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Abstract. For any two given graphs, we study the problem of finding
isomorphisms that correspond to inclusion-maximal common induced
subgraphs that are connected. While common (induced or not) subgraphs
can be easily listed using some well known reduction and state-of-the-
art algorithms, they are not guaranteed to be connected. To meet the
connectivity requirement, we propose an algorithm that revisits the
paradigm of reverse search and guarantees polynomial time per solution
(delay) and linear space, on top of showing good practical performance.

1 Introduction

The problem of finding common subgraphs, as studied in this paper, has been
introduced and investigated in the practical setting of proteins [5,13,14], and
can be employed to mine significant information in many domains, for example
identifying compound similarity and structural relationships between biological
molecules [9]. These patterns find motivation in the increasing amount of struc-
tured data arising from X-ray crystallography and nuclear magnetic resonance.
For these reasons, the bioinformatics community has repeatedly expressed its
interest in the detection of common subgraphs (see for instance [9,12,14,21]).

From a computational point of view, the problem has been studied as one of
the application examples of an algorithmic framework [7] to efficiently enumerate
maximal subgraphs satisfying a given property (e.g. being a clique, a cut, a cycle,
a matching, etc.), also known as set systems [16]. In this paper we are interested
to design efficient algorithms for the following scenario.

For any two given input graphs H and F , a subgraph S of H is in common
with F if S is isomorphic to a subgraph of F : it is maximal if there is no other
common subgraph that strictly contains it, and maximum if it is the largest. The
maximum common subgraph problem asks for the maximum ones, or simply
for their size. The maximal common subgraph (mcs) problem further requires
discovering all the mcs’s of H and F . The mcs problem can be constrained to
connected and induced subgraphs (mccis) [3,13,14], where the latter means that
all the edges of H between nodes in the mcs are mapped to edges of F , and
vice versa: considering induced subgraphs reduces the search space [3], and their
connectivity further alleviates the explosion of the number of solutions [13,14],
as otherwise each permutation of a maximal independent set corresponds to a
different maximal isomorphism.



graph H graph F
σ q

Koch [13] bc-enum par.bc-enum

n m ∆H n m ∆F time #sol time #sol time #sol

200 235 5 200 234 7 5 12 28s 6691 0.2s 6691 0.04s 6691

100 122 7 100 119 5 4 22 11s 3654 0.6s 3654 0.1s 3654

2763 9488 14 2629 9059 12 12 68 2h 1998 2h 33874 2h 887293

Table 1. Comparison of polynomial space algorithms: running time of Koch’s [13]
algorithm vs our bc-enum and its parallel implementation. The first two rows are two
pairs of random Erdos-Renyi graphs, and the last one a pair of graphs representing
proteins from the Protein Data Bank (1ald and 1gox) with a time limit of two hours.
As for the notation, n, m, and σ are the number of nodes, edges, and node labels of the
graphs, ∆H and ∆F their maximum degrees, and q the size of the largest found mccis.

MCCIS problem. Given any two graphs H and F , list all (isomorphisms
corresponding to) maximal common connected induced subgraphs (mccis’s)
between H and F in polynomial time per solution and total polynomial space.

Actually, mcs and mccis will refer to isomorphisms corresponding to mcs
or mccis. Note that solving the above mccis problem is computationally more
demanding than listing just maximal common induced subgraphs (i.e. relaxing
the connectivity constraint) as we will comment later in the state of the art.

Contributions. We present algorithm bc-enum, which lists the (isomorphisms
corresponding to) mccis’s with polynomial delay and using linear total space.
Given any two graphs H and F , let ∆H and ∆F be their maximum degree,
respectively. For each reported mccis, letting q be its number of nodes, we pay
O(q4∆2

H∆
2
F ) time using O(q) space: the time complexity gives the delay, which

is the worst-case time between any two consecutively reported mccis’s. Note
that a strength of these bounds is that they are parameterized by the solution
size q and independent of the sizes of H and F (just their maximum degree).

Table 1 reports the running time of a sequential and parallel implementation3

of bc-enum in C++, compared to the state-of-the-art algorithm by Koch [13].
Experiments were executed on a 12-core machine with two Intel Xeon E5-2620
CPUs and 128 gigabytes of RAM, with a time limit of two hours, showing that
on top of giving theoretical guarantees, bc-enum is also fast in practice.

Clarification on maximum vs maximal common subgraphs. As it is
clear, maximal and maximum subgraphs are inherently different problems: listing
all maximal ones can potentially find an exponential number of solutions, while
finding the maximum connected ones corresponds to just the single largest one,
and is in practice much faster (e.g. [19]). As pointed out in [5,13,14], however,
a maximum common subgraph does not always contain all the relevant/large
common structures, which motivates the mccis problem.

3 Code available at https://github.com/veluca93/parallel_enum/tree/bccliques

as part of a parallel enumeration framework.
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Fig. 1. An example of mccis
({a, b, c} to {4, 3, 2}, in this order),
with the corresponding bc-clique
{a4, b3, c2}. White edges are repre-
sented as dashed lines.

Converting the MCCIS problem to a maximal clique problem. Clique-
based methods are widely employed on the product graph G, which transforms
common subgraphs of H and F into maximal cliques in G, as proved in [17].

As in [13], we define the product graph between H and F as follows. (i) any
pair of nodes (x, i) ∈ H ×F is a node of G iff they have the same label; (ii) there
is a black edge between (x, i) and (y, j) iff (x, y) ∈ E(H) and (i, j) ∈ E(F );
(iii) there is a white edge between (x, i) and (y, j) iff x 6= y, i 6= j, (x, y) 6∈ E(H)
and (i, j) 6∈ E(F ), where E(·) denotes the edge set.

The key property is that mccis’s between H and F correspond to cliques
in G spanned by black edges [13], which we will call bc-cliques. An example is
shown in Fig. 1.

Role of the reverse search. Reverse search is a powerful enumeration tech-
nique, introduced by Avis and Fukuda [1], that applies to a wide range of problems
(e.g. [5,18]). If we try to apply it to bc-cliques, a number of obstacles appear along
the road and thus this paper proposes a novel, restructured, way to use reverse
search on bc-cliques: Cao et al. [3] observe that materializing the product graph
G can be memory-wise expensive. bc-enum does not materialize G, but navigates
the huge solution space of the bc-cliques by navigating G implicitly using H
and F , just requiring O(q) additional space (e.g. for H and F in the last row of
Table 1, G would contain millions of nodes whereas q = 68). This simultaneously
improves memory usage and running time, as detailed in Section 5.

State of the art and related work. Common subgraphs problems have been
studied for decades [3,10], with the great majority of the results dealing with
maximum common subgraphs, rather than mccis’s as we do. Previous work can
be roughly classified into the following categories: backtracking methods [15],
techniques based on special classes of graphs [11], clique-based methods [10,14,19],
methods which are applications of a generic framework [4], and restricted to
trees [8]. Among of them, Koch [13] considers mccis’s and employs a modified
version of the Bron-Kerbosch algorithm [2] to work on explicit product graphs:
it is still the state of the art [22], greatly used in practice, even in the very
last years (e.g. [23]). Further methods have relaxed the definition of mccis to
improve the practical performance, at the price of loosing some solutions [5].
Unfortunately, the aforementioned algorithms, when applied to listing all the
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mccis’s, do not give any guaranteed polynomial bound on space or time per
solution. Interestingly, a couple of other roads can be pursued successfully.

The framework presented in [4] uses the formulation of the reverse search
on restricted problems and introduces new techniques for a class of set systems
satisfying the connected hereditary property. The space is proportional to the
number of solutions found, so it can be exponential, and thus space efficiency is
one of the open problems posed there.

Along these lines, the framework presented in [7] provides new techniques for
the class of set systems called commutable, and requires total polynomial space
independently of the number of solutions found, thus answering to the question
posed in [4].

We observe that bc-cliques can fit both frameworks, with polynomial time per
solution. In this paper, we focus on the latter to provide polynomial bounds on
the delay and space, while the implementation of the former in practice deserves
further investigation in future work to evaluate the impact of the higher space
usage. Compared to the bounds polynomial in the graph size from [7], which is a
general theoretical framework for which bc-cliques are just an instance, bc-enum
aims at specializing and parameterizing these bounds for the mccis problem, so
they are polynomial in the max degree of the graphs (rather than in the size of
the product graph), and at providing practical performance.

2 Using Reverse Search for Finding BC-cliques

As in [13], we reduce the problem of finding mccis’s to finding bc-cliques in
the product graph. Hence, in this section, we focus on the problem of listing
bc-cliques in a graph G, whose edges are colored black or white, where a bc-clique
is a maximal clique whose black edges connect all the nodes. To this aim, we
employ reverse search, which can be successfully used when a suitable parent-
child relationship between solutions is defined (see for instance [1,6,18]). Here
we restructure the technique to deal with the more challenging bc-cliques. We
keep the schema very simple for the sake of description, and hide the technical
complexity in the definition of the parent-child relationship between solutions,
which is the difficult part and it will be described in the following sections.

General Scheme. As is the case of reverse-search algorithms, our algorithm
will implicitly define a rooted forest among all solutions, where some solutions
are the roots, and from each solution we can find all its children in the forest. As
we can identify all the roots and recursively visit the children of each solution,
Algorithm 1 will not miss any solution.

In the following, let P be the parent of a solution S, denoted as p(S), if S
is a child of P in this rooted forest-like structure. Note that every solution has
exactly one parent, except the roots who have none.

Lemma 1. Algorithm 1 lists all maximal bc-cliques when the following condi-
tions are all met.

4



Algorithm 1: bc-enum: Enumerate all maximal bc-cliques of G

Function spawn(K)
foreach S ∈ children(K) do

spawn(S);

Output K;

foreach R ∈ roots(G) do
spawn(R)

1. Each solution is either a root, or has exactly one parent.
2. The edges p(S)→ S induce a forest Z whose sources are the roots.
3. The generic function children(P ) computes the set {S : p(S) = P}.

The proof of Lemma 1 is straightforward as Algorithm 1 corresponds to a
recursive traversal of the trees composing the forest Z induced by the parent-child
relationship. We will design the latter so that the properties in Lemma 1 are
satisfied. We remark that a tree traversal, rather than a graph traversal, does not
require keeping track of visited nodes so far, and can be done without storing any
information other than the current node and the previously visited one. We use
this property to define an equivalent algorithm, which we call “stateless”, that
uses just O(q) space and has the same complexity. We give further discussion in
Section 5, and refer the reader to [6].

3 Canonical Representation and Operations

We consider G to have an arbitrary ordering of the nodes 〈v1 . . . vn〉, and we
consider each node vi to have label i. A node vi is smaller than vj if i < j.
For convenience, we call GB the subgraph of G induced by the black edges. We
introduce the representation for bc-cliques in G at the base of our approach. For
a bc-clique K, we call the smallest node in K the head of K, and define the
notion of black-edge distance as follows.

Definition 1 (black-edge distance). The black-edge distance βK(v) of a node
v ∈ K is the distance in the induced subgraph GB [K] between v and the head of K.
If v 6∈ K but K ∪ {v} is a bc-clique, βK(v) is similarly defined on GB [K ∪ {v}].

When K is clear from the context, we will omit the subscript and just write
β(v). (When v is the head, β(v) = 0.) Moreover, let us define the canonical order
of K.

Definition 2 (canonical order). Given a bc-clique K, the canonical order of
K is 〈k1, . . . , k|K|〉, where elements of K are ordered in increasing lexicographical
order of the pairs (β(ki), ki).

This order is a specialized version of the layer-based canonical order used
in [7], which is the key to bound the running time to parameters of the two
original input graphs H and F , rather than that of the larger G.
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Fig. 2. A bc-clique K (left) and its canonical form K0 . . .K3 (right)

We will also refer to Ki as the set of nodes v with β(v) = i. This order
essentially corresponds to the visiting order of a breadth-first search of GB[K],
starting from the head k1, where ties in the distance from k1 are broken by taking
the node with smallest label. As prefixes will be used extensively in our approach,
we define K<ki

as the prefix k1, . . . , ki−1 of K. It can be easily seen from the
above how any prefix of K is a (non maximal) bc-clique.

An example of a bc-clique K in canonical order is shown in Fig. 2 with Ki’s
ordered by node label, where the head is node 1 and, for instance, βK(3) = 2.
When levels are relevant in the context, we represent K as a sequence of sets,
which corresponds to the Ki’s in increasing order: the clique in the example
would be represented as K = {1}, {4, 5}, {3, 6}, {2}. As an example of prefix we
have K<3 = 〈1, 4, 5〉

We define the lexicographical order on bc-cliques using our canonical form.
For any two pairs of integers (a, b) and (c, d), we write (a, b) < (c, d) if the former
pair is lexicographically smaller than the latter.

Definition 3 (lexicographical order). Given two distinct maximal bc-cliques
K and J , in their canonical orders 〈k1, . . . , k|K|〉 and 〈j1, . . . , j|J|〉, we say that
K is lexicographically smaller than J , denoted as K < J , iff (βK(ki), ki) <
(βJ(ji), ji), where i is the smallest index for which (βK(ki), ki) 6= (βJ(ji), ji).

We also define a forced order of K with respect to x ∈ K, which is obtained
by the same process as the canonical ordering, but computing the black-edge
distances β with respect to x rather than the head of K.4 A prefix of K with
respect to x corresponds to a prefix of the forced order of K with respect to x.
Clearly, this kind of prefix also corresponds to a bc-clique.

We now introduce the function complete(), which will be a key component as
in [6,18]. Given a bc-clique K ′ which may or may not be maximal, complete(K ′)
returns a maximal bc-clique K such that K ′ ⊆ K. This is achieved by recursively
and greedily adding to K ′ the node x 6∈ K ′ that minimizes (βK′(x), x), among
all x for which K ′ ∪ {x} is a bc-clique. It is important to notice that the head
of K ′ changes (as well as the values of βK′()) whenever an element with label
smaller than the current head is added. The complete operation is detailed in
Algorithm 2. Finally, we remark that the properties of the complete function
defined in [6], that make the reverse search algorithm work for cliques, are
NP-hard to obtain in the context of bc-cliques [7].

4 Thus the forced order of K with respect to its head is indeed the canonical order.
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Algorithm 2: heads, children functions that make Algorithm 1 working
for bc-cliques

1 Function complete(K)
2 while A← {v ∈ N(K) : v has a black neighbour in K} 6= ∅ do
3 add argminx∈A{(βk(x), x)} to K

4 return K

5 Function pi(K)
6 return argmaxv∈K{(β(v), v) : complete(K<v) 6= K}
7 Function p(K)
8 v ← pi(K)
9 return complete(K<v)

10 Function roots(G)
11 return {complete(v) : v = min{complete({v})}}
12 Function cand(K)
13 return

⋃
u∈K

NB(u)

14 Function children(K)
15 foreach v ∈ cand(K) do
16 K′

v ← unique maximal bc-clique containing v in GB [K ∩N(v) ∪ {v}]
17 foreach h ∈ K′

v do
18 K′′

v ← prefix of K′
v with respect to h, truncated at v

19 D ← complete(K′′
v )

20 if K = p(D) ∧ h = minD ∧ v = pi(D) then yield D

4 Main Algorithm

In this section we describe the proposed algorithm bc-enum, using the definitions
given in Section 3, to obtain the desired reverse search structure described in
Section 2.

Firstly, using the function complete() we can easily identify the solutions
which will be the roots of the forest Z induced by the parent-child relationship.

Definition 4 (root). Let K be a maximal bc-clique and h = minK its head.
Then, K is a root if and only if complete({h}) = K.

This definition implies that the number of roots is at most n, and each can be
identified by performing complete(v) on some node v. We now give definitions
of p and children as detailed in Algorithm 2.

The parent p(K) of K is defined as the result of applying complete to the
longest prefix K<v such that this operation does not yield K. We call the element
v of K that immediately follows this prefix K<v the parent index of K, pi(K).
The definitions of p and root are consistent with Definition 4.

Lemma 2. p(K) = NULL if and only if K ∈ roots.
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We give a definition of children, whose correctness will be proven in Sec-
tion 4.1. Given a bc-clique K, let cand(K) be the set of nodes that do not
belong to K, but are neighbors of some node of K in GB . For each such node v,
we compute the largest bc-clique K ′v that contains v and is contained in K ∪ {v}
(which corresponds to the connected component containing v in GB [K ∩N(v)]).
Then, for each h ∈ K ′v, we consider the forced order 〈k1, . . . , k|K′

v|〉 with respect
to h (noting that k1 := h), and compute K ′′v as the prefix k1, . . . , ki of this order
truncated at ki = v.

Finally, we compute D = complete(K ′′v ) and control if D satisfies the check
at line 20, which is required to ensure that the parent of D is indeed K and that
we did not generate D multiple times from K itself.

4.1 Correctness

In order to prove the correctness of Algorithm 1 using the routines defined in
Algorithm 2, we prove that the conditions listed in Lemma 1 are met, recalling
that the directed graph Z induced by the parent function p has the arcs from p(K)
to K for each solution K. By definition of p and by Lemma 2 we get Condition 1.
Lemma 3 focuses on Condition 2, and Lemma 4 focuses on Condition 3.

Lemma 3. The directed graph Z induced by p is a forest rooted in roots.

Lemma 4. If K = p(S), then S ∈ children(K).

Proof. Consider an execution of children(K), referring to its implementation
in Algorithm 2, and let S be an arbitrary maximal bc-clique with p(S) = K.
We need to prove that at some point in the execution Algorithm 2 will choose
v = pi(S) and h = min(S) in lines 15 and 17 respectively, and that this will give
D = S on line 19, which means D is yielded in line 20.

Consider the prefix S<v of S. As K = p(S) = complete(S<v), clearly
S<v ⊂ K and, since S has a parent, it is not a root and so S<v 6= ∅. By definition
of prefix, S<v ∪ {v} is a bc-clique, so there must be a black edge between v and
a node in S<v, and thus to a node in K since S<v ⊂ K, meaning that v ∈ cand
and v is considered on line 15.

Consider now the execution of lines 16–20 when v = pi(S). We have that
S<v ∪{v} must be a subset of K ′v, the maximal bc-clique in GB [K ∩N(v)∪{v}]
containing v, since S<v∪{v} is a bc-clique containing v and contained in K∪{v}.
Since min(S) ∈ S<v ⊆ K ′v, h will be chosen as min(S) in some iteration of line 17.

Finally, we need to prove that S<v ∪ {v} is exactly K ′′v , i.e., a prefix with
respect to h of K ′v. If this were not the case, let d be the earliest element in K ′v
(according to the forced ordering with respect to h) that is not in S<v ∪ {v}.
Then S<v ∪{v, d} is still a bc-clique (as d must have a backwards black edge and
all nodes before d are in S<v); moreover, (βK′

v
(d), d) < (βK′

v
(v), v). Thus d could

be chosen by complete(S<v ∪ {v}), and since complete(S<v ∪ {v}) = S, this
would mean that d is in S and occurs before v in its canonical ordering, implying
d ∈ S<v, which is a contradiction. ut
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As a result, we obtain the correctness of bc-enum.

Theorem 1. Algorithm 1 implemented with the methods from Algorithm 2 finds
all and only maximal bc-cliques exactly once.

5 Complexity and Implicit Product Graph

In this section, we give the complexity of bc-enum, taking into account that G
is not a generic graph with white and black edges, but an implicit product graph
between H and F that we do not want to materialize, whose size and features
depend on H and F .

Recall that each node of G corresponds to a mapping between two nodes of
H and F . For any given v ∈ V (G), let these nodes be respectively vH ∈ V (H)
and vF ∈ V (F ). Further recall that ∆H and ∆F are the maximum node degree
in H and F , while ∆B is the maximum degree in GB. By construction of the
product graph we have ∆B ≤ ∆H ·∆F . For brevity, we define ∆ as ∆H +∆F .
These parameters are all significantly smaller than the size of G, which has
|V (H)| · |V (F )| nodes, and O(|V (H)|2 · |V (F )|2) edges, either black or white.

Let X be a bc-clique in G. We denote as XH and XF respectively the set
of nodes of H and F mapped in X. We keep a dictionary between the nodes of
X and those of XH and XF , allowing us to retrieve vH and vF from v, or vice
versa, in O(1) time.5

Lemma 5. Let X be a bc-clique in G and v a node in V (G). Testing whether
X ∪ {v} is a bc-clique takes O(min(|X|, ∆)) time and O(|X|) space.

Proof. As X is a bc-clique in G, in order to check that X ∪ {v} is a bc-clique in
G we need to check that {v} is connected to a node in X through a black edge,
and to all the others through either white or black edges. This can trivially be
done in O(|X|) time by checking adjacency with the nodes of X one by one.

However, a faster solution is possible if we focus on the edges that are not in
G: for a given node x ∈ X, corresponding to a mapping between xH ∈ V (H) and
xF ∈ V (F ), there is no edge in G between v and x if either {vH , xH} ∈ E(H)
and {vF , xF } 6∈ E(F ), or {vH , xH} 6∈ E(H) and {vF , xF } ∈ E(F ). Otherwise,
there is either a black or white edge between v and x.

To check the presence of missing edges between v and nodes of X we can
simply iterate over all xH ∈ NH(vH)∩XH , and check that each is mapped by X
in a node xF ∈ NF (vF )∩XF . Then, similarly, iterate over all xF ∈ NF (vF )∩XF

and check that they are mapped in some xH ∈ NH(vH) ∩XF . This can be done
in O(|NH(vH)|+ |NF (vF )|) = O(∆) time. If no missing edge exists then X ∪ {v}
is a clique in G. As a byproduct, this process finds all black edges between v and
X, thus we may check at the same time that there is at least one, and thus that
X ∪ {v} is a bc-clique. ut
5 This data structure will be built at the beginning of a complete call. As building it

takes O(|X|) time and space, it will not affect the final complexity.
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Lemma 6. For any bc-clique X in G, computing βX(v) for all v ∈ X takes
O(|X| ·min(|X|, ∆H , ∆F )) time and O(|X|) space.

Proof. The values of βX(v) corresponds to their distance from the head x of
X in GB[X]. This can be done via a BFS of GB[X] rooted at x. As GB[X]
has |X| nodes, the trivial bound for this traversal is |X|2. Once again, we can
exploit the fact that G is the product graph of H and F : indeed, each node v
of X corresponds to a mapping of a node vH of H into one node vF of F . For
this reason, while v can have up to ∆B neighbors in GB , vH may have at most
|NH(vH)| neighbors in XH .

We can thus iterate on the neighborhood of v in O(min(∆H , ∆F )) time by
iterating on the neighbors of either vH in H or vF in F and then retrieve the
corresponding nodes inX. In total, we process |X| nodes, each inO(min(∆H , ∆F ))
time, or in O(|X|) time using the trivial version of the BFS. The cost follows. ut

Lemma 7. complete(X) takes O(q(q +∆B)∆) = O(q2∆+ q∆B∆) time and
O(q) space.

Proof. In order to perform complete(X), we iterate over all nodes that can
be added to X, adding the lexicographically smallest, with respect to X and
its head x, first. For each node v in X (including those that are added during
the procedure), we keep an iterator which will scan in increasing order its black
neighbors. Clearly, each node must be considered after the smallest ones, and
once it is considered it is either added to X or discarded, thus it does not need
to be considered as a candidate anymore.

Given a node c 6∈ X, that has a black neighbor in X, we can see that
βX(c) = βX(v) + 1, where v is the black neighbor of c in X that minimizes this
value. Hence, to select the lexicographically smallest node, we must first consider
the black neighbors of the nodes v that minimize βX(v). We thus order the nodes
in a priority queue by value of βX(v), breaking ties by the value of the smallest
black neighbor yet to consider, so that the first node in the priority queue is the
smallest candidate to consider for addition to X.

As X will contain |X| = O(q) nodes, and we will iterate on the O(∆B) black
neighbors of each node exactly once, the total cost of this iteration is O(q∆B)
time, and will yield up to q∆B nodes. Since by Lemma 5 testing a candidate
takes O(min(q,∆)) time, the total cost is O(q∆B min(q,∆)).

Furthermore, we need to account for the cost of changing heads : after we add
a node x to X, this becomes the new head of X if its label is smaller than that
of the previous head. In this case, we need to update both the values of βX(v),
and the priority queue of candidate nodes. By Lemma 6, this can be done in
O(qmin(q,∆H , ∆F )) time. We pay this cost at most q times as we add up to q
nodes, for a cost of O(q2 min(q,∆H , ∆F )) which is upper bounded by O(q2∆).

The total cost is thus O(q∆B min(q,∆) + q2∆) = O(q2(∆B +∆)) time. ut

Lemma 8. children(K) takes O(q4∆B(∆B + ∆)) = O(q4∆2
H∆

2
F ) time and

O(q) space.
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Proof. The cost of children(K) is bounded by the cost of lines 19 and 20, times
the number of nodes cand(K), times the number of nodes in K ′v.

Nodes in cand(K) are at most |K|∆B = O(q∆B) (line 13 of Algorithm 2)
and K ′v size is bounded by O(q). In the following, we prove that the time cost
of line 20 of Algorithm 2 is O(q(q +∆B)∆). Let 〈d1, . . . , d|D|〉 be the canonical
ordering of D. By definition, di = pi(D) is the latest element in the canonical
order of D such that complete(D<di

) 6= D. By the proof of Lemma 3, we
have that complete(D<di

) ≤ D and complete(D<dj
) = D for any j > i. To

check that v is indeed the parent index of D, we thus simply need to check that
complete(D<di) 6= D and complete(D<di+1) = D. Furthermore, if this is the
case, complete(D<di

) also gives us the parent p(D) of D. Checking that h is
the node of smallest label in D does not affect the cost, thus the total cost is
that of calling the complete() function twice. As ∆B and ∆ are bounded by
∆H ·∆F , the statement follows. ut

Looking at Algorithm 1, we can see that the complexity of bc-enum is
bounded by the cost of the function children(K). Furthermore, as shown in
Lemmas 5, 6, and 7, the space required is always O(q). By turning the recursion
into a stateless iteration (see [6]), no more space is needed as we do not need to
store the recursion stack. We also address the delay of the algorithm, that is,
the maximum elapsed time between two consecutive outputs, by applying the
alternative output technique in [20]: for each recursive call on K in the recursion
tree of Algorithm 1, we output solution K at the beginning of the call if its depth
is even, and at the end if it is odd. In this way, the delay is equal to the cost per
solution. We can thus state the main result.

Theorem 2. Given two graphs H and F , bc-enum lists all their (isomorphisms
corresponding to) mccis’s in O(q4∆2

H∆
2
F ) delay and O(q) space.
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