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Abstract

We present an overview of diffusion models commonly used for quantifying the dynamics of intracellular
particles (e.g., biomolecules) inside living cells. It is established that inference on the modes of mobility of
molecules is central in cell biology since it reflects interactions between structures and determines functions
of biomolecules in the cell. In that context, Brownian motion is a key component in short distance trans-
portation (e.g., connectivity for signal transduction). Another dynamical process that have been heavily
studied in the past decade is the motor-mediated transport (e.g., dynein, kinesin, myosin) of molecules. Pri-
marily supported by actin filament and microtubule network, it ensures spatial organization and temporal
synchronization in the intracellular mechanisms and structures. Nevertheless, the complexity of internal
structures and molecular processes in the living cell influence the molecular dynamics and prevent the sys-
tematic application of pure Brownian or directed motion modeling. On the one hand, cytoskeleton density
will hinder the free displacement of the particle, a phenomenon called subdiffusion. On the other hand, the
cytoskeleton elasticity combined with thermal bending can contribute a phenomenon called superdiffusion.
This paper discusses the basics of diffusion modes observed in cells, by introducing the essential properties
of these processes. Applications of diffusion models include protein trafficking and transport, and membrane
diffusion.

Keywords: diffusion, Brownian motion, stochastic models, intracellular dynamics, microscopy.
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Figure 1: Representative trajectories from simulated data. The blue trajectory is Brownian; the purple
trajectory is from a Brownian motion with drift (67) and illustrates superdiffusion; the red trajectory is from
a fractional Brownian motion (22) (parameter h > 1/2) and illustrates superdiffusion; the cyan trajectory
is from an Ornstein-Uhlenbeck process (62) and illustrates confined diffusion; the green trajectory is from a
fractional Brownian motion (22) (h < 1/2) and illustrates anomalous diffusion.
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1 Introduction

As the interior of a living cell is a fluctuating environment, we model the trajectories of particles
with stochastic processes with continuous paths. Diffusions belong to this class of processes and can
model a large range of intracellular movements. They are widely used in the biophysical literature
[Qian et al., 1991, Saxton and Jacobson, 1997]. Biophysicians distinguish four main types of diffu-
sions, namely Brownian motion (also referred to as free diffusion), superdiffusion, confined diffusion
and anomalous diffusion. Trajectories illustrating these four types of diffusion are represented in
Figure 1. These different diffusions correspond to specific biological scenarios. A particle evolving
freely inside the cytosol or along the plasma membrane is modeled by free diffusion. Its motion is
due to the constant collisions with smaller particles animated by thermal fluctuations. Then, the
particle does not travel along any particular direction and can take a very long time to go to a
precise area in the cell. Active intracellular transport can overcome this difficulty so that motion is
faster and direct specific. The particles (called in this context cargo) are carried by molecular mo-
tors along microtubular filament networks. Superdiffusions model the motion of molecular motors
and their cargo.

Confined or restricted diffusion [Metzler and Klafter, 2000, Hoze and Holcman, 2017] is charac-
teristic of trapped particles: the particle encounters a binding site, then it pauses for a while before
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Figure 2: Classification of two-dimensional trajectories from the Rab11 protein sequence in a single cell
observed in TIRF microscopy (Courtesy of UMR 144 CNRS Institut Curie PICT IBiSA). We use the three-
decision test procedure developed in [Briane et al., 2018] at level α = 5%. The Brownian trajectories are in
blue, the subdiffusive trajectories in green and the superdiffusive trajectories in red.

dissociating and moving away. Anomalous diffusion includes particles which encounters dynamic or
fixed obstacles [Saxton, 1994, Berry and Chaté, 2014], or particles slowed by the contrary current
due to the viscoelastic properties of the cytoplasm. A classification of protein trajectories into the
three types of diffusion ((Brownian, superdiffusion, and subdiffusion) is shown in Figure 2. This
classification is obtained with our three-decision test procedure described in [Briane et al., 2018].

Mean Square Displacement

In biophysics, the different types of diffusions are characterized by the mean square displacement
(MSD) [Qian et al., 1991]. Given a particle trajectory (Xt)t>0, the MSD is defined as the function,

MSD(t) = E
(
‖Xt+t0 −Xt0‖

2
)
, (1)

where ‖·‖ is the euclidean norm and E is the expectation of the probability space. The MSD function
of Brownian motion is linear MSD(t) ∝ t), while the MSD function of subdiffusion (respectively
superdiffusion) grows slower (respectively faster) than the linear function.

This property makes the MSD a popular criterion to analyze intracellular motion as Brownian
motion is the process of reference. The typical MSD curves of the different diffusion models are
represented in Figure 3. In practical imaging, we observe the successive positions of a single particle
Xt0 , Xt1 , . . . , Xtn in the two or three dimensions at equidistant times, that is ti+1 − ti = ∆. The
MSD is estimated at lag j by:

M̂SD(j∆) =
1

n− j + 1

n−j∑
k=0

‖Xtk+j
−Xtk‖

2. (2)

Computing the estimator (2) at different lag j gives an estimation of the MSD function (1). Then
the simplest rule to classify a trajectory is based on a fit of the MSD function (1) to t → tβ .
[Feder et al., 1996] states that the trajectory is subdiffusive if β < 0.9, superdiffusive if β > 1.1 and
Brownian if 0.9 < β < 1.1. If β < 0.1 it states that the particle does not move, see Figure 4.
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Figure 3: Typical MSD curves of the different diffusion types.

In this paper, we compute the theoretical MSD (1) for each presented motion model and classify
it as Brownian, superdiffusion or subdiffusion accordingly. However, (and even if it is out of the
scope of this paper), we must emphasize that MSD has some limitations.

Limitations

First, the MSD function is a summary measure based on a second order moment and is not
sufficient to characterize the dynamics of the trajectory. Accordingly, several authors (e.g.
[Tejedor et al., 2010, Gal et al., 2013]) proposed other statistics which can be associated to MSD
for trajectory analysis. [Lund et al., 2014] propose a decision tree for selection motion model com-
bining MSD, Bayesian information criterion and the radius of gyration. [Lysy et al., 2016] present
a likelihood-based inference as an alternative to MSD for the comparison between two models of
subdiffusions: fractional Brownian motion and a generalized Langevin equation.

Secondly, the estimation of the MSD function (1) is tricky as the variance of estimator (2) in-
creases with the time lag. Figure 4 illustrates this problem in the case of Brownian trajectories.
It suggests that the classification of [Feder et al., 1996] based on parameter β overdetects subdiffu-
sion and superdiffusion while it is Brownian motion. Moreover the MSD variance is also severely
affected at short time lags by dynamic localization error and motion blur. [Michalet, 2010] details
an iterative method, known as the Optimal Least Square Fit (OLSF) for determining the optimal
number of points to obtain the best fit to MSD in the presence of localization uncertainty.

In order to take account of the variance of the MSD estimate, several authors use a set of inde-
pendent trajectories rather than single trajectories. These trajectories may have different lengths
but are assumed to have the same kind of motion. For instance, [Pisarev et al., 2015] consider
weighted-least-square estimate for β by estimating the variance of pathwise MSD. Their motion
model selection is then based on the modified Akaike’s information criterion. [Monnier et al., 2012]
propose a Bayesian approach to compute relative probabilities of an arbitrary set of motion models
(free, confined, anomalous or directed diffusion). In general, this averaging process can lead to
oversimplication and misleading conclusions about the biological process [Gal et al., 2013].
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Figure 4: A classification rule for motion modes from MSD. The dashdotted lines are the bound defined
by [Feder et al., 1996], t→ tβ , β = 0.9 and 1.1. The dashed lines are the pointwise high probability interval
of 95% associated to the empirical MSD curve for a standard Brownian motion trajectory of length n = 30.
The bounds of the interval are the 2.5% and 97.5% empirical quantile of (2) and are computed by Monte
Carlo simulation from 10 001 Brownian trajectories of size n = 30.

Paper organization

The remainder of the paper is organized as follows. In the next section, we present the probabilistic
tools in order to define diffusion processes. Such processes are of great importance for modeling
intracellular dynamics. To this end, we focus on d-dimensional processes with d = 2 or d = 3. In
Section 3, we present the three main types of diffusion studied in biophysics to model intracellular
motion, namely Brownian motion, subdiffusion and superdiffusion. We also described the different
biological scenarios associated to each mode of diffusion.

2 Stochastic Processes, Brownian motion, and Diffusions

It is worth noting that the biophysics literature uses the word diffusion in a very broad sense
[Meroz and Sokolov, 2015]. Here we introduce the probabilistic concept of diffusion presented
in [Karlin, 1981] and [Klebaner et al., 2012]. First, we define the notion of stochastic pro-
cesses. Then, we put an emphasis on Brownian motion, the cornerstone process which allows
to build all the diffusion processes. We describe diffusion processes driven by Brownian mo-
tion. Finally, we deal with an extension of Brownian motion, namely fractional Brownian mo-
tion [Mandelbrot and Van Ness, 1968]; we present quickly diffusion processes driven by fractional
Brownian motion.
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2.1 Stochastic Process

Let (Ω,F , P ) a probability space where Ω is the sample space, F a field and P a probability measure.
A d-dimensional stochastic process is a function:

I × Ω→ Rd

(t, ω) 7→ X(t, ω)
(3)

where I is a time interval. We note this application (Xt)t∈I or simply (Xt). We present briefly
stochastic processes from two angles.

Let t ∈ I, the application,

Ω→ Rd

ω 7→ X(t, ω)
(4)

is the random state of the process at time t. It is a random variable defined on (Ω,F , P ). Then, a
stochastic process can be seen as the collection of random variables {ω 7→ X(t, ω), t ∈ I}.

Let ω ∈ Ω, the application

I → Rd

t 7→ X(t, ω)
(5)

is called a trajectory or a path of the stochastic process (Xt)t∈I .
A stochastic process may be seen as an application from Ω to the set of functions from I = [0, T ]

to Rd. As previously mentioned, we consider only the stochastic processes whose trajectories are
continuous, that is for almost ω ∈ Ω t→ Xt(ω) is continuous.

Finite-Dimensional Distribution

A stochastic process may be seen as a random variable from (Ω,F , P ) to the measurable space,(
F([0, T ],Rd),⊗t∈[0,T ]Bd

)
,

where F([0, T ],Rd) is the set of functions from [0, T ] to Rd, Bd is the Borelian sigma-algebra and
⊗t∈[0,T ]Bd is the sigma-algebra generated by all the finite dimensional cylindrical sets of F([0, T ],Rd).
Then the stochastic process X induces a probability measure on

(
F([0, T ],Rd),⊗t∈[0,T ]Bd

)
which is

defined through the finite-dimensional distribution.
Now we define the concept of finite-dimensional distribution. Let J = {t0, t1, . . . , tn} such that

ti ∈ I and t0 < t1 <, . . . , < tn. We note,

XJ = (Xt0 , . . . , Xtn), (6)

the random vector whose components Xti ∈ Rd. The distribution µJ of XJ is the joint distribution:

µJ(A) = P (Xt0 ∈ A0, . . . , Xtn ∈ An), (7)

where Ai ∈ Rd and A = A0 × · · · ×An.
The finite-dimensional distributions of X is the family of distributions {µJ |Ja finite set of I}.

If the finite-dimensional distributions µJ satisfy a technical criterion called consistency then the
Kolmogorov extension theorem guarantees the existence of a stochastic process X with finite-
dimensional distributions µJ on (Ω,F , P ) [Gallardo, 2008][Chapter 1, Section 1.1].
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Filtered Probability Space

We state previously that a stochastic process can be seen as a collection of random variables defined
on (Ω,F , P ). More precisely the random variable (4) is defined on (Ω,Ft, P ) where Ft ⊂ F . This
reflects that the outcome of the random variable (4) depends on what happened before t, that is on
the historic of the process until time t.

Then we define the concept of filtration. A filtration F is a family (Ft) of increasing fields on
(Ω,F) that is Fs ⊂ Ft ⊂ F for s < t. F specifies how the information is revealed over time. The
property that a filtration is increasing corresponds to the fact the information is not forgotten.
Finally, a stochastic process X is called adapted to a filtration F if, for all t, the random variable
ω 7→ X(t, ω) is Ft-measurable.

2.2 Brownian Motion

The observation of the erratic motion of a pollen particle suspended in a fluid by the botanist R.
Brown in 1828 marks the first step in the development of the Brownian motion theory. In 1905,
Einstein argued that the movement of the particle is due to its bombardment by the particles of
the fluid; he obtained the equations of Brownian motion. The underlying probability theory was
derived by N. Wiener in 1923 that is why Brownian motion is also known as the Wiener process.
In this section, we define the one-dimensional Brownian motion and characterize it as a Gaussian
process. Then, we define the d−dimensional Brownian motion.

Definition

The one-dimensional Brownian motion (Bt) is a stochastic process with the following properties:

• (Bt) is a process with independents increments. For all t > s, Bt − Bs is independent of the
field Fs generated by the historic of the process (Bu)u∈[0,s] until the time s.

• For all t > s, Bt −Bs has normal distribution with mean 0 and variance t− s.

• The paths of (Bt) are almost surely continuous.

Gaussian Process

A Gaussian process is a process for which all the finite-dimensional distributions are multivariate
normal. We have the following theorem:

Theorem 2.1. A Brownian motion started at zeros is a Gaussian process with zero mean and co-
variance function min(t, s). Conversely, a Gaussian process with zero mean and covariance min(t, s)
is a Brownian motion.

Multivariate Brownian Motion

As we already stated, we are interested in modeling the trajectories of particle in dimension 2 and
3. We define the d-dimensional Brownian motion (d ≥ 1) as the random vector Bt = (B1

t , . . . , B
d
t )

where all coordinates Bi
t are independent one-dimensional Brownian motions.
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2.3 Diffusion Process

We present briefly the family of stochastic processes of interest in this paper, namely the diffusion
processes. First, we recall the Markov property which is a central notion for defining the diffusion
processes. Then, we give the definition of diffusions and some characterizations of theses processes.

Markov Property

The Markov property states that if we know the present state of the process, the future behavior
of the process is independent of its past. For instance, a simple model of weather forecast assumes
that the probability to have rain at day j given the information of the weather on the previous days
is the same as the probability to have rain at day j given the restricted information of the weather
at day j − 1. Let note (Xi) the process giving the weather at each day i and note k the modality
corresponding to rain. In this discrete set up, the Markov property can be written as:

P (Xj = k|Xj−1, . . . , X0) = P (Xj = k|Xj−1). (8)

As we work with stochastic processes defined continuously in time, the historic of the process given
by Xj−1, . . . , X0 in the discrete case is replaced by the field Ft at time t. Then, a d-dimensional
continuous stochastic process (Xt) is Markovian if:

P (Xt+s ∈ A|Ft) = P (Xt+s ∈ A|Xt), (9)

where A ∈ Rd. Then we have the following theorem:

Theorem 2.2. The Brownian motion (Bt) has the Markov property.

Remark 2.1. Another difference (apart from the conditioning) between Equations (8) and (9) is
the different nature of the events {Xj = k} and {Xt+s ∈ A}. It is due to the fact that in Equation
(8) the state space of the stochastic process (modality of weather) is countable while the state space
of the stochastic process is the whole space Rd (not countable) in (9) .

Diffusions

A diffusion process (Xt) is a continuous time process which possesses the Markov property and for
which the sample paths are continuous. Moreover, every diffusion process satisfies three key condi-
tions see [Karlin, 1981][Chapter 15, Section 1]. The first condition states that large displacements
of magintude exceeding ε > 0 are very unlikely over sufficiently small intervals,

lim
∆→0

1

∆
P (‖Xt+∆ −Xt‖ > ε|Xt = x) = 0, ∀ε > 0, ∀x ∈ Rd, (10)

where ‖·‖ denotes the Eucidean norm. In other words, condition (10) prevents the diffusion process
from having discontinuous jumps. The two last conditions characterize the mean and the variance
of the infinitesimal displacements and affirm the existence of the limits:

lim
∆→0

E(Xt+∆ −Xt|Xt = x) = µ(x, t), ∀x ∈ Rd, (11)

lim
∆→0

E((Xt+∆ −Xt)(Xt+∆ −Xt)
>|Xt = x) = σ2(x, t), ∀x ∈ Rd, (12)
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where > denotes the transpose operator; µ(x, t) : Rd × R+ → Rd is the drift parameter; σ2(x, t) :
Rd×R+ → Sd+ is the diffusion coefficient where Sd+ is the set of positive semi-definite matrix of size
d.

In particular, Brownian motion is a diffusion process: its drift is the null function, and its
diffusion coefficient is constant.

2.4 Stochastic Differential Equation (SDE)

The most common approach for defining diffusion processes is to see them as the solution of stochas-
tic differential equations.

Physical Model

Initially diffusion models were developed to describe the motion of a particle in a fluid submitted
to a deterministic force due to the fluid and a random force due to random collisions with others
particles. That is why we model efficiently the motion of intra-cellular particles with diffusion. Let
Xt ∈ Rd be the position of the particle at time t and (Bt) a d−dimensional Brownian motion;
assume that Xt = x. Then the displacement of the particle between t and t + ∆ is approximately
given by:

Xt+∆ − x ≈ µ(x, t)∆ + σ(x, t)(Bt+∆ −Bt). (13)

The component µ(x, t)∆ is the displacement due to the fluid where the velocity of the fluid is given
by the drift µ(x, t). The term σ(x, t)(Bt+∆ − Bt) expresses the random component of the motion
due to random collisions. More specifically the collisions increased with the temperature of the
fluid; the influence of temperature is modeled by the diffusion coefficient σ(x, t). We note that the
model (13) implies that, due to the normality of the Brownian increment, the displacement of the
particle Xt+∆ − x is approximated by a Gaussian random variable of mean µ(x, t)∆ depending on
the drift and of variance σ(x, t)

√
∆ depending on the diffusion coefficient.

Heuristically, a stochastic differential equation is obtained from Equation (13) by replacing ∆
by dt, (Bt+∆ −Bt) by dBt and Xt + ∆−Xt by dXt. Then we have the following definition:

Definition 2.1. Let (Bt) be a d−dimensional Brownian motion. Let µ : R+ × Rd → Rd and
σ(x, t) : R+ × Rd → Md be given functions (Md denoting the set of square matrix of size d). A
stochastic differential equation (SDE) is defined as:

dXt = µ(Xt, t)dt+ σ(Xt, t)dBt, (14)

where (Xt) is the unknown process. The function µ is referred to as the drift while the function σ
is called the diffusion coefficient.

Solution of SDE

There are two types of solutions respectively called strong and weak solutions. A strong solution is
a weak solution but the reverse is false.

Definition 2.2. Let Ft the field induced by the initial condition X0 and the Brownian motion (Bt)
which drives the stochastic differential (14). We say that Equation (14) has a strong solution (Xt)
on the probability space (Ω,F , P ) with respect to (Bt) and initial condition X0 if the stochastic
process Xt satisfies (14), has continuous paths and that Xt is Ft-measurable for all t.
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The fact that Xt is Ft-measurable is crucial. It means that Xt depends only on the historic
of the Brownian motion which drives the stochastic differential equation and the initial condition.
Then we can interpret Xt as an output of the system parametrized by µ(x, t) and σ(x, t) whose
input is the Brownian motion (Bt). It reflects the principle of causality of the system. If Xt could
depend on the future, that is on Bs with s > t, causality would fail.

The concept of strong solution relies on the fact that the Brownian motion is given. A weak
solution of a SDE consists in building at the same time a couple of processes (Xt, Bt) where (Xt) is
a solution of the SDE driven by the Brownian (Bt). We will not give the exact definition of weak
solution as it has technical points not of interest for the understanding of the concept.

Then the solution of the stochastic differential equation is written as:

Xt = X0 +

t∫
0

µ(Xs, s)ds+

t∫
0

σ(Xs, s)dBs. (15)

We note that the fact that the two integrals are defined is equivalent to the fact that Xt is (strong or
weak) solution. In particular the integral with integrand dBt is a random variable Ft-measurable.
Details of the construction of such integrals is given in [Klebaner et al., 2012][Chapter 4].

2.5 Fractional Brownian Motion

Fractional Brownian motion (fBm) was introduced to model scale-invariant phenomenons pro-
cesses showing long-range dependence. [Kolmogorov, 1941] developed a turbulence theory based
on two hypotheses of scale invariance. In his study of long-term storage capacity and de-
sign of reservoirs, [Hurst, 1951] observed hydrological events invariant to changes in scale.
[Mandelbrot and Van Ness, 1968] defined the fractional Brownian motion of exponent has a "mov-
ing average of dB(t), in which past increments of B(t) are weighted by the kernel (t− s)2h−1." This
kernel is at the origin of the long range dependence property (for a certain choice of parameter h).
The parameter h is known as the Hurst index or Hurst parameter. In this section, we define frac-
tional Brownian motion and give its main properties. Fractional Brownian motion is then defined
in dimension d.

Self-Similarity and Fractional Brownian Motion

A real-valued stochastic process (Xt) is self-similar with index h > 0 (h − ss) if, for any a > 0
the processes (Xat) and (ahXt) have the same finite dimensional distributions. Then, a Gaussian
h− ss process (Bh

t ) with stationary increments and Hurst index 0 < h < 1 is a fractional Brownian
motion.

Now we give some properties of the fBm. First, the fBm has continuous paths. We have
E(Bh

t ) = 0 for all t. It is said to be standard if the variance of Bh
1 is equal to one. For the standard

fBm we have:
Cov(Bh

t , B
h
s ) =

1

2
(|t|2h + |s|2h − |t− s|2h) (16)

Then we can show that a fBm with h = 1/2 is simply a (one-dimensional) Brownian motion.

10



Long Range Dependence

A stationary time series (Xn)n∈N exhibits long-range dependence if Cov(Xn, X0) → 0 as n → ∞
but,

∞∑
n=0

|Cov(Xn, X0)| =∞. (17)

In other words the covariance between X0 and Xn tends to 0 but so slowly that their sum diverges.
Then, we define the stationary process known as fractional Gaussian noise:

Xk = Bh
k+1 −B

h
k, k ∈ N, (18)

where (Bh
t ) is a standard fBm of Hurst index h. Due to the properties of fBm the fractional Gaussian

noise (Xn) is a stationary centered Gaussian process with auto-covariance function:

γ(k) = E(Xi+kXi) =
1

2
(|k + 1|2h + |k − 1|2h − 2|k|2h). (19)

Then for k 6= 0 we can show that γ(k) = 0 if h = 1/2, γ(k) < 0 if 0 < h < 1/2 and γ(k) > 0 if
1/2 < h < 1. Now, for h = 1/2 we have:

γ(k) = h(2h− 1)|k|2h−1 + o(1), (20)

where o(1) → 0 as k → ∞. Consequently γ(k) → 0 as k → ∞ for 0 < h < 1. From Equation (20)
we deduce:

∞∑
k=0

γ(k) =∞, 1/2 < h < 1,

∞∑
k=0

γ(k) <∞, 0 < h < 1/2.

Consequently, if 1/2 < h < 1, fractional Gaussian noise (hence fBm) (Xn) exhibits long range
dependence.

Stochastic Integration and Fractional Brownian Motion

As stated in the introduction, [Mandelbrot and Van Ness, 1968] define the fBm as a moving average
of dBt. [Decreusefond et al., 1999] shows that fBm can be written as the following stochastic integral
driven by Brownian motion:

Bh
t =

t∫
0

Kh(t, s)dBs, (21)

where the properties and analytical form of function Kh(t, s) (called kernel) are given in
[Decreusefond et al., 1999].
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Multivariate Fractional Brownian Motion

[Coutin and Qian, 2002] give the following definition of a d−dimensional fractional Brownian
motion:

Definition 2.3. A fractional Brownian motion in dimension d > 1 is the random vector Bh
t =

(Bh,1
t , . . . , Bh,d

t ) where all coordinates Bh,i
t are independent one-dimensional fractional Brownian

motions of Hurst parameter 0 < h < 1.
Again a d−dimensional fBm reduces to a d−dimensional Brownian motion in the case h = 1/2.

SDE Driven by Fractional Brownian Motion

We can extent the stochastic differential equation (14) to define a (d− dimensional) stochastic
differential driven by a (d−dimensional) fBm of Hurst index 0 < h < 1:

dXt = µ(Xt, t)dt+ σ(Xt, t)dB
h
t . (22)

The same concepts of strong and weak solutions hold for the SDE (22). The SDE driven by Brownian
motion (14) is of the form of the SDE (22) with h = 1/2.

In the remainder of this paper, we will call diffusion any processes solution of (22). We
note that it does not match with the definition of [Karlin, 1981, Chapter 15, Section 1]
given in Section 2.3, as the Markov property no longer holds due to the correlations
between the fBm increments.

2.6 Summary

In this section, we presented Brownian motion from a probabilistic perspective. This process is
of paramount importance in mathematics, physics and biophysics. We also presented diffusion as
solutions of a stochastic differential equation (SDE) and introduced the fractional Brownian motion
(fBm) which generalized Brownian motion adding correlations between its increments.

In the next section, we give the physical derivation of Brownian motion. We will also describe the
motion models used in biophysics for describing intracellular dynamics, with a particular emphasis
on the diffusion models defined in this section.

3 Diffusion for Modeling Intracellular Trajectories

First, we present the physical models underlying Brownian motion. More specifically, we introduce
the theory of [Einstein, 1905] and the Langevin approach. Then, we present subdiffusion processes
which is often split in two parts: anomalous and confined diffusion. Finally, we deal with superdif-
fusion. Also, we compute the MSD for each presented model as it is the criterion to classify the
motion model as free diffusion, subdiffusion or superdiffusion. We note that we also exhibit motion
models which are not diffusion in the sense of Section 2, in particular in the case of subdiffusions.

3.1 Einstein’s Approach

In this section, we present the approach of [Einstein, 1905] introduced for modeling the motion of
"small suspended particles" in a liquid. We develop the concept of Brownian motion in the exact
same way as [Einstein, 1905]. First we depict the related physical experiment. Secondly, we show
that the concentration of suspended particles is governed by a diffusion in the sense of Fick. Finally,
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the motion of individual suspended particles is modeled by a process corresponding to Brownian
motion.

Physical Context

Einstein considers a particular physical situation. In first place, he assumes that z moles of a
chemical specie is dissolved in a liquid of volume V . He also supposes that the solute is confined in
a volume V ? separated from the pure solvent by a wall that is permeable to the solvent but not to
the solute. In this situation, the solute produces a pressure on the wall called the osmotic pressure.
Provided z/V ? is small enough, that is the solute concentration is low, we have:

pV ? = RTz, (23)

where p is the osmotic pressure, R is the gas constant and T is the temperature. Secondly, instead
of the solute, Einstein considers suspended particles. Now the wall is permeable to the solvent but
not to the particles. In this case, the theory of thermodynamics do not expect that the suspended
particles will produce an osmotic pressure on the wall. However, according to the molecular-kinetic
of heat, the only difference between a dissolved molecule and a suspended body is their size. Then,
Einstein points out that both the dissolved molecules and the suspended particles should produce the
same osmotic pressure as long as their number is equal. Then he assumes that "the suspended bodies
perform an irregular, albeit very slow, motion in the liquid due to the liquids molecular motion".
This motion –we will see later that it corresponds to Brownian motion– is at the origin of the
osmotic pressure. In fact, when the moving particles bounce on the wall, they exert a pressure as
in the case of the solute. Then, we can derive a similar equation as (23):

pV ? = RT
n

N
, (24)

where n is the number of suspended particles and N the Avogadro number. Then n/N is the number
of moles of the suspended particles.

In the sequel, for sake of simplicity, [Einstein, 1905] derives his theory in one dimension. In
other words, the motion of the particles is along the x-axis and consequently we are only interested
in the x-component of the forces applied on the particles.

Fick’s Diffusion

In this paragraph, we are interested in the evolution of the concentration in space and time ν(x, t) =
n(x, t)/dx where n(x, t) in the number of suspended particles at time t in the small volume dx.
[Einstein, 1905] assumes that a force K, depending on the position but not on the time, acts on
each particle.

First, at the equilibrium we have:

Kν − ∂p

∂x
= 0, (25)

that is the force K and the force induced by the pressure p compensate each other. Using the
definition of ν and Equation (24), we can rewrite Equation (25) as:

Kν − RT

N

∂ν

∂x
= 0. (26)

On the other hand, the concentration ν is governed by a diffusion in the sense of [Fick, 1855].
In this case, diffusion refers to the evolution of a macroscopic quantity as the heat in a metal or the
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concentration of a chemical specie in a liquid. It is characterized by the two laws of [Fick, 1855].
Once combined, they give the diffusion equation which is written in our case as:

∂ν

∂t
= D

∂2ν

∂2x
, (27)

where D is the diffusion coefficient characterizing the diffusion.
Now, to fully determined the diffusion of ν we need to derive D as a function of the parameters

of the problem. To this end, we use the first law of [Fick, 1855] stating that "the diffusion flux be-
tween two points of different concentrations in the fluid is proportional to the concentration gradient
between these points". In our case it can be written as:

J = −D∂ν
∂x
, (28)

where J is the diffusion flux and D is the diffusion coefficient characterizing the diffusion. Now
we must derive the diffusion flux J that is the number of particles going through an area of unit
one per unit of time. [Einstein, 1905] assumes that the suspended particles are spheric of radius a.
Additionally, if the liquid has coefficient of viscosity k, then the force K gives to each particle the
velocity,

νK

6πka
. (29)

Consequently the diffusion flux is:

J =
νK

6πka
. (30)

In fact, a dimension analysis reveals that the inverse of a volume (ν = n/V ?) multiplied by a velocity
(Equation (29)) defines a flux.

Finally, the first law of [Fick, 1855] gives:

νK

6πka
= −D∂ν

∂x
. (31)

From Equations (26) and (31), the Fick’s diffusion governing ν has for diffusion coefficient:

D =
RT

N6πka
. (32)

Brownian Motion

Finally, [Einstein, 1905] models the "disordered motions" due to thermal molecular agitation of
the n suspended particles. More importantly, Einstein links these individual motions to the Fick’s
diffusion examined in the previous paragraph. He assumes that the motions of individual particles
are independent from each other. Moreover, he assumes that the displacements of a same particle
on consecutive time intervals are independent as long as these time intervals are not too small.
Then, in the following, we denote ∆ the length of the time interval which is small compared to the
observable time intervals but still satisfy the independence property of displacements. We recall that
the displacements occur along the x-axis only. We denote ∆x the displacement occurring during
the period ∆. [Einstein, 1905] assumes that ∆x is a random variable whose distribution function
φ is symmetric. Then, the probability that a particle experiences a displacement lying between u
and u+ du is φ(u)du. The average number of particles experiencing such a displacement during a
period ∆ is:

dn = nφ(u)du. (33)
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Figure 5: Scheme illustrating the transfer of particles from x − ∆x to x between the times t and t + ∆.
There are ν(x−∆x, t)dx particles in [x−∆x, x−∆x+dx] at time t. Among them a proportion of φ(∆x)d∆x

jump to [x, x+ dx] between t and t+ ∆. Integrating over all the displacements ∆x, we obtain ν(x, t+ ∆)dx
particles at time t in [x, x+ dx].

Now, we can deduce the number of particles ν(x, t+ ∆)dx from the the numbers of particles at
time t and φ. In Figure 5, we show how the particles go from x−∆x at time t to x at time t+ ∆
using Equation (33). Integrating over all the possible displacements we get:

ν(x, t+ ∆)dx = dx.

∫
R
ν(x−∆x, t)φ(∆x)d∆x. (34)

As ∆ is small we can expand ν(x, t+ ∆) as:

ν(x, t+ ∆) = ν(x, t) + ∆
∂ν(x, t)

∂t
.

We also expand the left side of Equation (34) in Taylor series:∫
R
ν(x−∆x, t)φ(∆x)d∆x = ν(x, t)× 1 +

∂ν(x, t)

∂x
× 0 +

∂2ν(x, t)

∂2x

∫
R

∆2
x

2
φ(∆x)d∆x,

where we use that
∫
φ(u)du = 1 as φ is a distribution function and

∫
uφ(u)du = 0 as φ is symmetric.

We can equalize the right side of the two previous equations according to the equality given in
Equation (34). Then, we deduce that ν respects the diffusion equation (27) predicted by the theory
of [Fick, 1855] with diffusion coefficient given by:

D =
1

∆

∫
R

∆2
x

2
φ(∆x)d∆x. (35)

Therefore with a specific definition of the individual motion of n independent particles,
[Einstein, 1905] shows that the concentration of such particles follows the Fick’s equation.

At this step [Einstein, 1905] only assumed that the displacement of each particle over consecutive
time intervals –for intervals not too small– are independent random variables from a symmetric
distribution φ. Consequently, the particle motion fulfils the independence property of the Brownian
increment, see Subsection 2.2. For the moment, we can not see why the displacement of the particles
should be Gaussian as for Brownian particle. This link can be made by solving the diffusion equation
(27).

We need additional conditions to solve Equation (27). Until this point, we have used the same
coordinate system for all the particles. As there are independent of each other, we can define one
coordinate system for each particle. [Einstein, 1905] states that the center of gravity of each particle
at time t = 0 is the origin of their coordinate system. Then ν(x, t)dx now denotes the number of
particles whose displacements between the times 0 and t is comprised between x and x + dx. In
other words, x denotes the displacement and not the absolute position in a common coordinate
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system any more. Function ν still verify Equation (27) under this new scheme. Now we have the
straightforward conditions:

ν(x, 0) = 0, ∀x 6= 0∫
R
ν(x, 0)dx = n,

(36)

Finally the solution of the diffusion equation (27) with conditions (36) is:

ν(x, t) = n
e

−x2

4Dt

√
4πDt

, (37)

with x interpreted as a displacement as we have just said. With this meaning of x,
e−x

2/(4Dt)/
√

4πDtdx is the probability that the displacement of a single particle lies in [x, x+ dx].
Therefore, the particle displacement is Gaussian. We also know that the displacements over con-
secutive time intervals are independent. Then the motion of the suspended particles defined by
[Einstein, 1905] correspond to the Brownian motion defined in Subsection 2.2. Therefore the phys-
ical derivation of Brownian motion by [Einstein, 1905] is equivalent to the so-called Wiener process
in mathematics. Due to the physical constraints, the diffusion coefficient D has a particular value
given by Equation (32).

We can extend this theory to the d-dimensional case (d = 2, 3). In this context, each component
follows a one-dimensional Brownian motion and the components are independent from each other.
Not surprisingly, it corresponds to the Definition 2.3 of multi-dimensional Brownian motion.

Remark 3.1. We note that, in this paper, in case of the one-dimensional Brownian motion (Bt)
the diffusion coefficient σ is defined as σ = Var(B1). Then we have the relationship σ = 2D.
Remark 3.2. From Equation (33) and (37) and the definition of φ we deduce that φ(x) =
e−x

2/(4D∆)/
√

4πD∆. It is coherent with the equality (35).

3.2 Langevin’s Approach

Physicists define the motion of suspended particles in another way using the approach of
[Langevin, 1908] (see [Kou, 2008] and [Schuss, 2009][Chapter 1]). This motion is sometimes re-
fer to as Brownian motion which can be confusing. In this subsection, we present this alternative
approach. First, we introduce the underlying physical model and the corresponding hypotheses
about the particle motion. Secondly, we show that, in this case, the particle movement is governed
by a well known stochastic differential equation. Thirdly, we explain why the particle motion de-
fined by [Einstein, 1905] and by [Langevin, 1908] are mixed up. Finally, we explain which concept
of Brownian motion we will use in the paper. In this subsection, we derive the model directly in
dimension d.

Langevin Equation

[Langevin, 1908] characterizes the particle motion through the d−dimensional (Langevin) equation:

m
dv(t)

dt
= −ζv(t) + L(t), (38)
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where v : R+ 7→ Rd is the velocity of the particle, m its mass, ζ > 0 the friction coefficient and
L : R+ 7→ Rd a random force resulting from the collisions with the surrounding particles. In case of
spherical particles of radius a immersed in a liquid of viscosity coefficient k, the friction coefficient
is ζ = 6πka where k is the viscosity coefficient of the surrounding liquid.

[Uhlenbeck and Ornstein, 1930] constrained L(t) with two additional assumptions. First, the
mean of L(t) over a large number of independent colliding particles is 0, that is E(L(t)) = 0d, where
0d is the null vector of Rd. In their physical model, [Uhlenbeck and Ornstein, 1930] also assume
that the colliding particles are similar to the particle of interest and have same initial speed v0.
Secondly, the autocorrelation function is given by:

E(L(t)L(s)T ) = σδ(t− s)Id, (39)

where σ > 0 is a constant, δ is the Kronecker function and Id the identity matrix of size d. The
idea is that each collision is practically instantaneous and that successive collisions are uncorrelated.
Actually, [Uhlenbeck and Ornstein, 1930] originally model the autocorrelation function as a function
of t− s with a sharp peak of width equal to the duration of a single collision. The autocorrelation
(39) is preferred nowadays [Van Kampen, 1992][chapter 9]. Such a force L(t) is called a Langevin
force.

Ornstein-Uhlenbeck Process

We did not fully define the stochastic process L(t) as we provide only information on its first and
second moment. Such a process is known as white noise in statistics. If we further assume that
L(t) is Gaussian, we entirely define this process as a Gaussian process is determined by its first two
moments. Then, L(t) is called a Gaussian white noise. As explained in [Karlin, 1981][Chapter 15,
Subsection 14], the Gaussian white noise L(t) can be informally defined as the derivative of the
Wiener process –equivalently the mathematical Brownian motion defined in Subsection 2.2 – L(t) =
σdBt/dt. We use the word informally as in fact the Wiener process is nowhere differentiable. Finally,
we can rewrite the Langevin equation (38) as the d−dimensional stochastic differential equation:

mdv(t) = −ζv(t)dt+ σdBt. (40)

The solution of the stochastic equation (40) is known as the Ornstein-Uhlenbeck process. It is a
Gaussian process with:

E(v(t)) = 0d, (41)

E(v(t)v(s)T ) =
σ2

2ζm
e−(ζ/m)|t−s|Id. (42)

[Waterston and Rayleigh, 1892] states that, at the equilibrium (that is as t→∞), the mean square
velocity verifies:

lim
t→∞

E(‖v(t)‖22) = d
kBT

m
, (43)

where kB is the Boltzmann constant and T is the temperature. Each component of the velocity
vector has the same variance, so that:

lim
t→∞

E(vi(t)
2) =

kBT

m
, i = 1, . . . , d. (44)
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Then, equalizing the variances of vi(t) obtained with Equation (42) with t = s and obtained with
Equation (44), we have the relationship:

σ =
√

2ζkBT . (45)

Finally, the Brownian motion of [Langevin, 1908] is defined as:

Xt =

t∫
0

v(s)ds (46)

where v(t) is the Ornstein-Uhlenbeck process solution of the SDE (40). Due to the Gaussian nature
of v(t), (Xt) is also a Gaussian process.

Mean Square Displacement

One reason explaining the confusion between the particle motion respectively defined by
[Einstein, 1905] and [Langevin, 1908] is that they both exhibit a linear mean square displacement
asymptotically. In the case of the d-dimensional Brownian motion of [Einstein, 1905], we can easily
show that the mean square displacement is:

E(‖Xt −X0‖2) = d2Dt

= d
2RT

N6πka
t

= d
2kBT

ζ
t,

(47)

where kB = R/N is the Boltzmann constant and ζ = 6πka is the friction coefficient.
In the case of the motion defined by [Langevin, 1908] (assuming X0 = 0 for simplicity) we have:

E(‖‖Xt −X0‖‖2) =

d∑
i=1

E

 t∫
0

t∫
0

vi(s)vi(u)dsdu


= d

t∫
0

t∫
0

E(v1(s)v1(u))dsdu

= d
2kBT

ζ

(
t− m

ζ
(1− e−(ζ/m)t)

)
= d

2kBT

ζ
t+ o(t)

(48)

where o(t)→ 0 as t→∞.

Choice of the Definition of Brownian Motion

Each approach relies on different physical models. We emphasize that the Brownian motion of
[Einstein, 1905] (corresponding to the Wiener process) is nowhere differentiable and then has a rough
(but still continuous) path. On the other hand, the particle motion defined by [Langevin, 1908] is
differentiable due to its definition as the integration of the Ornstein-Uhlenbeck process (Equation
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(46)). Then its path is smooth. [Bressloff, 2014] argues that both processes can be used to model
intracellular dynamics in the case where the particle evolves freely inside the cytosol or along the
plasma membrane.

In what follows, Brownian motion will refer to the motion defined by [Einstein, 1905]. It corre-
sponds to the mathematical Brownian motion defined in Subsection 2.2 called also Wiener process
in the mathematical literature.

3.3 Subdiffusion

Subdiffusion, which includes confined diffusion and anomalous diffusion, are the translations of
several biological scenarios. In this subsection, we present models associated to these two types of
diffusion. We note that certain models are called diffusion while there are not solutions of SDE.

Anomalous Diffusion

In biophysics, [Saxton and Jacobson, 1997, Meroz and Sokolov, 2015], an anomalous diffusion (Xt)
is characterized by a MSD which is proportional to the monome tβ,

E(‖Xt −X0‖2) ∝ tβ, (49)

with β < 1. The first two presented models are solutions of a SDE driven by fBm (22) (the first
being simply fBm). Then we present other type of processes used in biophysics.

Fractional Brownian motion As a particle moves through the cytoplasm, the latter pushes it
back, due to macromolecular crowding and the presence of elastic elements generating correlations
in the particles trajectory [Jeon et al., 2011]. A fBm with Hurst index 0 < h < 1/2 is a good
candidate to model this situation. First, it is straightforward to show that its MSD is given by
(49) with β = 2h < 1 (see Equation (16)). Secondly, we saw in Subsection 2.5 that fBm has its
increments negatively correlated when 0 < h < 1/2. As an example, [Weber et al., 2010] study
the mechanisms underlying subdiffusive motion in live Escherichia coli cells thanks to fluorescently
labeled chromosomal loci and RNA-protein particles. They conclude that the observed motion was
well modeled by fBm.

Generalized Langevin equation (GLE) As we have just explained, particles can be slowed by
the contrary current due to the viscoelastic properties of the cytoplasm. This time we are interested
in long-time correlations (and not just correlations) in diffusive motion. Then, [Kou, 2008] models
such phenomenon with a stochastic differential equations driven by the fBm with Hurst index
1/2 < h < 1; in fact we saw in Subsection 2.5 that in this case fBm exhibits long range dependence.
Then, [Zwanzig, 2001] and [Chandler, 1987] proposed the generalized Langevin equation (GLE):

m
dv(t)

dt
= −ζ

t∫
−∞

v(u)K(t− u)du+G(t), (50)

where, in comparison with the Langevin equation (38), G(t) is a noise having memory replacing
the memoryless white noise L(t); the velocity is convolved with a kernel K. These two features
make the solution of the Equation (50) a non-Markovian process. We note that both K and G must
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appear in the equation in order to fulfill a physical constraint comparable to Equation (43) (also
called fluctuation-dissipation principle in [Chandler, 1987]):

E(G(t)G(s)T ) = 2ζkBTK(t− s)Id. (51)

Not surprisingly, we observe that if we choose K = δ –the Dirac function– we find that the GLE
(50) is equivalent to the Langevin equation (38) and the condition on the second moment (51) is
equivalent to the condition (39). [Kou, 2008] chooses to define G(t) as fractional Gaussian noise
(18) with Hurst index 1/2 < h < 1 for exhibiting long range dependence. From condition (51), they
deduce the kernel K (noted now Kh):

Kh(t) = 2h(2h− 1)|t|2h−2. (52)

Then the related stochastic differential equation is:

mdv(t) = −ζ

 t∫
−∞

v(u)K(t− u)du

 dt+ σdBh
t , (53)

where σ = 2ζkBT and (Bh
t ) is a fBm with 1/2 < h < 1. Finally, [Kou, 2008] shows that the

integrated process Xt =
∫
v(u)du verifies as t→∞:

E(‖Xt −X0‖2) ∝ t2−2h, (54)

It fulfils the MSD condition (49) asymptotically with β = 2− 2h < 1 for 1/2 < h < 1.

Remark 3.3. [Kou, 2008] studies only one-dimensional process. Here, we explain how we can ex-
tend the models of [Kou, 2008] in higher dimensions. It is quite natural to define physical Brownian
motion in higher dimensions as a stack of one-dimensional physical Brownian motion. It is what we
implied writing Equation (42) with Id. In fact, in this case, the Langevin force L(t) is modeled as a
white noise and the component of d−dimensional white noise are independent. However, when we
use the GLE (50), we can wonder if the components of the noise G are necessarily independent. For
instance, we could create some correlations through the kernel K. Here, for simplicity, we considered
that all the components were independent and shared the same (one-dimensional) kernel.

Continuous time random walk (CTRW) Intracellular particles can also bind to molecular
complexes. Then, the particle motion is a permanent switch between binding events and movement
toward another spot where it can bind again. [Scher and Montroll, 1975] introduce the continuous
time random walk (CTRW) to model anomalous transport properties of charge carriers in amorphous
materials. In their framework, the electron dynamics are successively trapped in different energy
wells; the total time spent in the trapped states is much larger than the time spent in free motion.
In this model, a particle performs random jumps whose step length is generated by a probability
density with finite second moments. The waiting times between jumps are assumed to be distributed
according to a probability distribution ψ(t). If ψ(t) has a finite first moment that is

∫
tψ(t)dt <∞

then the mean square displacement of the CTRW is linear in time. For instance, we can use the
exponential distribution:

ψ(t) = (1/τ)e−t/τ , t > 0, (55)
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Figure 6: Percolation clusters on a square lattice for different values of p. We use a 20 × 20 lattice. From
left to right percolation clusters obtained with p = 0.20, 0.59, 0.80 (the middle image correspond to the case
p = pc). Sites belonging to finite clusters are marked by full circles, and sites on the ’infinite’ clusters are
marked by open circles. (extracted from [Havlin and Ben-Avraham, 1987]).

where τ > 0 is called the characteristic time. We note that, in this case, the random walk has
the Markov property (due to the memoryless property of the exponential distribution). On the
contrary, if

∫
tψ(t)dt =∞ the mean square displacement of the CTRW is given by (49). A typical

choice is a power law distribution:

ψ(t) = 1/(1 + t/τ)1+β, t > 0, (56)

with τ > 0 the characteristic time and 0 < β < 1.
In neurobiology, [Zhizhina et al., 2015] propose to investigate CTRW to model the axon growth.

The growth of an axon to its target is guided by chemical signals from the cellular environment.
The authors describe this interaction by a random waiting time thereby defining a CTRW. They
observe that “normal” axons and “mutant” axons are driven by CTRW with different waiting time
distribution.

Random walk on fractal The inner environment of a cell is crowded with small solutes and
macromolecules which occupy 10-50% of the volume [Dix and Verkman, 2008]. If the concentration
of obstacles is sufficiently high, the mean square displacement of the particle is given by Equation
(49) [Havlin and Ben-Avraham, 1987, Saxton, 1994]. In this case, the domain where they evolve
develops a fractal-like structure. Then, a popular model is the random walk on percolation clusters
[Havlin and Ben-Avraham, 1987].

For simplicity, we present the model on a 2−dimension square lattice. Each vertex of the
lattice has probability 1 − p to be an obstacle that is the particle can not go on this kind of
vertex. The other vertices can be occupied by particles. They form connected clusters on which
particles are assumed to undergo a random walk. In this very case, there exists a critical probability
pc = 0.592745 below which there exists only finite clusters and above which there exists one infinite
cluster (see Figure 6) [Havlin and Ben-Avraham, 1987]. When p = pc, the random walk on the
infinite cluster have its MSD given by Equation (49) [Havlin and Ben-Avraham, 1987]. In the
literature of diffusion on fractals, they parametrize the MSD (49) by β = d/dw where d is the
dimension and dw a parameter called the fractional dimension of the random walk. In the two-
dimensional case (d = 2), the fractional dimension of the random walk on a square lattice with
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p = pc is dw = 2.8784 [Grassberger, 1999] leading to β = 0.6948. [Havlin and Ben-Avraham, 1987]
also consider other choices of p and random walks on both the finite and infinite percolation clusters.
However, in these cases, the MSD is not a power function. As another two-dimensional example,
the fractional dimension of a random walk on the Sierpinski gasket fractal gives dw = 2.32 (then
β = 0.8621)[Havlin and Ben-Avraham, 1987]. [Berry and Chaté, 2014] argues that the exponents β
observed from real experiments span a wide range of values and that random walks on fractal can
not model all these possibilities. Then some authors [Berry and Chaté, 2014, Saxton, 1994] prefer
relying on Monte-Carlo simulations with different designs of obstacles (mobiles or not) to propose
a model explaining the observed power function form of the MSD.

Confined Diffusion

In biophysics [Saxton and Jacobson, 1997, Monnier et al., 2012], a confined diffusion (Xt) is char-
acterized by a MSD of the form:

E(‖Xt −X0‖2) =
r2
c

a
(1− be−cσ2/(2r2c )), (57)

where parameters rc is the characteristic size of the region of confinement, a is a scale parameter and
b and c depends on the shape of the region. Parameter σ > 0 is the constant diffusion coefficient.
We present two models of confined diffusion and give their mean square displacements. For the first
model, the MSD (57) is a simplification of the true MSD. We find the MSD (57) for a particular case
of the second model. We note that parameter a does not appear in [Saxton and Jacobson, 1997,
Monnier et al., 2012]. We use this extra scale parameter a to have the common expression (57) for
the MSD of the two presented models.

Diffusion within confined geometries The plasma membrane is parceled up into compart-
ments where proteins undergo short-term confined diffusion. More specifically these compartments
are separated by the actin-based membrane skeleton [Kusumi et al., 2005]. Then, the motion can
be modeled by the SDE (14) adding boundary conditions. Equation (57) is based on the first term
of the exact series solution of the MSD of a Brownian particle trapped in a square or circular corral
(in dimension 2) or in a sphere (in dimension 3) [Kusumi et al., 1993, Saxton, 1993]. As an example,
[Bickel, 2007] shows that, for a certain type of boundary condition, the MSD of a Brownian motion
confined in a circular domain of radius rc is given by:

E(‖Xt −X0‖2) = r2
c

(
1− 8

∞∑
i=1

exp

[
− ι21i

t

τ

]
1

ι21i(ι
2
1i − 1)

)
, (58)

where 0 < ι1,1 < ι1,2 < . . . are the positive zeros of J ′1, the first derivative of the Bessel function
of order one J1 and τ = 2r2

c/σ
2 is the characteristic time. We note that, as expected, the MSD

saturates to r2
c in the long-time limit t � τ . Then, Equation (57) is the first term of the sum

(58) with a = 1, b = 8/(ι211(1 − ι211)) and c = ι211. Parameters σ and rc are unchanged in the two
equations (58) and (57).

Diffusion in a potential well We can state that a particle is attracted by an external force
modeled by a potential well U . Originally, [Kramers, 1940] introduced such a model for describing
chemical reactions. His model can be seen as the (d−dimensional) Langevin equation (40) (written
here as a SDE) with an extra term depending on U :

mdv(t) = −ζv(t)dt−∇U(Xt) +
√

2ζkBTdBt, (59)
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where ∇ denotes the gradient operator. Now we make other assumptions on Equation (59) to obtain
a process with the MSD (57). First, we suppose that the viscosity is very large, that is the friction
coefficient ζ tends to infinity. Then, the acceleration term mdv(t) is negligible. This corresponds
to the so-called overdamped condition in physics [Van Kampen, 1992]. The model reduces to:

ζdXt = −∇U(Xt) +
√

2ζkBTdBt, (60)

where dXt = v(t)dt. Now, we assume that the potential U is uni-modal; in other words the particle
is trapped in a single domain. In this case, U can be approximated by a polynomial of order 2. For
simplicity, suppose that the potential is given by the following polynomial:

U(x1, . . . , xd) = (1/2)

d∑
i=1

ki(xi − θi)2, (61)

where ki > 0, θi ∈ R and d is the dimension of the process. Then the SDE (60) turns into:

dXi
t = −λi(Xi

t − θi)dt+ σdBi
t, i = 1, . . . , d, (62)

where σ =
√

2kBTζ and λi = ki/ζ > 0. As in the case of Equation (40), the solution of the
SDE (62) is the Ornstein-Uhlenbeck process (different parametrization compared to the SDE (40)
with the extra parameters θi though). The parameter ki measures the strength of attraction of
the potential (related to the potential depth) while θ = (θ1, . . . , θd) is the equilibrium position of
the particle. As we already mentioned, the Ornstein-Uhlenbeck is a Gaussian process with normal
stationary distribution. In the case of the Ornstein-Uhlenbeck, the mean and covariance of the
stationary distribution are:

E(Xt) = θ, (63)

Cov(Xt, Xs) =
σ2

2

(1− e−λ1|t−s|)/λ1 0
. . .

0 (1− e−λd|t−s|)/λd

 . (64)

The MSD of the Ornstein-Uhlenbeck process (??) is given by:

E(‖Xt −X0‖2) = σ2(1− e−λt)
d∑
i=1

(1/λi), (65)

when X0 is drawn with the stationary distribution. When λi = λ for i = 1, . . . , d Equation (65)
reduces to:

E(‖Xt −X0‖2) =
dσ2(1− e−λt)

λ
. (66)

Then, we obtain the MSD (57) with r2
c = σ2/(2λ), a = 2/d and b = c = 1.

As an example, [Hozé, 2013] studies the postsynaptic AMPA-type glutamate receptor (AMPAR),
a protein involved in the fast excitatory synaptic transmission. AMPAR plays a crucial part in many
aspects of brain functions including learning, memory and cognition. Aberrant AMPAR trafficking
is implicated in neurodegenerative process [Henley et al., 2011]. [Hoze and Holcman, 2017] uses the
overdamped Equation (60) with a polynomial of order 2 for the potential U to model potential wells
attracting AMPAR in the synapses.
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3.4 Superdiffusion

We note that less attention has been paid to superdiffusion in biophysics. We present here the most
popular models.

Brownian with Drift

At the macroscopic level, the main type of active intracellular transport involves molecular motors
which carry particles (cargo) along microtubular filament tracks. The molecular motors and their
cargo undergo superdiffusion on a network of microtubules in order to reach a specific area quickly.
The molecular motor moves step by step along the microtubules thanks to a mechano-chemical
energy transduction process. A single step of the molecular motor is modeled by the so-called
Brownian ratchet [Reimann, 2002]. When we observe the motion of the molecular motor along
a filament on longer time-scales (several steps), its dynamic can be approximated by a Brownian
motion with constant drift (also called directed Brownian) [Peskin and Oster, 1995, Elston, 2000].

The Brownian motion with drift is solution of the SDE:

dXi
t = vidt+ σdB

1/2,i
t , i = 1, . . . , d, (67)

where v = (v1, . . . , vd) ∈ Rd is the constant drift parameter modeling the velocity of the molecular
motor. Then the MSD of the directed Brownian motion is given by:

E(‖Xt −X0‖2) = ‖v‖22t2 + dσ2t, (68)

the linear component coming from the Brownian part while the quadratic part is due to the constant
drift. In absence of the Brownian component the MSD is quadratic, the motion is described as
ballistic that is the particle goes straight.

Anomalous Superdiffusion

Anomalous superdiffusions are the analogue to anomalous subdiffusion. Then the MSD of an anoma-
lous superdiffusion (Xt) is characterized by a MSD which is proportional to the monome tβ,

E(‖Xt −X0‖2) ∝ tβ, (69)

with 1 < β < 2.

Fractional Brownian motion Superdiffusion can also be modeled by the fractional Brownian
motion with Hurst parameter 1/2 < h < 1. In fact, we know that the MSD of the fBm is given by
Equation (69). However, we note that in biophysics the use of the fractional Brownian motion is
mainly related to subdiffusion.

4 Conclusion

In this paper, we presented three main classes of diffusions, namely Brownian motion, subdiffusion
and superdiffusion, which are tractable microscopic and macroscopic models of intracellular trans-
port. The diffusion phenomenon, described by Robert Brown in the early 19th, is mainly due to the
thermal agitation in the medium resulting from the shocks between molecules and causing stochastic
trajectories. For each diffusion type, we gave examples of models used in biophysics. Typically, we
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focused on the Ornstein-Uhlenbeck process and the fBm (with 0 < h < 1/2) for modeling subdiffu-
sion. We used the Brownian with drift and the fBm (with 1/2 < h < 1) for modeling superdiffusion.
However, there exists a wide variety of models for subdiffusion and superdiffusion. We emphasized
that, in biophysics, some processes are considered as subdiffusive or superdiffusive even if there are
not diffusions according to the probabilistic definition. As an example, continuous time random
walks (CTRW) are not diffusions since their paths are not continuous. We gave mathematically
detailed formulas, and define the classification through the MSD criterion.

Meanwhile, an important challenge is to estimate model parameters [Hoze and Holcman, 2017],
and to classify tracks computed with dedicated algorithms [Chenouard et al., 2014]. In
[Briane et al., 2018], we defined several test procedures to classify the observed trajectories into
the three diffusion types. Another issue is to simulate more sophisticated models as presented in
[Bressloff and Newby, 2013, Bressloff, 2014, Etoc et al., 2018], including multi-scale models to take
into account complex interactions, signaling pathways, environment of the cytoplasm, properties of
the cytoskeleton, geometry of the cell, and interaction with neighboring cells.
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