
HAL Id: hal-01964710
https://hal.inria.fr/hal-01964710

Submitted on 23 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tight Lower Bounds for the Number of
Inclusion-Minimal st-Cuts

Alessio Conte, Roberto Grossi, Andrea Marino, Romeo Rizzi, Takeaki Uno,
Luca Versari

To cite this version:
Alessio Conte, Roberto Grossi, Andrea Marino, Romeo Rizzi, Takeaki Uno, et al.. Tight Lower Bounds
for the Number of Inclusion-Minimal st-Cuts. WG 2018 - International Workshop on Graph-Theoretic
Concepts in Computer Science, Jun 2018, Cottbus, Germany. pp.100-110, �10.1007/978-3-030-00256-
5_9�. �hal-01964710�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162939188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01964710
https://hal.archives-ouvertes.fr

Tight Lower Bounds for the Number of
Inclusion-Minimal st-Cuts

Alessio Conte1, Roberto Grossi2, Andrea Marino2,
Romeo Rizzi3, Takeaki Uno1, and Luca Versari2

1 National Institute of Informatics, Japan, {conte,uno}@nii.ac.jp
2 Università di Pisa, {grossi,marino,luca.versari}@di.unipi.it

3 Università di Verona, rizzi@di.univr.it

Abstract. We study the number of inclusion-minimal cuts in an undi-
rected connected graph G, also called st-cuts, for any two distinct nodes
s and t: the st-cuts are in one-to-one correspondence with the partitions
S ∪ T of the nodes of G such that S ∩ T = ∅, s ∈ S, t ∈ T , and the sub-
graphs induced by S and T are connected. It is easy to find an exponential
upper bound to the number of st-cuts (e.g. if G is a clique) and a con-
stant lower bound. We prove that there is a more interesting lower bound
on this number, namely, Ω(m), for undirected m-edge graphs that are
biconnected or triconnected (2- or 3-node-connected). The wheel graphs
show that this lower bound is the best possible asymptotically.

1 Introduction

Cuts are among the fundamental notions in graphs. A cut in a graph G represents
a bipartition S, T of its node set V (G), and the corresponding cutset is the set
of edges in E(G) having one endpoint in S and the other in T . Cutsets have
a wide range of applications, such as switching functions, sensitivity analysis
of optimization problems, vertex packing, and network reliability [22, 23]. Due
to the sheer number of cuts, it makes sense to focus on those whose cutsets are
minimal under inclusion (i.e. any subset of their edges is not a cutset): these cuts
corresponds to those having both induced subgraphs G[S] and G[T] connected.4

For any two given distinct nodes s and t in V (G), we consider their st-cuts
or, equivalently, the bipartitions S,T for which s ∈ S, t ∈ T and both G[S] and
G[T] are connected (a.k.a. bonds). In the following, we refer to just S as a cut,
meaning the bipartition S and T = V (G) \ S as it is clear from the context.

In this paper, we investigate the number of st-cuts in an undirected con-
nected graph G with n = |V (G)| nodes and m = |E(G)| edges. This is useful
to recursively generate st-cuts, as knowing a lower bound on their number can
help to better amortize the cost of recursive calls. For general graphs, we can
face two kinds of extreme situations. If G is a clique, any choice of S ⊆ V (G)
such that s ∈ S and t 6∈ S gives rise to an st-cut; this yields 2n−2 st-cuts as

4 Since G is connected, also G[S] and G[T] are connected, otherwise we could remove
at least one edge from the minimal cutset to reconnect G[S] or G[T].

each such S can be obtained by adding s to any subset of V (G) \ {s, t}. At the
other extreme is a single st-cut when G is made up of two cliques connected by
an edge {s, t}, where S is the node set of one of the cliques (see Fig. 1(left)).

s t
s

c
t

Fig. 1. Left: connected graph with one st-cut. Right: 2-edge-connected graph with two
st-cuts. The clouds correspond to cliques.

It is natural to investigate how the number of st-cuts changes if we add some
more stringent requirement on the connectivity of G. For 2-edge-connectivity,
where G remains connected by any single edge removal, the situation does not
change significantly. The graph in Fig. 1(right) is 2-edge connected and has just
two st-cuts. The graph is formed by a triangle where s and t are its nodes, and
the remaining node is part of a clique of n−2 nodes: the only possible choices for
S are the singleton s or the clique extended with s. On the other hand, choosing
both s and t inside the clique (instead of the triangle) would give rise to an
exponential number of st-cuts, as discussed before.

6

s

1

3

t

4

c

55

61

2

st

4

c

3

2

t

4

5

61

s

3

2

c

Fig. 2. Left: a wheel graph (triconnected, thus also biconnected). Center and right:
st-cuts with respectively c 6∈ S and c ∈ S.

What if G is biconnected (i.e. 2-node-connected)? For 2-node-connectivity,
G remains connected by any single node removal, and the clique is clearly bi-
connected, thus we still have an exponential number of st-cuts. But this is not
the interesting question to pose. What we investigate is the minimum number
of st-cuts that a biconnected graph can have. For example, the wheel graph in
Fig. 2 has 2(n− 2) st-cuts: the graph is a cycle of n− 1 nodes, all connected to
a center node, thus m = 2(n − 1). The center node either belongs to S or not:
in either cases, we have n − 2 ways of choosing the remaining nodes, as they
must bipartite the cycle in two sectors of adjacent nodes. One may wonder if it
is possible to find a biconnected graph with a constant number of st-cuts: the
answer to this question is negative.

2

Indeed the contribution of this paper is to give a proof that there are Ω(m) st-
cuts in any biconnected graph G for any choice of distinct node s, t. This provides
an interesting gap, from Ω(1) to Ω(m), when we move from either connectivity
or 2-edge-connectivity to 2-node-connectivity. The wheel in Fig. 2 shows that
the lower bound is tight. It is an open problem to study higher connectivity
or other requirements on G: we observe that our lower bound extends to k-
node-connected graphs with k ≥ 2, and matches for k = 2, 3 as the wheel is
triconnected, but we do not know if the lower bound is tight for k > 3.

Related work. In the literature, the generation of all cuts in undirected graphs
has been studied by Abel and Bicker [1], Beltmore and Jensen [3], Tsukiyama et
al. [27], Golberg [11]. Others are [15, 21, 28]. Among these approaches, Tsukiyama
et al. is the most efficient as it requires O(m) time per cutset. Algorithms for
generating minimum cardinality and minimum weight cuts have been proposed
by Ball and Provan [2], Gardner [10], and Picard and Queyranne [20]. In [29],
all cuts of G are returned by non-decreasing weights ordering. Other variations
include the k-best cuts problem which have been considered in [12]. (For the
case of directed graphs see [25].) Enumerating the cutsets between all pairs of
nodes reduces to the problem of solving a system of linear equations [19]. The
notion of cutset has been generalized to cut conjunctions in [17].

From the above works we see that over the years a lot of listing algorithms
have been proposed for generating minimal cutsets. On the other hand, studies
about bounds on the number of cutsets have been focused on minimum cutsets
without fixing s and t, i.e. the minimum number of edges to be removed to dis-
connect a graph. Deciding the maximum size of such a minimum cutset has been
called the maximum connectivity problem, one of the 14 questions of Berge [4].
This question has been answered by Harary [14], giving lower and upper bounds
on the size of this cutset for any graph as a function of the number of nodes
and edges. Bixby [6] has found the minimum number of edges and nodes in a
k-edge-connected graph for a given number b of minimum cardinality cutsets.
This problem turned out to have an essentially closed form solution for all k and
b, and for many values of k and b it is possible to build a graph achieving this
minimum.

Over the years, this interest towards bounding cutsets have been mainly
motivated by the network reliability problem [7]. One of the fundamental results
is due to Kruskal [18] and Katona [16] in terms of Fi, which is the number of
sets of i edges which do not contain a cutset. Upper bounds for the number of
minimum cutsets in terms of the radius, diameter, minimum degree, maximum
degree, chordality, girth and other parameters have been given by Chandran et
al. [8] for weighted graphs. Harada et al. [13] have provided lower bounds for the
number of cutsets of a given size (not necessarily minimal). We remark that all
the above works consider set of edges, rather than partition of nodes, which are
eventually minimum but in any case never minimal. Hence, we are not aware of
previous work on lower bounds for the number of minimal st-cuts as discussed
in this paper.

3

Preliminaries. All the graphs considered in this paper are undirected, connected,
and simple (without multiple edges or self-loops). Hence a sequence of nodes
cannot induce more than one path or cycle, thus we may refer to paths and
cycles simply as sequences of nodes. Two paths are disjoint if they do not share
any node (and consequently any edge), and are internally disjoint if they share
both the first and last nodes in their sequences, but are otherwise disjoint. Two
paths that do not share any edge (but may share nodes) are called edge disjoint.
We call κ(G) the node connectivity of G, that is the size of the smallest node
cut. If κ(G) = k we say that G is k-connected (and thus removing k − 1 nodes
cannot disconnect the graph). By Menger’s theorem, we have that for each pair
of nodes x, y ∈ V (G) there are at least κ(G) internally disjoint paths between x
and y.

An st-numbering for two adjacent nodes s, t is a numbering of the nodes of G
such that each node (except t) is adjacent to a node larger than itself, and each
node (except s) to one smaller than itself. When G is biconnected, [9] proves
that there is an st-numbering for any pair of adjacent nodes s and t, and that
it can be found in linear time. Furthermore, we remark that this ordering can
be found even if s and t are not adjacent. Indeed, let G′ be the graph obtained
by adding the edge {s, t} to G. G′ is still biconnected, and has an st-numbering.
Consider the same numbering for G: s still has a neighbor larger than itself in
G (any neighbor, since it has the smallest label), and by the same logic t still
has a neighbor smaller than itself. All other nodes have the same neighborhood
in G as they had in G′. Thus we can remark the following

Observation 1 There is an st-numbering on a biconnected graph G for any
pair of nodes s and t.

In the rest of the paper, we assume that the nodes are numbered in st-
numbering, and thus x < y for any two nodes x and y means that x appears
earlier than y in the st-numbering.

2 Number of st-cuts in a biconnected graph

This section illustrates our main result that, for any undirected biconnected
graphG and any two distinct nodes s, t, there are at least max(n,m−2n) = Ω(m)
st-cuts. In order to get this lower bound we will attempt at defining, for each
edge, a corresponding cut, ensuring that each such cut is valid. However, we also
need these cuts to be distinct from each other.

In the following, we will produce two sets of cuts, corresponding to different
kind of edges, which may overlap with each other, but each set will contain
distinct elements. One of the sets will contain exactly n distinct cuts, and the
other at least m−2n: as a result, we obtain that G has at least max(n,m−2n) =
Ω(m) st-cuts.

One of the main ingredients of our proof will be defining a backbone of a
graph, which is based on the st-numbering of G. Its structure immediately leads
to a classification of the edges of G that will be crucial to define the st-cuts.

4

Indeed, it helps us to overcome the fact that it is not possible to identify a
distinct st-cut for each edge in a straightforward way, as some edges are not
yielding new st-cuts.

For the sake of discussion, we also report some observations on st-numbering
that can be partially found in previous work [5, 24, 26].

2.1 Backbone of the graph

Consider a biconnected graph G = (V (G), E(G)), and an st-numbering induced
by two of its nodes s and t.

Definition 1 (backbone). The backbone of G is the graph bb = (V (G), E(bb))
where E(bb) ⊆ E(G) is defined as {i, j} ∈ E(bb) if and only if j is either the
largest or smallest neighbor of i in the st-numbering.

3

10

13

9

12

14

1

11

2

5

7

4

8

6

2

11

7

46

10

12

14

8

13

9

5

3

1

Fig. 3. Left: a biconnected graph G, labeled in st-numbering (s = 1,t = 14). Backbone
edges in bold, shortcut edges dashed, and cross edges in gray. Right: the corresponding
graph

−→
bb showing predecessor-successor relationships of G.

In other words, the backbone is obtained by taking for each node just the
edge to its largest and its smallest neighbor, as illustrated in Fig. 3(left). We
observe that bb fulfills the following properties.

– All edges having s or t as an extreme are in bb, as s and t are respectively
the smallest and largest node.

– bb has at most 2n edges, since we take at most 2 edges for each node.
– The st-numbering of G is also an st-numbering for bb, since each node has

at least one smaller neighbor (except s) and a larger one (except t).

5

For the mere purpose of definitions, we consider the oriented version of bb,
called bipolar orientation

−→
bb, where an arc (x, y) belongs to

−→
bb iff {x, y} ∈ E(bb)

and x < y, as illustrated in Fig. 3(right). Note that s and t are respectively the
only source and target in

−→
bb. For each node v ∈ V (G), we say that x ∈ V (G) is

a predecessor of v iff there is an oriented path from x to v in
−→
bb, and y ∈ V (G)

is a successor of v iff the oriented path in
−→
bb is from v to y. Note that x is a

predecessor of v iff there is a monotone increasing path from x to v in bb, and y
is a successor of v iff there is a monotone decreasing path from y to v in bb. As it
can be seen, there can be pairs of nodes such that they are not one predecessor
of the other.

In the following, we drop
−→
bb and focus on bb alone, keeping the sets of

predecessors and successors of each node v, respectively denoted as anc(v) and
desc(v). Note that v 6∈ anc(v) and v 6∈ desc(v). Clearly x ∈ anc(v) iff v ∈
desc(x), and anc(v) ∩ desc(v) = ∅. We remark that s and t are respectively a
predecessor and a successor of all nodes in V (G) except themselves.

The edges {x, y} ∈ E(G) can be classified in the given bb as three types (see
Fig. 3(left)).

– {x, y} is a backbone (type b) edge iff {x, y} ∈ E(bb).
– {x, y} is a shortcut (type s) edge iff {x, y} ∈ E(G) \E(bb) and x ∈ anc(y).
– {x, y} is a cross (type c) edge iff {x, y} ∈ E(G) \ E(bb) and x 6∈ anc(y).

It is important to remark that each edge of E(G) falls under exactly one of
the above types.

Observation 2 Any edge of G is either a backbone edge, a cross edge, or a
shortcut edge.

2.2 Case analysis on the st-cut types

In the following, we will use the classification of the edges to define st-cuts. In
particular, for each edge, depending on its type, we define a corresponding cut.
For all these edges, the corresponding st-cuts (S, T) we define are always valid,
meaning that both S and T = V \ S induce connected subgraphs.

Definition 2 (B - backbone cut). For each node v ∈ V (G) \ {t}, its type-b
cut is S = anc(v) ∪ {v}.

Example (B - backbone cut) On the graph in Fig. 3, v = 9 yields the type-b
cut S = {1, 3, 9} (and T = V (G) \S). A visual representation is shown in Fig. 4
(left).

Lemma 3. Every node except t yields a valid type-b cut, and the type-b cuts
are pairwise distinct.

Proof. Each predecessor of v is on a path from v to s made of predecessors of
v, thus G[S] = G[anc(v) ∪ {v}] is connected. G[T] is also connected as any
node that is not predecessor of v has a path to t made of nodes which are not

6

predecessors of v. Furthermore, note that all nodes in S (except v itself) are
predecessors of v, and v is the only node that satisfies this property, thus v can
be uniquely deduced from the set S, meaning that two different nodes may not
lead to the same type-b cut. ut

As a consequence of Lemma 3, we get the following.

Observation 3 Every biconnected graph G has at least n distinct st-cut for any
choice of s and t.

In order to increase the lower bound in Observation 3, in the following we
consider edges {x, y} which do not belong to the backbone of G. Note that there
are at least m− 2n such edges since the backbone has at most 2n edges.

Suppose x < y without loss of generality in the rest of the section. Note that
y cannot be a predecessor of x, but may or may not be a successor.

Definition 4 (C - cross cut). For each cross edge {x, y}, its type-c cut is
S = anc(x) ∪ anc(y) ∪ {x, y}.

Example (C - cross cut) On the graph in Fig. 3, {x, y} = {5, 9} yields the
type-c cut S = {1, 2, 3, 5, 9} (and T = V (G) \ S). A visual representation is
shown in Fig. 4 (center).

Lemma 5. Every cross edge yields a valid type-c cut, and the type-c cuts are
pairwise distinct.

Proof. By the proof of Lemma 3, G[anc(x) ∪ {x}] and G[anc(y) ∪ {y}] are
connected. As the subgraphs share the node s, their union G[anc(x)∪anc(y)∪
{x, y}] = G[S] is connected too. G[T] is connected since it is made of nodes
which are not predecessors of x nor y, thus have a path to t made of nodes that
are not predecessor of x nor y.

Given the set S, the only two nodes who are not successor of any other node
in S are x and y, thus the cut is uniquely identified by the cross edge {x, y},
meaning a different edge may not yield the same cut. ut

Definition 6 (S - shortcut cut). For each shortcut edge {x, y}, where y ∈
anc(x), its type-s cut is S = V (G)\T , where T is the set of all nodes connected
to t in G[V (G) \ (anc(y) ∪ {x, y})], including t itself.

Example (S - shortcut cut) On the graph in Fig. 3, {x, y} = {3, 12} yields
the type-s cut S = {1, 3, 6, 10, 12} (and T = V (G) \ S). A visual representation
is shown in Fig. 4 (right).

Lemma 7. Every shortcut edge yields a valid type-s cut, and the type-s cuts are
pairwise distinct.

7

Proof. Let G′ = G[V (G) \ (anc(x) ∪ {x, y})] (recall that x < y). In a shortcut
cut, T contains all nodes connected to t in G′, including t itself. Thus G[T] is
connected by definition.

Consider now S = V (G) \ T . In particular, S will contain anc(x) ∪ {x, y},
which by definition of anc is connected and contains s, plus all the nodes that
cannot reach t in G′: since these nodes cannot reach t, and G is connected, they
must be connected to anc(x) ∪ {x, y} instead, thus G[S] is connected, meaning
that S, T is a valid cut. A visual representation of this can be seen in Fig. 4
(right), where {x, y} = {3, 12}, 6 and 10 are the nodes that cannot reach t in
G[V (G) \ anc(3) ∪ {3, 12}], while 9 can reach t via the edge {9, 5}.

We now only need to show that any two shortcut edges cannot produce the
same cut.

First, all nodes that are not predecessors of y have a path to t made of nodes
which are not predecessors of y. Since anc(x) ⊂ anc(y), these nodes may reach
t in G′, and thus are in T . This means that S ⊆ anc(y)∪{y}. Moreover, by the
properties of anc(), we have that y is the only node that satisfies this property.

We will now prove our claim by contraddiction. Suppose another edge {w, z}
yields the same S. Then we have that S ⊆ anc(z) ∪ {z}, which implies that
y = z because of what we said above. Moreover, we must have that w ∈ S as
both extremes of the shortcut edge go in S when defining a type-s cut.

We can now only consider shortcut edges of the form {w, y}. Without loss of
generality, assume x < w (we cannot have x = w since G is not a multigraph).
Note that, by definition, x ∈ S. Furthermore, note that by construction of the
backbone, the edge between w and its largest neighbor is in the backbone, thus
since {w, y} is a shortcut edge (not a backbone edge), w must have a neighbor
v > y.

As v > y and w > x, it follows that v, w 6∈ anc(x)∪ {x, y}. This means that
there is a path from w to t that does not use any node from anc(x)∪{x, y}, thus
w ∈ T . As we supposed w ∈ S, this is a contradiction and the thesis follows. ut

Lemma 8. The sets of type-c cuts and type-s cuts are disjoint.

Proof. Notice that, as proven in Lemma 7, we have that for each type-s cut there
exists a node y that belongs to S and such that S ⊆ {y} ∪ anc(y).

On the other hand, a type-c cut has S = {x, y} ∪ anc(x) ∪ anc(y), where
{x, y} is a cross edge. We thus have that y 6∈ anc(x) and x 6∈ anc(y). Moreover,
as x 6∈ anc(z) if z ∈ anc(x), any other node of S is not a predecessor of either
x or y (or both). This implies that there is no node in S that has the whole S
among its predecessors, thus proving that we cannot find the same cut in both
the sets of type-s cuts and type-c cuts. ut

We finally give the proof of our main result, which is now an immediate
consequence of the properties proved so far.

Theorem 9. For any biconnected graph G and any two distinct nodes s, t, there
are at least max(n,m− 2n) = Ω(m) st-cuts.

8

12 11

14

10

6 5

8 7

13

4

1

2

12 11

14

10

6

8 7

13

4

1

2 3

9

11

14

10

6 5

8 7

13

4

1

23

9

3

9

5

12

Fig. 4. st-cuts corresponding to respectively a type-b cut with v = 9 (left), a type-c
cut with {x, y} = {5, 9} (center), and a type-s cut with {x, y} = {3, 12} (right)

Proof. Observation 3 proves that we have at least n different cuts. On the other
hand, any non-backbone edge gives us either a type-s cut or a type-c cut, and
no cut is obtained twice in this way, as proven in Lemma 8. As there are m− 2n
non-backbone edges, we have at least m− 2n cuts. ut

2.3 Graphs that allow for an st-numbering

While we considered biconnected graphs, it can be noted that Theorem 9 holds
for any graph admitting an st-numbering, as this is sufficient for our proof.
This condition is slightly more general than assuming G to be biconnected, and
actually corresponds to the biconnected components tree of G being a path, with
the components containing s and t in its extremes.

Indeed, as it can be seen in Fig. 5, any node in a biconnected component out
of this path (the dashed ones) is separated by both s and t by a single cut node,
meaning that there cannot be both a monotone increasing path and a monotone
decreasing path from the node to respectively t and s.

On the other hand, it can be easily seen how an st-numbering for a path of
biconnected component can be computed by combining a suitable st-numbering
of each of the components between its articulation points.

3 Conclusions and further work

In this paper we have proved that there are Ω(m) st-cuts in any biconnected
graphG for any choice of distinct nodes s, t. We have shown that this lower bound
is tight for k-node-connected graphs with k = 2, 3 as there is a triconnected
graph, i.e., the wheel in Fig. 2, matching this lower bound. The natural question
which remains open is whether the Ω(m) bound is tight in k-node-connected
graphs for k > 3.

9

s t

Fig. 5. An example of a graph that does not allow an st-numbering, and of a subgraph
(highlighted in black) that does. Circles represent biconnected components.

Acknowledgements. This work was partially supported by JST CREST, grant
number JPMJCR1401, Japan, and MIUR, Italy.

References

1. U Abel and R Bicker. Determination of all minimal cut-sets between a vertex pair
in an undirected graph. IEEE Transactions on Reliability, 31(2):167–171, 1982.

2. Michael O Ball and J Scott Provan. Calculating bounds on reachability and con-
nectedness in stochastic networks. Networks, 13(2):253–278, 1983.

3. M Bellmore and PA Jensen. An implicit enumeration scheme for proper cut gen-
eration. Technometrics, 12(4):775–788, 1970.

4. Claude Berge. La theorie des graphes. Paris, France, 1958.
5. Therese C. Biedl and Goos Kant. A better heuristic for orthogonal graph drawings.

Comput. Geom., 9(3):159–180, 1998.
6. RE Bixby. The minimum number of edges and vertices in a graph with edge

connectivity n and m n-bonds. Networks, 5(3):253–298, 1975.
7. Timothy B Brecht and Charles J Colbourn. Lower bounds on two-terminal network

reliability. Discrete Applied Mathematics, 21(3):185–198, 1988.
8. L Sunil Chandran and L Shankar Ram. On the number of minimum cuts in a

graph. SIAM Journal on Discrete Mathematics, 18(1):177–194, 2004.
9. Shimon Even and Robert Endre Tarjan. Computing an st-numbering. Theoretical

Computer Science, 2(3):339 – 344, 1976.
10. ML Gardner. Algorithm to aid in the design of large scale networks. LARGE

SCALE SYST., 8(2):147–156, 1985.
11. Leslie Ann Goldberg. Efficient algorithms for listing combinatorial structures, vol-

ume 5. Cambridge University Press, 2009.
12. Horst W Hamacher, Jean-Claude Picard, and Maurice Queyranne. On finding the

k best cuts in a network. Operations Research Letters, 2(6):303–305, 1984.
13. Hideaki Harada, Zheng Sun, and Hiroshi Nagamochi. An exact lower bound on

the number of cut-sets in multigraphs. Networks, 24(8):429–443, 1994.
14. Frank Harary. The maximum connectivity of a graph. Proceedings of the National

Academy of Sciences, 48(7):1142–1146, 1962.
15. GB Jasmon and KW Foong. A method for evaluating all the minimal cuts of a

graph. IEEE transactions on reliability, 36(5):539–545, 1987.

10

16. G Katona. A theorem for finite sets. Theory of Graphs, pages 187–207, 1968.
17. Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni, Vladimir Gur-

vich, and Kazuhisa Makino. Generating cut conjunctions in graphs and related
problems. Algorithmica, 51(3):239–263, 2008.

18. Joseph B Kruskal. The number of simplices in a complex. Mathematical optimiza-
tion techniques, 10:251–278, 1963.

19. Alberto Martelli. A gaussian elimination algorithm for the enumeration of cut sets
in a graph. J. ACM, 23(1):58–73, January 1976.

20. Jean-Claude Picard and Maurice Queyranne. On the structure of all minimum
cuts in a network and applications. Mathematical Programming, 22(1):121–121,
1982.

21. VC Prasad, V Sankar, and KS Prakasa Rao. Generation of vertex and edge cutsets.
Microelectronics Reliability, 32(9):1291–1310, 1992.

22. J Scott Provan and Michael O Ball. Computing network reliability in time poly-
nomial in the number of cuts. Operations Research, 32(3):516–526, 1984.

23. J. Scott Provan and Douglas R Shier. A paradigm for listing (s, t)-cuts in graphs.
Algorithmica, 15(4):351–372, 1996.

24. Pierre Rosenstiehl and Robert Endre Tarjan. Rectilinear planar layouts and bipolar
orientations of planar graphs. Discrete & Computational Geometry, 1:343–353,
1986.

25. Douglas R Shier and David E Whited. Iterative algorithms for generating minimal
cutsets in directed graphs. Networks, 16(2):133–147, 1986.

26. Roberto Tamassia and Ioannis G. Tollis. A unified approach a visibility represen-
tation of planar graphs. Discrete & Computational Geometry, 1:321–341, 1986.

27. Shuji Tsukiyama, Isao Shirakawa, Hiroshi Ozaki, and Hiromu Ariyoshi. An algo-
rithm to enumerate all cutsets of a graph in linear time per cutset. Journal of the
ACM (JACM), 27(4):619–632, 1980.

28. Li Yan, Hamdy A Taha, and Thomas L Landers. A recursive approach for enumer-
ating minimal cutsets in a network. IEEE transactions on reliability, 43(3):383–388,
1994.

29. Li-Pu Yeh, Biing-Feng Wang, and Hsin-Hao Su. Efficient algorithms for the prob-
lems of enumerating cuts by non-decreasing weights. Algorithmica, 56(3):297–312,
2010.

11

