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Recent Improvements on Cavity-Based Operators for RANS
Mesh Adaptation

Adrien Loseille1)
GAMMA3 Team, INRIA Saclay Ile-de-France, Palaiseau, France

If anisotropic mesh adaptation has been a reliable tool to predict inviscid flows, its use
with viscous flows at high Reynolds number remains a tedious task. Indeed many issues tends
to limit the efficiency of standard remeshing algorithms based on local modifications. First,
the high Reynolds number require to handle a very high level of anisotropy O(1 : 106) near
the geometry. In the range of anisotropy, interpolation of metric fields or the projection on
geometry are typical components that may fail during an adaptive step. The need for high-
resolution near the geometry imposes to use an accurate geometry description, and optimally,
be linked to a continuous CAD geometries. However, the boundary layer sizing may become
smaller than typical CAD tolerance. We present a simple hierarchical geometry approximation
where the newly created points are projected linearly, then using a cubic approximation then
the CAD data. Finally, the accuracy, speed of convergence of the flow solver highly depends
on the topology of the grids. Typical quasi-structured grids are preferred in the boundary
layer while this kind of grids are complicated to generate with typical anisotropic meshing
algorithm. We discuss in this paper, new developments in metric-orthogonal approach where
an advancing points techniques is used to propose new points. Then these newly created points
are inserted by using the cavity operator.

I. Introduction
Over the pas decade, an increasing interest has emerged to validate the numerical solutions of the Navier Stokes

equations on complex geometries. The main idea was to verify that, at least, asymptotic convergence rate was obtained
for grids of practical sizes. Many (successful) workshops have been organized to validate flow solver convergence,
let’s mention the Drag Prediction workshop and the High Lift prediction workshop, the Sonic Boom prediction. For
each case, a very However, the h/2 refinement pattern is something that is barely tractable as the grids of the grids is
multiplied by 8 at each step. Consequently, it seems necessary to investigate adaptive techniques wehre the refinement
is controlled by a local error, taking advantage of the high directionality of the flows, to refined the grids at different
speeds. Anisotropic mesh adaptation is one solution to address theoretically the asymptotic convergence issue.

II. Cavity operators
Cavity-based operators is a generic purpose adaptive mesh generator dealing with 2D, 3D and surface mesh

generation. It belongs to the class of metric-based mesh generator [1–5] which aims at generating a unit mesh with
respect to a prescribed metric fieldM. A mesh is said to be unit when composed of almost unit-length edges and
unit-volume element. The length of an edge AB inM is evaluated with:

`M (AB) =

∫ 1

0

√
t ABM ((1 − t) A + tB) AB dt,

while the volume is given by |K |M =
√

detM |K |, where |K | is the Euclidean volume of K . From a practical point of
view, the volume and length requirements are combined into a quality function defined by :
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Fig. 1 Illustration of the filtering: from left to right, the geometry of generic city, the initial octree containing
only the surface points, the final octree on the final set of points.

where {ei }i=1,6 are the edges of element K . A perfect element has a quality of 1. The generation of a unit mesh is
decomposed into two steps that are described below:

1) Generate a unit-mesh : The mesh modification operators are used in the goal to optimize the length of the edges
inM.

2) Optimization: The mesh modification operators are used to improve the quality QM .

A. Generation of a unit mesh

The scope of this step is to obtain a mesh where the lengths of the edges are in [
1
√

2
,
√

2]. This procedure is

composed of 3 phases: collapse, creation of new points, anisotropic filtering and insertion.

Collapse. For this phase, an iterative procedure is used. The current mesh is iteratively scanned and while there exists
an edge with a length lower than 1/

√
2, try to collapse the edge. At the end of the process, all edges must have a length

greater than 1/
√

2. During all the following phases, the collapse is never used again.

Creation of edges. In this phase, we create the set of points that would be needed to decompose all long edges in
segments having a length close to one in the metric. As for the collapse, the algorithm consists in scanning the current
mesh and while there exists an edge with a length greater than 2, create one or multiple points. During this phase, the
topology of the mesh is kept unchanged so that the points are not inserted. Indeed, neighboring edges can generate
similar points or points very close to each other, so it is important to filter out the points that are too close (in the metric).
For that, we define the anisotropic filtering.

Anisotropic filtering and insertion. In this phase, the length between the points created in the previous phase is
checked and only a subset of points are inserted. For the filtering, we use an octree of points. Each octant can contain up
to 10 points before being subdivided. Initially, the octree contains the surface points and the volume points remaining
from the collapse phase. To validate the insertion of a point, we first check the distances between every points that are in
the octant containing the point to be inserted. If no rejection occurs, then the current octant is intersected with the
bounding box of the metric. All the intersected octants are checked starting from the octants closer to the point being
inserted. Then, each point that is accepted for insertion is inserted in the octree along with its metric. At the end of the
filtering, whatever the connectivity generated by the insertor the edges will have an admissible length (as the length was
checked in every direction with the octree). This property prevents us from having to perform additional collapses that
is the most costly operator. An octree is illustrated in figure 1.
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B. Optimization of the mesh
During the phase, only the topology of the mesh is modified by using edges or faces swaps, see [6] for the details of

these operators. The only constraint is to make sure that the quality in the metric is strictly improved at each application
of a swap.

For all the previous phases, standard operators can be used [6]. However, in our approach, we use the cavity-based
version for each of them. We show in this next section that this choice speeds up the CPU time of the remeshing by
minimizing the number of rejections of each operator. We show also that one call of a cavity operator may be equivalent
to a combination of several simple operator due to the use of cavity correction algorithm.

C. Cavity-based operators
A complete mesh generation or mesh adaptation process usually requires a large number of operators: Delaunay

insertion, edge-face-element point insertion, edge collapse, point smoothing, face/edge swaps, etc. Independently of the
complexity of the geometry, the more operators are involved in a remeshing process, the less robust the process may
become. Consequently, the multiplication of operators implies additional difficulties in maintaining, improving and
parallelizing a code. In [8], a unique cavity-based operator has been introduced which embeds all the aforementioned
operators. This unique operator is used at each step of the process for surface and volume remeshing.

The cavity-based operator is inspired from incremental Delaunay methods [9–11] where the current meshHk is
modified iteratively through sequences of point insertion. The insertion of a point P can be written:

Hk+1 = Hk − CP + BP, (1)

where, for the Delaunay insertion, the cavity CP is the set of elements ofHk such that P is contained in their circumsphere
and BP is the ball of P, i.e., the set of new elements having P as vertex. These elements are created by connecting P to
the set of the boundary faces of CP .

In [8], each meshing operator is equivalent to a node (re)insertion inside a cavity. For each operator, we just have to
define judiciously which node P to (re)insert and which set of volume and surface elements will form the cavity C
where point P will be reconnected with RP:

Hk+1 = Hk − C + RP . (2)

Note that ifHk is a valid mesh (only composed of elements of positive volume) thenHk+1 will be valid if and only if
C is connected (through internal faces of tetrahedron) and RP generates only valid elements. In Figure 2, we list the
initial cavity choice along with the point to (re)insert for the collapse, insertion and swap. As it, the cavity operators are
equivalent to their standard counterparts. However, using the cavity formalism allows to easily modify the cavity to
enforce automatically the operator. The cavity enlargement correction is one example of such correction and is given in
Algorithm 1. The basic idea is to enlarge the cavity to make sure that CP becomes valid. To illustrate this feature, we
consider a simple 2D example where we want to relocate a point A to a new position Anew , see Figure 3. Given the
initial configuration, we see that a collapse, then a swap and finally a point-smoothing is needed to actually move A
to Anew . To do this, 4 volumes are computed for the collapse, 2 for the swap and finally 7 for the point-smoothing.
Then, if we use the cavity version, the initial cavity has 2 negatives faces (in red in Figure 3, bottom). Using the cavity
enlargement algorithm 1, a valid cavity is found in 3 enlargement iterations. To build the final CP , 4 volumes are
computed with the initial cavity, 4 for the first iterations, 2 for the second and 2 for the third. The cost of using the cavity
moving is 12 volumes computations whereas 13 volumes are needed with the standard operators. The most interesting
feature is that the cavity operator creates automatically the combination of simple operators without the need to know in
practice the sequence. From a practical point of view, only one operator is used for the meshing operators.

The use of the previous cavity-based operators allows us to design a remeshing algorithm that has a linear complexity
in time with respect to the required work (sum of the number of collapses and insertions). On a typical laptop computer
Intel Core I7 at 2.7 GHz, the speed for the (cavity-based) collapse is around 20 000 points removed per second and
the speed for the insertion is also around 20 000 points or equivalently 120 000 elements inserted per second. Both
estimates hold in an anisotropic context [12].
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Fig. 2 Three 2D meshing operators reinterpreted as a cavity-based operator with an appropriate choice of the
point to (re)insert and cavity to remesh. From top to bottom, the collapse, insertion and swap operators.

Algorithm 1 Cavity enlargement for (re)insertion of P
Volume Part:
For each K in CP
For each face [A, B,C] such that P < [A, B,C] :

if volume(A, B,C, P) < 0 , then
if P is a surface point then reject
else add neighboring tetrahedron to CP
endif

endif
EndFor

EndFor

if CP is modified goto Volume Part.
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Standard approach with multiple simple operators

Collapse Swap Relocation 3 Final

Cavity-based approach with automatic cavity-corrections

Initial cavity Iteration 1 Iteration 2 Iteration 3

Fig. 3 Illustration of the relocation of point A to new position Anew . Top, if standard operators are used,
the following sequence has to be applied: collapse, swap, relocation. Bottom, with the cavity enlargement, 3
enlargement iterations are needed to perform the operation.
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III. CAD inverse projection
Inverse CAD projection usually arises when the link to CAD is missing or when high-order projection is required. In

the context of mesh adaptation, working only in the parametric space is usually impossible for 3D mesh generation. It is
then necessary to project back the point to the surface using the CAD information. Usually, CAD kernels provide such a
functionality but it is not intended to be efficient for recurrent inverse projection. Here we present a simple procedure to
perform inverse projection and CAD topology recovery.

The procedure first compute the inverse projection of inner points of patch. The topology recovery and the projection
of line point is done in a second step. Fast inverse projection relies on a local Newton search. Starting from an initial
(u0, v0) guess, we seek for the closest point σ(u, v) to the surface so that:




g(u, v) = (σ(u, v) − P) · σu (u, v) = 0
f (u, v) = (σ(u, v) − P) · σv (u, v) = 0.

The critical point is to find a starting good candidate (u0, v0). To do so, we build an octree of points subdividing
the parametric space. The ∆u and ∆v spacing is deduced from the degree of the NURBS. In a second step, local
optimization is done. For each point, if the neigboring point has a lower distance from the initial point to the surface, the
local optimization procedure is re-run with (u0, v0) being the (u, v) of the neighboring point.

Fig. 4 Illustration of CAD projection on the first high-lift geometry.
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IV. Hierarchical geometry approximation
At first, a continuous description of a geometry, by using a CAD file in .igs or .stp file for instance, seems to be the

most appropriate way to project points back the geometry. However, CAD files usually contained several impediments
that may be

• wrong tolerances may appeared due to multiple of translation of the initial files from (often closed) format to
another,

• NURBS of very high degrees leading to wiggled surface, coming the conversion of a discrete sample to a
continuous description,

• tolerance that are bigger than the required sizes, leading to invalid CAD normals of points coordinates
• the topology of the CAD may be missing or wrong due to sizing imposed in the CAD (by splitting a continuous
curves),

• . . .
Consequently, it is mandatory to use a reliable geometry description. Using a fine linear tessellation is not necessary
sufficient, as the size during an adaptive refinement may be of smaller size. The same observation holds for continuous
CAD data, when the tolerances (when surface are intersected or trimmed) is bigger that the current required sizes. A
simple workaround is then to consider, an intermediate level, in our case a P3 surface description that is recovered from
a discrete mesh or from a discrete mesh with projected CAD normals on it.

The choice of approximating the surface with P3 triangle is inherited from the need to impose a G1 continuity of
the vertex of the initial P1 mesh. The central node is then used to minimize the edge discontinuity, from applying
subsequent smoothing steps.

P1 P3-recovered

Fig. 5 Example of P3 mesh recovered from a STL description of a geometry.
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V. On boundary layers mesh generation
One of the limitation that limits the use of anisotropic mesh adaptation for RANS simulation regards the quality of

the grids near the boundary layer profile. The typical meshing guidelines usually requires to generate a quasi-structured
mesh extruded in the normal direction. This is required to fulfill the normal spacing. In a completely unstructured
context, the high level of anisotropy implies also a very bad quality, in term of angles and alignment, in the area. In that
respect, Finite Element flow solver (as SUPG based solver) seem to be less sensitive to the quality of the grids than
mixed Finite Volume solvers.

To generate quasi-structured grids, a cavity based operator can be used. The main modification consists in keeping a
list of element composing the boundary layer. This list of elements needs to be removed from the initial cavity:

Hk+1 = Hk − (CP − K ) + BP, (3)

where (CP − K ) has to be connected by faces. However in this approach, it is also complex to provide adaptivity
functionality.

In order to favor orthogonality and metric alignment of the final mesh, a frontal approach is used. However, contrary
to standard frontal approaches, we use a front of vertices instead of a front of faces. From a practical point of view,
the new points are proposed by vertex and not by face. In an anisotropic context, the new points depend only on the
eigenvectors and eigenvalues of the metric of the front point. The initial front of points is given by the list of the surface
points. Given a point xo and its metricMo of the current front with eigenvectors (ui)i=1,3 and eigenvalues (λi)i=1,3, six
points are proposed:

xi = xo ± λ
− 1

2
i ui . (4)

When the metric is isotropic, we force the eigenvectors to be aligned with the natural axis of R3. Note that these points
are just a first guess and several additional checks are performed before trying insertion. The first check consists in
verifying that the new points are in the current volume mesh by using a simple mesh localization algorithm. This check
is also performed on the background mesh. The back mesh localization also provides the metricMi of xi .

In order to take into account the variation of the metric, the final position of xi and metric xi is updated. The
procedure is based on a dichotomy along the segment [xo, xi] in order to make sure that the Riemannian length evaluation
of the vector [xoxi] is unit: ∫ 1

0

√
t [xoxi]M (t) [xoxi] dt = 1,

where M (t) is a geometric interpolation between metrics M (0) = Mo and M (1) = Mi . Note that the original
guess (4) only guarantees:

t [xoxi]Mo [xoxi] = 1.

Consequently, we seek for an optimal point xopt with back-mesh interpolated metricMopt lying along the initial
direction xoxi . Note that we need to iterate, because we interpolate the metric from the background mesh. IfMopt

were interpolated byMo andMi , an analytical formula exists depending on the metric interpolation scheme used. This
list of points is then filtered in order to suppress from insertion points that are too close in the distance computed in
the metric. The filtering process gives the list of points to be inserted. This list of points defines the next front. This
algorithm is applied until the list of points to be inserted becomes empty.

Fig. 6 Tow examples of the automatic process of prisms creation around a point. The final decomposition of prisms
(in tetrahedra) depends on the order of the insertion of points.
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Fig. 7 Boundary layer mesh generation using the cavity-based operator on the high-lift geometry.

We illustrate in 2D the different set of points that can be naturally deduced from a metric field, see Figure 8. For
boundary layer, we prefer to use the orthogonal approach where the points are created directly along the eigenvectors of
the metric (that are naturally orthogonal). On a simple square domain with a circular metric, see Figure 9, we illustrate
the advancing-point algorithm. In Figure 10 (top right), we show the list of points created when using Algorithm [? ].
We can clearly see the alignment of the edges, Figure 10 (bottom right), in the final mesh when this points are inserted
in comparison with the standard algorithm, Figure 10 (bottom left). To illustrate its used for boundary layer, we first
illustrate its application in capturing the velocity profile of the flat plate test case of the the TMR website, see Figure 12
for the boundary conditions. In figure 12, we compare an adaptive computation (taking all CFD physical fields as
sensor) when using standard adaptive technique and metric-orthogonal approach. In that case, as the metric computed
from the error estimate has strong alignment feature, the resulting mesh looks like a boundary layer mesh. The second
example is an inviscid flow around a Falcon geometry. In that case, we are interested in capturing the wakes and wing
tip vortices. As for the boundary layer case, as the metric has strong alignment property, the resulting mesh follows the
orientation of the input metric field, see Figure 13.

Algorithm 2 Metric-orthogonal algorithm
Advancing-point:
1. Pop the first heap list entry, creates Pnew = Pi ± hk uk

2. Update length/position according of Pnew to Riemannian metric field.
2. Metric-based length filtering using point octree, add Pnew for insertion
3. Update the heap list with (Pnew, hk, uk )k
4. If the heap list is not empty goto 2
Insertion:
1. Use cavity-based operators
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i=1,3
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�i|e · ui|) = 1
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u1

u2

P

u1

u2

Fig. 8 Illustration in how optimal points are created with respect to the metric, with a metric-aligned (left)
and metric-orthogonal (right).

Fig. 9 Simple domain and initial mesh (left) equipped with a cylindrical metric field (right).
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Standard Advancing-point

Fig. 10 Initial mesh (top left) and list of aligned-point to be inserted (top right), final mesh obtained with a
standard procedure (bottom left) and final mesh obtained with the metric-orthogonal (bottom right).

Fig. 11 Blasius flat plate test case description.
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Fig. 12 Blasius flat plate test case with standard anisotropic procedure (left) and metric-orthogonal (right).
Top, mesh near the stagnation point with a enlargement factor of 1000 in the y direction.
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Fig. 13 Illustration of the a metric-orthogonal mesh refinement in capturing the wake of transsonic inviscid
falcon.
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Conclusion
In this paper, we have reviewed all the components involved in anisotropic meshing software. It is based on the

unique cavity-based operator to avoid to and take advantage of cavity correction to enforce an operation. For the
geometry description, an hierarchical approach is used where an initial point is created first on a linear mesh and then
projected to cubic mesh and then to the CAD coordinates. The idea consists in trying the best approximation and then
downgrading to a less accurate approximation (down to the linear one) in case of failure. Then to improve the quality of
standard anisotropic meshing algorithm, an advancing-point is used coupled an multi-level cavity-based insertion. This
allows to automatically favor the creation of quasi-structured grids in the boundary layer.
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