
Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
2

60
8

04
1

A
1

TEPZZ 6Z8Z4_A_T
(11) EP 2 608 041 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
26.06.2013 Bulletin 2013/26

(21) Application number: 11195582.9

(22) Date of filing: 23.12.2011

(51) Int Cl.:
G06F 11/34 (2006.01) G06F 21/00 (2013.01)

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME

(71) Applicants:
• Deutsche Telekom AG

53113 Bonn (DE)
• Technische Universität Berlin

10623 Berlin (DE)

(72) Inventors:
• Glass, Gregor

12203 Berlin (DE)
• Henke, Katja

12159 Berlin (DE)

• Schneider, Lutz
13509 Berlin (DE)

• Batyuk, Leonid
10439 Berlin (DE)

• Schmidt, Aubrey-Derrick
13355 Berlin (DE)

• Raddatz, Karsten
13359 Berlin (DE)

• Albayrak, Sahin
14195 Berlin (DE)

• Cantepe, Ahmet
10557 Berlin (DE)

(74) Representative: Vossius & Partner
Siebertstrasse 4
81675 München (DE)

(54) Monitoring user activity on smart mobile devices

(57) The invention relates to a method for monitoring
user activity on a mobile device, comprising an input and
an output unit, comprising the following steps preferably
in the following order: detecting and / or logging user
activity on said input unit, identifying a foreground running
application, hashing of a user-interface-element man-
agement list of the foreground running application, and
creating a screenshot comprising items displayed on said
input unit. The invention also relates to a method for an-
alyzing user activity at a server, comprising the following
step: obtaining at least one of an information about de-
tected and / or logged user activity, an information about
a foreground running application, a hashed user-inter-
face-element management list and a screenshot from a
mobile device. Further, a computer program product is
provided, comprising one or more computer readable
media having computer executable instructions for per-
forming the steps of at least one of the aforementioned
methods.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/16294364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EP 2 608 041 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

FIELD OF THE INVENTION

[0001] The invention relates to a method for monitoring
user activity on mobile devices and a method for analyz-
ing user activity at a server. Further, a computer program
product comprising one or more computer readable me-
dia having computer executable instructions for perform-
ing the steps of at least one of the aforementioned meth-
ods is provided.

BACKGROUND OF THE INVENTION

[0002] Mobile computing devices, as smartphones or
tablets for example, are giving the possibility to easily
browse the Internet, process emails or make phone calls
at any place. Due to their increased attractiveness more
and more people start using such devices creating a large
market for service and network providers, application de-
velopers, and marketing specialists. Since these devices
provide comprehensive functionalities to their users, the
complexity of some applications and services is too high
to be handled by an average user. Helping the user man-
aging this complexity is a hard task since users are often
not able to describe the exact technical situation that is
causing problems.
[0003] Especially mobile phones have become the
central computing and communication devices today.
Since August 2006, more mobile phones than inhabitants
are registered in Germany. As the capabilities of these
devices increase, they are not simple voice-centric hand-
sets any more. They represent one step towards realizing
Mark Weiser’s vision of ubiquitous computing (Mark
Weiser, The computer for the 21st century, Scientific
American, 265(3):94-104, September 1991). In this vi-
sion, it is described that classical computers will be re-
placed by small, intelligent, distributed, and networked
devices that will be integrated into everyday objects and
activities. This replacement can be already observed in
shops and warehouses using tags for monitoring and
controlling items. The evolution of mobile devices, in par-
ticular smartphones, can be seen as part of this vision
since they represent a possibility for making use of tech-
nical and computational capabilities in a mobile context.
Smartphone is a commonly used term for describing cur-
rent comprehensive mobile phones, although no global
industry definition exists. A common understanding of
this term is that these devices provide state-of-the-art
technical characteristics as well as software develop-
ment environments that allow creation of third-party ap-
plications.
[0004] With the increasing capabilities of mobile devic-
es, more and more people start using mobile devices
such as smartphones or tablets. Remote-capabilities for
helping the user managing the complexity of some ap-
plications on such mobile devices are generally limited
due to the lack of solutions being supported by the op-

erating systems. Due to security reasons, standard ap-
plication programming interfaces (API) do not provide
satisfying code for remote functionality, although remote
capabilities would greatly improve support service effec-
tiveness.
[0005] One of the most recent mobile operating sys-
tems is Google’s Android, which is a software stack that
includes an operating system, middleware and basic ap-
plications. The first Android device was released in Oc-
tober 2008, the T-Mobile G1. The Android system is built
on Linux 2.6 Kernel and supports most of its functional-
ities. Android treats every application equal, meaning
both, that a developer is able to replace every single An-
droid program and an Android application can be run on
any Android device only being limited by the provided
functionalities. Google’s Android security mechanisms
are based on those of a Linux system. Access control,
e.g. user and group IDs, is managed where every in-
stalled application gets its own user ID with its specific
permissions. These permissions allow finer-grained ac-
cess adjustment for processes using certain functional-
ities, e.g. sending SMS messages or dialing a phone call.
Due to its open platform concept and its large share, An-
droid is on the focus of most malware developers.
[0006] The internal attributes of a computer system are
subject to heavy fluctuation. With every state change the
status of the system changes as well. Web-based ap-
proaches as known from Google Analytics, Opentracker
or Clicktale can use user clicks, mouse-movements and
cookies to track user behavior. In comparison to this,
monitoring user behavior on a mobile device, such as a
smartphone or a tablet or the like, is much harder since
most mobile operating systems restrict access to corre-
sponding functionality due to security reasons.
[0007] In an evaluation by Falaki, et al. of smartphone
usage, devices were monitored to gather information
about user behavior (Hossein Falaki, Ratul Mahajan, Sri-
kanth Kandula, Dimitrios Lymberopoulos, Ramesh
Govindan, and Deborah Estrin; Diversity in smartphone
usage; In Proceedings of the 8th international conference
on Mobile systems, applications, and services, MobiSys
’10, pages 179-194, New York, NY, USA, 2010. ACM).
Two different datasets were used to analyze user behav-
ior. The first was acquired using Android based smart-
phones while the second dataset (Windows Mobile) was
provided by an organization investigating smartphone
usability. The Android data set used in this evaluation
was obtained by a custom logging tool, SystemSens (H.
Falaki, R. Mahajan, and D. Estrin, Systemsens: A tool
for monitoring usage in smartphone research deploy-
ments; In Proceedings of the sixth ACM international
workshop on mobility in the evolving internet architecture.
ACM, 2011). It is implemented as a background service
that records the state of the screen (on or off), the start
and end of incoming as well as outgoing voice calls, the
interaction duration per application, the network traffic
each application produces and finally the battery level.
Logged data is stored in a SQLite database on the device

1 2

EP 2 608 041 A1

3

5

10

15

20

25

30

35

40

45

50

55

and uploaded to a server when the handset is charged
in order to not tamper with the battery data. SystemSens
collects most of its data event-based via an event logging
API introduced in Android 2.2 to minimize energy con-
sumption. Some data like CPU and memory usage is
collected via polling at a fixed interval of 2 minutes.
[0008] Swatch is a log file monitor with filtering capa-
bilities (Stephen E. Hansen, E. Todd Atkins, and E. Todd;
Automated system monitoring and notification with
swatch; pages 145-155, 1993). Its purpose is to ease
monitoring system health and security status of computer
systems. It relies on the UNIX syslog facility. Swatch,
which stands for Simple WATCHer, monitors the log files
and filters them to gather relevant system information. It
allows specifying actions like execution of a script or
sending mail triggered by certain patterns in the log. The
functionality of Swatch relies on regular expressions
which is the reason why it is implemented in Perl. The
underlying syslog makes it easy to scale up to several
hosts by logging to a dedicated logging server. In order
to gain the needed information, several system utilities
needed modification to report more comprehensively to
syslog. The determination of the state of a distributed
system is more difficult as on normal computer systems.
Several solutions for state detection on distributed sys-
tems are developed but detailed user information are not
extracted where basic key ideas have the same basis for
detecting activities on a system.
[0009] K. Mani Chandy and Leslie Lamport present an
algorithm to determine the global state of a distributed
system during a computation (K. Mani Chandy and Leslie
Lamport; Distributed snapshots: determining global
states of distributed systems; ACM Trans. Comput. Syst.,
3:63-75, February 1985). A process is used which col-
lects information from other processes. These processes
can record their own state. This means that the process
which collects the information has to work in cooperation
with these other processes. The collecting process is su-
perimposed on the underlying computation and it has to
run concurrently but it does not alter the underlying com-
putation. The algorithm was developed to detect stable
properties like "system is deadlocked",
[0010] Another approach for monitoring the state of a
distributed system was developed by Van Renesse et al.
(Robbert Van Renesse, Kenneth P. Birman, and Werner
Vogels; Astrolabe: A robust and scalable technology for
distributed system monitoring, management, and data
mining; ACM Trans. Comput. Syst., 21:164-206, May
2003). They introduce a technology to monitor a distrib-
uted system called Astrolabe. Astrolabe is a DNS-like
distributed information management system. It monitors
the dynamically changing state of the system and reports
summaries of this information to the user. They showed
that Astrolabe can scale with thousands of nodes with
no significant performance degradation. The delay of the
information propagation between the nodes is in a range
of tens of seconds. Meng S. et al. presented their ap-
proach to monitor the state of a cloud datacenter. Their

approach is window-based where they developed a
framework called WIndow-based StatE monitoring
(WISE). This framework alerts only when state violation
is continuous within a time window. During the develop-
ment of WISE they encountered several challenges.
Firstly, distributed aggregation which means the ability
of summarizing information from voluminous distributed
monitored values was encountered. Secondly, while ag-
gregate information on a distributed system can lead to
running similar tasks in an isolated manner which is an
unnecessary resource consumption this means the
framework has to share the aggregation tasks. It could
be shown that WISE solved these challenges and that it
reduces the communication by 50%-90% compared to
instantaneous monitoring.
[0011] Xev is a tool working on Linux-based systems
for showing window-based events. This is done by cre-
ating an own window or by attaching to an existing one.
Every event, e.g. a mouse-drag, a keyboard-stroke or a
window-movement, is indicated and can be stored for
post-processing. The main purpose of this tool is stated
to be debugging. The main problem with Xev is that it
requires an X-Server environment for being executed.
For now, this environment is not available for current
mass market mobile devices using mobile operating sys-
tems such as Android.
[0012] At first glance, a promising place to look for us-
er-related activity information is the operating system it-
self, i.e. in the case of the Android operating system to
have a look at the Dalvik Virtual Machine which executes
Android/Dalvik executables. However, in most operating
systems, the source code of the parts relevant for user-
related activity information is not well documented and
implementing these parts into a method for monitoring
user activity would result in a high dependency to chang-
es made to the source code.
In the case of Android, a class called Instrumentation is
provided which helps to monitor executed applications.
When running with instrumentation turned on, this class
will be instantiated before any application code, allowing
monitoring all the interaction the system has running with
the application. An Instrumentation implementation is de-
scribed to the system through an AndroidManifest.xml’s
¡instrumentation¿ tag. Hence, the class Instrumentation
is a tool that gives simple access to information related
to Android Activities which are in most cases the related
screens of applications. However, the class has to be
registered in the AudroidManifest.xml of each monitored
application since the application will be instantiated by
the Instrumentation class for being able to monitor it. The
result is that every installed application would need to be
modified for a generic monitoring approach making it in-
operative for a method for monitoring user activity on
mobile devices.
[0013] An essential step in monitoring user activity is
the identification of the foreground running application.
In the case of Android, the foreground application repre-
sents the actually viewed application/Android Activity. All

3 4

EP 2 608 041 A1

4

5

10

15

20

25

30

35

40

45

50

55

open Activities are stored in the Activity Stack where the
foreground application lies on top of this stack. Android
provides functionality for investigating the stack and
hence, allowing you to identify the foreground applica-
tion. Ì
[0014] On Android devices, using the KeyListener
class, it would be possible to record all inputs related to
a certain Android View. Views occupy rectangular areas
on the screen where each view is responsible for drawing
and event handling of a certain subpart of an Activity.
Part of these inputs are the entered keys which can be
recorded for a corresponding application. The limiting
factor making it inappropriate for a method for monitoring
user activity on mobile devices is that every monitored
application would need modifications for recording the
keys similar to the use of the Instrumentation class.
[0015] For monitoring user activity, it is not enough to
solely identify the foreground application. Analyzing the
user-interface-elements of a running application can be
very beneficial at this point since it would provide more
detailed information on the current user interaction with
the system. Ì
[0016] In Android, all Views, i.e. the user-interface-el-
ements in Android, are defined in XML files and these
files are required by the operating system. Searching for
the Views is one essential problem since each View has
a unique ID which is handled by the corresponding Ac-
tivity. Fetching this information via Dalvik Virtual Machine
would lead to major changes in the design of the oper-
ating system making it not applicable for consumer de-
vices.
[0017] In Android, the application context is a class that
allows access to application-specific resources and
classes. Additionally, actions such as sending and re-
ceiving Android intents can be accessed. In general, all
information related to an Activity are stored in its context.
Again, fetching this information is not possible on an retail
phone and a follow up realization would require major
changes in the operating system design.

SUMMARY OF THE INVENTION

[0018] It is an object of the present invention to provide
a method for monitoring user activity on mobile devices
and a method for analyzing user activity at a server and
a corresponding computer program product. This object
is achieved with the features of the independent claims.
[0019] One aspect of the invention is related to a meth-
od for monitoring user activity on mobile devices wherein
detailed data about the application context is given and
support for customer services is given with a minimum
of technical conversation with the user of the mobile de-
vice. This aspect of the invention is carried out using a
generic hash key of the user-interface-element manage-
ment list which generates a unique identifier for the cor-
responding user action.
[0020] Key strokes or any other user activity on an input
device are used in order to detect general user activity.

The foreground running application which shows the cur-
rent application in use is detected. Using the user-inter-
face-element management list, the exact window within
an application the user is currently viewing or editing is
identified. The user-element-list is hashed for obtaining
a unique identifier of the user activity. A screenshot is
created for making the current user activity verifiable for
the customer service or the help desk and for ameliorat-
ing debugging possibilities. The collected items are
stored at a local and / or a remote database, wherein the
remote database can be at a server. At the server side,
the collected data can be unambiguously labeled or oth-
erwise enriched.
[0021] According to the invention, a method for moni-
toring user activity on a mobile device is provided, com-
prising an input and an output unit, comprising the fol-
lowing steps preferably in the following order: detecting
and / or logging user activity on said input unit, identifying
a foreground running application, hashing of a user-in-
terface-element management list of the foreground run-
ning application, and creating a screenshot comprising
items displayed on said input unit.
[0022] A mobile device is a non-stationary computa-
tional device built on a mobile computing platform, with
advanced computing ability and connectivity, having a
processor unit capable of being operated by an operating
system. The mobile device can be for example a smart-
phone, a tablet, a PDA or the like.
[0023] The input unit is a unit the user can enter com-
mands in for actively operating the mobile device. Such
an input unit can be a touchscreen for example, or a
keyboard or a mouse.
[0024] The foreground running application is the appli-
cation which the user is currently using, viewing or edit-
ing. The foreground running application can be the only
running application on the mobile device or can be just
one among a plurality of running applications. Identifying
the foreground application is one step in tracking user
activity. It is the basis of investigating detailed activities
of users within identified applications.
[0025] A user-interface is a part of an application where
the interaction between the user and the application oc-
curs. The user-interface typically consists of different us-
er-interface-elements. An application, which is adapted
for the interaction with the user, running on a mobile op-
erating system, has a user-interface-element manage-
ment list, managing the different user-interface-elements
and comprising related information thereof. Analyzing
the user-interface-elements, it will be possible to get de-
tailed information about the current application usage of
the user. User-interface-elements comprise information
whether a user is currently writing a text message, read-
ing emails or changing settings. Basing on the structure
of an application, user-interface-elements, including the
user-interface-element management list, represent the
finest-grained information describing user activity.
[0026] The user-interface-element management list
can be hashed using a hash function, i.e. a hash key of

5 6

EP 2 608 041 A1

5

5

10

15

20

25

30

35

40

45

50

55

the user-interface-element management list can be gen-
erated. According to naming conventions, this hash key
is generally unambiguous. For processing reason, the
hashing is performed in order to receive a comparable
pattern that can be used to verify user activity. Due to
naming conventions of the applications, this hash code
is unique and will only be generated, if a corresponding
user is using the exactly same user-interface-element as
recorded earlier.
[0027] Creating screenshots enables to label each
identified user-interface-element while additional manual
information can be added to it. These manual descrip-
tions are useful since in most cases no further public
information exists.
[0028] According to one embodiment of the invention,
the method for monitoring user activity on a mobile device
may further comprise the step of storing at least one of
the following items: the information about the detected
and / or logged user activity, the information about the
foreground running application, the hashed user-inter-
face-element list and the screenshot at a local and / or
remote database.
[0029] Said items can also be stored at a local data-
base first and then sent to a remote database where they
are stored; or said items can also be stored at both da-
tabases, the local and the remote one, simultaneously.
An advantage of data-storage on a server side is that
identified activities for all applications having the same
build number on any mobile device will be the same. This
would allow a general comparison of user complications
with a certain application.
[0030] In an embodiment of the invention, the method
for monitoring user activity on a mobile device may further
comprise the step of extracting at least one of the follow-
ing further items: at least one fully qualified class name
and / or at least one ID and /or at least one relation of at
least one user-interface-element from the user-interface-
element management list and storing the extracted items
at a local and / or remote database.
[0031] In particular, the items can be extracted from
the user element, which the user is currently using, for
example viewing or editing. A relation of the user-inter-
face-element may be an existing child or parent user-
interface-element having any relation to the correspond-
ing user-interface-element.
[0032] In an embodiment of the invention, the fore-
ground running application is identified by polling a run-
ning application manager whenever user activity on the
input device is detected.
[0033] This method of polling the running application
manager is particularly advantageous for mobile devices
with limited system resources.
[0034] According to an embodiment of the invention,
the screenshot is created by reading data from a buffer
and creating a picture from this buffer. This method can
particularly be used for operating systems that have no
built-in possibility to create screenshots.
[0035] In an embodiment of the invention, the user ac-

tivity on the input device is detected by examining an
event pool by a detection service upon an input event is
received and by flushing said event pool after the exam-
ination of the event pool and / or by storing said input
event to a local and / or remote database. The flushing
of the event pool can prevent the system resources from
being overloaded, in particular on devices with low hard-
ware indexes.
[0036] In an embodiment of the invention, the remote
database is a database of a remote server.
[0037] According to an embodiment of the invention,
at least one of the items stored at a local and / or remote
database is labeled with a respective unambiguous tag.
The unambiguous tag can comprise for example a times-
tamp, a client’s name, a file name or the like.
[0038] According to a further aspect of the invention,
a method for analyzing user activity at a server is provid-
ed, comprising the following step: obtaining at least one
of an information about detected and / or logged user
activity, an information about a foreground running ap-
plication, a hashed user-interface-element management
list and a screenshot from a mobile device.
[0039] Such an analysis can be performed for example
manually by service staff of remote help desk and / or
automatically by a specially designed program which
may compare the present technical problem with already
reported ones.
[0040] In an embodiment of the invention, a method
for analyzing user activity at a server is provided, which
comprises the following step: obtaining at least one fully
qualified class name, at least one ID and at least one
relation of at least one user-interface-element from an
user-interface-element management list from the mobile
device.
[0041] In an embodiment of the invention, the method
for analyzing user activity at a server is provided, further
comprises the following step: performing a custom ap-
plication for presenting an application context of the mo-
bile device. The custom application may present the ob-
tained items such as the screenshot or the analysis of
the user-interface-element management list to service
staff of a help desk, giving an overview of the current
application context of the mobile device.
[0042] According to an embodiment of the invention,
at least one of the obtained data is unambiguously la-
beled at the server.
[0043] According to the invention, a computer program
product comprises one or more computer readable me-
dia having computer executable instructions for perform-
ing the steps of at least one of the aforementioned meth-
ods.
[0044] For realizing a method for monitoring user ac-
tivity on a mobile device, it is necessary to set up a mon-
itoring system that indicates the current state on request.
Using such a monitoring system even provides the pos-
sibility to analyze whole flows of actions which will addi-
tionally improve results of support or marketing meas-
ures. In general, the monitoring data is influenced by

7 8

EP 2 608 041 A1

6

5

10

15

20

25

30

35

40

45

50

55

three main subjects: the hardware, the operating system
including all handled applications and data, and the user.
Each of these three subjects influences each other and
results in monitorable values describing the current state
of a monitored system. When developing a monitoring
system, not all values describing the state of a device
are accessible. Especially, user actions are hard to follow
since each application builds its own domain restricting
access from external sources. It is possible to use generic
information such as the running process in order to esti-
mate user activity but normally, these measures will not
give detailed information on the current user actions.
[0045] The present invention can be used so that au-
thorized services, such as remote help desks, can help
to identify, understand and solve technical problems of
users and to detect anomalies in applications running on
a mobile device. Especially knowing the exact technical
state or situation can be used in order to analyze prob-
lems and give detailed recommendations. Moreover, not
only support services would benefit of such information:
e.g. application developers can analyze the most used
functionality of their application for setting priorities in fu-
ture development tasks and operators and marketing
specialist can use this data for activity-based and con-
text-sensitive marketing and recommend systems.
[0046] Another example for a possible use of the
present invention is the field of malware and intrusion
detection. As an example where more detailed informa-
tion can be very helpful is the detection of malware that
sends messages to premium services for gaining profit.
A significant increase of such malware targeting mobile
devices and in particular smartphones can be observed.
Using standard monitoring, it is possible to detect that a
message was sent. In some cases, it might be even pos-
sible to detect user activity resulting in positive detection
if messages were sent without user interaction. But since
it is assumed that malware writers are highly skilled, they
will hide message transmission within phases of arbitrary
user activity. Without more comprehensive information,
an anomaly detection system will not be able to differen-
tiate between an user sending a message and a user just
reading his short message while a malware is sending
messages to a premium service.

BRIEF DESCRIPTION OF THE DRAWINGS

[0047]

Fig. 1 schematically shows a listing for detecting a
foreground Activity via an ActivityManager on An-
droid;

Fig. 2 schematically shows a listing for creating a
screenshot from a frame buffer on Android;

Fig. 3 shows schematically an array of one pixel in
the frame buffer;

Fig. 4 (a) shows schematically different stages in a
text message conversation;

Fig. 4 (b) shows additional application contexts for
a text message conversation;

Fig. 5 shows a server displaying the application con-
text on a mobile device using Symbian; and

Fig. 6 shows an activity diagram of a computer pro-
gram on a mobile device performing a method for
monitoring user activity on a mobile device with An-
droid according to one embodiment of the invention

DETAILED DESCRIPTION OF THE INVENTION

[0048] The subject-matter of the present application -
monitoring user activity on a mobile device - is adapted
for the use in any kind of mobile operating system due
to its general applicability. One embodiment is the use
in Google’s Android operating system. Since the techni-
cal implementation in a mobile operating system cannot
be obviously solved due to the lack of standard out-of-
the-box solutions, several small bypasses are needed.
The following description will give a detailed explanation
of the performed actions.
[0049] In order to detect user activity on a mobile de-
vice, the user interaction with an input unit is detected.
For not being bound to a corresponding application, it is
preferable to have an overall detection of key events on
an operating system level. Similarly to other Linux distri-
butions, Android’s kernel abstracts input devices, as for
example keyboards, touchscreens or mice, as a set of
serial devices located under /dev/input/. The names of
the individual devices may vary according to the manu-
facturer and device configuration. However, the format
of the messages emitted by the devices is the same
across handsets. Hence, a tool, in particular a Java-Na-
tive-Interface based tool, can be created which is able to
observe which serial devices are located under /dev/in-
put/. An individual thread is spawned per input device,
with an observer obtaining and parsing the input events
and posting them to an event pool, in particular an event
pool in Java-space. The observer may be implemented
in C and is able to communicate with the Android appli-
cation, in particular by using the Java-Native-Interface.
According to one embodiment, since input events, par-
ticularly those emitted by a touchscreen interface are nu-
merous and nearly concurrent, the event pool can sort
its contents by timestamps and / or unambiguous tags.
Input events can consist of a starting point, intermediate
actions (e.g. mouse drag), and an ending point. Upon
each received input, the event pool can be examined by
a detection service. If a complete input event is detected,
it can be recorded to a database and the event pool can
be flushed to preserve memory.
[0050] In general, any operating system has a task
manager comprising information about current running

9 10

EP 2 608 041 A1

7

5

10

15

20

25

30

35

40

45

50

55

applications on the operating system. Every application
running on Android which uses the permission an-
droid:permission=GET TASKS can obtain an instance of
an ActivityManager, which is the task manager of the
Android operating system. The ActivityManager has in-
formation about all running activities. Information is hold
by an ActivityManager.RunningTaskInfo object. To re-
trieve the foreground activity, i.e. the foreground running
application, the ActivityManager.RunningTaskInfo ob-
ject has a field called topActivity which retrieves the ac-
tivity component at the top of the history stack of the task.
[0051] According to one embodiment, the ActivityMan-
ager is polled and the name of the running application is
compared in order to detect a change of the foreground
running application. According to another embodiment,
as shown schematically in Fig. 1, the ActivityManager is
polled only when user activity on the input device, on the
touchscreen for example, is detected. According to one
embodiment, the name of the recognized foreground run-
ning application can be stored and / or labeled with a
timestamp and / or an unambiguous tag.
[0052] For monitoring user activity, it may not be
enough to solely identify the foreground application. An-
alyzing the user-interface-elements of a running applica-
tion can be very beneficial at this point since it would
provide more detailed information on the current user
interaction with the system. On Android, such the user
user-interface-element management list, which is man-
aging and handling the user-interface-elements, is pref-
erably a View Hierarchy wherein the user-interface-ele-
ments are preferably Views.
[0053] Android’s source code comprises an infrastruc-
ture for debugging View Hierarchies. The tool used for
this purpose is called Hierarchy Viewer and is included
in the Android System Developer Kit. In order for this tool
to work, the emulator, i.e. the tool, hosts a telnet-like serv-
ice which dumps the current window complete with de-
tailed information on the layout properties of each indi-
vidual view. According to one embodiment, the tool in-
cluded in the Android System Developer Kit is modified
in order to increase its performance by reducing the set
of generated information of a certain View to the follow-
ing: fully qualified class name, ID, and a relation to other
Views, e.g. information about the existence of a child
View or a parent View for example. This reduction is a
reliable way to generate signatures / items of View Hier-
archies which are unique for each screen and state within
an application.
[0054] According to another embodiment, process-re-
lated information can enrich the monitoring data, which
are stored at a database, e.g. process name, process
ID, parent process ID, user ID, memory size or number
of started threads.
[0055] According to one embodiment, a screenshot
can be created using an application programming inter-
face (API) which is provided by the operating system or
a third party developer. According to another embodi-
ment, the screenshot can be created by reading data

from the frame buffer and creating a picture from this
data. This procedure is particularly important for operat-
ing systems that do not provide any means for generating
screenshots. Creating screenshots by reading data from
the frame buffer and creating a picture from this data is
possible since the last picture from the screen is stored
in the frame buffer. In Android, the frame buffer can be
found in /dev/graphics/fb0.
[0056] According to one embodiment, the data is inter-
preted as presented schematically in the listing, shown
in Fig. 2. A loop reads the data from a pixel and stores it
/ them in a new pixel array. The pixel is stored in 16 bit
and each color has 5 bits, wherein the last bit is empty
since an alpha value is not stored in the frame buffer of
this embodiment. According to this embodiment, lines
18-19 represents the extraction of the color blue, lines
21-22 the extraction of green, and lines 24-25 the extrac-
tion of red. In this embodiment, as aforementioned, there
is no alpha value / channel, such that the last bits are
masked with FF (line 27).
Fig. 3 shows schematically such an array for the color
values for one pixel in the frame buffer. Fig. 4 (a) presents
different stages in a text message conversation accord-
ing to an embodiment using a mobile device with Android
operating system. Fig. 4 (b) depicts additional application
contexts such as a menu for the selection of a text mes-
sage ringtone and a text message settings menu accord-
ing to the embodiment. Each context receives its own
hash code even on minor changes: F896E95C7B7-
B506B2FB56C1BE46943A9, 3723573169F24490B07-
DDD2D1572F292, 6566A266CCCBA359D5E708B5-
E6BB1, 12D65BB4E3EBB4FBD4F2B9E62EC7C14,
and 9D7F5636E2989AAF607CC0107A50EC4 E. Using
these hashcodes, an exact identification of the fore-
ground user activity is possible. According to one em-
bodiment, the Bitmap class from Android is able to read
the new pixel array and create a Bitmap which can be
stored as a picture file, preferably a PNG picture.
[0057] According to one embodiment, the extracted
items, such as for example the detected user activity on
the input device or the created screenshot, are stored at
a remote database on a server. According to another
embodiment, a custom application is deployed capable
of using the extracted items, in particular the hashed us-
er-element-interface management list, for showing the
client side application context to a customer service
which is logged onto the server. This client side applica-
tion context can be a screenshot possibly amended with
extracted information of the user-interface-element man-
agement list, the currently used user-interface-element
or the hashed user-interface-element management list.
According to another embodiment, each item and / or
plurality of items relating to the same client case can be
manually or automatically labeled, e.g. with "creation of
a text message". In addition, labeling the items with any
other information related to the client case is possible,
as for example the client name, date, time etc.
[0058] One embodiment of a server interface present-

11 12

EP 2 608 041 A1

8

5

10

15

20

25

30

35

40

45

50

55

ing the client side application context on the client’s mo-
bile device is shown in Fig. 5, wherein Symbian OS is
used as the mobile operating system on the mobile de-
vice. Screenshots of detected states are created once
and transferred to the server for visualization which ba-
sically enables remote working persons to investigate
usage on a device.
[0059] According to one embodiment, a client applica-
tion on the mobile device is designed within a modular
architecture. Each client task has a corresponding mod-
ule performing the desired functionality. According to one
embodiment as schematically presented in Fig. 6, the
system comprises a Tracking and a Communication
Module for Android.
[0060] In the Tracking Module, screen IDs are gener-
ated from each user-interface-element which has the cur-
rent focus on the screen, i.e. the output device. The
Screen IDs are used in connection with remote services
for managing more comprehensive and detailed system
states. Such a comprehensive state can consist of the
hashcodes, keystroke profiles, list of processes running
in parallel and so on. In Android, the screen IDs can be
fetched from a SmartMobileService which is implement-
ed as an Android persistent service. The fetched screen
IDs can be sent via a DataSetsManager method send-
DataToService which uses a QueryRestService to finally
send all relevant data to a responsible web service. The
method sendDataToService is a hook method which can
be extended to add additional information from existing
data collectors, as for example DataCollector A, B, C,
and D in Fig. 6.
[0061] In the Communication Module, an integer value
named reqType, a char value for the format of the data
which will be sent and an integer for an UID for an initial-
ization process are required corresponding to receiving
signatures or sending events to a REST-Webservice. In
the Communication Module, there is a method, getREQ
(LinkedList<String> datas), which needs required data
as a list of strings which shall be send to a REST-Web
service. On success, the method then returns an instance
of a class ModelsType which holds a complete parsed
XML structure which was received from a query to the
REST-Web service. The primary purpose of the Com-
munication Module is to communicate with external com-
ponents, e.g. a server that can store all identified states
with corresponding screenshots. This step is not neces-
sarily required for the identification process itself but it
allows integration of additional services basing on the
corresponding information resulting from the identifica-
tion process.
[0062] While the invention has been illustrated and de-
scribed in detail in the drawings and foregoing descrip-
tion, such illustration and description are to be considered
illustrative or exemplary and non-restrictive; the invention
is thus not limited to the disclosed embodiments. Varia-
tions to the disclosed embodiments can be understood
and effected by those skilled in the art and practicing the
claimed invention, from a study of the drawings, the dis-

closure, and the appended claims. In the claims, the word
"comprising" does not exclude other elements or steps,
and the indefinite article "a" or "an" does not exclude a
plurality and may mean "at least one".

Claims

1. A method for monitoring user activity on a mobile
device comprising an input unit and an output unit
comprising the following steps preferably in the fol-
lowing order:

(a) detecting and / or logging user activity on
said input unit;
(b) identifying a foreground running application;
(c) hashing of a user-interface-element man-
agement list of the foreground running applica-
tion;
(d) creating a screenshot comprising items dis-
played on said output unit.

2. The method of claim 1, further comprising:

storing at least one of the following items: the
information about the detected and / or logged
user activity, the information about the fore-
ground running application, the hashed user-in-
terface-element management list and the
screenshot at a local and / or a remote database.

3. The method of claim 1 or 2, further comprising:

extracting at least one of the following further
items: at least one fully qualified class name and
/ or at least one ID and / or at least one relation
of at least one user-interface-element from the
user-interface-element management list and
storing the extracted items at a local and / or
remote database.

4. The method of any of claims 1 to 3, wherein the fore-
ground running application is identified by polling a
running application manager whenever user activity
on the input device is detected.

5. The method of any of claims 1 to 4, wherein the
screenshot is created by reading data from a buffer
and creating a picture from this buffer.

6. The method of any of claims 1 to 5, wherein the user
activity on said input device is detected by examining
an event pool by a detection service upon an input
event is received and by flushing said event pool
after the examination of the event pool and / or by
storing said input event to a local and / or remote
database.

13 14

EP 2 608 041 A1

9

5

10

15

20

25

30

35

40

45

50

55

7. The method of any of claims 1 to 6, wherein the re-
mote database is a database of a remote server.

8. The method of claims 2 to 7, wherein at least one of
the items stored at a local and / or remote database
is labelled with a respective unambiguous tag.

9. A computer program product comprising one or more
computer readable media having computer execut-
able instructions for performing the steps of the
method of any of claims 1 to 8.

10. A method for analyzing user activity at a server com-
prising the following step:

obtaining at least one of an information about
detected and / or logged user activity, an infor-
mation about a foreground running application,
a hashed user-interface-element management
list and a screenshot from a mobile device.

11. The method of claim 10, further comprising the fol-
lowing step:

obtaining at least one fully qualified class name,
at least one ID and at least one relation of at
least one user-interface-element from an user-
interface-element management list from the mo-
bile device.

12. The method of claim 10 or 11, further comprising the
following step:

performing a custom application for presenting
an application context of the mobile device.

13. The method of any of claims 10 to 12, wherein at
least one of the obtained data is unambiguously la-
belled at the server.

14. A computer program product comprising one or more
computer readable media having computer execut-
able instructions for performing the steps of the
method of any of claims 10 to 13.

15 16

EP 2 608 041 A1

10

EP 2 608 041 A1

11

EP 2 608 041 A1

12

EP 2 608 041 A1

13

EP 2 608 041 A1

14

EP 2 608 041 A1

15

EP 2 608 041 A1

16

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description

• MARK WEISER. The computer for the 21st century.
Scientific American, September 1991, vol. 265,
94-104 [0003]

• Diversity in smartphone usage. HOSSEIN FALAKI ;
RATUL MAHAJAN ; SRIKANTH KANDULA ; DIM-
ITRIOS LYMBEROPOULOS ; RAMESH
GOVINDAN ; DEBORAH ESTRIN. Proceedings of
the 8th international conference on Mobile systems,
applications, and services, MobiSys ’10. ACM, 2010,
179-194 [0007]

• STEPHEN E. ; HANSEN, E. ; TODD ATKINS ; E.
TODD. Automated system monitoring and notifica-
tion with swatch, 1993, 145-155 [0008]

• K. MANI CHANDY ; LESLIE LAMPORT. Distributed
snapshots: determining global states of distributed
systems. ACM Trans. Comput. Syst., February 1985,
vol. 3, 63-75 [0009]

• ROBBERT VAN RENESSE ; KENNETH P.
BIRMAN ; WERNER VOGELS. Astrolabe: A robust
and scalable technology for distributed system mon-
itoring, management, and data mining. ACM Trans.
Comput. Syst., May 2003, vol. 21, 164-206 [0010]

	bibliography
	description
	claims
	drawings
	search report

