratio. We note here that a standémamework can be made that finds the optimum of two or
VO algorithm with fixed stereo geometry will fail rapidly more separate minimization objectives. This is in conttast
given both scale observability and structural deformatioa filter based solution that often discards the informatich-
meaning a quantifiable comparison to the presented algoritfieature projections and assumes visual odometry as a black
is impossible. box, similar to an inertial sensor, integrating the outpithw
The ability to perform metrically scaled visual odometry abther sensors to inform a probabilistically accurate pwéeh
high altitude has a number of niche, but significant applicaacreasing compute power and efficient sparsification of the
tions. Importantly, on a high altitude aircraft it serves as bundle adjustment problem, online operation of a solution
redundant sensing mode when others may fail: flying througfiat incorporates feature projections with additionalsses
urban and natural canyons can mean GPS failure and a faihd reduces dependence on a full-featured sensor fusion is
back to dead reckoning that is typically handled by inertifdlecoming feasible.
sensing. Stereo VO provides a viable alternative that is notln contrast to an objective based bundle adjustment, atemp
subject to the bias drifts inherent in inertial sensors, ead have been made to apply constraints generated from other
be considered in a number of applications to complemesgnsors|[27, 28]. Thesmnstraints are subtly different to the
or potentially replace existing sensors. Further, higituale aforementionedbjectives, and are extensively used in other
stereo is a viable sensing mode where access to accurate gloptimization applications [29]. Put simply; an objectivasied
positioning is limited and costly, e.g. for lighter-tham-eraft solution weights re-projection objectives with other sess
on planets such as Mars. in a unified framework, a constraint based solution will gppl
bounds on the space in which estimated parameters can move.
Lhuillier [27] has attempted to incorporate these constgai
As processing power has increased and camera cost redugggh VO by using a standard projection-only bundle adjust-
visual odometry has seen applications on ground vehicles f8ent step then adding GPS based pose constraints and re-
1,18,19], airborne vehiclesi[5, 10,111.112] and underwaltelr [18ptimizing the solution.
14]. Many implementations have been described, with somewe use a different formulation to the above methods: instead
dependent on an Extended Kalman or Information Filter (EK&t using an additional sensor such as GPS to constrain scale
or EIF) backend, a single camera integrated with an IMU @ind pose, use is made of an additional camera forming a stereo
INS to maintain metricityl[15], and the pure stereo casel[7, air to constrain scale. Results are presented over a larger
Of note, most applications covering distances greater thanrajectory and compared to ground truth, unlikel [27], where
few tens of metres are ground based, applied over periodsnof ground truth is presented. To differentiate the algorith
hours and rarely exceed a minimum scene depth of 40m. from other stereo based visual odometry the stereo tramsfor
In the air, visual odometry has received some attention i allowed freedom to move but is restricted by applying a
recent years, both in monocular [16.) 17] and stereo formajsft log-barrier constraint_[29] within predefined bounds t
[18, [19]. While monocular methods have been demonstratediuce dependence on accurate calibration. By reducing any
at altitudes above 80m_[20] and distances exceeding 1.6kiependence on rigid-stereo triangulation we additioraltyid
stereo methods have been restricted to altitudes below 4{3ues of weak triangulation given by small baselines.
[21], and have typically not exceeded distances of more than
230m. Some monocular methods such as PTAM [22] and I1l. METHODOLOGY
derivatives have been c_’;\pplied to hovering vehicles botpdmd We describe the methodology in three major sections:
and outdoors|[23] with success, but have often included . . .
inertial sensing to constrain scale and assist motion astim < A modnjed stereq-aware bund_le adjustment that ut|I|_zes
Weiss et al. have noted the deficiencies of stereo at small cOnstraints to maintain a WF“?""”Y scaled stereo pair
baseline-to-depth ratios, where the utility of stereo can b *® A metrically scaled pose initialization for short-baselin
considered to reduce to an effectively monocular scenarid, stereq . . .
hence includes an Inertial Measurement Unit to assist ilesca ® A" or|g|nal visual odometry algorithm for very short-
and pose recovery. Clearly, a metrically scaled purelyalisu baseline stereo
odometry algorithm has not been demonstrated over a Ia;ge
trajectory in situations of large scene depth, common inyman’

II. RELATED WORK

Constrained Bundle Adjustment

UAV applications. 1) Sereo Bundle Adjustment: Givenm (j € {1,...,m})
In its generic form, bundle adjustment [24] 25] optimize§cene points observed atunique time points/locations €
over feature projections only to reduce error build-up and,---,n}) by a single camera, the traditional model used for

optimize both camera pose and scene structure. Some ateffijgt Projection of poing in space X; € P%) into its location
however, has been made in recent years to integrate adalitiRl imagei (x; ; € P?) is straightforwardl[20]:

objectives such as sensor readings or scale term$s [26] into

the optimization. By determining appropriate weights facle x;; ~ K[R;[t;]X; (1)



where K encodes the internal properties of the camerahereb is the barrier value. In the above bundle adjustment
andR,;, t; denote the pose of the camera at tilndélere we implementation, the set includes the 6 parameters of the
extend the single camera case to multiple unique rigidkelih stereo transform, and hence yields 12 constraints, 2 per pa-
cameras K € {0,...,1}) (up to structural deformation) andrameter representing an upper and lower bound.
express additional cameras in terms of the base camera via
the stereo transfori = [R*[t*]. This can be expressed in inf
a modified general projection equation:

x}; ~ K" [Ry[t;] TX; (2)

In this paper we only consider the case of two cameras, where
TJ = [1]0] andT§ = [R![t!]. IntrinsicsK* are considered
to be unique to each physical camera. For traditional visual
odometry with two cameras the transfof would typically
remain fixed. However, in this paper we include the pararseter
that make up this transform as additional optimizable vari- 1
ables. This allows the algorithm to counteract any defoionat 0 — ‘ _—
caused by external factors. This leads to a totalrof 6+ 3m p—q p p+q
parameters with which to optimize: 6 for each base camera,
6 for the stereo transform of the secondary camera and 3 Fir 2. The log barrier cost for varying values pf, within the barriers
each scene point. We leave the details to a separate paper [3T ¢ 297 + ¢

2) Optimization Constraints. The stereo transform is the Bundle adjustment attempts to minimize the sum of squares
effective scale constraint in most visual odometry algonis. objective function by modifying camera poses, structurd an
By allowing the parameters of the stereo transféih free- the stereo transform:
dom to move, this scale constraint is potentially lost. Alte i
natively, a prior callb_ratlon provides a very strong coaistr P* X T = argmmz A 4)
on the allowable motion range of the stereo transform. In the PXT I
case of small baseline-to-depth ratios this constraindies o
important due to the high error in recovering camera poses. With cost function:

2%

make further additions to the bundle adjustment methogolog k
described above by constraining the allowable motion of f (e :Z I efj H2 (5)
certain parameters of the transform, ensuring scale and the i

important geometry of the calibration is maintained. o o

Due to the rigidity of a well-engineered stereo pair, eveffhereef; = x}; —xj; indicates the re-projection error between
under deformation, any movement between the camerasil§ oPserved feature and its current estimation for all came
physically restricted to at most a few degrees or millimetrel" @ bundle adjustment optimization. By the introduction
We encode this in the algorithm by implementingtaictly pf additional terms, a Iogar.|thm|c barnern function can pe
feasible region for some of the parameters that represent thigtegrated as a soft constraint to constrain the optinozati
deformation. From a known calibration, we implement thef Specific parameters. i.e.
feasible region based on the initial valu®f a parameter plus
a bound+q (See Fig[R). In this paper, the initial parameter Plez)=f(e) - Z“t log e, () ©)
valuesp are chosen from an initial calibration performed on rel
the ground, and the valugsmpirically evaluated. They could where; is termed thebarrier parameter and is used to tune
alternatively, for example, be estimated via an analysis tfe cost as the parameter approaches the barrier (sedfFig. 2)
material expansion based on temperature or elasticity ef th The log barrier cost is also integrated into the bundle adjus
material under load. It is assumed that the magnitude of theent Jacobian and used to augment the relevant parameters
feasible region defined byp — q) < (p + ¢) is sufficient x. By splitting the parameters intehared parametersds,
to account for the maximum possible deformation of the rigndependent parameters); and scene point8p, the normal
without being large enough to lose the effectiveness of thisjuations for an update step becomes:
strict initial valuep as a strong prior.

In a general optimization problem, implementing a strictly S ™M N Abg es
feasible region of a parameter can be easily expressed MT I O Ab; | =1 er @)
as an inequality constraint; (z) > 0, t € I (the set of N'T O P Abp ep
inequality constraints)y € x (the set of parameters), where
the constraint equations are of the form: Alternative ‘hard’ constraints can be applied to the problsuch as the

commonly termedyradient-projection method [[29], but these methods result
cte(x)=x—0> (3) in greater implementation complexity.



where the matriceS, I andP included in this expression are E = sity
block diagonal defined according to the concatenation of the

sub-matrices, /\
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) o ) %k, i Fig. 3. The geometry of the initialization. A rigidly fixed ijpaof cameras
The partial derivatives are defined Mj = 8(915]’ ij = attwo time-steps. The transforrk is already known from an approximate

9%k, o%k. . o ] _ calculation

55 andij = 5= respectively. Addition of the logarithmic
I, . P . .

barrier Jacobian components results in the augmenteddshafbe relative poses are then scaled by the recovered terms to

parameter matrixsx: approximate metricity and then bundle adjusted with rembve

. et " structure to optimize the initialization.
Sk=) AT AL - e @ (10)
ij tel

C. Short Baseline Visual Odometry

where the first term incorporates the Jacobian with respect t Following a pose initialization to set up the iterative pose

the shared stereo parameters, and the second term ind@POokstimation, visual odometry then follows 5 main repeating
the additional Jacobian generated from the barrier funcAs  steps:

x approaches the cost termog ¢; (z) grows in a logarithmic
fashion and the projective influence on the parameter reduce
A step that takes: beyondb will also yield an infinite cost
and hence not be updated in a bundle adjustment step.

1) Image capture

2) Feature matching

3) Pose update

4) Structure triangulation

B. Pose Initialization 5) Constrained bundle adjustment

In order to set-up the iterative VO algorithm, an initia" ahnde\t/)v ShEtb of |magﬁs from ad srt]ereo pair, fbeatures are
estimate of pose and 3D scene is required. In more traditiof22tcned both between the pair and the previous base camera.

scenarios scene is initially triangulated from the calibda Fhrom already trlangulr;alted strgcture and feature r?atcr(\jes to
stereo pair, hence there is no need for a special initisdizat (€ Previous image, the new base camera [@3as foun

step. At large depths triangulation from the rigid stered [ga using calibrated 3-point pose estimation, performed isid

inaccurate and structural deformation may render trigatgr rohbust MLEdSAC estlmat(_)r .to. _er|1.sur('je a r;zhal;le pose update.d
impossible. Hence, a scaled solution is needed for camesea pb"'€ S€condary camera is initialized at the base camera an

without initially computing structure from a geometric pai t en m_oved via the initial §tere_o tr.ansfofﬂj;,_d(.enved .from
more akin to monocular pose initialization. Initially, teesen- the initial callbrat.lon to av_0|d bias in th? optimised sedat

tial matrix £, between the base camera at two adjacent time-NeW structure is then triangulated using only the base cam-
steps is recovered, and relative pose (up to scale) extracgs® Pairs to avoid dependence on fixed-stereo geometry, and
from this transform £¢,) (Fig. [3). To avoid degeneraciesthe'? t_he colnstramed b_undle adjustment algorlthm_ is agphitie _
caused by near-planar structure, essential matrices pass2&!1ding window fashion to the last 12 frame-pairs and their
additional ‘scene-spread’ test as [nl[20]. This boot-giag gssomatgd s_tructure. A Levenberg-Marqu:?\dt rpbust opami
procedure ensures that accurate triangulation is achiesed tion routine is followed to ensure the estimation converges

a wide-baseline pair and is not dependent on the geomeftic @ll times, the & parameters of the stereo transform are
stereo transform. optimized subject to the afore-mentioned constraints.

To recover metric scale, an essential mathlx is also
computed between the second camera at the initial time- IV. EXPERIMENTAL RESULTS

step a(?d thf dbase c?mera at thr? secrc])nd tme—s(;t(ajp_to 9Ve€ 1, investigate the applicability of the algorithm, we prese
second scaled transfornyy(). Through vector addition ay,, separate experiments. First a simulation that allows

linear solution to the scale terms is calculated: comparison of the recovered pose and stereo transformsigain
a ground truth, and second: evaluation on field data gathered
(0 -mTe ][0 =(e] an 3P 9

S92 by a fixed-wing platform.



A. Smulated Experiment 0.04

" r
Constrained Unconstrained — — — Barrier

The simulation consists of a stereo pair with 0.7m baselii =
flying at an altitude of 90m over a simulated ground enviror <
ment. Scene features are projected into each camera With  ops=ss=s=s=s=cesccsa=chllocaccccc====
pixel variances. The stereo baseline is also given Gaussiz 0.04 ‘ ‘ ‘ ‘ ‘ ‘ ‘
noise on both the translational and rotational parameter
reflect vibration induced structural deformation, but thces
not change throughout the experiment. Visual odometry
performed on the imagery generated from the pair for 4(-0.04
frames, or approximately 2.4km of movement. To evaluate tl 00t
effectiveness of the constrained optimization, two experits
are run:

« VO with constrained stereo optimization -0.01
« VO with unconstrained stereo optimization (seel [31]) 2

1) Results: Figures[# andd5 show the simulated result:g
Figure[3 shows the variation of the stereo transform for tf = ©
two separate experiments by subtracting the original patam “
value from the estimate to show the difference. As expecte >
the stereo transform (green) is constrained within thespte- 2

bounds (red dashed lines) and hence scale is constraine@

Y (m)

Eo
N

H H.] H = e AN MM A~
a known value. In contrast, the unconstrained optimizatic§ °
shows significant variation and scale is observed to driérov *
time. 3

2

Figure[d highlights the average re-projection error at tr
conclusion of bundle adjustment on each new frame. Whi g
the unconstrained bundle adjustment shows a lower aver:
re-projection error, it is clear that a smaller error does n _, ‘ ‘ ‘ ‘ ‘ ‘
ne_cessanly translate to a be_tter estimate of certain et 0 %0 100 B e ey 00 0
(FIg.[Z). In contrast, even with a higher average re-praect Fig. 4. The stereo transform values compared to the knowlratibn for the

error, the constrained optimization shows a significanty i simulated experiment with constraints (green) and withmuistraints (blue),
proved estimation of the stereo transform. compared to the original calibration. The bounds of the tairgs are shown

Additionally, the constrained estimator shows a lower avepy the red dotted lines.
age number of bundle adjustment iterations (IEg. 5), as the

logarithmic barrier will force a breakout earlier when the 25 , , , , , , ,

stereo parameters can no longer be optimized beyond

bounds. 2r 1
15} 1

B. Field Data Experiment

In a further demonstration of the algorithm, visual imager
was gathered from a fixed-wing airborne platform flown witl
a stereo pair of cameras. The stereo pair underwent sigmtific
deformation from vibration within the fuselage (See [g).12 ‘ ‘ ‘ ‘ ‘ ‘

: : . . : 100 150 200 250 300 350  40C
The visual odometry algorithm is again run over the imager Frame Number
both with and without a set of stereo transform constraints.

1) Experimental Platform: The data-gathering platform is
a large fixed-wing Unmanned Aerial Vehicle (UAV) with
fuselage length of 2.3m (Fifll 6), remotely piloted withiswal
range from the ground. The aircraft includes an off-thelfshe
computer system for logging both visual and inertial datal a
a pair of IEEE1394B colour cameras, rigidly fixed to eac
other via an aluminium L-bar situated inside the fuselage ‘ ‘ ‘ ‘ ‘ ‘ ‘
the aircraft. The cameras are placed facing down towards ! % 50 100 150 200 250 300 350 400
terrain in the fuselage, as seen in Hiy. 6. Each camera use._ .. Frame Number
6mm lens with a field of view of approximatel2°® x 32°. Fig. 5. Top: Average final re-projection error and Bottomnile adjustment

The cameras are calibrated before flight using a Checke-dbo!ggrations per frame for the simulated experiment with t@msts (green) and
without constraints (blue).

[

o
3

Average Reprojection Error (pixels)
o

o
a
o

100 — T
80 [
60

40

20 1

Bundle adjustment iterations




Constrained
Unconstrained
Ground Truth

o0 -100

-200
Y (m)
-300

x@m 0 500

-300 -400

-400

Fig. 6.  The experimental platform showing component laydltie line  Fig. 9. Secondary view of visual odometry results for theusoh with

indicates length and orientation of stereo baseline betweeboard cameras. stereo constraints (green) and without constraints (bkmjpared to ground
truth (red). Observed structure shown in cyan.

pattern to achieve a standard intrinsic parameter caiirat

and approximated stereo transform between the cameras. In comparison, the constrained optimization shows signifi-
An XSens MTi-G INS/GPS system is used as the grourf@ntly improved pose estimates over the trajectory, argli¢hi
truth measurement system on the aircraft, with a manufactufeflected in the parameters of the stereo transform as shown
claimed positional accuracy of 2.5m Circular Error Probigbi in green in FigureZ0, where the values are bounded by
(CEP) Size and Weight restrictions prevent the use of mdhﬁ constraints shown in red. A qualitative evaluation & th
accurate DGPS systems, however, the MTi-G itself providégipolar geometry for an example frame (Higl 13) shows an
a reasonably accurate estimate of pose over broad scales. iHproved alignment.
MTi-G unit is rigidly attached to the onboard camera rig, \hi
the GPS receiver is installed directly above the front camer °3 Constrained Unconstrained ~ — — Barrier
2) Dataset: Data was collected over an approximately ! - /\/#\J W L\/\\‘L
minute flight, at an altitude of 20-100m and a speed of 20m. x
Bayer encoded colour images are logged at a resolution llp—" -t
1280 x 960 pixels at 30Hz and later converted to color fo %53

processing. GPS, unfiltered IMU data and filtered INS po:
were recorded at 120Hz from the XSens MTi-G to give grour M
truth position and orientation comparison. The area floner ov

consisted of rural farmland with relatively few trees, aaim
and buildings.

3) Reaults: FiguredB[P and10 show the performance of tk
algorithms on 1450 stereo frames of the dataset (processe
a 3 image sub-sample from the origirsalH > data), covering 00
a distance of2.75km. Figure[ID shows the variation of the
parameters in the stereo transform over the dataset. With Tz
constraint, the stereo transform drifts significantly ahdves &
repeated errors due to the poor observability. This is rieftec g
in the pose comparison with ground truth (HIb. 8), whereesce oo,
drift results in a poor trajectory in comparison to grounghc
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0 200 400 600 800 1000 1200 1400
Constrained -300 Frame Number
Unconstrained . . . .
— Ground Truth 350 Fig. 10. The stereo transform values compared to the knoVisragon with
w I i ! ! constraints (green) and without constraints (blue), casgbdo the original
300 200 100 0 x(m 100 200 ~s00 400 calibration. The bounds of the constraints are shown by ¢dedotted i
. Y otted lines.

Fig. 8. Visual odometry results for the solution with steceastraints (green)
and without constraints (blue), compared to ground truglal)(r Figure[T1 shows a comparison of convergence between the
constrained and unconstrained methods.



Fig. 7. An example image pair from the dataset, showing thallsdisparity between the stereo pair. Left: Front Camerigh®® Rear Camera.

I
~

technique: there is an upper limit to the altitude at whica th

i I ' | algorithm can successfully work. With increased altitudals
[ 1 becomes unobservable when the disparity of features tiacke
between a stereo pair drops below a single pixel, and will
1 likely occur before this metric is reached. In this case, the
altitude limit is likely to be beyond 200m, but would need to
1 be experimentally evaluated as other effects are likelyffact

the solution before this limit is reached.
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Fig. 11. Average final re-projection error for the visual oury solution
with stereo constraints (green) and without constrainksefb

C. Discussion

Despite an overall smaller re-projection error, the uncon-
strained pose estimator shows poorer performance in genera

mation is lost. With the inclusion of constraints, converge
error is increased but shows better overall performance THRig. 13. The epipolar geometry of the optimized stereo catibn in flight.
demonstrates that bundle adjustment need not rely on feselected pixel location in the front camera (left), and dtaresponding
L . . epipolar line in the rear camera (right), showing the cdlyealigned epipolar

projection error alone as a metric of performance: the Biolu  geometry.
of constraints on the stereo transform in this case can yield
better overall results. V. CONCLUSION

Overall, these results demonstrate that stereo VO aloneThis paper has demonstrated the application of constrained
is inadequate to estimate pose with accurate scale in smgitimization to the bundle adjustment problem to estimiage t
baseline-to-depth applications. By applying constraiotthe parameters of a stereo camera transform. By introducing a
rigid geometry, scale can be retained even at the extremabyel scaled pose estimator specific to the stereo problem an
small baseline-to-depth ratios exhibited in high altitdight. a modified visual odometry algorithm, the technique has been
demonstrated on a difficult airborne dataset where trawitio
stereo algorithms will fail due to a small baseline-to-dept
ratio and poor stereo calibration. Future work will exam-
ine the performance of the bundle adjustment algorithm by
comparing the soft log-barrier constraint to harder caists
such as gradient-projection, which exhibits better cogerce
performance. Additionally, the algorithm will be evalucte
a number of different field-based datasets to show superior
performance over long time periods.
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