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Full-length de novo viral quasispecies assembly

through variation graph construction

Jasmijn A. Baaijens∗, Bastiaan Van der Roest†, Johannes Köster‡§,
Leen Stougie∗¶, Alexander Schönhuth∗‖∗∗

Abstract

Motivation: Viruses populate their hosts as a viral quasispecies: a collection of genetically
related mutant strains.Viral quasispecies assembly refers to reconstructing the strain-specific
haplotypes from read data, and predicting their relative abundances within the mix of strains,
an important step for various treatment-related reasons. Reference-genome-independent (“de
novo”) approaches have yielded benefits over reference-guided approaches, because reference-
induced biases can become overwhelming when dealing with divergent strains. While being
very accurate, extant de novo methods only yield rather short contigs. It remains to reconstruct
full-length haplotypes together with their abundances from such contigs.

Method: We first construct a variation graph, a recently popular, suitable structure for
arranging and integrating several related genomes, from the short input contigs, without making
use of a reference genome. To obtain paths through the variation graph that reflect the original
haplotypes, we solve a minimization problem that yields a selection of maximal-length paths that
is optimal in terms of being compatible with the read coverages computed for the nodes of the
variation graph. We output the resulting selection of maximal length paths as the haplotypes,
together with their abundances.

Results: Benchmarking experiments on challenging simulated data sets show significant
improvements in assembly contiguity compared to the input contigs, while preserving low error
rates. As a consequence, our method outperforms all state-of-the-art viral quasispecies assem-
blers that aim at the construction of full-length haplotypes, in terms of various relevant assembly
measures. Our tool, Virus-VG, is publicly available at https://bitbucket.org/jbaaijens/

virus-vg.

1 Introduction

The ensemble of genetically related, but different mutant viral strains that populate infected
people are commonly referred to as viral quasispecies [7]. Each of these strains comes with
its own genomic sequence (henceforth referred to as haplotype). The final goal of primary vi-
ral quasispecies analysis is the reconstruction of the individual haplotypes—optimally at full
length—and also to provide estimates for their abundances, because they can vary among each
other. The unknown number of different, strain-specific haplotypes and their variance in abun-
dance establish the theoretical issues that characterize viral quasispecies assembly. They explain
why this form of assembly is difficult, despite the shortness of virus genomes. These issues are
further accentuated by the fact that neither next-generation nor third-generation sequencing
reads, by their combinations of error rates and length, allow for immediate reconstruction and
abundance estimation of haplotypes [4, 21].
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State-of-the-art approaches currently allow for two options: (i) full-length reconstruction of
haplotypes based on statistical, usually reference genome dependent measures, or (ii) de novo
reconstruction of (optimally haplotype-specific) contigs.

Approaches of type (i) assume that the sequencing reads are aligned to a reference genome
and make use of model-based clustering algorithms [28, ShoRAH], Dirichlet process mixture
models [18, PredictHaplo], hidden Markov models [25, QuasiRecomb], or sampling schemes [19,
QuRe], respectively. However, as was demonstrated in [1, 24], resorting to external auxiliary
means (such as reference genomes) can bias the reconstruction procedure significantly.

Approaches of type (ii) comprise generic (meta)genome assemblers as well as specialized
viral quasispecies assemblers, both of which are not helped by external measures (“de novo”)
hence are not affected by external biases. Metagenome assemblers are designed to reconstruct
multiple genomes simultaneously, but in viral quasispecies tend to collapse strains [21]. It was
further shown in [1] that among generic de novo assemblers SPAdes [2] was the only approach to
identify strain-specific sequences, however only in case of sufficiently abundant strains. De novo
viral quasispecies assemblers (e.g. [11, 27]) generally aim at constructing suitable consensus
reference genomes, which may serve as a template for more finegrained studies (for example if
curated reference genomes have become too divergent, which is a frequent scenario). To the
best of our knowledge, the only methods that truly aim at de novo viral quasispecies assembly
at strain resolution are SAVAGE [1] and MLEHaplo [14] (where the first was shown to have
significant advantages over the latter). However, the contigs, while strain-specific, in general do
not represent full-length haplotypes.

Here, we present Virus-VG, an algorithm that turns strain-specific contigs into full-length,
strain-specific haplotypes, thus completing the de novo viral quasispecies assembly task. The
contigs can be taken from [1, 14], the only available approaches that can deliver de novo strain-
specific contigs. For that, we construct a variation graph from the contigs, without the help of a
(curated) reference genome. We obtain full-length haplotypes as a selection of maximal-length
paths in the variation graph, each of which reflects a concatenation of subpaths associated with
the input contigs. The selected paths are optimal in terms of differences between their estimated
abundances and the read coverages computed for the nodes they traverse.

Variation graphs are data structures that have recently become very popular as reference
systems for (evolutionarily coherent) collections of genomes [16]. Using such genome structures
instead of standard linear reference genomes has been shown to reduce reference bias [6, 16] and
to come with a few other, significant advantages [15, 22]. Methods presented for constructing
variation graphs so far, however, require a linear reference genome as a point of departure. Here,
we point out how to construct variation graphs de novo, by making use of multiple alignment
techniques that provide graph-based representations of the (progressively constructed) multiple
alignments [12]. In this, we present an approach for full-length, high-quality reconstruction
of the haplotypes of a viral quasispecies that is entirely de novo, which, to the best of our
knowledge, is a novelty.

Our method depends on the enumeration of maximal-length paths in a variation graph,
whose number is exponential in the number of nodes of the graph. However, since all these
paths enumerated are to respect the subpaths associated with the input contigs, their number
will decrease on increasing contig length. Thanks to advances in sequencing technology, input
contig length will inevitably increase, which points out that our method, as per its design, has
a clear view towards future technological developments.

Benchmarking experiments demonstrate that Virus-VG yields substantial improvements over
the input contigs assembled with SAVAGE [1] in terms of spanning the full length of the haplo-
types. Thereby, the increase in length comes at negligible or even no losses in terms of sequential
accuracy. Further, we find our strain abundance estimates to be also highly accurate. Finally,
we find our method to (substantially) outperform alternative approaches, all of which are ref-
erence based—we recall that there are no alternative de novo approaches so far—both when
working with bootstrap and curated reference genomes.

Note on Related Work: RNA Transcript Assembly. The problem of RNA transcript assem-
bly has been cast in terms of variations of minimum path cover optimization problems that
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are—regarding a few relevant aspects—similar in spirit to the optimization problem we formu-
late [5, 17, 20, 23, 26]. Most importantly, in [20] node and edge abundance errors are introduced
and in [23] a minimum path cover with subpath contraints is shown to be polynomially solv-
able. However, to the best of our knowledge, no method employs both subpath constraints and
abundance error minimization in its problem formulation at the same time.

2 Methods

Notation. A variation graph (V,E, P ) is a directed graph, that is constructed from a set of
input sequences, which represent members of a (evolutionarily coherent) population of sequences.
Each node v ∈ V is assigned to a subsequence seq(v). An edge (u, v) ∈ E indicates that the
concatenation seq(u)seq(v) is part of one of the input sequences. P is a set of paths (a sequence
of nodes linked by edges) that represent genome-specific sequences; thereby, P can, but need
not, represent the input sequences themselves. A node v ∈ V with no incoming edges is called
source. A node v ∈ V with no outgoing edges is called sink. In the following, variation graphs
are assumed to be acyclic.

Workflow. Our method consists of two basic steps:
(1) The computation of a contig variation graph V G′ = (V ′, E′, P ′) where each path p ∈ P ′

represents an input contig. We refer to the path representing contig c as p(c). Together
with V G′, we compute a function a′ : V ′ → R where a′(v′) for v′ ∈ V ′ represents the
abundance of an individual node, measured by the amount of original reads (from which
the contigs were computed) that align to seq(v′).

(2) The transformation of V G′ into a genome variation graph V G = (V,E, P ) where each
path p ∈ P reflects a full-length haplotype. We also compute a function a : P → R where
a(p) for p ∈ P reflects the abundance of the haplotype represented by p. The set of paths
P together with their abundances a(p) establish the final output of our method.

The input for computation of V G′ in (1) are the contigs of a de novo viral quasispecies
assembly approach, for which there are two options [1, 14]. Here, we make use of contigs from
[1], which were shown to significantly outperform the contigs from [14]. For computation of
a′, we make use of the original reads from which the input contigs were computed; one can
determine the abundance a′(v′) of single node v′ ∈ V ′ as the (length normalized) count of reads
whose alignments touch upon v′.

The input for computation of V G and a in (2) are V G′ and a′. Note first that V ⊆ V ′ and
E ⊆ E′ such that we can apply a′ also to nodes in V G. The computation of V G is established as
the solution of an optimization problem that aims to determine full-length paths (paths formed
by a concatenation of contigs of maximal length) such that the difference of path abundances
a(p) and node abundances a′(v) for paths p of which v makes part of is minimal.

We will describe the construction of the contig variation graph (1) in full detail in Section 2.1.
The transformation into the (final) genome variation graph (2) is divided into two steps: (a)
the enumeration of candidate paths, which is described in Section 2.2.1, and (b) the solution
of an optimization problem that aims at selecting a subset of candidate paths through their
path abundance values which are optimal in terms of being compatible with node abundances
in section 2.2.2. The complete workflow is illustrated in Figure 1.

Implementation. Our approach, Virus-VG, is implemented in Python 3.5 and publicly avail-
able at https://bitbucket.org/jbaaijens/virus-vg.For solving the minimization problem
(see 2.2.2) we make use of the LP solver, implemented in Gurobi 7.0 [10].

2.1 Contig variation graph construction

Input. The input is a data set of next-generation sequencing reads and a set of contigs as-
sembled from these; here, we use the specialized de novo viral quasispecies tool SAVAGE [1].
We assume that there are no contigs which are an exact subsequence of another contig. The
contig variation graph with its node abundances is contructed in three steps.

3

.CC-BY-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/287177doi: bioRxiv preprint first posted online Mar. 23, 2018; 

https://bitbucket.org/jbaaijens/virus-vg
http://dx.doi.org/10.1101/287177
http://creativecommons.org/licenses/by-nd/4.0/


Figure 1: Virus-VG workflow.

Step 1: Multiple Sequence Alignment (MSA). We build a MSA of the contigs using
the progressive sequence alignment tool POA [12]. The MSA induces a coordinate system and
gives the exact placement of every contig with respect to this coordinate system. Note that
POA itself models the MSA as a graph in the following way. Initially, all contigs are split into
individual nodes, one node for every base, with edges between consecutive bases within a contig.
Along with the nodes, also the contigs that contributed to this node are stored. Then for every
alignment position, any pair of nodes which correspond to the same nucleotide are merged into
a single node. When merging nodes, the corresponding edges are updated accordingly, any
parallel edges are removed, and the contributing contig sets are merged. The resulting initial
contig variation graph is acyclic. Each node represents a single nucleotide, that is assigned to
one or more contigs. This step is illustrated in Figure 1, panel B to C.

Step 2: Compression and contig-path construction. We compress the initial contig
variation graph similar to the construction of a compressed de Bruijn graph [13]. The absence
of branches on a path ensures that every source-sink path has to traverse it at full length.
Therefore, each non-branching path (vi1 , . . . , vik) can be merged into a single node v′i, with
in-neighbors N−(v′i) = N−(vi1) and out-neighbors N+(v′i) = N+(vik). Also the contributing
contig sets of vi1 , . . . , vik are merged and stored in the new node v′i. Note that after this step,
nodes can represent a sequence instead of a single nucleotide.

In addition, we determine for each contig c the sub-path p(c) in this (compressed) graph
that represents c. Let p(c) = (vi1 , . . . , vik) be this sub-path. Note that due to the compression
step, the sequence seq(c) represented by a contig c might only be a subsequence of its path
sequence seq(vi1)...seq(vik). However, this does not bear any consequence on the definition of
any haplotype the contigs make part of.

The resulting compressed graph, together with the contig paths P ′ is our contig variation
graph V G′ = (V ′, E′, P ′), illustrated in Figure 1, panel D.

Step 3: Node abundance. We finally compute a′ : V ′ → R, which assigns node abundances
a′(v′) to nodes v′ ∈ V ′ of the contig variation graph. Thereby, a′(v′) reflects the average base
coverage of the piece of sequence seq(v′). For computation of a′(v′) we make use of the vg-
toolkit [8], which allows to align the original sequencing reads to our contig variation graph.
The abundance a′(v′) is calculated as the sum of all bases in all reads that align with seq(v′),
divided by the length of seq(v′).

2.2 From contig to genome variation graph

The input for the following procedure is the contig variation graph V G′ = (V ′, E′, P ′) together
with a′ : V ′ → R that we have just described. The procedure for constructing the genome
variation graph V G = (V,E, P ) from V G′ and a′ consists of three steps. First, we compute a
set of candidate paths, which are all maximal length paths in (V ′, E′) that are concatenations
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of paths from P ′. Second, we select a subset of candidate paths that are optimal with respect
to a minimization problem, which provides us with the final, maximal-length paths P and path
abundances a : P → R. Third, we remove nodes and edges from (V ′, E′) that are not traversed
by paths from P , which yields the final graph (V,E). Since only paths in P are supposed
to reflect true haplotypes, it is reasonable to assume that any node not being included in a
haplotype is a sequencing artifact. The third step is a straightforward procedure. We will
describe the first two steps in more detail in the following.

2.2.1 Candidate path generation.

The goal is to compute the set of all paths through (V ′, E′) that are maximal-length concate-
nations of paths from P ′.We will refer to these paths as candidate paths Pcand in the following.
Generating candidate paths proceeds in five steps outlined below.

Step 1: Trimming paths p ∈ P ′. Due to common issues in contig computation, any uncor-
rected sequencing errors are often located on the extremities of the contig. We therefore shorten
all paths p ∈ P ′ by their extremities and remove the tails if these contain nodes v′ for which
a′(v′) is below a given threshold. By default, we allow to trim paths p ∈ P ′ by a removal of
nodes that together amount to no more than τ = 10bp on either end.

Step 2: Enumerating path concatenations. We allow concatenating pairs of paths with
matching suffix-prefix pairs. In more detail, let p1, p2 ∈ P ′, represented by series of nodes
(u1, ..., um) and (v1, ..., vn) from V ′. Then p1 can be concatenated with p2, written p1 →c p2,
if for some l we have um−l+1 = v1, um−l+2 = v2, ..., um = vl, that is, the suffix of length l of p1
matches the prefix of length l of p2.

In order to enable correction of persisting sequencing errors, we further consider to concate-
nate pairs of paths p1, p2 which do have one or more non-matching nodes, but only under the
following condition. Let u∗ := um−l+i 6= vi =: v∗ be the respective non-matching nodes in
p1, p2 respectively, then only if min{a′(u∗), a′(v∗)} < α, where α is a user-defined threshold, we
concatenate p1 and p2. This threshold reflects the minimal node abundance a′(v) for which we
trust node v; for more details, see Appendix A.

Step 3: Removing concatenations lacking physical evidence. Subsequently, we remove
concatenations p1 →c p2 if there are q1, q2 such that q1 →c q2, q1 →c p2, q2 →c p2, but there is
no q3 for which p1 →c q3 and q3 →c p2 and there is q4 such that p1 →c q4. The situation reflects
that the concatenation of paths q1 →c p2 enjoys corroborating physical evidence, provided by
q2, while there is no such corroborating evidence for the concatenation p1 →c p2. At the same
time, p1 concatenates well with q4 such that the removal of p1 →c p2 does not turn p1 into a
dead end.

Step 4: Enumerating maximal length paths Pcand. We enumerate all feasible maximal
length paths through a breadth-first search type procedure. For this procedure, we maintain a
set of active paths Pact, which is the set of paths to be extended in the current iteration. We also
maintain a set of maximal paths Pmax that reflects the set of maximal length paths collected.
See Figure 1, panel E. Only concatenations listed in Step 2 and not removed by Step 3 are
considered.

1. Initialization: We determine all p ∈ P ′ for which there are no q →c p and put them both
into Pact and Pmax.

2. Iteration: We replace each p ∈ Pact with all q ∈ P ′, for which p →c q without q∗ such
that p→c q

∗ →c q. Simultaneously, we extend each p̂ ∈ Pmax that ends in p, by appending
the q (while respecting the overlap).

3. Output: If for all p ∈ Pact there are no q with p→c q, we output Pmax as our candidate
path set Pcand.

The enumeration algorithm lists all candidate paths in time linear in the output size, which,
however, may be exponential in the number of paths p ∈ P ′. Because the number of paths in
P ′ (i.e., the number of input contigs) decreases on increasing contig length, our method has a
clear view towards the future, because contig length will inevitably increase due to advances in
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sequencing technology.

Step 5: Correcting paths for errors. After enumerating all candidate paths, we apply
a final correction step to every such path. Note that, due to concatenating paths from P ′

where suffix-prefix pairs do not match in all nodes, we may have positions in candidate paths
where contig paths p ∈ P ′ make ambiguous statements. All such ambiguous positions refer
(by construction) to low abundance nodes v′ (that is a′(v′) < α. We resolve the ambiguity by
selecting the node v∗ from all contributing paths p ∈ P ′ with maximal abundance a′(v∗).

2.2.2 Minimization for haplotype selection and abundance estimation

Input. For this final part of the method, the input is the set of candidate haplotype paths
Pcand and the node abundances a′(v). In general this set of paths is much larger than the
actual number of haplotypes, so Pcand will contain many false haplotypes. Here we filter them
out by estimating the abundance a(p) for each path (haplotype) p ∈ Pcand through solving a
minimization problem. In a subsequent step, haplotype paths with an abundance of (almost)
zero will be removed as being most likely false haplotypes. This leaves the set of haplotypes to
be output.

Determining path abundances a(p). We determine path abundance values a(p) for every
p ∈ Pcand, such as to minimize node abundance errors. Let f(x, y) be an error function to
be chosen later. Then for node v the node abundance error is defined as the value of f(x, y)
with x the node abundance a′(v) and y the sum of the abundances of the haplotype paths going
through the node v, which is

∑
p3v a(p), in formal terms. Recall that the node abundance values

a′(v) are obtained from read alignments to the contig variation graph (Section 2.1, Step 3). The
objective then becomes minimizing the sum of the node abundance errors over all nodes v ∈ V ′:

min
∑
v∈V ′

f

(
a′(v),

∑
p3v

a(p)

)
.

We need to add non-negativity contraints a(p) ≥ 0 on the path abundances. Since we have
already taken all subpath constraints into account when enumerating the candidate haplotype
paths, the minimization problem does not need any further constraints.

Note that the effectiveness of this objective function depends heavily on the error function
used as well as the correctness of node abundances a′(v). These abundance values are not
exact measurements, but based on read alignments to the graph as described above; coverage
fluctuations can thus lead to under- or overestimated node abundance values. In this case, a
simple linear objective function is preferred over a quadratic error function, because the former
allows big errors in certain nodes to be compensated by small errors in other nodes. We also
observed that normalizing the errors w.r.t. the true node abundance does not improve results,
because this means that errors in nodes with low abundance values are penalized very strongly.
For this reason, we use the error function f(x, y) = |x−y| in our objective and the optimization
problem becomes

min
∑
v∈V ′

∣∣∣a′(v)−
∑
p3v

a(p)
∣∣∣ s.t. 0 ≤ a(p) ∀ p ∈ Pcand. (1)

This is a convex programming formulation, which can be linearized and solved using the LP
solver from the Gurobi Optimizer [10].

Output: haplotype selection and final abundances. The outcome of the minimization
problem (1), yields for each p ∈ Pcand an optimal abundance value a∗(p). We now select the set
of haplotype paths as output of the procedure, by removing any haplotypes with an estimated
abundance below a user defined threshold γ. I.e., as output we give the set P = {p ∈ Pcand |
a∗(p) ≥ γ} (Figure 1, panel F). After this haplotype selection step, we redo the optimization
step on the selected haplotype paths (prefixing a(p) to 0 for every path p with a∗(p) < γ), thus
ensuring that our final abundance estimates are as accurate as possible.
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# strains∗ target (%) N50 N-rate (%) MR(%) IR(%)

SAVAGE 26 99.4 8964 0 0.004 0
Virus-VG 10 99.9 9251 0 0.006 0
PredictHaplo-h-ref 9 90.0 9313 0.004 0.402 0.010
PredictHaplo-b-ref 9 73.8 7636 0.006 0.053 0
ShoRAH-b-ref 639 56.9 7570 0 4.381 0.011

(a) 10-strain HCV mixture (simulated MiSeq)

# strains∗ target (%) N50 N-rate (%) MR(%) IR(%)

SAVAGE 89 98.5 2954 0.002 0.021 0
Virus-VG 20 99.5 10202 0.002 0.067 0.001
PredictHaplo-h-ref 8 53.3 10258 0.032 0.147 0.046
PredictHaplo-b-ref 8 53.3 10270 0.001 0.121 0.004
ShoRAH-b-ref 493 26.3 10117 0.053 4.403 0.017

(b) 15-strain ZIKV mixture (simulated MiSeq)

Table 1: Assembly results per dataset. We evaluate the number of strains assembled,
the fraction of the target haplotypes reconstructed, the N50 measure, the fraction of
’N’s (uncalled bases), the mismatch rate (MR), and the indel rate (IR). The best score
per column is marked in bold. ∗For SAVAGE, this column indicates the number of
contigs in the assembly; since these are not full-length, this does not reflect the number
of strains.

Note on related work. The minimization problem we are treating here can be considered a
combination of problems presented in [20] and [23]. The combination of these problems would
require an unambiguous way to have subpath abundances contribute to cumulative abundances
on the nodes, which it is not immediately evident how to do so. In our setting it is straightforward
how path abundances a(p) contribute to the estimated abundances of the nodes on the paths.
Exploring these relationships is interesting future work.

3 Results

We present results for Virus-VG on two challenging simulated data sets and compare our method
with the viral quasispecies assemblers ShoRAH [28] and PredictHaplo [18], which are widely
approved and state-of-the-art in terms of full-length reconstruction of viral haplotypes. We use
QUAST [9] for evaluating our experiments. For parameters to be set, guidelines, their default
choices, and further reasoning, see Appendix A. For an analysis of runtime and memory usage
of Virus-VG, see Appendix B.

Data sets. For evaluating correctness of our algorithm and benchmarking experiments, we
selected the two most challenging simulated data sets presented in [1]. Both data sets represent
typical viral quasispecies ultra-deep sequencing data and consist of 2x250bp Illumina MiSeq
reads which were simulated using SimSeq (https://github.com/jstjohn/SimSeq).

10-strain HCV mixture. This is a mixture of 10 strains of Hepatitis C Virus (HCV), subtype
1a, with a total sequencing depth of approximately 20,000x (i.e. 400,000 reads). The haplotypes
were obtained from true HCV genomes in the NCBI nucleotide database and have a pairwise
divergence varying from 6% to 9%. Paired-end reads were simulated at relative frequencies
between 5% and 13% per haplotype, i.e., a sequencing depth of 1000x to 4600x per haplotype.

15-strain ZIKV mixture. This is a mixture of 15 strains of Zika Virus (ZIKV), consisting of
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Figure 2: Haplotype abundance estimation: true frequencies versus estimated frequen-
cies, evaluated per method, per dataset. The diagonal indicates the position of perfect
estimates, i.e., estimated value equal to true value. We only plot frequencies up to 0.3
to avoid shifting the majority of points to the lower left corner due to outliers.

3 master strains extracted from the NCBI nucleotide database and 4 mutants per master strain.
The pairwise divergence varies between 1% and 12% and the reads were simulated at relative
frequencies varying from 2% to 13.3%. The total sequencing depth for this data set is again
20,000x.

Improvements of final haplotypes over input contigs The first two rows of Table 1a,
SAVAGE and Virus-VG, display the statistics for the input contigs and the final, maximal-
length haplotypes computed here, respectively, for the HCV datasets. While SAVAGE presents
26 fragmented contigs, Virus-VG presents 10 full-length haplotypes, each of which represents
one of the original haplotypes, thereby encompassing the 10 original haplotypes that established
the basis for simulating reads. Further, Virus-VG covers 99.9% of the target genomes, an
improvement over the original 99.4% provided by the input contigs, which points out that
our approach can extend contigs correctly using other (partial) contigs, resulting in longer
haplotypes and a more complete assembly. The full-length haplotypes come at a negligible error
rate of 0.006%. In summary, our approach yields near-perfect results on this (supposed to be
challenging) dataset.

For the 15-strain ZIKV dataset (1b) we again achieve substantial improvements in terms
of haplotype assembly contiguity. We obtain 20 full-length haplotypes covering all 15 strains,
while the original input contig consisted of 89 highly fragmented, and relatively short contigs.
We observe a slight increase in mismatch rate after applying our method, which however leaves
with 0.067%, which is still extremely low. A thorough analysis turns up that this increase is
due to errors in the input contigs that become more expressed only after having assembled
the full-length haplotypes, so these errors are not primarily due to the method presented here.
Moreover, the full-length contiguity of the haplotypes clearly offsets the minute shift in accuracy.

Comparison with the state-of-the-art Rows 3-5 display results for state-of-the-art meth-
ods PredictHaplo [18] and ShoRAH [28]. All methods were run with default parameter settings.
Both of these methods are reference-guided, hence cannot immediately compared with ours,
which operates entirely de novo. We decided to run both [18] and [28] by providing them with
curated reference genomes (‘h-ref’), accession numbers NC 004102.1 (HCV) and NC 012532.1
(ZIKV), and also on bootstrap reference genomes, computed by running [27, VICUNA], a state-
of-the-art tool for generating consensus virus genomes, on the input reads (‘b-ref’). We also
tested alternative methods [14, MLEHaplo] and [3, QSdpR], but found them unsuitable for the
(not at all unusual) datasets considered here, or unable to complete their jobs within 72 hours.

We first evaluated both [18] and [28] on bootstrap reference (‘b-ref’), which simulates a de
novo type scenario also for those reference-guided approaches. In both cases, we found our
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method to have (quite significant) advantages, in terms of accuracy, number of strains, and
strain-specific genomes covered. As was already observed earlier [1], reference-guided methods
greatly depend on the quality of the reference genome provided. Considering that PredictHaplo
[18] had considerable advantages over ShoRAH when operating on bootstrap reference, we also
evaluated it on high-quality reference (‘h-ref’) [note that [28] crashed when running with high-
quality reference genomes]. However, even in this case, we still found our approach to have
significant advantages, again in all relevant terms, such as number of strains, target genome
coverage, and accuracy in terms of error rates.

Haplotype abundance estimation We also evaluated the accuracy of the abundance es-
timates obtained for each haplotype. The reconstructed sequences were aligned to the ground
truth sequences and assigned to the closest matching strain. For each ground truth strain, we
summed the abundance estimates of the sequences assigned to it, thus obtaining a total estimate
for this strain. Then we compared this estimate to the true strain abundance and computed
the absolute frequency estimation errors. For each data set, we present the average error over
all assembled strains. In case of any missing strains, the true frequencies were normalized first,
taking only the assembled sequences into account for a fair comparison.

Our method predicts highly accurate abundances for the reconstructed strains, with an
average absolute estimation error of 0.1% on the HCV data and 0.2% on the ZIKV data. Figure 2
shows the true haplotype frequencies versus the estimated frequencies per method. Note that
to improve readibility, outliers (frequency ¿0.3) are not shown in this figure. We observe that
Virus-VG outperforms the other methods in terms of frequency estimation, with estimates that
are closest to the true values. An immediate interpretation of these findings is that accuracy
in estimating abundance is inevitably linked with accuracy in haplotype reconstruction, which
may explain our overall advantages.

4 Discussion

We have presented an algorithm that turns viral strain-specific contigs, such as available from
[1], into full-length, viral strain-specific haplotypes, without the use of a reference genome at
any point. Therefore, we first construct a contig variation graph, which arranges haplotype-
specific contigs sampled from a viral quasispecies in a convenient and favorable manner. We
then enumerate all maximal length paths through this graph that maximally concatenate the
contig subpaths. Last, we solve a minimization problem that addresses to assign abundance
estimates to maximal length paths that are optimal in terms of being compatible with abun-
dances computed for the nodes in the graph. We finally output the optimal such paths selected
together with their abundances, by which, in summary, we have completed the de novo viral
quasispecies assembly task.

In benchmarking experiments, we have demonstrated that our method yields major improve-
ments over the input contigs in terms of assembly length, while preserving the accuracy in terms
of error rates. Compared to state-of-the-art viral quasispecies assemblers—all of which operate
in a reference genome dependent manner—our method produces haplotype-resolved assemblies
that are both more complete, in terms of haplotypes covered, and more accurate, in terms of
error rates. We believe that (a) this reflects the strength of a fully de novo approach, because
we avoid to deal with (as was shown sometimes overwhelming) reference-induced biases. We
also believe that (b) this is a result of directly integrating haplotype abundance estimation into
reconsruction of haplotypes.

Still, improvements are possible. In particular, we found our approach not suitable for
genomes that exhibit repetitive elements (such as for HIV, where 5’-LTR and 3’-LTR regions are
near-identical), because the repeats caused the construction of cyclic variation graphs, despite
that the input contigs [1] were not subject to repeat-induced disturbances. We will address the
construction of cycle-free variation graphs from virus genomes (first with limited repeat content,
such as in HIV) in future work.

Further, we had already alluded to that the number of candidate paths is exponential in the
number of input contigs, which could be overwhelming when dealing with highly fragmented
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assembly output. We will consider more efficient, alternative solutions, which are based on
additional optimization techniques (such as column generation) and/or assigning abundance
values to contigs—which is an involved issue—in future work. Note finally another time that
advances in sequencing technology will lead to increases in contig length, which in turn leads to
less fragmented assemblies.
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[20] R. Rizzi, A.I. Tomescu, and V. Mäkinen. On the complexity of minimum path cover with
subpath constraints for multi-assembly. BMC Bioinformatics, 15(9):S5, Sep 2014.

[21] R. Rose, B. Constantinides, A. Tapinos, and D. Robertson. Challenges in the analysis of
viral metagenomes. Virus Evolution, 2(2), 2016.

[22] Y. Rosen, J. Eizenga, and B. Paten. Modelling haplotypes with respect to reference cohort
variation graphs. Bioinformatics, 33(14):i118–i123, 2017.

[23] Alexandru I. Tomescu, Anna Kuosmanen, Romeo Rizzi, and Veli Mäkinen. A novel min-
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A Parameters

Our method requires to manually set three parameters, the minimal node abundance α, the
minimal haplotype abundance γ, and the maximal trim length τ . The minimal node abundance
α refers to removing mismatches when concatenating paths, see ’Correcting errors in paths
p ∈ P ′’ in Section 2.2.1. As a general guideline, increasing α leads to increasing numbers of
candidate paths, hence an increasing number of variables in the minimization problem. The
greater the number of variables, the greater the chance to pick up low abundance paths, while
at the same time the greater the risk to pick up haplotype artifacts.

The minimal haplotype abundance γ refers to selecting haplotypes after having solved the
minimization problem in Section 2.2.2. Any haplotype p ∈ P where a(p) < γ will be discarded
from the output.

The trim length τ refers to ‘Trimming paths p ∈ P ′’ in Section 2.2.1. Increasing τ leads to
less concatenations of paths from P ′, hence to less candidate paths in general, at the risk of not
concatenating correctly joining contigs.

We recommend setting α and γ to 0.5% and 1.0% of the total sequencing depth of the original
data set, respectively, and τ = 10. These default settings were chosen according to the quality
of the input contigs [1]. Given that the data sets considered here have a total sequencing depth
of 20,000x, all experiments were run with α = 100, γ = 200, τ = 10bp.

B Runtime and memory usage

Since our method takes as input a set of pre-assembled contigs, the most time-consuming and
memory-expensive step in viral quasispecies assembly has already been accomplished. By their
worst-case runtime complexity, both candidate path generation and minimizing for selecting
optimal sets of haplotypes minimization steps reflect exponential procedures. However, in prac-
tice, the runtime of the algorithm is hardly affected by these procedures, but clearly dominated
by the read mapping step for computing a′ : V ′ → R when constructing the contig variation
graph. This step took 4.2 CPU hours for the HCV data and 103 CPU hours for the ZIKV data,
with a peak memory usage of 0.85GB and 1.0GB, respectively. Given that the read mapping
step is perfectly parallelizable, these computations completed in less than five hours on a 24-core
machine. For a comparison with the other methods evaluated see Table 2.

HCV ZIKV

CPU time Peak memory CPU time Peak memory
(hours) usage (GB) (hours) usage (GB)

SAVAGE 55 0.8 61 0.8

Virus-VG 4.2 0.9 103 1.0

PredictHaplo 2.7 1.1 7.4 1.1

ShoRAH 509 8.9 814 10

Table 2: Runtime and -space comparison between Virus-VG, SAVAGE, and the state-
of-the-art. For reference-guided methods PredictHaplo and ShoRAH the values pre-
sented do not depend on the quality of the reference genome used.
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