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WHAT IS SENSORIMOTOR LEARNING?

Control problem which maps a sensory input into a motor output

Basic components:

● Input: sensory stimulus

● Output: reproduction of the stimulus

Da Cunha et al., 2010



LEARNING BY IMITATION AND INVERSE MODEL

Imitation: learning from a tutor using a feedback guided error
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LEARNING BY IMITATION AND INVERSE MODEL

Imitation: learning from a tutor using a feedback guided error

Inverse model: the aim is to transform a sensory stimulus into the corresponding 
motor command 

Sensory area Motor area

Inverse model

Motor production



A BIOLOGICAL EXAMPLE: SONG LEARNING IN 
BIRDS

Sensory Subsong (Babbling) Plastic song Crystallization

● Comparable learning mechanisms and behavior

Brainard and Doupe, 2002
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HAHNLOSER-GANGULI THEORETICAL MODEL
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NONLINEAR MODEL INTRODUCTION

       : target motor pattern

       : tuning selectivity width

                      represents the distance 
between the target and the random 
exploration



GANGULI-HAHNLOSER MODEL
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NORMALIZATION

Synaptic weights have a maximal value, related to the number of synaptic receptors 
one neuron is able to produce. 
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NORMALIZATION

Synaptic weights have a maximal value, related to the number of synaptic receptors 
one neuron is able to produce. 

● Maximal weights normalization

● Supremum weights normalization

● Decreasing factor normalization 



NORMALIZED INVERSE MODEL

Normalization applied over the auditory neurons
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VARYING INPUT/OUTPUT DIMENSION

Distance from the motor target at convergence
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VARYING INPUT/OUTPUT DIMENSION
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SUMMARY

● Simple normalization schema are successful in the nonlinear model

● Decreasing tuning selectivity width: 
○ convergence time explosion 
○ accuracy of learning increases 

● Auditory VS motor dimension 
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WHAT’S NEXT?

● Duration of syllable and feedback delay

● Production of sound  

● Make prediction on experimental data

Enjoy the poster from 
Xavier Hinaut



Thanks for the attention.




