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Efficient Algorithms for Listing k Disjoint
st-Paths in Graphs

Roberto Grossi, Andrea Marino, Luca Versari

Università di Pisa, Italy, {grossi,marino,versari}@di.unipi.it

Abstract. Given a connected graph G of m edges and n vertices, we
consider the basic problem of listing all the choices of k vertex-disjoint
st-paths, for any two input vertices s, t of G and a positive integer k. Our
algorithm takes O(m) time per solution, using O(m) space and requiring
O(Fk(G)) setup time, where Fk(G) = O(mmin{k, n2/3 logn,

√
m logn})

is the cost of running a max-flow algorithm on G to compute a flow of
size k. The proposed techniques are simple and apply to other related
listing problems discussed in the paper.

1 Introduction

Listing paths of various kinds is a classical problem in graphs [7, 13, 17, 18], as it
models problems in several contexts. The survey in [4], for instance, provides sev-
eral bibliographical references to applications in biological sequence alignment,
natural language processing, speech recognition, reconstruction of metabolic
path-ways, gene regulation networks, motion tracking, message routing in com-
munications networks, power line placement, vehicle and transportation routing,
building evacuation planning, timing analysis of circuits, task scheduling, VLSI
layout, communications and transportation network design.

In this paper we consider the basic problem of listing all choices of k disjoint
st-paths for a given connected graph G of m edges and n vertices, where s, t are
two vertices of G and k is a positive integer. In other words, we want to list all
the possible ways of connecting s and t using k vertex-disjoint paths, for both
directed and undirected graphs. We propose an algorithm that takes O(m) time
per listed solution, using O(m) space and requiring O(Fk(G)) setup time, where
Fk(G) = O(mmin{k, n2/3 log n,

√
m log n}) is the cost of running a max-flow

algorithm on G to compute a flow of size k.
Our algorithm can be seen as an example where the textbook algorithms

for computing strongly connected components (SCCs) and maximum flows are
applied in a simple way. For this, we reduce the problem on k vertex-disjoint
paths to the one on k edge-disjoint trails. A trail is a walk, possibly containing
cycles, but with no repeated arc (see Section 2). We list the k edge-disjoint trails
from s to t, considering just the trails for which there exist other (recursively
checkable) k− 1 edge-disjoint trails reaching t. The existence of the latter trails
is guaranteed by the existence of a flow of size k. We exploit the fact that
recomputing the flow for the next set of edge-disjoint trails takes O(m) time
instead of O(Fk(G)).



Unbounded Length Bounded Length
Target Given Target not Given Target Given Target not Given

k = 1 [7] and this paper (directed): O(m) [14]: O(nm) (directed) and O(m) (undirected)
[2] (undirected): optimal this paper: O(m)

k = 2 this paper: O(m) [1] and this paper: O(m) [11]: hard [15]: O(nm)
this paper: O(m)

k ≥ 3 this paper: O(m) [11]: hard [15]: hard

Table 1. Cost per solution when listing the k vertex-disjoint (unbounded or bounded)
paths originating from any given vertex s, whether the target t is given or not.

It is worth noting that some previous results, listed below, can be seen as
variations of our problem. Our algorithm provides solutions within the same
bounds as those reported in Table 1, and later discussed in Section 3, for the
following ones:

– st-paths of a directed or undirected graph [7],
– shortest st-paths [8], a special case of bounded length st-paths [14],
– bubbles, i.e. pairs of vertex-disjoint directed st-paths, of fixed length [1],
– bubbles starting from a given vertex s [15],
– k-disjoint shortest paths with k given pairs of sources and targets [3].

Looking at the literature we also observe that the problem of finding k disjoint
paths has been intensively studied. For k = 1, it is the classical problem of listing
paths [2, 7, 13, 17]. For k > 1, it is related to graph connectivity (e.g. Menger’s
theorem [12] and its extensions) and the papers [1, 3, 8, 14, 15] in the above list
present some variations. When k ordered pairs (si, ti) of vertices are specified,
and siti-paths are sought for, the problem of finding these k disjoint paths is
NP-hard for arbitrary k in undirected graph [9], and even for k = 2 in directed
graphs [5]. When k is fixed, an O(n3)-time algorithm for undirected graphs can
be obtained as a byproduct of the Robertson-Seymour papers on graph minors,
and the bound has been recently improved to O(n2) time [10]. Note that the
problem becomes polynomial when the k disjoint paths start from a source set
S = {s1, . . . , sk} and reach a destination set T = {t1, . . . , tk}, as the k disjoint
paths can mix their sources and destinations (e.g. an sitj-path with j 6= i is
allowed).1 Still, listing the latter paths is interesting in applications.

Preliminaries. Given a directed graph G = (V,E), we refer to its number of
vertices as n and to its number of arcs as m. We refer to a walk as a sequence
of adjacent vertices and arcs. In the following we distinguish between trails and
paths: the former ones correspond to walks where the arcs are all distinct, while
the latter ones are loopless trails, i.e. walks where both arcs and vertices are all
distinct. Given s, t ∈ V , a st-trail, also denoted as s t, (respectively st-path)
is a trail (respectively a path) which starts in s and ends in t. Let τ be a s u
trail, we denote as G \ τ as the graph G without the arcs in τ . For an arc (u, v),
we denote as s u · (u, v) the extension of τ with the new arc.

1 Connect a dummy source s to each si, and each ti to a dummy target t; then, run
a max flow algorithm from s to t.
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2 Edge-Disjoint Trails to a Single Target in Directed
Graphs

Given a directed graph G = (V,E) and some vertices s1, . . . , sk, t, we first de-
scribe how to list all the sets of k edge-disjoint trails τ1, . . . , τk such that τi is
a sit-trail. After that, for vertices s, t, we will describe how to list edge-disjoint
trails τ1, . . . , τk such that τi is a st-trail.

Let us first focus on the well-known case k = 1. To generate all the s1t-trails,
we can adopt a recursive algorithm that starts out with u = s1 and considers
the current trail s1  u (seen as a sequence of arcs or a set of arcs with a little
abuse of notation). It then explores in a recursive fashion, one at a time, each
good neighbor v of u: namely, v is good iff v can reach t in the reduced graph
G′ ≡ G \ (s1  u). For each good neighbor v, the recursion proceeds with the
extended trail s1  v ≡ (s1  u) · (u, v).

For k > 1, we observe that not all choices of τ1 are fruitful, as some of them
could lead to dead ends for the remaining k − 1 trails. During the generation of
each trail τ1, we say that v is a good neighbor of u iff v reaches t in the reduced
graph G′ ≡ G \ (s1  u), and there are also k − 1 disjoint trails from s2, . . . , sk
to t: these two conditions can be equivalently seen as recursively checking the
existence of k disjoint trails from v, s2, . . . , sk to t in G′.

We can therefore see the above generation of k disjoint trails as a recursive
scheme, where the current s1u-trail (s1  u) has been already explored (initially,
u = s1). The main two cases are handled as follows.

– If u = t, the currently found trail s1  u is τ1. Moreover, if k > 1, recursively
proceed with the k− 1 disjoint trails from vertices s2, . . . , sk, setting u := s2
and G := G \ τ1 (and noting that all these solutions will have this τ1 fixed).

– If u 6= t, continue to generate the feasible trails τ1 extending s1  u (as pre-
fix) in G. For this, extend u with its good neighbors: for each good neighbor
v of u, proceed recursively with the extended trail s1  v ≡ (s1  u) ·(u, v),
traversing arc (u, v) and setting u := v.

The resulting recursion tree is illustrated in Figure 1(a). It is made up by
a top tree for all the feasible choices of τ1, where its leaves on the first dashed
level are in one-to-one correspondence with these choices. Each such leaf is the
root of the recursion tree for τ2, where the leaves on the second dashed level are
in one-to-one correspondence with these choices. Each such leaf is the root of
the recursion tree for τ3, and so on. In the specific case of Figure 1(a), nodes
a, b, c, d, e indicate the possible choices for τ1, while nodes f, g, h (respectively
j, l,m) indicate the possible choices for τ2 when τ1 = b (respectively τ1 = e).
Finally, nodes u, v, x, y correspond to k-sets of disjoint trails τ1, . . . , τk where τi
is the trail traversed at the i-th dashed line in the trail towards r in this tree.

In the following, we will call nodes the ones in the recursion tree to distinguish
them from the vertices in the input graph.

Introducing the certificate. In order to make this recursion efficient within our
claimed bounds, we introduce a certificate for each node in the recursion tree,

3



τ1

τ2

τk

τk−1

r

b

b′

a edc

g if h

n o p q

j ml

u v x y

(a)

s2

t

s3 sks1

u

v3

v2

v1

(b)

s2

t

s3 sks1

u

v3

v2

v1

1

2
3

2

3

k
31

2

2 k

(c)

Fig. 1. (a) Recursion tree. (b) The paths π1, . . . , πk in gray with the dashed trail s1  u
and (c) the corresponding certificate C.

remarking the difference between trails and paths. We observe that the partial
trail s1  u uniquely identifies a node in the recursion tree where branching
occurs by considering vertex u and its good neighbors. We want to keep track of
a choice of k disjoint trails τ1, τ2, . . . , τk from s1, . . . , sk to t, so that s1  u is a
prefix of τ1. We observe that there exist k disjoint trails from u, s2, . . . , sk to t
iff there exist k disjoint paths from u, s2, . . . , sk to t. Hence let π1, π2, . . . , πk be
the latter paths, and G′ ≡ G \ (s1  u) be the reduced graph, with the arcs in
the partial trail removed.

Definition 1. The certificate is an augmented graph C = (VC , EC) defined in
terms of the partial trail s1  u and the paths π1, π2, . . . , πk, where the arcs
belonging to the latter paths are reversed2 and labeled to keep track of their mem-
bership to the paths, namely,

– VC = V is equal to the vertex set of G, and

2 Note that the certificate can be seen as the residual network in max-flow on arcs
with 0-1 capacities.
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– EC = {(x, y) : (y, x) ∈ E(G′) ∩ Π(G) or (x, y) ∈ E(G′) \ Π(G)}, where
G′ ≡ G \ (s1  u) and Π(G) = ∪ki=1πi denotes the set of arcs belonging to
the paths.

– Each arc (x, y) in EC such that (y, x) ∈ πi (1 ≤ i ≤ k) is endowed with the
label i.

An example of certificate for the paths π1, . . . , πk and the trail s  u in
Figure 1(b) is shown in Figure 1(c), where each arc with label i belongs to a
path πi from si to t reversed.

Lemma 1. Given a trail s1  u, the certificate C can be built in O(Fk(G))
time.

Proof. Given s1, . . . , sk and t, we modify G by connecting s1, . . . , sk to a dummy
vertex s. We can apply the Ford Fulkerson algorithm to get in O(km) time k
disjoint paths from s, and hence from s1, . . . , sk, to t. In order to use a faster
max-flow algorithm, like [6], we can do the following. Run the max-flow algorithm
to find all the edges E′ used by a flow from s to t of size k, then add k arcs
from t to s to E′. In order to build our certificate, we need to find out k disjoint
paths using the edges in E′. To this aim, we notice that all the vertices in the
graph induced by the edges in E′ have the in-degree equal to their out-degree. As
this graph is an Eulerian multidigraph, we can find an Eulerian cycle involving
s which by deleting the k arcs (t, s) splits into k disjoint st-trails. By deleting
possible cycles in these trails, we get k disjoint st-paths. ut

As discussed next, we employ the certificate to

– guarantee that there is at least one good neighbor of u, i.e, no dead ends for
the current node in the recursion tree;

– locate the next good neighbor of u and save space (by avoiding to keep lists
of good neighbors at each node in the recursion stack);

– quickly skip unary nodes in the recursion tree, i.e. when u has just a single
good neighbor.

In this way the recursion tree in Figure 1(a) is actually flattened as a single
tree where each node has at least two children. The benefit is clear by allocating
a budget of O(m) time on each child for every node, since we obtain an O(m)
cost per listed solution as a result. On the downside, since C extends the partial
trail s1  u to a specific choice of k disjoint trails, we have to characterize how
to explore the other choices and, for each such choice, how to update C without
computing it from scratch each time (hence, with a lower cost than that stated
in Lemma 1).

At least one good neighbor of u. This part follows immediately from the definition
of certificate, as the vertex v following u in the trail τ1 can be characterized as
the only vertex in G′ that is neighbor of u and has a reverse arc in C. For this,
we call v the favorite neighbor of u.
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Next good neighbor of u. Apart from the favorite neighbor of u, mentioned
above, we want to identify all the remaining good neighbors v of u. Also, the
identification of the good neighbors should rely on a property that holds for any
choice of the certificate C, so that the underlying C does not really matter to
perform this task correctly, as shown below.

Lemma 2. Given trail s1  u, for any certificate C and for any arc (u, v), we
have that v is a good neighbor of u iff either v is the favorite neighbor of u in C
or there is a cycle in C going through (u, v).

Proof. If v is the favorite neighbor of u in C, we have nothing to prove. Otherwise,
we want to prove that there is another certificate C ′ in which v is the favorite
neighbor of u if and only if (u, v) is involved in a cycle in C. Consider the flow
f that corresponds to certificate C and suppose that there is another flow d′ on
the same network that goes through (u, v). Then, it is well known that there
will be a cycle in the residual network (i.e. in C) that contains the symmetric
difference of the edges in the two flows. Moreover, the converse also holds. So we
have another flow (and so another certificate) in which v follows u if and only if
there is a cycle in C that uses (u, v). ut

As an example, consider Figure 1(c). The good neighbors of u are v2 (favorite
neighbor) and v1 (since it creates a cycle in C). On the other hand, v3 is not a
good neighbor for u as it does not satisfy both these conditions.

An immediate application of Lemma 2 to the nodes in the recursion tree has
an excessive cost in terms of space and time.

Let us start with space. Rather than storing the list of good neighbors at
each node in the recursive stack, which may take Ω(m) space since the same
vertex can appear several times in the partial trail s1  u, we want to find
the next good neighbor v′ (if any) starting from the knowledge that the current
good neighbor is v. Since vertices are numbered, it suffices to produce the list of
good neighbors on the fly each time, and then select v′ as the smallest one that
is greater than v. This costs O(m) time and fits the O(m)-per-children budget
allocated to each node in the recursion tree.

Lemma 3. Given trail s1  u and any certificate C for it, the sorted list of
good neighbors can be returned in O(m) time and space.

Proof. By Lemma 2, one neighbor is the favorite one that can be retrieved from
C. As for the remaining ones, we compute the strongly connected components
(SCCs) of C. Now, each arc (u, v) that is in a cycle must belong to a SCC
that contains u. Thus scanning the SCCs identifies these arcs, as required by
Lemma 2. Radix sorting these neighbors gives the wanted list. Total cost is
O(m) time and space. ut

As for the time, rather than building the certificate in each node of the
recursion tree as stated in Lemma 1, we prefer to compute the certificate from
the parent or a child, taking O(m) time instead of O(Fk(G)). In other words,
we run the max-flow algorithms mentioned in Lemma 1 only once, to find one
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certificate at the beginning of the recursion. After that, all the other certificates
are computed using the method based on the following lemma.

Lemma 4. Given the current node of the recursion tree and any certificate C
for its trail s1  u, the certificate for the parent or for a child of the node can
be computed in O(m) time and space.

Proof. Let s1  u′ be the trail in the parent node, where u is a good neighbor
of u′ and so s1  u = (s1  u′) · (u′, u). The new certificate is obtained from
C by just adding the reversed arc (u, u′) to C with label 1. Indeed, note that
(u′, u) was deleted in C, as C refers to G \ s1  u, and in the new certificate we
are setting π1 := (u′, u) · π1.

We now show how the certificate modifies while going into a child node. Let
s1  v = (s1  u) · (u, v) be the trail in the child node, where v is a good
neighbor of u. Adding (u, v) may kill at most two paths in C: the path π1 as
we are possibly choosing another path replacing it, and a path πi with i 6= 1,
which could traverse (u, v). (Note that πi is killed as we want disjoint paths,
and no other πj with j 6= 1, i can traverse (u, v) for the same reason.) Observing
that C can be seen as a residual network, we use the property of augmenting
paths in Ford-Fulkerson algorithm. In particular, we have k − 2 flows (using
a dummy source connected to v, s2, . . . , sk), so we can run twice the O(m)-
time algorithm to find an augmenting path to bring back the flow to k. This
immediately translates into finding k disjoint trails.

Note that a final check is required to see if we still have paths (loop less trails)
in the reversed arcs of the resulting certificate: in that case, we just remove the
loops from the trails in O(m) time. ut

No unary nodes in the recursion tree. We need to avoid unary (i.e. single-child)
nodes in the recursion tree. We have two kinds of situations to deal with as
illustrated in Figure 1(a). A unary node can occur when producing a trail τi
(as there is only one good neighbor), or when switching on a leaf from τi to the
root that will generate τi+1 (when for the given choice of τ1, . . . , τi, there is only
one trail τi+1 that exist). Looking at Figure 1(a), the former case corresponds
to unary paths which are internal to a tree, as for instance the one from b′ to
b, while the second case corresponds to chains which remain unary across the
trees, as for instance the one from c to p. In particular, this latter situation can
give rise to a dependency on k in the time complexity (O(mk)) that suitably
disappears by avoiding unary nodes.

We handle both kinds of situations using a simple “fast forward” technique
that takes O(m) time to skip maximal paths of unary nodes in the recursion tree,
so that we actually obtain a compact recursion tree where each node always has
two or more children.

Lemma 5. Given the current node of the recursion tree and any certificate C
for its trail s1  u, we can skip a unary chain starting from u in the recursion
tree in O(m) time and space.
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Proof. It is an extension of what discussed in the proof of Lemma 3. We compute
the SCCs in the certificate C as before. We observe that if u is unary then the
SCC containing u is trivial. Since the SCCs form a DAG, we take the sequence
S1, . . . , Sl of SCCs that are traversed by π1 (see Definition 1 for the definition
of πi), where S1 is the trivial SCC containing u and Sl is the SCC containing t.
We take the first vertex u′ along π1 (towards t) that follows u and belongs to
a non-trivial SCC Sj . Now we know that there are at least two good neighbors
for u′, which can be found in Sj as already discussed in the proof of Lemma 3.
This handles the former situation.

To handle the latter situation, we observe that when we traverse S1, . . . , Sl

we always find trivial SCCs. So we switch to π2, which we know from C, and
take the sequence S′1, . . . , S

′
l of SCCs that are traversed by π2. We stop in the

first S′j′ that is non-trivial. If it does not exist, we switch to π3, and iterate the
same approach. Either we stop at a non-trivial SCCs, and we proceed as in the
proof of Lemma 3, or we find all trivial SCCs till πk, so we obtain a solution to
list.

In both situations, the cumulative cost is O(m) time and space as we always
traverse distinct SCCs. ut

Theorem 1. Given a directed graph G and its distinct vertices s1, . . . , sk, t, all
the k-sets of edge-disjoint trails τ1, . . . , τk, such that τi is a sit-trail for 1 ≤ i ≤ k,
can be listed with O(m) time cost per solution. Initial setup time is O(Fk(G))
and space usage is O(m).

Proof. By definition of good neighbors, given a partial trail si  u and the
already generated trails τ1, . . . , τi−1, a simple induction shows that we generate
all the k disjoint trails having τ1, . . . , τi−1 fixed and prefix si  u for the ith
trail. There is no solution listed twice for the same reason. Also, suppose by
contradiction that there exists a solution that is not generated. Let τ1, . . . , τi−1
fixed and prefix si  u be the node in the recursion tree that fails to generate
it. By definition of good neighbor, this is a contradiction, as we identify the next
v to be taken, so that si  u can be extended to si  u · (u, v) instead, where
v is the next vertex on the missed trail. Hence, all the trails are correctly listed
once. Since we spend O(m) time in each node of the recursion tree, and there
are no unary nodes, we get O(m) time per solution. The space is O(m) as a trail
can be so long, and we use constant memory per node in the recursion stack,
which is of depth O(m). ut

We can now deal with the case where we have a single source s.

Theorem 2. Given a directed graph G and two vertices s, t ∈ V , with s 6= t, all
the k-sets of edge-disjoint trails τ1, . . . , τk, such that τi is a st-trail for 1 ≤ i ≤ k,
can be listed with O(m) time cost per solution, setup time O(Fk(G)), and space
usage O(m).

Proof. Let the k-starting sets be the k-subsets of s’s neighbors, i.e. {s1, . . . , sk} ⊆
N(s), such that there are k disjoint paths π1, . . . , πk (and hence trails) where
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πi is an sit path. If we apply Theorem 1 to every k-starting set, we obtain our
claim.

Since we cannot explore all the possible subsets of N(s), we again use a
recursive approach to generate just the k-starting sets of s. Suppose that N(s)
is sorted by vertex numbering. At each recursive step we divide the vertices of
N(s) into three groups:

– I = those vertices that will be part of any starting set generated from the
current recursive call;

– H = those vertices that won’t be in any starting set generated from the
current recursive call;

– U = those vertices that may or may not be in a starting set.

Initially, both I and H are empty, and U = N(s).
During the recursion, we keep the invariant that U forms a contiguous suffix

of the sorted sequence N(s). At each step, we compute a flow f of cardinality
k starting from {s} ∪ I on the graph obtained from G by erasing all incoming
edges in s and all outgoing edges from s to any vertex in I ∪H. More precisely,
we require one unit of flow to leave each vertex in I, none to leave any vertex
in H, and k − |I| to leave s.3 We observe that we are actually enforcing a flow
of cardinality k that uses first all the vertices in I. This flow is computed from
scratch once, at the beginning of the recursion. In the rest of the recursion, it is
updated through the calls using the same ideas as in the proof of Lemma 4.

We compute the residual network Rf of f , and the SCCs of Rf . We can thus
build the set W of vertices v ∈ U such that (s, v) is involved in a cycle in Rf .

If W is empty, then there is exactly one k-starting set that satisfies the
constraints given by the sets I and H, so we can output I (plus any other
neighbor of s involved in the f) as k-starting set, and return from the recursive
call.

Otherwise, let v be the smallest vertex in W . Since (s, v) is involved in a
cycle in Rf (as any other vertex in W ), there must exists at least two flows, both
traversing the vertices I and avoiding those in H, such that one flow traverses
(s, v) and the other does not traverse (s, v). This means that the current recursive
call generates two further calls: the former where v goes into I, and the latter
v goes into H. In both calls, all vertices in U that precede v go into either I
or H, according to their role in f : a vertex x ∈ U with x < v, goes to I if x is
traversed by the flow for the call at hand, or goes to H otherwise.

Hence, each calls returns at least one solution, and each internal call gives
raise to two further calls. Hence the cost per solution is bounded by the cost of
a single call, which is O(m). Space cost is O(m) with setup time O(Fk(G)).

It is worth observing that for each generated k-starting set, we can produce
in O(m) time the initial certificate needed (with the empty path as the current
path). In this way we do not pay each time the setup cost O(Fk(G)) when
applying Theorem 1 to the k-starting set. ut
3 This flow can be achieved by creating a dummy vertex s′ connected to all the vertices

in I with capacity 1 and to s with an arc of capacity k − |I|.
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3 Applications to Related Problems

In this section, we show how to use the results in Section 2 to solve a variety of
related problems. We firstly discuss some easy variations, including listing vertex
disjoint paths, and then we focus on the problem of listing bounded-length fixed-
source k-disjoint-paths with k = 2, since for k ≥ 3 (as summarized in Table 1)
the latter problem is hard.

3.1 Vertex-disjoint paths and other variations

Undirected graphs and vertex disjoint paths. Since we are interested in edge dis-
joint trails, in the case of undirected graphs, it is not sufficient to consider two
opposite arcs in place of an undirected edge, as we want to avoid to traverse one
arc in the solution if the other has been used. To this aim, well-known reduc-
tions [16] allow to easily extend our Theorem 2 to undirected graphs. Moreover,
by transforming each vertex v into an arc (vin, vout), putting arcs (wout, vin)
and (vout, zin) for each in-neighbor w and each out-neighbor z of v, vertex dis-
joint paths reduce to edge disjoint trails: as each of the k edge disjoint trails
composing a solution do not use the same arc twice, we get the following.

Theorem 3. Given a directed or undirected graph G and two vertices s, t ∈ V ,
with s 6= t, all the k-sets of vertex disjoint paths π1, . . . , πk, such that πi is a
st-path for 1 ≤ i ≤ k, can be listed with O(m) time cost per solution, setup time
O(Fk(G)), and space usage O(m).

It is worth observing, that Theorem 3 generalizes the result in [1] for any k,
getting the same bounds for k = 2, as O(F2(G)) is O(m).

Cycles involving two vertices. Given an undirected graph, Theorem 3 easily
extends to enumerating all the simple cycles that contain two given vertices s, t:
it is enough to enumerate all the pairs of vertex-disjoint paths that connect s to
t. As for directed graphs, we recall that finding even one directed cycle involving
two vertices is NP-hard [5].

Multiple Sources vs Multiple Targets. Further variations can be considered. For
instance, listing all the k-sets of edge disjoint trails (or vertex disjoint paths)
from any subset of x ≥ k sources {s1, . . . , sx} to any subset of y ≥ k targets
{t1, . . . , ty}. This can be easily solved in the same bounds claimed by Theorem 2
and Theorem 3, by simply attaching s1, . . . , sx to a dummy source s and t1, . . . , ty
to a dummy target t. We remark that this problem is different from the one
considered by Robertson and Seymour and Kawarabayashi et al. [10] concerning
the so called disjoint paths problem, since in their case, as said in the introduction,
the sources and targets are paired and any algorithm is forced to find a k-set of
vertex disjoint paths respecting this pairing.
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Fixed source vs Variable Target. Let us now consider the following: given a
directed graph G = (V,E) and s ∈ V , list all the k-sets of edge disjoint st-trails
(or vertex disjoint st-paths) for any t ∈ V . In order to solve this problem, we
need to compute for which t there is at least a solution. By applying the results
in Theorem 2 and Theorem 3, we get a total time cost of O(nFk(G) + αm)
with O(m) space, where α is the number of solutions. In undirected graphs, for
k = 1, 2, 3 the total time cost becomes simply O(αm) as the n flow computations
can be replaced by the computation of k-connected components.

3.2 Bounded-length fixed-source two-disjoint-paths

In this section we discuss the following problem which deals with st-paths of
bounded lengths.

Problem 1. Let G = (V,E) be a directed graph, s ∈ V and ` ∈ N. List all the
k-sets of vertex disjoint st-paths of length at most `, simultaneously for any
t ∈ V .

State-of-art results are summarized in the last two columns of Table 1. If
target t is given a priori along with source s, the only case which can be solved
with output-sensitive bounds is for k = 1. Hence we focus on the case k = 2
with t not given a priori (Problem 1), showing how to apply similar ideas to
Section 2. As this will make use of a subroutine to list all the st-paths of length
at most `, we will also focus on the case k = 1 where both s and t are given a
priori.

Given s, we will make use of ball B`(G), which is defined as the graph induced
by the vertices at distance at most ` from s in G. For the sake of simplicity, we
assume wlog that s has zero indegree in G. Similarly to Section 2, we build first
a st-path π1 for some t and then the second vertex disjoint st-path π2. Once the
st-path π1 is fixed, the suitable choices for π2 are all the st-paths of length at
most ` in G where vertices in π1 except s and t have been deleted.

Let us now focus on the building process for π1. Recall that while building π1
we have to guarantee that π1 can be completed in a solution, i.e. there is at least
a suitable π2 which can be paired with π1. Let u be the current vertex explored
during the recursion (at the beginning u = s) and let π′1 be the su-path of length
h with h ≤ ` built until that point. As in the previous section we have to explore
all the good neighbors of u. To discover them, we will employ an auxiliary graph
G′, obtained from G by removing all the vertices in π′1 except s. A neighbor v
of u is good whether there is a way to complete the partial solution, i.e. v is in
G′ and, moreover, in G′ there is a vertex t such that there is a vt-path π′′1 with
length at most k−h and there is also a st-path π2 of length at most `, where π′′1
and π2 are vertex disjoint. For each good neighbor v of u we recur by deleting v
from G′. Note that this guarantees that we generate just simple paths and, by
definition of good neighbors, the path π2 does not overlap with π′1 and π′′1 .
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Good Neighbors and Certificate. Similarly to the previous section, we maintain
a certificate in order to recognize the good neighbors v for u. It may happen
that u itself may be reached in at most ` steps from s without using any nodes
used in π1. In this case, we know that u is a valid target and so we proceed
with generating all possible π2. Moreover, it is also possible that π′1 is a prefix
of a valid path (this must be true if u is not a valid target, as we want to avoid
dead-ends). In this case the certificate C is simply a ut-path from u to some
vertex t in B`(G

′), such that t is the only vertex of the path in B`(G
′). Let v

be the neighbor of u in C, where v corresponds to the favorite neighbor defined
in Section 2. The other good neighbors are the vertices in G′ that are in N(u)
and can reach at least a vertex in B`(G

′) using at most ` − h arcs. These can
be easily computed in O(m) by collapsing the vertices in B`(G

′) into a single
vertex b and then running a backward BFS from b in G′ truncated at distance
` − h. Let R be the vertices reached by this BFS: the good neighbors for u are
all the vertices in N(u) ∩ R and a certificate for each of them is their path to
b. Hence, for any good neighbor, we have a child node in the recursion tree and
for each of them we can build the certificate in O(m). When backtracking from
a child to its parent we can rebuild the certificate in the same way in O(m) thus
avoiding to store the past certificates in the recursion stack as in Section 2.

Fast Forward. We now show how to guarantee that in each recursion node we
always have at least two children, we spend O(m) time in each recursion node.
We want to skip unary chains in the recursion tree in O(m) time as in Lemma 5.
Let u be the current vertex, let π′1 be the su-path of length h with h ≤ ` built
until that point, and let π′′1 be the ut-path (for some t) in the current certificate
C. There is a unary chain for instance if the neighbor v of u in π′′1 is its only good
neighbor or if the path in π′′1 is the only feasible completion for π′1, that is for
each vertex in π′′1 except t, which is in B`(G

′), there is only one good neighbor.
Precisely, we want to find the first vertex w in the path π′′1 that has at least two
neighbors in O(m) in order to skip all the intermediate vertices and continue
the recursion from that one. This task can be easily addressed by modifying the
certificate update as shown next.

1. Scan the vertices in the path π′′1 in their order checking whether there are at
least two good neighbors as follows: let b be the vertex obtained by collapsing
the vertices in B`(G

′), for each vertex w in the path π′′1 check whether there
is an arc (w, z) not in π′′1 such that z is at distance at most `− h from b.

2. Let w be the first vertex satisfying this condition. We directly add all the
edges on the uw-path in π′′1 to π′1 going directly to the recursion node cor-
responding to w.

With respect to Section 2, we are ignoring fast-forwarding across the recur-
sion trees for the different values of k, as since k = 2, linear dependencies on k
do not afflict here our asymptotic time costs per solutions.

Generating π2. Once a st-path π1 has been generated, we have to generate all
the st-paths of length at most ` in the graph G′ which is obtained by deleting
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from G all the vertices in π1 except s and t. We show next that this can be done
with a slight modification of the process for generating π1 shown above. As in
the above case, when recurring at u and enlarging the su-path π′2 with length
h, the certificate C is a path towards t of length at most ` − h. Each recursive
node explores all the good neighbors of u, i.e. the ones leading to t with at most
` − h arcs. The certificate update and the computation of the good neighbors
can be done exactly as in the above case by simply replacing B`(G), and hence
b, with the given target t. Hence, in order to understand which are the good
neighbors, it suffices to do a backward BFS from t truncated at distance `− h.
The good neighbors are the ones in N(u) reached by this BFS and the certificate
for them is their path to t. By replacing B`(G) with t in the π1 generation, we
get also fast-forward which allows to skip unary chains in the recursion tree in
O(m) time: as before, in O(m) time we can scan the vertices w of the su-path
in C looking for arcs (w, z) with z at distance at most `− h from t.

Since both the trees generating π1 and π2 have no unary nodes and each
internal node costs O(m) time, we get a O(m) cost per solution. Concerning
space, we observe that certificates, as in Section 2, are updated not only while
going from a parent node to a child, but also while backtracking. For this reason,
the recursion stack for both π1 and π2 trees is just made by good neighbors lists
whose cardinalities sum up to O(m) since each vertex appears just once in each
root to leaf path.

As a result, we get the following, which holds also for undirected graphs by
simply replacing each edge with a pair of opposite arcs.

Theorem 4. Let G = (V,E) be a directed or undirected graph and ` ∈ N and
consider Problem 1.

– Given s, t ∈ V , there is an algorithm which lists all the st-paths of length at
most ` with O(m) time costs per solution (case k = 1).

– Given s ∈ V , there is an algorithm which lists all pairs of disjoint st-paths
of length at most ` for any t ∈ V with O(m) time costs per solution (case
k = 2).

Setup time and space usage are O(m) in both cases.

As a final remark, Theorem 4 also extends to the problem of listing all the
cycles with bounded length involving a given vertex.
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