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Statistical learning of geometric characteristics of
wireless networks

Antoine Brochard, Bartłomiej Błaszczyszyn, Stéphane Mallat, Sixin Zhang

Abstract—Motivated by the prediction of cell loads in cellular
networks, we formulate the following new, fundamental problem
of statistical learning of geometric marks of point processes: An
unknown marking function, depending on the geometry of point
patterns, produces characteristics (marks) of the points. One aims
at learning this function from the examples of marked point
patterns in order to predict the marks of new point patterns. To
approximate (interpolate) the marking function, in our baseline
approach, we build a statistical regression model of the marks
with respect some local point distance representation. In a more
advanced approach, we use a global data representation via the
scattering moments of random measures, which build informative
and stable to deformations data representation, already proven
useful in image analysis and related application domains. In this
case, the regression of the scattering moments of the marked
point patterns with respect to the non-marked ones is combined
with the numerical solution of the inverse problem, where the
marks are recovered from the estimated scattering moments.
Considering some simple, generic marks, often appearing in the
modeling of wireless networks, such as the shot-noise values,
nearest neighbour distance, and some characteristics of the
Voronoi cells, we show that the scattering moments can capture
similar geometry information as the baseline approach, and can
reach even better performance, especially for non-local marking
functions. Our results motivate further development of statistical
learning tools for stochastic geometry and analysis of wireless
networks, in particular to predict cell loads in cellular networks
from the locations of base stations and traffic demand.

I. INTRODUCTION

Design, performance evaluation and control of wireless
networks are facing rapid increase in complexity, due to more
and more dense deployment of the classical cellular networks
and the advent of the Internet of things. It is clear that
engineering of these networks needs to make more systematic
use of the data massively collected in operational conditions,
thus opening this domain to possible applications of machine
learning methods.

While advanced signal processing techniques at the link
layer already integrate elements of artificial intelligence (like
belief propagation in Bayesian networks for low-density
parity-check and turbo codes) it is more seldom to see them
used at higher levels, in particular at the network layer. The
data corresponding to this layer (e.g. base station locations,
their characteristics and performance metrics, user distribution
and QoS metrics) have geometric structure, reflecting (usually
two-dimensional) geographic network deployment. It is thus
natural to ask questions regarding pertinence of the rapidly
developing machine learning tools for image analysis and
related fields to this new domain of applications.
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A. Statistical learning of marks of point processes

In this paper we pose and address to the following fun-
damental problem of statistical learning of marks of point
processes: An unknown marking function depending on the
relative locations of points produces characteristics of these
points, called marks. One aims at learning this function from
the examples of point patterns with observed marks in order
to predict unknown marks for new point patterns.

Our particular motivation comes from the problem of learn-
ing of the dependence of the cell loads in wireless networks
on the geometry of base stations (and possibly of the traffic
demand) directly from real data collected in the existing,
operational networks, to predict loads of base stations for
different base station positioning and/or different traffic de-
mand; see more details in Section I-C. In this founding work,
we consider some simple, generic marks, often appearing
in this context. They are produced by the standard shot-
noise interference model, the nearest neighbour distance, and
some characteristics of the Voronoi cells (cf Figure 1). Our
goal is to understand the amenability of marks representing
different types of dependence on point patterns to the proposed
statistical learning approach.

B. Learning via local or global geometry representation

The learning (interpolation) of the marking function in
the original problem does not seem amenable to any direct
statistical approach, due to the structure of the space of marked
point measures. To overcome this difficulty, we need some
suitable representation of the geometry of point patterns, and
we propose two approaches in this regard.

As a baseline, we propse to estimate the mark of each
point using the statistical regression model based on the
local distance matrix of a suitable chosen vicinity of this
point. In this relatively simple approach, the training data set
consists of an ensemble of central, marked points surrounded
by some number, say K, of their (non-marked) neighbours. If
no a’priori information regarding the dependence region of the
marking function is available, one needs to choose K using
cross validation. Observe that the dimension of the domain
of the interpolated marking function (local distance matrix)
increases as K2. For highly non-local marking functions (e.g.
related to power-law shot-noise function), one might need
to take K large, proportional to the total number of points,
making this baseline approach not efficient.

When the marks have non-local dependence, or when we
have no prior knowledge of the dependency range, we further
propose to use the scattering moment representation [1] to
capture the geometry of marked point patterns. It is a discrete



Fig. 1: Exact (blue) and reconstructed (orange) marks being the
surface areas of the Voronoi cells.

family of nonlinear and noncommuting operators, computing
at different scales the modulus of a wavelet transform of the
one- or higher-dimensional signal (e.g. image). Applied to the
signal observed in a finite window, they are proven to be
Lipschitz-continuous with respect smooth (class C2) signal
diffeomorphisms. As the window size increases, they become
invariant with respect to the translation of the signal. They
can be also made rotation invariant. These invariance and
stability properties make them useful in signal processing,
in particular in relation to statistical learning. Indeed, if the
information content of an image typically is not (strongly)
affected by translations, rotations, and small deformations,
similar properties of the signal representation allows one to
capture this content in a more concise way, and hopefully
learn its intrinsic structure from a smaller number of signal
samples. The pertinence of this approach has already been
demonstrated in various contexts.

Using the scattering moments to represent marked point
processes, our learning problem can be addressed in the
following two steps (also depicted on Figure 2):

• We build a statistical regression model on scattering
moments of the marked point patterns with the explana-
tory variables being the scattering moments of the non-
marked point patterns. This model is computed on the
training data consisting of point patterns with observable
marks and is meant to be used to estimate the (marked)
scattering moments of new point patterns, for which
marks are not observed.

• We estimate (reconstruct) the marks of new point pat-
terns, for which marks are not observed, from their
estimated scattering moments. It is a non-convex op-
timization problem. We solve it numerically using L-
BFGS-B algorithm [2, 3].

This approach scales much better with the total number of
points. Indeed, the number of scattering moments capturing
the global geometry grows logarithmically with this number.
However, it may suffer from possible errors introduced in the
reconstruction phase (absent in the benchmark approach). The
overall benefits of the scattering approach become significant
for highly non-local marking functions.

In general, the quality of the regression of the scattering
moments depends on the sensitivity of the marking function to
small point pattern deformations — a concept not yet well un-
derstood in point process literature (e.g. the nearest neighbour
distance seems to be more sensitive than shot-noise). On the
other side, in the reconstruction phase (recovering of marks
from the true or estimated scattering moments) significant
errors consist in swaping a large and a small mark of two
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Fig. 2: Reconstruction of geometric marks via scattering moments

neighbouring points (not leading to a significant modification
of the considered first scattering moments). The quality of
this phase of the approach depends thus on the existence
of clusters of points in point patterns — a problem already
studied in the literature; cf Section I-C. The Poisson point
process, considered in this paper, exhibits a baseline type of
clustering.

C. Related works

Stochastic-geometric study of cellular networks expands
rapidly in recent years primarily through analytic results
regarding Poisson network models [4]. Performance evaluation
of operational wireless cellular networks, in particular the
quality of service perceived by users in function of the
traffic demand, is a complex problem involving stochastic and
geometric modelling of several network layers. A key element
of this problem is the analysis of the cell loads, which non
trivially depend on the geometric configuration of serving base
stations and their traffic demands, and capture in concise way
the quality of service offered by the individual cells. A detailed
physical model of cell loads was proposed [5] and revisited
in [6, 7, 8] including the validation with respect to some data
collected in operational networks.

Recently, the prediction of the cell loads has been the
subject of a machine learning study published in [9], though
not as the geometric problem posed in our paper. Indeed,
in this earlier paper the number and the locations of base
stations are fixed, and the problem consist in learning the
loads of this given configuration of stations in function of
their traffic demands. This (non-geometric) problem is cast
and solved in the framework of monotone interpolation of
Lipschitz functions.

The problem formulated and studied in our paper allows one
to address the completely orthogonal question of learning of
the cell loads, given constant traffic demand, in function of the
geometry of the network. Combining the two approaches, left
for the future work, will allow one to predict the performance
of new geometric configurations on base stations and traffic
demand by collecting the cell load data in existing, operational
networks, thus offering an alternative to building and solving
complex physical models.

Observe that, even for a fixed number of base stations,
the two dimensional location of each base station on the
plane makes our geometric argument of the marking function
have two times higher dimension than the one considered
in [9]. Using wavelet scattering transforms allows one to
leverage geometric invariants, such as translation and rotation
invariance with respect to the locations of stations, and thus
significantly reduce the representation dimension. Scattering
moments have been proven useful in this context in a number



of tasks such as quantum molecular energy prediction [10] or
texture classification [11, 12].

Geometric marks (called also score functions) have received
a lot of attention in stochastic geometry and spatial statistics,
where they represent some interaction of a given point with
the whole point pattern. If this interaction is local in some
sense, and the underlying point process exhibits some decay
of correlations, then it is possible to establish asymptotic
results (including central limit theorems) regarding the sums
of the geometric marks observed in increasing window; cf
e.g. [13, 14, 15]. These results can be used to study large-
scale asymptotic of the scattering moments as in [16].

It was mentioned in the introduction that the quality of
reconstruction of the marks depends on whether point process
is regular or clusters its points. These notions are formalised
in [17, 18], and it is argued that Poisson point process exhibits
some reference type of point clustering, to which more regular
point processes (e.g. determinantal ones) and more clustering
ones (e.g. permanental and Cox processes) can be compared in
terms of the performance of different geometric characteristics.

The remaining part of this paper is organized as follows:
In Section II we describe several models of geometric marks
and formulate the problem of their statistical learning. In
Section III we present our main approach proposed to solve
this problem, based on scattering transforms of marked point
processes. We also describe the benchmark approach. The
numerical results of both approaches applied to the considered
mark models are presented in Section IV.

II. GEOMETRIC CHARACTERISTIC OF WIRELESS
NETWORKS

In stochastic-geometric modeling of wireless networks, one
usually represent locations of transmitters/receivers as points
of a point process, and their characteristics as marks. These
characteristics can depend not only on the given transmit-
ter/receiver (as e.g. the type of the base station in heteroge-
neous cellular networks or the local density of users in the
vicinity of this station) but also on (at least) local geometry
of the network (as e.g. the surface of the cell served by the
base station, the extra-cell interference). These marks, called in
what follows geometric marks, are in the center of our interest
in this paper.

A. Geometric marks

More formally, let Φ =
∑
i δXi

be a simple (Xi 6= Xj

for i 6= j) , stationary (having distribution invariant by any
translation) point process on the Euclidean plane R2. Recall,
Φ is a random object on the space M of locally finite counting
measures on R2 with a suitable σ-field; cf [19]. Consider a
(measurable) marking function m = m(x, φ) defined on R2×
M. Assume m is invariant with respect to translations on the
plane, i.e., m(x+ a, φ+ a) = m(x, φ) for any a ∈ R2, where
φ+a is the translation of the counting measure (of its atoms)
by the vector a. We will call Mi := m(Xi,Φ) geometric
mark of the point Xi of Φ. Note that Φm :=

∑
i δ(Xi,Mi) is

a stationary marked point process.

In what follows we briefly remind a few basic examples
of geometric marks that will be considered in the remaining
part of this paper. For better understanding of the context
we interpret points Xi as locations of base stations of some
cellular network.

1) Shot-noise: For x ∈ R2 and φ =
∑
i δxi ∈ M, let

m(x, φ) :=
∑
i 1(x 6= xi)`(|x−xi|) be a shot-noise functional

with some non-negative response function ` of the distance
|x − xi| between x and xi ∈ φ. Taking `(r) = rβ to be
the standard power-law path-loss model with the path-loss
exponent β > 2, we recognize in Si := m(Xi,Φ) the total
power (usually interpreted as interference) received at the
station Xi from other stations of the network, all transmitting
with a unit power.

2) Nearest neighbour distance: Let Ri := min{|Xi−Xj | :
xj ∈ Φ, Xi 6= Xi} be the the distance from Xi to its nearest
point in Φ. Similarly one can define distances to successive
neighbours of Xi in Φ.

3) Voronoi cell surface area and moment of inertia: Denote
by Vi := {y ∈ R2 : |y − Xi| ≤ minXj∈Φ |Xj − Xi|} the
Voronoi cell of the point Xi in Φ. It is the polygon representing
all locations on the plane closer to Xi than to any other point
in Φ. This is a fundamental cell model for cellular networks.
We will consider two basic numerical characteristics of the
Voronoi cells: the surface area Ai :=

∫
Vi

1 dy and the moment
of inertia Ii :=

∫
Vi
|y−Xi|2 dy. The marks Ai and Ii can be

interpreted as very simple proxies to the traffic demand and the
cell load of the station Xi (the latter assuming user peak-bit
rate satisfies the inverse square law with respect to its serving
station; cf [4, Section 4.1.8]).

4) Voronoi shot-noise: By this we call the marks Zi defined
as follows: Zi :=

∑
j 1(Xj 6= Xi)`(|Xj − Xi|)Aj . Having

interpreted shot-noise Si of Section II-A1 as the interference
received at the station Xi from all other stations transmitting
a unit power, Zi can be also interpreted as the interference,
however with the stations transmitting the signals with the
power proportional to their Voronoi cells. (Similar kind of
dependence, with more complicated expressions, can be rec-
ognized the cell load model of [5].)

B. Problem formulation

Let us now formulate the main problem studied in this
paper, that is the problem of learning of geometric marks.
Suppose the marking function m is not known explicitly. One
observes only some realizations of the marked point process
Φm with points restricted to some finite observation window
W . Denote these realizations by φmk =

∑
i δ(xi(k),mi(k)), with

xi(k) ∈ W , k = 1, . . .. They form a training set of data.
The problem consists in learning the function m from the
training set so as to be able to calculate approximations of
the unobserved marks mi = m(xi, φ) for a new realization
φ =

∑
i δxi

of (only points) of the point process Φ.

III. STATISTICAL LEARNING OF GEOMETRIC MARKS

In this section we propose a solution to the learning problem
formulated in Section II-B. Our main approach, described in
Section III-B, uses a wavelet based representation of marked



point patterns. It is presented in Section III-A. Finally, in
Section III-C we describe an alternative method, based on
a distance matrix representation of point neighbourhoods,
used as a benchmark approach for our numerical study in
Section IV.

A. Scattering moments of marked point processes

Following [16], now we shall briefly present the wavelet
scattering transform of marked point processes on the
plane R2.

Let ψ be a continuous, bounded, complex function on R2

of zero average
∫
R2 ψ(x) dx = 0 and such that |ψ(x)| =

O(|x|−2) for |x| → ∞. It is customary to normalize it so
that

∫
R2 |ψ(x)|dx = 1. We call ψ (two-dimensional) mother

wavelet.
Example 3.1: Two dimensional Morlet wavelet has the

following form ψ(x) = exp(i ω ·x) exp(−|x|2/2), where i
is the imaginary unit and ω ·x is the scalar product of some
nonzero vector parameter ω ∈ R2, called spatial frequency,
with x ∈ R2. Note that ψ it is not normalized and, moreover,
it is only approximately zero average when |ω| is large enough;
typically |ω| ≥ 5.5; cf [20].

Consider a family of dilated, and rotated wavelets ψ(j,θ): for
j ∈ Z = { . . . ,−1, 0, 1, . . . } and θ ∈ [0, 2π) let ψ(j,θ)(x) :=
2−2jψ(2−jr−θx), where rθx deontes the rotation of x ∈ R2

by the angle θ with respect to the origin on the plane (and the
factor 2 in the first exponent corresponds to the dimension 2).

Let Φ̃ =
∑
i δ(Xi,Ui) be a simple stationary marked point

process with points Xi ∈ R2 and some real marks Ui ∈ R.
The wavelet transform of Φ̃ at scale 2j and angle θ, j ∈ Z,
θ ∈ [0, 2π), is defined as the following (stationary, complex)
random filed on R2:

Φ̃ ? ψ(j,θ)(x) :=

∫
R2×R

ψ(j,θ)(x− y)uΦ̃(d(y, u)) (1)

=
∑
i

Uiψ(j,θ)(x−Xi) . (2)

The wavelet transform Φ ? ψ(j,θ) of a (non-marked) point
process Φ =

∑
i δXi is defined by (2) with unit marks Ui ≡ 1.

The first order scattering moments S̄Φ̃(j, θ) of Φ̃, at scale
2j , j ∈ Z and angle θ ∈ [0, 2π), are defined as the expecta-
tion of the modulus of the corresponding wavelet transform
(without loss of generality evaluated at the origin)

S̄Φ̃(j, θ) := E[|Φ̃ ? ψ(j,θ)(0)|] , (3)
and similarly for the non-marked point process Φ.

The second order scattering moments S̄Φ̃(j1, θ1, j2, θ2),
ji, j2 ∈ Z, θ1, θ2 ∈ [0, 2π), are defined by induction as the
first order scattering moments at scale 2j2 and angle θ2 of the
random measure on R2 admitting the modulus |Φ̃?ψ(j,θ1)(x)|
of the wavelet transform at scale 2j1 and angle θ1 for density
(this measure replaces the projecton of the point measure
uΦ̃(d(y, u)) on R2 in (1))
S̄Φ(j1, θ1, j2, θ2) := E[||Φ ? ψ(j1,θ1)| ? ψ(j2,θ2)(0))|] . (4)

Higher order scattering moments are defined by induction (but
they are not used in this paper). Scattering moments have
not yet been fully theoretically studied on the ground of the
theory of point processes. Some asymptotic properties at small

and large scale (j → −∞ and j → ∞ respectively) can be
established, extending results presented in [16]. 1

1) Empirical scattering moments: For a given realization
φ̃ of Φ̃ observed in a finite window W , empirical scattering
moments Ŝφ̃(j, θ) and Ŝφ̃(j1, θ1, j2, θ2) are obtained replacing
the expectation E[· · · ] in (3) and (4) by the empirical averag-
ing of the fileds |φ̃?ψ(j,θ)(x)| and ||φ?ψ(j1,θ1)|?ψ(j2,θ2)(x))|,
resepectively, over x ∈ W . When W increses suitable to the
whole plane, these (empirical) moments become asymptoti-
cally non-biased estimators of S̄Φ(j, θ) and S̄Φ(j1, θ1, j2, θ2),
respectively, provided Φ̃ is ergodic, at least when the mother
wavelet has finite support; cf ergodic theorem for point pro-
cesses [19, Theorem 13.4.III]. For some other properties of
the scattering moment estimators see [16, Section 5.1].

To avoid boundary effects and enforce the translation in-
variance of the empirical scattering moments calculated over
finite rectangular window W it is customary to map W with
the observerd points on the torus.

It is natural to restrict the scale parameter to a finite window
j ∈ [jmin, jmax]. The minimal scale jmin is chosen such that
the support of ψ(jmin, θ) separates points (making Ŝφ̃(jmin, θ)
close to the empirical mean 1/W

∫
W 2×R uθ̃φ(d(u, x)) times

the first norm of the mother wavelet). It does not depend
on the angle θ. The maximal scale jmax is chosen such that
ψ(jmax, θ) covers the whole window. For the second order
scattering moments, it is natural to consider jmin + 1 < j1 <
j2 ≤ jmax. Regarding the choice of the angles in both families
of scattering moments, it is natural to consider some common
symmetric constellation of angles θ1, . . . , θa ∈ [0, 2π).

Thus, the first and second empirical scattering moments
calculated on φ̃ form finite-dimensional (column) vectors. We
denote by Ŝφ̃, and Ŝ2φ̃, respectively, the vector of the first
moments and the joint vector of the first and second moments.
If no ambiguity, for simplicity, in what follows we shall call
them just scattering moments of φ̃.

1In particular, it is not known to what extend the scattering moments
characterize the distribution of the point process. Note that higher order
factorial moment measures (their densities, if exist, are called the correlation
functions) are known to characterize the distribution of the simple point
process having finite exponential moments. The following two observations
can be made regarding the relation between the correlation functions and the
scattering moments.

Note that the wavelet transforms (2) are linear functions (shot-noise
functionals) of the (marked) point process; in other words they are first-order
U -statistics of Φ̃; cf [21, Section 12.3]. The fact that scattering moments
S̄Φ(j, θ) are defined via the moduli of the wavelet transforms makes them
dependent on all higher-order correlation functions of Φ: the factorial moment
expansions [22, 23] of S̄Φ(j, θ) involve all moment measures (in contrast to
the square norm of the wavelet transforms, which can be represented using
the first and second-order U -statistics and thus their expansion involves only
the first two correlation functions). Consequently, already the first scattering
moments are supposed to capture more information regarding the intrinsic
dependence of the points than just the pairwise correlations. We shall see in
our numerical study that this information allows one for an efficient recovery
of some geometric marks which do depend on higher order correlations, e.g,
the Voronoi cell characteristics.

Even if we do not know whether the (higher-order) scattering moments
characterize the distribution of the point processes, being a discrete family of
numbers (provided a suitable discretization of θ ∈ [0, 2π)) they are supposed
to capture the point correlations in a more concise way than the higher-order
correlation functions. In practice, a reasonable estimation of the scattering
moments requires much less examples of point patterns than the estimation
of the moment mesures.



B. Learning of marks via scattering moments

Recall from Section II-B that our goal is to learn the
marking function m (or m̃ depending on the auxiliary marks)
from the training set of data, which consists of examples of
realizations of a marked point process Φm in a finite window,
in order to calculate approximations of the unobserved marks
mi = m(xi, φ) for a new realization φ =

∑
i δxi of the (non-

marked) point process Φ. Note that this problem consists in
the interpolation of the function m on the space R2 ×M and
due to the complexity of this space is not amenable to any
direct statistical approach. To overcome this difficulty, we map
this original problem to some finite dimensional regression
problem and solve it using classical tools.

More specifically, in our main approach, we shall capture
the function m through relation between the vector of the first
order scattering moments Ŝφm of the marked point pattern
and the two moments Ŝ2φ of the non-marked one. This
relation is established using some known regression models
described in Section III-B1. In order to be able to use it to
estimate marks mi = m(xi, φ), we need next to solve an
inverse problem described in Section III-B2. It consists in
reconstructing marks from the regressed scattering moments
(approximating unknown Ŝφm) knowing also locations of
points φ.

1) Regression: Let Xk := Ŝ2φk and Yk := Ŝφmk , k =
1, . . . , n, be the vectors of the (empirical) scattering moments
calculated for the training data set consisting of n realizations
of the point process Φm, where points φk =

∑
i δxi(k)

and points with their marks φmk =
∑
i δ(xi(k),mi(k)) are

considered, respectively; cf Sections II-B and III-A1. Our goal
is to find a common relation between Xk and Yk for all sample
k, and the simplest possible one is a linear relation represented
by some matrix B and vector β0 such that

BXk + β0 ≈ Yk for all k = 1, . . . , n. (5)
This is a linear regression problem briefly presented in Sec-
tion III-B1a. If the linear function does not allow one to
capture the dependence, we can use the kernel regression or
more advanced machine learning tools. In this paper, we focus
on the linear ridge regression.

a) Linear ridge regression: To find the linear relation (5)
we will use (linear) ridge model; cf [24, Section 7.5]. For
p = (j, θ), denote by β(p) the line of the matrix B (5); it
corresponds to the scattering moment in Yk at scale 2j and
angle θ, and similarly the component β0(p) for the vector β0.
Let Yk(p) := Ŝφmk (p) be the (j, θ)-component of Ŝmk . The
ridge model consists in minimizing the regularized sum of the
squared residuals

n∑
k=1

[β(p)Xk + β0(p)− Yk(p)]2 + λ(p)||β(p)||2 ,

for some (Tikhonov) regularization parameter λ(p) ≥ 0, cho-
sen by the cross-validation (to minimize this squared residuals
on the validation set: a subset of the training set), where ||·|| is
the Euclidean norm. This model, admits a well known explicit
solution in the form

[β̂0(p), β̂(p)]> = (X>X + λ(p)I)−1X>Y(p), (6)

where X is the matrix with lines Xk appended with the first
column of 1’s, Y(p) is the column vector with elements Yk(p),
k = 1, . . . , n, I is the appropriate identity matrix and> stands
for the matrix transpose.

Using (6) one can calculate approximations Ŝφm(p) of the
scattering moments of a new marked configuration φm =∑
i δ(xi,mi) observing only its points φ =

∑
i δxi

ˆ̂Sφm(p) := β̂(p) Ŝ2φ+ β̂0(p)

where Ŝ2φ is the vector of the 2nd order scattering moments
calculated on φ (points-only). Remember, expression (6) re-
quires tuning of the regularization parameters λ(p) ≥ 0 usually
needed in high dimensional regression problems when the
matrix X>X is not invertible. The ordinary least square (OLS)
estimator corresponding to λ(j, θ) = 0 is not performing well
in this case.

2) Reconstruction: Using linear ridge we calculate approxi-
mations ˆ̂Sφm(j, θ) of the scattering moments of a new marked
configuration φm =

∑
i δ(xi,mi) observing only its points

φ =
∑
i δxi

. Denote the whole vector of ˆ̂Sφm(j, θ) by ˆ̂Sφm.
From ˆ̂Sφm we estimate (reconstruct) unknown marks mi

of φm looking for a solution to the following minimization
problem

arg min
φ′m:φ′=φ

||Ŝφ
′m − ˆ̂Sφm||2, (7)

where we minimize over all arbitrarily marked configurations
φ

′m sharing the points with given φ (hence over unknown
marks) and Ŝφ

′m denotes the scattering moment calculated for
φ

′m. It should be noted that (7) is a non convex optimization
problem. To solve it we use L-BFGS-B algorithm, which is
a limited-memory algorithm for solving large nonlinear opti-
mization problems subject to simple bounds on the variables. It
is intended for problems in which information on the Hessian
matrix is difficult to obtain, or for large dense problems;
cf [2, 3].

C. Learning via local distance representation

In this approach, considered as a benchmark, we consider
each marked point (xi(k),mi(k)) of each realization φmk ,
k = 1, . . . , n, of the training set; cf Section III-B1a, along
with some neighborhood, as one element of the new training
data set. In this case the training set consists of point patterns
having a marked point the center, surrounded by some neigh-
boring points. Using the the linear ridge regression described
in Section III-B1a, mutatis mutandis, we regress the marks
of those central points with respect to the vectors containing
all inter-point distances in the considered point neighborhood,
ordering the points according to the distance to the central
point and flattening the distance matrix in (say) raw major
order. Note that, in this approach, there is no reconstruction
phase, as the marks are directly approximated. The main
parameter of this approach is the number of points K taken
into account in the neighborhood.

IV. NUMERICAL RESULTS

In this section we provide the details of our numerical study
of the main problem of this paper, namely statistical learning



of geometric marks of point processes. We begin by describing
some general assumptions and procedures.

A. General numerical framework

1) Scattering moment approach: For our numerical ex-
periments, for each specific geometric model, we create a
data set (denote it by X ) of Poisson point patterns φk (with
constant intensity to be specified) using the R software and its
package Spatstat for point process analysis [25]. The points
are considered in the unit square window and their marks are
analytically computed (according to the given model) using
Spatstat with the window mapped to the torus, thus leading to
the marked point patterns φmk , k = 1, . . . , n. The size of the
data set X is n = 10 000 marked point patterns.

The (empirical) scattering moments are computed on these
point patterns (with and without marks) using ScatNet soft-
ware [26] developed in Matlab (no Spatstat implementation
is available yet). It uses a zero-mean variant of the Morlet
wavelet; cf Example 3.1. This latter software working on
raster images, we convert each marked point pattern of X into
images of size 27 × 27 pixels (removing images with points
corresponding to the same pixel).

The following family of scattering moments are computed.
We assume the smallest scale jmin = 0. At this scale the
first scattering moments correspond to the empirical mean
measure and do not depend on the angle θ; cf Section III-A1.
We take jmax = 7 and following constellation of 8 angles
θ = 0, π/8, . . . , 7π/8 for all scales j = 1, . . . , 7. Thus,
there are 1 + 8 × 7 = 57 first order scattering moments
(dimension of the regressed vectors Ŝmk equals to 57) and
8 × 8 × 7×6

2 = 1344 of the moments of the second order
(thus making the dimension of the explanatory vectors Ŝ2k
equal to 57 + 1344 = 1401).

We use the linear ridge regression described in Sec-
tion III-B1 on the data set X . To optimize the regression
parameters we make 5-fold cross-validation [24, Section 1.4.8]
on X .

Having calculated the estimators ˆ̂Smφ of the first marked
scattering moments Ŝmφ for the point patterns in the test
set we use L-BFGS-B algorithm [2, 3] to solve the inverse
problem (7), that is to reconstruct the marks. This is a steepest
descent algorithm for which it is important to optimize (via
cross-validation) the number of iterations; to be explained
in Section IV-C1. Using a rule of thumb (no formal cross-
validation) we fix the number of steps so as to minimize the
mean square error (MSE) on the test data set.

2) Benchamrk: As explained in Section III-C, for every
image in the data set X , we consider each point of the image,
along with its K neighbours as an element of a new data
set X ′. More precisely, we take the first 20, 000 of points
of the images of X and create X ′ with K neighbours of the
chosen point. The value of K depends on range of dependence
of a given mark model; it is experimentally discovered for
each mark, as will be explained in Section IV-C2. We use X ′
to regress directly, using the linear ridge regression method,
the (one dimensional) central point marks with respect to the
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Reconstructed image example (mapped to 2D; the peaks of the lines cor-
respond to the values of marks of points numbered in lexicographic order;
orange curve — reconstruction, blue — exact values).
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Fig. 3: Shot-noise reconstruction. Up: an example of image recon-
struction using scattering moments. Down: Q-Q plots (reconstructed
mark in function of its true value) for 100 test images (a) regressed
scattering moments, (b) exact scattering moments, (c) benchmark.

method scattering scattering exact bench-
5 000 10 000 scatt. mark

RMSE 1.99 1.98 1.64 1.98
NRMSE1 9.21e-2 9.15e-2 7.56e-2 9.15e-2
NRMSE2 3.32e-1 3.29e-1 2.75e-1 3.29e-1

TABLE I: Shot-noise reconstruction errors using different methods.

vector of dimension K(K − 1) of the local distance matrix.
There is no reconstruction phase in the benchmark.

3) Validation methodology: For testing of the main (scat-
tering moment) approach, we produce an independent data set
of 100 marked point pattern realizations and we use the first
100 points of this set for the benchmark approach.

For all points in the respective test sets, we compute Q-Q
plots and the root mean square error (RMSE), the normalized
RMSE with normalization by the range (max−min) of the
marks (NRMSE1), and the normalized RMSE with normal-
ization by the mean of the marks (NRMSE2).

In order to study the quality of the representation of the
mark point patterns by their first order scattering moments
(independently of the regression), we also perform the re-
construction of marks III-B2 directly from the exact (and not
regressed) scattering moments Ŝmφ. Note, these latter are not
“exact” marks but marks reconstructed from exact empirical
scattering moments of the given point pattern. The gap be-
tween them and the marks reconstructed from the regressed
moments allows one to apprehend the error introduced by the
regression.

B. Results

We now present our numerical study of different mark
models presented in Section II. The observed results are
discussed in Section IV-C.

1) Shot-noise: We consider shot-noise marks introduced
in Section II-A1 with the response function `(r) :=
max(10r, 0.6)−3. For this example the data set X consists
of 10 000 realizations of Poisson point process of intensity 40
(recall, always considered the unit square window). In order
to observe how the performance of our approach depends
on the size of the data set and on two different regression
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Fig. 4: Nearest neighbour distance reconstruction; example and Q-Q
plots using: (a) estimated scattering moments, (b) exact scattering
moments.

method estimated scatt. exact scatt. benchmark
RMSE 3.14e-2 2.06e-2 –
NRMSE1 1.21e-1 7.94e-2 –
NRMSE2 3.94e-1 2.58e-1 –

TABLE II: Nearest neighbour distance; reconstruction error

methods, we first use only 5 000 elements of X as the
training set for the linear ridge regression to estimate the
scattering moments of the marked point patterns. Next, we
use the whole training set, with linear ridge regression. The
neighborhood for the benchmark is K = 15. The number
of iterations for the reconstruction from the exact scattering
moments and estimated ones is taken, respectively, 30 and 4;
see Section IV-C1 for the explanation.

Figure 3 presents an example of the reconstruction of marks
of one given image by the main method and Q-Q plots for
various reconstruction variants. Table I presents reconstruction
errors. Recall the Q-Q plot (c) and the last column of the table
represents the error of the reconstruction of the marks from
the exact (and not regressed) scattering moments.

2) Nearest neighbour distance: The data set for this ex-
ample is also made of 10000 realizations of a Poisson point
process with intensity 40. In this case, in On Figure 4 and
in Table II we only show the results for the entire training
set. For this mark model we do not consider the benchmark,
because the nearest neighbour distance is equal to the first
element of the distance matrix. Thus, the scattering moment
approach cannot do better. The number of iterations for the re-
construction from the exact scattering moments and estimated
ones is taken, respectively, 250 and 8.

3) Voronoi cell surface area: For this example, the training
set X consists of 10 000 realizations of Poisson point process
with intensity 30. The reconstruction results are presented on
Figure 5 and in Table III. The neighborhood for the benchmark
is very large K = 35 (more than the average number of points)
because the sum of the areas of the Voronoi cells in the finite
window is constant equal to the total window surface area,
which introduces a strong global dependence for this mark.
The number of iterations for the reconstruction from the exact
scattering moments and estimated ones is taken, respectively,
30 and 6.
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Fig. 5: Voronoi cell surface area reconstruction; example and Q-Q
plots using: (a) estimated scattering moments, (b) exact scattering
moments, (c) benchmark.

method estimated scatt. exact scatt. benchmark
RMSE 9.71e-3 7.33e-3 9.61e-2
NRMSE1 6.60e-2 4.98e-2 6.53e-2
NRMSE2 2.87e-1 2.16e-1 2.85e-1

TABLE III: Voronoi cell surface reconstruction errors.

4) Voronoi cells moment of inertia: For this example,
similarly to the previous example, the training set X consists
of 10 000 realizations of a Poisson point process with intensity
30. The results are presented on Figure 6 and in Table IV. The
neighborhood for the benchmark is K = 15 (note that the
global dependence specific for the Voronoi surface area does
exist here). The number of iterations for the reconstruction
from the exact scattering moments and estimated ones is taken,
respectively, 150 and 8.

5) Voronoi shot-noise: For this example, similarly to the
previous example, the training set X consists of 10 000 realiza-
tions of a Poisson point process with intensity 30. The results
are presented on Figure 7 and in Table V. The neighborhood
for the benchmark is K = 15 . The number of iterations
for the reconstruction from the exact scattering moments and
estimated ones is taken, respectively, 50 and 5.

C. Discussion

The following remarks can be formulated regarding the
observed results.

1) Reconstruction from the exact and estimated moments:
Observing the Q-Q plots and (N)RMSE’s of the marks recon-
structed from the exact first order scattering moments, we see
“how much information” they effectively carry regarding the
marking function. While all marks are relatively well repre-
sented in this way, the quality of the reconstruction depends
on the type of dependence represented by a given mark. For
example the shot-noise and the surface areas of the Voronoi
cell are more easy to represent than the nearest neighbour. This
can be explained by different sensitivity (stability) to small
deformations of the point pattern, with a precise formulation
yet to be theoretically studied on the ground of point processes.

A typical, significant error in the image reconstruction both
from the exact end the estimated scattering moments consist
in the swap of a large and a small mark of two neighbouring
points (e.g. the points number 36 and 37 on e.g. Figure 3)
not leading to a significant modification of the considered
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Fig. 6: Voronoi cell moment of inertia reconstruction; example and Q-
Q points using (a) estimated scattering moments, (b) exact scattering
moments, (c) benchmark.

method estimated scatt. exact scatt. benchmark
RMSE 2.42e-4 1.37e-4 2.65e-4
NRMSE1 5.98-2 3.39e-2 6.53e-2
NRMSE2 7.12e-1 4.04e-1 7.74e-1

TABLE IV: Voronoi cell moment of inertia reconstruction errors.

scattering moments. This effect can be seen also on the Q-
Q plots where many points significantly far from the diagonal
appear in symmetric pairs. We believe these swapping errors
should occur less often for more regular (less clustering) point
processes than the considered Poisson one. Examples of such
point processes are determinantal ones; see [17, 18] for the
clustering comparison theory. Future studies should investigate
this issue.

As we have already mentioned, it is important to properly
tune the number of iterations of the steepest descent algorithm
used in the reconstruction phase, preventing it from going too
deeply into potential local minima. We observe the follow-
ing local-global reconstruction quality trade-off: While some
number of initial iterations makes all the marks approach their
right values, further iterations improve the quality of approx-
imation of some subset of marks at the price of degrading
this quality for the remaining ones; cf Figure 8. This trade-
off can be observed on average by watching the RMSE on
the test set, which first decreases and then increases. We use
this observation to choose an optimal number of iterations. It is
larger for the reconstruction from the exact scattering moments
than for the reconstruction from the estimated ones, where
there is less incentive to force the algorithm to approach the
values of the scattering moment values that themselves are not
exact. This additional reduction of the quality of reconstruction
from the estimated moments is particularly penalizing the
scattering learning approach, where similar or even better
quality of the regression might not be good enough as the
input for the reconstruction phase.

2) Choice of neighbourhood: A crucial benchmark param-
eter is the number of neighbors to be considered in the local
representation. They should be selected in function of the type
of mark dependence. If no a priori information is available,
this can be done observing the RMSE on the test set as shown
in Table VI. Observe that the constant sum of the Voronoi
cell areas makes them globally dependent, unlike the Voronoi
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Fig. 7: Voronoi shot-noise reconstruction; example and Q-Q points
using (a) estimated scattering moments, (b) exact scattering moments,
(c) benchmark.

method estimated scatt. exact scatt. benchmark
RMSE 4.17e-2 3.02e-2 4.29e-2
NRMSE1 9.24-2 6.69e-2 9.50e-2
NRMSE2 3.76e-1 2.72e-1 3.86e-1

TABLE V: Voronoi shot-noise reconstruction errors.

moments of inertia.
3) Quality of the regression: The regression relative errors

calculated εm(j, φ) := | ˆ̂Sφm(j, θ) − Ŝφm(j, θ)|/Ŝφm(j, θ)
calculated on the training and test set, presented on Figure 9,
show that there is no overfitting in the regression of the
scattering moments.

4) Scattering moments versus benchmark: Regarding the
RMSE scattering outperforms the benchmark for all marks
except for the Voronoi surface area with the neighbouhood
taking almost all points and, for obvious reasons, the nearest
neighbor distance. A spectacular difference can be observed
on the Q-Q plots of the shot-noise on Figure 3 and the Voronoi
shot-noise on figure 7 where the benchmark essentially fails to
capture the marking function. This shows that the benchmark
approach might not be appropriate in the case of long-range
dependent marks.

V. CONCLUDING REMARKS

Motivated by the stochastic-geometry problems related to
wireless networks, in this paper we have discussed how to
learn the point-marking function dependent on the config-
urations of points. We propose two different approaches to
address the problem using the ideas from statistical learning.
The baseline approach extracts the geometric information for
each point based on the matrix distance of its nearby points.
It is then solved using the ridge linear regression method.
The difficulty is to choose the number of nearby points.
The other approach uses the (multiscale wavelet) scattering
moments to define a global feature vector for all the points
in the domain, and another feature vector for the points with
marks. The relation between the two feature vectors is also
learned using linear regression. Then we use an image super-
resolution technique [27] to reconstruct the marks from the
predicted feature vector with marks. These feature vectors are
translation-invariant and stable to deformation of the domain.

Depending on the nature of the clustering of the points
and the regularity of the marking function, we find that the
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Fig. 8: Reconstruction of a sample of the Voronoi shot-noise marks
from the estimated scattering moments after 1, 5 and 50 iterations. 5
iterations give the smallest RMSE of 4.17e-2, while 50 iterations used
for the reconstruction from the exact scattering moments improve the
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Fig. 9: Regression relative errors εm(j, θ) for (j, θ) in order
(0, 0), (1, π/8), . . . , (2, 0), . . . , (7, 7π/8); calculated on training and
test set.

model K 10 15 20 35
Shot-noise 1.99 1.98 1.98 –
Voronoi area 1.04e-2 1.00e-2 9.80e-3 9.61e-3
Voronoi inertia 2.76e-4 2.65e-4 2.80e-4 –
Voronoi shot-noise 4.32e-2 4.30e-2 4.29e-2 –

TABLE VI: Choice of the number of neighbours K for the benchmark
approach and the corresponding RMSE.

scattering moments predict as good as the baseline approach,
showing that they capture well the geometric property. In
case where marks depend on points in a non-local way, the
scattering moment representation seems much better.

Future directions to be explored include how to combine
both approaches to make better regression on the marks. Vari-
ations of the scattering moments [28] may help better capture
the geometry of images. Replacing the linear regression by
others such as kernel regression or neural network approaches
are also of potential interest. Also, the impact of regularity or
clustering of the underlying point patterns on the quality of
scattering representation has to better understood.

On application side, it is promising to combine geometry
with local demand to predict the real loads to obtain an oper-
ational method for cell load prediction for cellular networks.
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