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Abstract

We consider an order variant of k-additivity, so-called k-maxitivity, and
present an axiomatization of the class of k-maxitive Sugeno integrals over
distributive lattices. To this goal, we characterize the class of lattice polyno-
mial functions with degree at most k and show that k-maxitive Sugeno in-
tegrals coincide exactly with idempotent lattice polynomial functions whose
degree is at most k. We also discuss the use of this parametrized notion in
preference aggregation and learning. In particular, we address the question
of determining optimal values of k through a case study on empirical data.

Keywords: Sugeno integral, k-maxitivity, lattice polynomial, degree, prefer-
ence aggregation, preference learning

1 Introduction
The Sugeno integral was introduced in [30] and it became a widely used aggregation
function in the qualitative approach to decision making since it provides a meaningful
procedure to fuse values within universes where no structure (other than an order) is
considered [6, 12, 18]. Originally, the Sugeno integral was defined over real intervals
but it can be extended to wider domains, namely, distributive lattices, via the notion
of lattice polynomial function (i.e., a combination of variables and constants using the
lattice operations ∧ and ∨). In fact, idempotent lattice polynomial functions coincide
exactly with (discrete) Sugeno integrals (see e.g. [7, 25]). The latter observation is
particularly interesting in the context of multicriteria decision making as it provides a
way of aggregating preferences that are not total orders. In fact, preference aggregation in
the qualitative approach to preference modeling is the problem that motivates the current
paper, and that we now briefly discuss.

We consider a multicriteria framework, where alternatives are described according to
a set of criteria. We denote the set of alternatives by X and we denote the set of criteria
indices by [n] = {1, . . . , n}. Here, a criterion is a pair consisting of an attribute Xi

together with a utility function ϕi : Xi → L modeling our preference on Xi. The set L is
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thought of as an evaluation space. In the qualitative approach that we consider, L is an
ordered set, not necessarily numerical. In fact, throughout this paper we will assume that
L is a bounded distributive lattice. Note that this does not constitute a serious restriction
since any partial order can be embeded into a distributive lattice, such that the original
order is preserved, by Dedekind-MacNeille’s Completion (see, e.g, [11]).

Let ϕ : X → Ln be a mapping from alternatives to their evaluations on criteria. For
x ∈ X we write

ϕ(x) = (x1, . . . , xn),

where xi is the evaluation of x in the ith criterion. By a preference relation we simply
mean a binary relation 4 overX that is reflexive and transitive. Furthermore we represent
such a preference relation 4 by a utility function U : X → L (for a suitable L) through
the following rule (see [3]):

x 4 y ⇔ U(x) ≤ U(y).

Note that the relation 4 thus defined is transitive, reflexive, but not necessarily antisym-
metric since x 4 y and y 4 x implies U(x) = U(y) but not necessarily x = y. In this
paper we focus on utility functions that can be defined as

U(x) = A(ϕ(x)) = A(x1, . . . , xn),

where A : Ln → L is an aggregation function that we call the preference aggregation
model. As L is a distributive lattice, the Sugeno integral is the most relevant class of
functions for A [14]. Note that in the case when L is a numerical interval, the Choquet
integral [18] is often used as the aggregation model. In some sense, the Sugeno integral
can be viewed as the ordinal analogue of the Choquet integral.

In this paper we also consider a supervised learning problem, namely that of learning
a Sugeno integral that models a set of examples D ⊆ Ln × L, where each element is a
couple that associates a utility value to a tuple of n criteria values :

D =
{(

x1, y1
)
, . . . , (xm, ym)

}
.

Here, each yj is the utility value of an alternative xj for which we have xj = (xj1, . . . , x
j
n).

Ideally, the result of the learning process would be a model consistent with D , that is
A(xj1, . . . , x

j
n) = yj for each example in D . However the learning set D is typically

inconsistent, and thus the task is to learn a Sugeno integral that gives the least prediction
error with respect to D . This is a difficult optimization task, because of the intrinsic
complexity of the Sugeno integral, that grows exponentially with the number of criteria.

To overcome this prohibitive complexity we consider k-maxitive Sugeno integrals,
and study their properties for learning purposes, in particular, the gain in terms of com-
plexity. Moreover we aim at finding the best value of k. To this end we provide a
comparative study of k-maxitive models for different values of k on empirical data. Note
that similar studies were presented for k-additive Choquet integrals; see, e.g, [23, 31].
We also provide a theoretical study of these k-maxitive Sugeno integrals, treated as sub-
classes of lattice polynomials.

The paper is organized as follows. In Section 2, we recall basic background on lattice
theory and lattice polynomials. The notion of k-maxitivity is investigated in Section 3,
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Figure 1: The two forbidden substructures in a distributive lattice.

where we show how it is related to the notion of lattice polynomials with degree at most k.
In fact, we give necessary and sufficient conditions for a lattice polynomial to have degree
at most k and we show that k-maxitive Sugeno integrals coincide exactly with idempotent
lattice polynomials with degree at most k (this result can be found in [3] presented at LFA
2015). In Section 4 we discuss the problem of learning a Sugeno integral and describe
a method for solving it. In Section 5 we present a case study where we analyse how
the accuracy of k-maxitive Sugeno integrals as predictive models changes according to
different values of k. We discuss issues that are still to be resolved and indicate directions
for future research in Section 6.

2 Preliminaries: Lattices, lattice polynomials and Sugeno
integrals

In this section we recall some basic notions and results on lattice polynomials and lattice
theory. For further background, see e.g. [2, 20, 29].

A lattice is an algebraic structure 〈L,∧,∨〉 where L is a nonempty set, called uni-
verse, and where the two binary operations ∧ and ∨, called infimum and supremum resp.,
satisfy the commutative, associative, absorption, and idempotent laws. We will denote a
lattice by its universe L.

A lattice L is said to be distributive if, for every a, b, c ∈ L,

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) or, equivalently, a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Alternatively, a lattice L is distributive if and only if it does not embed any of the two
sublattices shown in Figure 1; see, e.g., [11, 21].

Throughout this paper, L will denote an arbitrary bounded distributive lattice with
least and greatest elements 0 and 1, respectively. For a, b ∈ L, a 6 b simply means that
a ∧ b = a or, equivalently, a ∨ b = b.

For c ∈ L and n > 1, we shall denote tuples of the form (c . . . , c) ∈ Ln by c. For
x, y ∈ Ln, we also make use of the following short-hand notations

x ∨ y = (x1 ∨ y1, . . . , xn ∨ yn) and x ∧ y = (x1 ∧ y1, . . . , xn ∧ yn) .
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Similarly, for x1, . . . , xn ∈ Ln, m ∈ N, m > 1, we write

m∨
i=1

xi = (x11 ∨ . . . ∨ xm1 , . . . , x1n ∨ . . . ∨ xmn ),

m∧
i=1

xi =
(
x11 ∧ . . . ∧ xm1 , . . . , x1n ∧ . . . ∧ xmn

)
.

The class of lattice polynomials functions (or simply lattice polynomials) from Ln to
L, n ≥ 1, can be defined recursively by finitely many applications of the following rules:

1. For any k ∈ [n] = {1, . . . , n} and any a ∈ L, the projection
(x1, . . . , xn) 7→ xk and the constant function (x1, . . . , xn) 7→ a are lattice poly-
nomials from Ln to L.

2. If p, q : Ln → L are lattice polynomials p ∨ q and p ∧ q are lattice polynomials
from Ln to L.

It is well-known [16] that a function f : Ln → L is a lattice polynomial if and only
if it can be represented in disjunctive normal form (DNF), i.e., there is α : 2[n] → L such
that

f (x) =
∨
I⊆[n]

(
α (I) ∧

∧
i∈I

xi

)
. (1)

Note that for a lattice polynomial f : Ln → L there may be several set functions α
that provide different DNF representations of f . For each I ⊆ [n], let eI be the element
of Ln whose ith component is 1, if i ∈ I , and 0, otherwise. Let αf : 2[n] → L be the
function given by αf (I) = f(eI) and consider the function α∗f : 2

[n] → L defined by

α∗f (I) =

{
αf (I), if

∨
J I αf (J) < αf (I),

0, otherwise.

As shown in [7], a function α : 2[n] → L can be used in the DNF representation of f if
and only if α ∈ [α∗f , αf ]. It is thus easy to see that α∗f and αf give rise to the minimal and
maximal, resp., DNF representations of f .

Remark 1. The DNF of a lattice polynomial f is the supremum of weighted terms :

f (x) =
∨
I⊆[n]

gI (x) where gI (x) = αf (I) ∧
∧
i∈I

xi.

Note that if we have
gI
(
x1
)
≥ gI

(
x2
)
∨ . . . ∨ gI

(
xk+1

)
,

for all x1, . . . , xk+1 ∈ Ln and all I ⊆ [n], then

f
(
x1
)
≥ f

(
x2
)
∨ . . . ∨ f

(
xk+1

)
.
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A function f : Ln → L is said to be idempotent if, for every a ∈ L,

f (a, . . . , a) = a.

As observed in [25], (discrete) Sugeno integrals can be thought of as lattice polynomials
that are idempotent. or, equivalently, as lattice polynomials f : Ln → L such that
αf is a capacity on [n], i.e., αf (J) ≤ αf (J

′) whenever J ⊆ J ′, and αf (c) = c for
c ∈ {0, 1} ⊆ L. For the sake of clarity, we shall denote capacities on [n] by µ and the
corresponding Sugeno integrals by Sµ : Ln → L, i.e.,

Sµ(x) =
∨
I⊆[n]

(
µ(I) ∧

∧
i∈I

xi

)
.

Remark 2. For a Sugeno integral Sµ, the function α∗Sµ
is called the ordinal Möbius

transform of µ [19].

For other recent studies on the Sugeno integral and its extensions, see, e.g., [5, 8, 9,
22].

3 k-maxitive Sugeno integrals and lattice polynomials with
degree at most k

We now focus on k-maxitive capacities, also called k-order possibility measures in [4,
26]. A capacity is said to be k-maxitive if we have

µ(I) =
∨

J⊆I,|J |≤k

µ(J), for all I ⊆ [n]. (2)

Note that k-maxitive capacities are thus completely determined by their values on sets
with at most k elements.

A Sugeno integral that is defined with respect to a k-maxitive capacity is also said
to be k-maxitive. It is easy to see from (2) that for a k-maxitive Sugeno integral Sµ,
α∗Sµ = 0 for all |I| > k, and thus Sµ can be expressed as a supremum of terms with at
most k variables. As we will now see, in the case of lattice polynomials, k-maxitivity
translates into the the notion of “degree at most k”.

Definition 1. The degree of a lattice polynomial f , denoted deg(f), is defined by

deg(f) = max{|I| : α∗f (I) 6= 0}.

In other words, the degree of f is the size of the longest term in minimal DNF repre-
sentation of f .

Remark 3. This definition is inspired from that given in [10] for positive Boolean func-
tions.
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We denote by C k the class of lattice polynomials with degree at most k, that is,

C k = {f is a lattice polynomial : deg(f) ≤ k}. (3)

It is now easy to see that k-maxitive Sugeno integrals coincide exactly with those idem-
potent lattice polynomials in C k.

Remark 4. Clearly, if k and k′ are nonnegative integers such that k ≤ k′, then C k ⊆ C k′ .
Also note that C 0 contains only constant functions, and C 1 is the class of weighted
supremum functions (see [7]). Moreover, if f, g : Ln → L belong to C k, then so does
f ∨ g.

Example 1. Let L = {0, . . . , 3} and let f, h : L3 → L be two lattice polynomials for
which

αf (∅) =1, αf ({1, 2}) =2, αh(∅) =0, αh({1, 2}) =1,

αf ({1}) =2, αf ({1, 3}) =2, αh({1}) =0, αh({1, 3}) =1,

αf ({2}) =2, αf ({2, 3}) =2, αh({2}) =1, αh({2, 3}) =2,

αf ({3}) =1, αf ({1, 2, 3}) =2, αh({3}) =1, αh({1, 2, 3}) =3.

We therefore have

α∗f (∅) =1, α∗f ({1, 2}) =0, α∗h(∅) =0, α∗h({1, 2}) =0,

α∗f ({1}) =2, α∗f ({1, 3}) =0, α∗h({1}) =0, α∗h({1, 3}) =0,

α∗f ({2}) =2, α∗f ({2, 3}) =0, α∗h({2}) =1, α∗h({2, 3}) =2,

α∗f ({3}) =0, α∗f ({1, 2, 3}) =0, α∗h({3}) =1, α∗h({1, 2, 3}) =3.

Their minimal DNFs, i.e., those given by α∗f and α∗h, are the following:

f(x1, x2, x3) =1 ∨ (2 ∧ x1) ∨ (2 ∧ x2),
h(x1, x2, x3) =(1 ∧ x2) ∨ (1 ∧ x3) ∨ (2 ∧ x2 ∧ x3) ∨ (3 ∧ x1 ∧ x2 ∧ x3).

Since deg(h) = 3 and deg(f) = 1, h belongs to C 3 but not to C 1 and C 2, while f
belongs to C 1, C 2 and C 3.

Remark 5. The notion of k-maxitivity is somewhat the ordinal variant of “k-additivity”
for real-valued capacities. Let I be a real interval and µ : 2[n] → I a capacity. The Möbius
transform [24] mµ of µ is defined by

mµ(I) =
∑
J⊆I

(−1)|I|−|J |µ(J).

It is well known [19] that the Choquet integral w.r.t. µ can then be defined in terms of the
Möbius transform mµ by

Cµ(x) =
∑
I⊆[n]

mµ(I)·
∧
i∈I

xi. (4)
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A capacity µ is said to be k-additive [19] if, for every |I| > k, mµ(I) = 0. Similarly,
a Choquet integral is said to be k-additive if it is defined with respect to a k-additive
capacity.

The appealing feature of k-additivity becomes apparent from (4) since it implies that
k-additive Choquet integrals can be expressed as sums of weighted terms of size at most
k. In the context of multicriteria decision making, k-additive Choquet integrals corre-
spond then to aggregation models where interaction indices among more than k criteria
are equal to 0. This fact confirms the analogy between k-maxitive Sugeno integrals and
k-additive Choquet integrals: when |I| > k, we have that α∗Sµ(I) = 0 in the former case,
whereas mµ(I) = 0 in the latter case.

Now it is natural to ask for a criterion to check whether data can be modeled by a
k-maxitive Sugeno integral. For this purpose, we provide an axiomatization of the class
C k based on existing data.

Theorem 1. Let f : Ln → L be a lattice polynomial. The three following statements
are equivalent :

(i) f ∈ C k,

(ii) for all x1, . . . , xk+1 ∈ Ln :

f

(
k+1∨
i=1

∧
j 6=i

xj
)
≤ f

(
x1
)
∨ . . . ∨ f

(
xk+1

)
,

(iii) for all x1, . . . , xk+1 ∈ {0, 1}n :

f

(
k+1∨
i=1

∧
j 6=i

xj
)
≤ f

(
x1
)
∨ . . . ∨ f

(
xk+1

)
.

Proof. Let f : Ln → L be a lattice polynomial. We will prove implications (i)⇒ (ii), (ii)
⇒ (iii) and (iii)⇒ (i), thus showing that the three statements are equivalent. (i)⇒ (ii):
Suppose that (i) holds and consider x1, . . . , xk+1 ∈ Ln. Let L′ be the smallest sublattice
of L such that

{xji : i ∈ [n] and j ∈ {1, . . . , k + 1}} ∪ {αf (I) : I ⊆ [n]} ⊆ L′.

Note that L′ is a finite distributive lattice (while L may not be finite). By Birkhoff’s rep-
resentation of distributive lattices [1], L′ can be represented as a sublattice of a powerset
lattice. For simplicity, we assume that L′ is a sublattice of {0, 1}m, for some m > 0, un-
der the usual componentwise ordering of tuples. We denote the cth component of a ∈ L′
by a|c. Under this representation, for any a, b ∈ L′, we have

a ∨ b = (a|1 ∨ b|1, . . . , a|m ∨ b|m), (5)
a ∧ b = (a|1 ∧ b|1, . . . , a|m ∧ b|m), (6)
a ≤ b⇔ ∀c ∈ [m] : a|c ≤ b|c. (7)
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Now, since f ∈ C k, it follows from Remark 1 that:

f (x) =
∨

I⊆[n],|I|≤k

gI (x) where gI (x) = αf (I) ∧
∧
i∈I

xi.

In order to prove that (ii) holds, it is sufficient to show that for every I ⊆ [n] such that
|I| ≤ k, we have:

gI

(
k+1∨
i=1

∧
j 6=i

xj
)
≤ gI

(
x1
)
∨ . . . ∨ gI

(
xk+1

)
. (8)

For the sake of a contradiction, suppose that there is an I ⊆ [n], with |I| ≤ k, such that
(8) does not hold, i.e.:

α(I) ∧
∧
p∈I

(
k+1∨
i=1

∧
j 6=i

xjp

)
6≤

(
α(I) ∧

∧
p∈I

x1p

)
∨ . . . ∨

(
α(I) ∧

∧
p∈I

xk+1
p

)
,

and, hence, that:

∧
p∈I

k+1∨
i=1

∧
j 6=i

xjp 6≤

(∧
p∈I

x1p

)
∨ . . . ∨

(∧
p∈I

xk+1
p

)
.

By (7), (5), and (6), it then follows that there exists a c ∈ {1, . . . ,m} such that

∧
p∈I

k+1∨
i=1

∧
j 6=i

xjp|c 6≤

(∧
p∈I

x1p|c

)
∨ . . . ∨

(∧
p∈I

xk+1
p |c

)
.

In other words,

1 =
∧
p∈I

k+1∨
i=1

∧
j 6=i

xjp|c, and (9)

0 =

(∧
p∈I

x1p|c

)
∨ . . . ∨

(∧
p∈I

xk+1
p |c

)
. (10)

From (10) it follows that for each j ∈ {1, . . . , k + 1} there is p ∈ I such that xjp|c = 0.
Since k + 1 > |I|, there is some p ∈ I for which there exist j, j′ ∈ {1, . . . , k + 1} such
that xjp|c = 0 and xj′p |c = 0, and this yields the desired contradiction because for such
p ∈ I we would have

k+1∨
i=1

∧
j 6=i

xjp|c = 0,

which contradicts (9). Therefore (8) holds for any I ⊆ [n] such that |I| ≤ k, and the
proof of (i)⇒ (ii) is complete.

(ii)⇒ (iii): As {0, 1} ⊆ L, any function f verifying (ii) also verifies (iii).
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(iii)⇒ (i): We proceed by contraposition. Suppose that deg(f) > k and let J ⊆ [n],
|J | ≥ k + 1, be such that α∗f (J) > 0, i.e.,

αf (J) >
∨
I(J

αf (I). (11)

Recall that eJ denotes the n-tuple whose ith component is 1 if i ∈ J and 0 otherwise.
Consider x1, . . . , xk+1 defined as follows: for j ∈ {1, . . . , k + 1}, xj = eJ\{j}. In this
way,

f

(
k+1∨
i=1

∧
j 6=i

xj
)

= f(eJ) = αf (J) >
∨
I(J

αf (I) ≥
k+1∨
j=1

f(eJ\{j}) =
k+1∨
j=1

f(xj),

and the proof is now complete.

Remark 6. In the case when k = 1, the inequality in assertion (ii) becomes

f
(
x1 ∨ x2

)
≤ f

(
x1
)
∨ f

(
x2
)
,

for every x1, x2 ∈ Ln. Since f is a lattice polynomial (and thus nondecreasing), this
condition can be strengthened into an equality, thus showing that the class of lattice
polynomials with degree at most 1 is indeed that of weighted supremum functions (see
[7]).

In the case when k = 2, the inequality in assertion (ii) becomes

f
(
med

(
x1, x2, x3

))
≤ f

(
x1
)
∨ f

(
x2
)
∨ f

(
x3
)
,

for every x1, x2, x3 ∈ Ln, and where med : L3 → L is the median function (applied
componentwise) given by

med (x1, x2, x3) = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3).

This expresses the fact that the value of a median tuple is upper bounded by the supremum
of the individual values.

Remark 7. Note that assertion (iii) is particularly useful whenL is an infinite distributive
lattice, since it provides a finite procedure for checking whether a function has degree at
most k. In fact, Theorem 1 is a generalization of the characterization (Theorem 11.6 in
[10], p. 494) of positive Boolean functions with degree at most k .

Remark 8. Theorem 1 cannot be strengthened by replacing the inequality by an equality
in (ii) and in (iii). To see this, consider the lattice polynomial f with degree 2 given by

f(x1, x2, x3) = x1 ∨ (x2 ∧ x3),

and consider the tuples x1 = (0, 0, 0), x2 = (0, 0, 0) and x3 = (1, 1, 1). Clearly,

f

(
3∨
i=1

∧
j 6=i

xj
)
< f

(
x1
)
∨ f

(
x2
)
∨ f

(
x3
)
,

thus showing that the conditions with equality do not hold in (ii) and in (iii).
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Remark 9. Since a k-maxitive Sugeno integral Sµ is an idempotent lattice polynomial
with degree at most k, we have that∨

I⊆[n],|I|≤k

µ(I) = µ([n]) = 1.

In the case when L is a totally ordered set, this means that there exists I ⊆ [n] of
cardinality at most k such that µ(I) = 1.

4 Learning Sugeno integrals from empirical data
In this section we consider the problem of learning a Sugeno integral from a dataset D
containing the feature tuple together with the global utility of each alternative, that is

D =
{(

x1, y1
)
, . . . , (xm, ym)

}
.

where xj = (xj1, . . . , x
j
n) and yj are respectively the criteria values and the utility of the

jth alternative.
We make the assumption that a Sugeno integral is the aggregation model underlying

the preferences expressed D . We want to learn a Sugeno integral Sµ able to predict,
for j ∈ {1, . . . ,m}, the value of yj from the value of xj . As typically the data that D
contains are noisy, it is impossible to find any Sugeno integral such that Sµ(xj) = yj for
all j ∈ {1, . . . ,m} (D is said to be inconsistent [28]). Learning the aggregation model
consists in searching the Sugeno integral which can predict global utility values with as
few errors as possible.

Remark 10. Note that we do not assume any distance between the elements of L, but
that utility values define a partial ordering of the alternatives. This is why a suitable error
measure in this context is the pairwise error, which corresponds to the ratio of pairs of
elements that are wrongly ordered by the aggregation model. Thus, what we consider
to be the best Sugeno integral is the one that gives the most faithful ordering of the
alternatives, that can differ from the one giving the closest prediction for the utility value,
although accuracy in those two tasks are strongly correlated.

Because of the intrinsic complexity of the Sugeno integral, learning an integral with
the least prediction error is a difficult optimization problem. The ordinal nature of the
treated values forbids using classical methods such as gradient decent (which can be
efficiently applied for learning Choquet integrals [17]), and as a capacity is defined by its
value for each subset of [n], 2n variables have to be considered ; thus, for a high number
of attributes, running the optimization process can be costful.

A method that can be applied to this problem is a meta-heuristics such as simulated
annealing (as proposed in [27]). This algorithm considers the space of every solution,
and associates each solution with a cost (a value to minimize). Then it searches for
the best solution by iteratively modifying the current solution. Modifying a solution
corresponds to traveling to a close element in the solution space. When the modification
of the current solution leads to an increase of the cost, there is a probability to refuse
the change ; the higher is the increase, the higher is the probability. The probability to
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refuse a disadvantageous change also depends on the temperature, a value decreasing
through the iterations ; at the beginning of the process, the probability of accepting a
disadvantageous change is higher and decreases through the iterations, until it becomes
close to 0. The aim of this variation is to avoid being “trapped” in local minima during the
first iterations. For a more detailed description of simulated annealing, see for example
[15].

We apply a simulated annealing to the problem of learning a Sugeno integral by
associating each possible value of µ to a solution, whose cost is equal to the prediction
error of Sµ on D . For creating a new solution µnew from the current one, a subset of [n]
and a value from L (respectively I and y) are randomly picked, both with respect to an
uniform probability distribution. The generated solution is then equal to the old one, yet
with µnew(I) = y (the values of µnew for other sets are subsequently modified so that the
monotonicity property of the capacity is respected). Note that this general method can be
applied for learning k-maxitive Sugeno integrals simply by restricting the subsets of [n]
that can be picked to those of at most k criteria.

Evaluating the new solution produced at each iteration is in general the most time-
consuming part of the simulated annealing process. The complexity of computing the
pairwise error is quadratic with respect to the number of elements in the learning set ;
on the contrary the compexity of computing a mean absolute error (MAE) is linear with
respect to |D |. The MAE is fundamentally a measure that makes sense in a numerical
context, since it computes the average absolute difference between predicted and actual
values. The absolute difference can be generalized as a distance ; in our setting, the value
of the MAE is then

1

|D |
∑

(x,y)∈D

distance(Sµ(x), y).

Nonetheless, this expression requires a notion of distance between two elements of L.
For this we state that the distance between two neighbouring elements of L is 1, and
we define the distance between any two elements as the the length of the shortest path
between them. By Birkhoff’s Representation Theorem (see [1]), we know that any fi-
nite distributive lattice can be embeded in a Boolean (powerset) lattice. Computing the
length of the shortest path between two elements of L is then equivalent to computing
the cardinality of the symmetric difference of two sets. This operation can be done in a
linear time (with respect to the number of criteria, which is usually very low compared
to the cardinality of D). As this error measure is less time-consuming and is in practice
strongly correlated to the pairwise error, we used it for defining the cost of each solution
in the simulated annealing process.

An interesting point of k-maxitivity is precisely to reduce the inner complexity of
capacities. A k-maxitive capacity is indeed defined by its value on sets of size lower
than or equal to k, that is to say

∑k
i=1

(
n
i

)
. Therefore, restricting possible solutions to

k-maxitive ones reduces the number of variables of the optimization problem, although
it can affect the precision of the resulting aggregation model. This will be discussed in
the next section.
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Figure 2: The evaluation space built from the data, in a non-distributive and distributive
version (resp. left and right).

5 A case study
The aim of the following application is to illustrate at which extent k-maxitive Sugeno
integrals could be used as preference aggregation models and which precision can be
obtained for each k-values.

Our data set are users’ hotel ratings from Trip Advisor 1. Each rating is made by one
user for one hotel, according to 7 criteria and associated to an overall evaluation. The
rating scale is {1, 2, 3, 4, 5} and, as some values can be missing, the evaluation space
that we use contains an unknown value. Here we suppose that 1 < unknown < 5
without making any further assumption. We obtain a partial order that can be embeded
in a distributive lattice, as shown in Figure 5.

Note that adding the values unknown− and unknown+ to the original set of values
preserves the order relations (and incomparabilities) between the elements of {1, 2, 3, 4, 5, unknown}.
Nonetheless, it does not preserve the infimum and supremum operations, since we have,
for example, 2 ∧ unknown = unknown−. The distributive lattice thus constructed is
then used as the evaluation space.

Remark 11. When L is a non-distributive lattice, we could still define aggregation func-
tions on Ln that consist of expressions built with ∧, ∨ and constants. However, without
the distributivity assumption, it may be impossible to represent such functions by a DNF.

The results are obtained from 30 random samples from the original data set, each of
which were divided in two parts: a learning set containing 250 elements, and a testing
set containing 1000 elements. For each sample, a k-maxitive Sugeno integral was trained
on the learning set, for k = 1, 2, 3, 4, 5, 6. The resulting integrals were evaluated with
respect to the testing set. Figure 5 shows the average pairwise error among samples, for
each value of k.

6 Conclusion and further work
The results presented in Section 5 show that most of the accuracy is gained while in-
creasing k from 1 (a 1-maxitive Sugeno integral that corresponds in fact to a weighted

1Tripadvisor Dataset : http://sifaka.cs.uiuc.edu/˜wang296/Data/index.html.
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Figure 3: Average pairwise error of a k-maxitive Sugeno integral on the testing set.

supremum operation) to 2, although it is not possible to decide whether this phenomenon
is particular to our data or could be generalized. This observation could be compared to
those made on k-additive Choquet integrals, that often show good performances when
k is set to 2 (see for example [31]). It also seems that the optimal value of k (from the
accuracy point of view) is 4, certainly because higher values tend to cause over-fitting
of the model. Even though more empirical study should be made in that direction for a
better understanding of the behavior of k-maxitive models, our case study shows that k-
maxitivity could be an interesting property for limitating the inner complexity of Sugeno
integrals, but also for preventing over-fitting.

A few problems are still to be investigated. From the application point of view, it
would be interesting to predict the best value of k for a given dataset (for this case study
we trained Sugeno integrals for each value of k, which is of course not a suitable solution
for systems required to be efficient).

The principle of k-maxitivity is to force the values of a capacity µ to depend solely
on the values of µ on subsets of size at most k. Another way of expressing this constraint
is to state that the sets of cardinality lower than or equal to k are the only possible focal
sets (i.e., sets I for which α∗Sµ(I) > 0 [13]) of the capacity. One could imagine setting
other restrictions on the focal sets, so that the the inner complexity is kept as low as
with k-maxitivity, while allowing more flexibility in the model and greater precision for
practical applications such as preference aggregation.

Furthermore, the results that we have obtained in the current paper should be broad-
ened to the framework of pseudo-lattice polynomial functions [9], that is to say, functions
that can be written as

F (x1, . . . , xn) = Sµ(ϕ1(x1), . . . , ϕn(xn))

with Sµ : Ln → L being a Sugeno integral, and ϕi : Xi → L. These functions of course
allow a greater expressiveness but learning them from data is less straitforward, since
both the ϕi’s and the Sugeno integral have to be learned, while being interdependent.
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